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ABSTRACT

FIRST PRICE AUCTIONS UNDER PROSPECT

THEORY WITH LINEAR PROBABILITY

WEIGHTING

KESKİN, Kerim

M.A., Department of Economics

Supervisor: Assist. Prof. Tarık Kara

August 2011

Overbidding in first-price sealed-bid auctions is a well-known result in the

auction theory literature. For the possible reasons behind this phenomenon,

economists provided many explanations; such as risk aversion, regret theory,

and subjective probability weighting. However, for subjective probability

weighting to explain overbidding, the probability weighting function (PWF)

is needed to be underweighting all probabilities. Such a function is not in

accord with PWFs in the prospect theory literature as it suggests a specific

function which satisfies certain properties. In this paper we investigate, to

what extent prospect theory is able to explain overbidding by using a lin-

ear PWF satisfying all of the axiomatic properties (Currim and Sarin, 1989).

Moreover, we introduce a non-zero reference point, fully utilizing prospect

theory. Our results show that, subjective probability weighting alone is un-

able to explain overbidding. However, with the non-zero reference point as-

sumption, we obtain partial overbidding.

Keywords: First-price auctions, Subjective probability weighting, Prospect

theory, Reference point, Overbidding
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ÖZET

DOĞRUSAL OLASILIK AYARLAMALI BEKLENTİ

KURAMI VARSAYIMLARI ALTINDA BİRİNCİL

FİYAT İHALELERİ

KESKİN, Kerim

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Yard. Doç Dr. Tarık Kara

Ağustos 2011

Birincil fiyat kapalı zarf ihalelerinde gözlemlenen aşırı fiyat verme, ihale ku-

ramı literatüründe bilinen bir sonuçtur. Ekonomistlerin, bu sonucun arkasında

yatan gerekçeler için getirdikleri açıklamalardan bazıları; riskten kaçınma,

pişmanlık kuramı ve subjektif olasılık ayarlamasıdır. Fakat, subjektif olasılık

ayarlamasının, bu durumu açıklayabilmesi için olasılık ayarlama fonksiyonu

(OAF) her olasılığı küçümsemelidir. Bu tip bir fonksiyon ise, beklenti kuramı

literatüründeki öneriler ile uyuşmamaktadır. Çünkü, beklenti kuramında

OAFnun belli özellikleri sağlaması önerilmektedir (Currim and Sarin, 1989).

Bu çalışmada biz, doğrusal bir OAF kullanarak, beklenti kuramının aşırı fiyat

vermeyi ne ölçüde açıklayabildiğini araştırıyoruz. Ayrıca, pozitif referans nok-

tası öneriyor, ve böylece beklenti kuramını tam anlamıyla kullanmış oluyoruz.

Sonuçlarımız, sadece subjektif olasılık ayarlaması altında, düşük fiyat vermeyi

göstermektedir. Fakat, pozitif referans noktası varsayımı altında bazı oyun-

cuların aşırı fiyat verdiği görülmüştür.

Anahtar Kelimeler: Birincil fiyat ihalesi, Subjektif olasılık ayarlaması, Bek-

lenti kuramı, Referans noktası, Aşırı fiyat verme.
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CHAPTER 1

INTRODUCTION

As Krishna (2002) mentions there are many strong results in the current

auction theory literature: (i) Revenue-equivalence principle states that any

standard auction1 yields the same ex-ante revenue to the seller. (ii) In second-

price sealed-bid auctions, telling the truth is a dominant strategy for each

bidder. (iii) Dutch auctions and first-price sealed-bid auctions are strategi-

cally equivalent. However, some of these theoretical findings are not in accord

with the experimental studies. Arguably, the most interesting discordance is

overbidding in first-price auctions. To be more clear, bids observed in exper-

imental studies are greater than the risk neutral Nash equilibrium (RNNE)

(Cox et al., 1988; Kagel and Levin, 2008).

In the literature, many studies try to explain overbidding in first-price

auctions. Although risk aversion seems enough to explain overbidding, it

requires bidders to be excessively risk averse. Thus, it is argued that risk

aversion cannot be the only factor behind bidding above the RNNE (Kagel

and Roth, 1992). To support such an idea; loss aversion (Lange and Ratan,

2010), and regret theory (Filiz-Ozbay and Ozbay, 2007) are provided.2 Eisen-

1An auction is called a standard auction if the bidder who bids the highest amount
becomes the winner.

2Lange and Ratan (2010) use a multi-dimensional reference dependent model of Kőzsegi
and Rabin (2006), and examine both first-price and second-price auctions. Filiz-Ozbay and
Ozbay (2007) define two types of regret (winner and loser), and conclude that loser regret
dominates winner regret which leads to overbidding.
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huth (2010) also utilizes loss aversion and looks for an efficient mechanism.3

As an alternative explanation to overbidding, there are some studies that use

prospect theory (Kahneman and Tversky, 1979). Goeree et al. (2002) ex-

amine auctions with subjective probability weighting, and use a probability

weighting function (PWF) which is suggested by Prelec (1998). Ratan (2009)

also uses the same PWF together with a multi-dimensional reference depen-

dent model. Armantier and Treich (2009a) state that any star-shaped PWF

is able to explain overbidding, and they relate this result to the experimental

study (Armantier and Treich, 2009b).

In this paper, we introduce prospect theory into the first-price auction

framework, and try to answer the question: to what extent, prospect theory

is able to explain overbidding in first-price auctions. We use a linear PWF

together and assume that gains are evaluated with respect to an exogenous

reference point. Our results suggest that, with linear probability weighting

there always exists a bidder who bids less than the RNNE. Besides each

bidder underbids for some values of the variables, concluding that prospect

theory fails to explain overbidding. Thus, we impose restrictions for these

variables so that most of the bidders overbid. With this method, we verify

overbidding for bidders with high valuation, thus manage to partially explain

overbidding.4

In addition, we suggest two different probability weighting methods which

are motivated from Metzger and Rieger (2009). As bidders calculate their

winning probabilities by compounding the probabilities of events, the fol-

lowing two methods emerge: weighting probabilities after compounding and

before compounding. We show that, former method is less desirable as it

suggests unreasonable bidding behavior. With both of these methods, with

zero reference point, linear probability weighting causes underbidding. Intro-

3The findings of Eisenhuth (2010) suggest that bidders who values the object more
overbids, whereas the other bidders bid less than RNNE.

4Thus, our result is similar to the results of Eisenhuth (2010).
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ducing a positive reference point is not sufficient to explain overbidding as

well. However, we claim that imposing more assumptions, such as assigning a

lower bound for the reference point, will form a proper model. Moreover, such

restrictions are not effective under weighting after compounding method.

Our paper is structured as follows: Chapter 2 includes some aspects

of prospect theory, and some literature review about subjective probabil-

ity weighting in auctions. In chapter 3, we examine the first-price sealed-bid

auctions under prospect theory; in section 3.1, we have risk neutral bidders

who weights after compounding, whereas, in section 3.2, risk neutral bid-

ders who weights before compounding. In chapter 4, we provide a discussion

about using a non-linear probability weighting function. Finally, chapter 5

concludes.
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CHAPTER 2

PROSPECT THEORY

Prospect theory suggests the use of a pair of functions to represent the

preference relation of an agent, a value function and a probability weighting

function (PWF).1 In this chapter, we define the functions we used throughout

this paper.

To our knowledge, Armantier and Treich (2009a) and Ratan (2009) are

the only theoretical studies which use subjective probability weighting in

auctions. Ratan (2009) uses one of the PWFs suggested by Prelec (1998),

which is defined as w : [0, 1]→ [0, 1] as: for any p ∈ [0, 1],

w(p) = exp(−β(− ln p)α) .

However, Ratan (2009) assumes α = 1 which yields w(p) = p β, and claims

that β > 1. He is motivated by Goeree et al. (2002) who estimate similar

values for α and β. Note that, for these values of α and β, every probability is

being underweighted, so PWF does not satisfy overweighting property. This

fact is emphasized by Goeree et al. (2002) as well. Moreover, Armantier

and Treich (2009b) suggest star-shaped PWFs which also underweight each

probability. We, however, define a linear PWF satisfying all of the axiomatic

properties of PWFs mentioned in Currim and Sarin (1989). Thus, we define

1One can find the axiomatic properties of these functions in Currim and Sarin (1989).
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w : [0, 1]→ [0, 1] as: for any p ∈ [0, 1],

w(p) =


0 , if p = 0

µp+ η , if p ∈ (0, 1)

1 , if p = 1

(2.1)

Here, in order to satisfy the aforementioned properties of PWFs, we further

assume that η and µ are both positive such that 2η + µ < 1.

In subjective probability weighting, the type of weighting is also impor-

tant as PWF itself. We use two different weighting methods: weighting af-

ter compounding and weighting before compounding. The following example

demonstrates the motivation behind using two different methods.

Example 1: When we flip a coin, each outcome is likely to happen with

probability 1
2
. We suggest a lottery such that; we flip the coin 2 times

and the lottery yields 1$ if both outcomes are heads, and nothing oth-

erwise. Now, the probability of winning is 1
4
. However, if we consider

subjective probability weighting, there are two ways to weight. Either

weighting 1
4
, i.e. w(1

4
); or weighting 1

2
’s first, i.e. w(1

2
)2.

In our setting, former method corresponds to weighting after compound-

ing. In the latter method, the probabilities of other agents having lower than

a certain valuation are weighted first, and then the weighted probabilities are

multiplied to obtain the winning probability.2 At the end, we suggest weight-

ing before compounding as the desirable method in explaining overbidding in

first-price auctions.

We also define the value function V : R → R, which is suggested by

Tversky and Kahneman (1992). Thus, for any x ∈ R :

V (x) =

 xθ , x ≥ 0

−λ(−x)θ , x < 0
(2.2)

2I.e. bidders weight before compounding.

5



where λ > 1, and θ ∈ (0, 1]. Finally, we assume that reference point is

determined exogenously. We first consider zero reference point. By doing so,

we will be able to capture the sole effect of linear probability weighting on the

equilibrium of first-price auctions. Then, by introducing a positive reference

point we analyse first-price auctions under prospect theory. We motivate

using a positive reference point by the following example from Metzger and

Rieger (2009).

Example 2: Let ε > 0. For lottery A, define the outcomes as ai = 1− i · ε,

and the probabilities as δi = 1
n

for any i ∈ {1, ..., n}; and let B be

the sure lottery with outcome 1. Then, obviously, lottery B first order

stochastically dominates lottery A. However, since small probabilities

are assumed to be overweighted, for high enough n and small enough

ε, an agent with prospect theoretic preferences may prefer lottery A to

lottery B.

Preferring lottery A over lottery B does sound irrational, as rationality

would not imply preferring a lottery that obviously yields less than 1 over a

lottery that yield 1 for sure. Yet, of course, such an irrationality would vanish

if there was a proper reference point.

Many studies support that an agent’s reference point should be equal to

her expectation. Using the fact that, in a first price auction, one should

be expecting a positive gain as they are willingly participating the auction,

we suggest a positive reference point, r. Notice that, such an assumption

eliminates the irrational behavior caused by zero reference point assumption

illustrated in Example 2.

6



CHAPTER 3

FIRST PRICE AUCTIONS

There is a single object to be sold. There are n bidders in the player set

N , and each bidder i ∈ N assigns a monetary value for the object, which

is denoted by vi. The valuation vi is only known to bidder i. Also, each

bidder knows that the valuation of the other bidders are identically and inde-

pendently distributed according to a cumulative distribution function F . We

assume that F is a uniform distribution over (0, 1).1 Finally, bidders choose

their strategies simultaneously.

In first-price auctions; the bidder with the highest bid wins the auction,

gets the object, and pays her bid. Throughout the paper, we assume that

tie in bids will be broken randomly. In this setting, any outcome can be

represented as a lottery. Each bidder i ∈ N with a valuation vi faces the

lottery space, Lvi , which is induced by lvi : [0,∞)×
∏

j∈N\{i}Bj → (−∞, vi]×

[0, 1]. Here, Bj is the set of all increasing functions2, βj : (0, 1) → [0,∞).

Given any strategy profile of competitors, β, we have lvi(b, β) = (g, p) where

g = vi − b and p =
∏

j∈N\{i} F (β−1j (b)). In this context, g denotes the gain

and p denotes the winning probability3.

1In the equilibrium analysis, we consider any distribution over (0,1). Then we use
uniform distribution and present our findings.

2We eliminate non-increasing functions as it is plausible to assume that one would bid
higher as her valuation increases.

3With the remaining probability 1− p the outcome of the lottery is 0.
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As a prospect theoretic approach, bidders weight the probabilities, and

evaluate gains of the lottery relative to their reference point via value function.

Throughout the paper, we search for symmetric equilibria and use an

equilibrium analysis similar to the ones in the current literature. In order

to do that, one should calculate the expected payoffs of the bidders, so we

define their reference points first. For now, we make a simplifying assumption

that the reference point of each bidder is zero. Moreover, as we search for

an explanation for overbidding, we focus on risk neutral bidders4. Thus, we

assume that θ = 1 in (2.2).

3.1 Weighting After Compounding

In auctions, each bidder calculates her winning probability by compound-

ing the probabilities that every other bidder bids less than her bid. When

subjective probability weighting is introduced, weighting the winning prob-

ability is an option as we have discussed above. In this section, we utilize

that method. We denote the probability of winning the auction by a func-

tion, G : (0, 1) → (0, 1), defined by G = F n−1 since we consider symmetric

equilibrium.

For equilibrium analysis, take any bidder i ∈ N with valuation vi. Her

expected payoff of bidding b ∈ [0, vi],
5 while all other bidders j ∈ N\{i}

follow a symmetric, differentiable strategy β ∈ Bj is,

w[G(β−1(b))](vi − b) .

Our analysis yields the following result, as it is shown in the Appendix.

4Here, by risk neutrality, we refer to a value function which is linear in both gains
and losses frames. In other words, we would be assuming risk neutrality if there was
not subjective probability weighting. With a linear PWF, agents risk preference may be
different than risk neutrality.

5It is straightforward that, bidding any amount higher than own valuation is a dom-
inated strategy as bidding 0 dominates such a strategy. Thus, we do not consider those
values of b for the expected payoff, although they are in the strategy set of bidder i.

8



Proposition 1. The unique risk neutral symmetric equilibrium in first-price

auctions is characterized by,

βA(vi) =
1

w(vn−1i )

∫ vi

0

y
∂w(yn−1)

∂y
dy = vi −

∫ vi
0
w(yn−1)dy

w(vn−1i )
(3.1)

when bidders are assumed to weight probabilities after compounding, and eval-

uate payoffs relative to zero reference point.

Proof. See Appendix.

Notice that, assuming w(p) = p would yield the equilibrium function

for the expected utility case. In that case, the bidding function becomes

βRN(vi) = n−1
n
vi.

Now, using the linear PWF, (2.1), yields the unique symmetric equilibrium

of our model. Corollary 1, below, states that our setting predicts underbid-

ding at the equilibrium.

Corrolary 1. In first-price auctions, risk neutral bidders bid,

β∗A(vi) =
µ(n− 1)vni
ηn+ µnvn−1i

if they weight probabilities after compounding according to the linear PWF,

(2.1), and evaluate payoffs relative to zero reference point. Thus, agents bid

less aggressively than RNNE.

Proof. It directly follows that β∗A(vi) =
µ(n−1)vni
ηn+µnvn−1

i

. Since µ > 0, for any

vi ∈ (0, 1), β∗A(vi) decreases in η. If η = 0, then β∗A(vi) = n−1
n
vi = βRN(vi).

As we assume η > 0, we have β∗A(vi) < βRN(vi) for any vi ∈ (0, 1). Thus we

conclude that any bidder bids less aggressively.

With this result, we deduce that weighting after compounding method

predicts a bidding strategy less than the RNNE. Thus, overbidding in first-

price auctions cannot be explained by this model.

9



Then, we introduce the other notion, namely reference point, of prospect

theory in our setting, and assume that r > 0. Hence, we have solved the

problem presented in Example 2, however, there may emerge a new problem:

Consider a bidder i with valuation vi < r. No matter how small we take the

reference point, such a bidder may exist. But now, how can someone expect to

win more than her valuation in a first-price auction? This argument implies

that reference point cannot be constant in valuations. Thus we suggest a

function r : (0, 1)→ (0, 1) such that r(v) gives the reference point of a bidder

with valuation v. We define r such that for any v ∈ (0, 1) :

r(v) = ϕ
1

n
v . (3.2)

where ϕ ∈ (0, 1). Notice that, the reference point is assumed to be increasing

in valuation of the bidder and decreasing in the number of competitors.

For equilibrium analysis, take any bidder i ∈ N with valuation vi, again.

Assuming that any bidder j ∈ N\{i} bids according to a symmetric, differ-

entiable strategy β ∈ Bj, expected payoff of bidder i from bidding b ∈ [0, vi]

is,6

w[G(β−1(b))]λ1(vi − b− r(vi))− w[1−G(β−1(b)]λr(vi) ,

where λ1 equals to 1 if b ≤ vi − r(vi), and λ if otherwise. Under these

assumptions, we have the following proposition.

Proposition 2. The unique risk neutral symmetric equilibrium in first-price

auctions is characterized by,

β+
A (vi) =


(

1 + ϕ(λ−1)
n

)
βA(vi) , if vi

βA(vi)
> 1 + ϕλ

n−ϕ

vi − ϕ
n
vi , if o/w

(3.3)

when bidders are assumed to weight probabilities after compounding, and eval-

6It is still a dominated strategy to bid higher than own valuation. Under these assump-
tions, a bidder gains a negative amount from winning if she bids higher than vi − r(vi).
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uate payoffs relative to positive reference point in (3.2).

Proof. See Appendix.

Corollary 2 uses the linear PWF, (2.1), and states the equilibrium bid-

ding function under aforementioned assumptions. Moreover, the failure in

explaining overbidding is presented.

Corrolary 2. In first-price auctions, risk neutral bidders bid,

β+,∗
A (vi) =


(

1 + ϕ(λ−1)
n

)
β∗A(vi) , if vi

β∗
A(vi)

> 1 + ϕλ
n−ϕ

vi − ϕ
n
vi , if o/w

if they weight probabilities after compounding according to the linear PWF,

(2.1), and evaluate payoffs relative to positive reference point in (3.2). Thus,

agents bid more aggressively than those with zero reference point. Besides,

for any λ, η and µ; there is k∗ ∈ R such that when ϕ
n
≤ k∗, any bidder bids

less aggressively than the RNNE.

Proof. It is trivial that, linear PWF, (2.1), returns the suggested β+,∗
A (vi). As

(1− ϕ
n

)vi > βRN(vi), ϕ > 0, n > 0, and λ > 1; β+,∗
A (vi) > β∗A(vi).

For the existence of k∗ ∈ R, we consider the case where vi
β∗
A(vi)

> 1 + ϕλ
n−ϕ ,

and simply solve β+,∗
A (vi) < βRN(vi) for vi. This inequality holds if η

µvn−1
i

>

ϕ(λ−1)
n

. Since vi < 1, we also have η

µvn−1
i

> η
µ
. Now, fix λ. If ϕ(λ−1)

n
≤ η

µ
,

that is to say, if ϕ
n
≤ η

µ(λ−1) = k∗; then for any vi ∈ (0, 1), β+,∗
A (vi) < βRN(vi)

holds. Thus, under such values of ϕ
n

, any bidder bids less aggressively than

the RNNE.

Note that, k∗ is positive by our assumptions on η, µ and λ. Also, notice

that, under such ϕ values, β+,∗
B (vi) is less than the RNNE, thus the other case

of the equilibrium function is never realized.

To see the sole effect of positive reference point assumption, consider the

case where vi
β∗
A(vi)

> 1 + ϕλ
n−ϕ . Notice that, taking the identity function as

11



Figure 3.1: Equilibrium strategies, β∗A(vi), for different values of n

PWF, i.e. taking w(p) = p, would make the equilibrium
(

1 + ϕ(λ−1)
n

)
n−1
n
vi

which is greater than the RNNE.7 That means, the value function in (2.2)

with respect to the reference point in (3.2) is enough to explain overbidding

in first-price auctions. Thus, we provide a simple and strong explanation for

overbidding. However, as it is shown in Corollary 2, introducing subjective

probability weighting causes our model to lose this explanatory power.

Beside the failure in providing the explanation, our model has another

problematic result: bids are decreasing in the number of bidders, i.e. more

competition leads to less aggressive bidding behavior (See Figure 1). In ad-

dition; as the number of bidders increase, the bidders bid closer to 0. This

result is shown in Corollary 3 below.

Corrolary 3. Under the assumption that bidders weight probabilities after

compounding, the equilibrium bidding function converges to 0 as n goes to

infinity, for both zero reference point and positive reference point assumptions.

Proof. Considering β+,∗
A (vi) is enough since it equals to β∗A(vi) when ϕ = 0.

Since vi ∈ (0, 1), it is straightforward that,

lim
n→∞

w(p) = η .

7In the other case, β+,∗
B (vi) = vi − r(vi) which is trivially greater than the RNNE.
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Thus,

lim
n→∞

∫ vi

0

w(y)dy = ηvi .

Hence, limn→∞ β
+,∗
A (vi) =

(
1 + ϕ(λ−1)

n

)(
vi − ηvi

η

)
= 0 for any vi ∈ (0, 1).

This result shows that weighting after compounding causes unreasonable

bidding behavior, which is also the reason for this model to be unsuccessful

in explaining overbidding in first-price auctions. In the following section, we

utilize the weighting before compounding method.

3.2 Weighting Before Compounding

In this section, we assume that the bidders weight probabilities before com-

pounding. The idea of weighting is based on agents’ realization of the winning

probability. It may not be that obvious in an auction setting, but the calcula-

tion of the winning probabilities in auctions is similar to the case in Example

1. In our model, latter method corresponds to weighting before compounding

which returns w(F (p))n−1 as the weighted winning probability, whereas the

former method corresponds to weighting after compounding, w(F (p)n−1).8

As Proposition 3 and its corollary suggest, the bids are still less aggressive

than the RNNE. However, more competition leads to higher bid amounts

now. To obtain equilibrium, take any bidder i ∈ N , with valuation vi. The

expected payoff of her from bidding b ∈ [0, vi] while other bidders, j ∈ N\{i},

follow a symmetric, differentiable strategy β ∈ Bj is,

w[F (β−1(b)]n−1(vi − b) .

Proposition 3. The unique risk neutral symmetric equilibrium in first-price

8Notice that, these two methods coincide when n = 2.
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auctions is characterized by,

βB(vi) =
1

w(vi)n−1

∫ vi

0

y
∂w(y)n−1

∂y
dy = vi −

∫ vi
0
w(y)n−1dy

w(vi)n−1
(3.4)

when bidders are assumed to weight probabilities before compounding, and

evaluate payoffs relative to zero reference point.

Proof. See Appendix.

Corollary 4, below, states that bids are less aggressive than the RNNE if

the PWF is linear as defined in (2.1).

Corrolary 4. In first-price auctions, risk neutral bidders bid,

β∗B(vi) = vi −
η + µvi
µn

+
ηn

µn(η + µvi)n−1

if they weight probabilities before compounding according to the linear PWF,

(2.1), and evaluate payoffs relative to zero reference point. Thus, agents bid

less aggressively than the RNNE. Besides, more competition leads to more

aggressive bidding.

Proof. If we put (2.1) in the equation, we get β∗B(vi) = vi−η+µvi
µn

+ ηn

µn(η+µvi)n−1 =

n−1
n
vi − η

µn
+ ηn

µn(η+µvi)n−1 = n−1
n
vi − η

µn
+ η

µn

(
η

η+µvi

)n−1
. Since η and µ are

both positive, β∗B(vi) <
n−1
n
vi = βRN(vi) follows.

Now, we prove the claim that more competition leads to more aggressive

bidding. Take any n ∈ N. We will show that,

vi −
η + µvi
µn

+
ηn

µn(η + µvi)n−1
< vi −

η + µvi
µ(n+ 1)

+
ηn+1

µ(n+ 1)(η + µvi)n

so that, for any vi ∈ (0, 1), as the number of bidders increases, so does

β∗B(vi). Above inequality simplifies into ηn−(η+µvi)n
n

< ηn+1−(η+µvi)n+1

(n+1)(η+µvi)
, which

is (η+µvi)
n+1 > ηn+1 + ηn(n+ 1)µvi. Noting that η and µ are both positive,

and n is a natural number; this inequality always holds since the RHS is the

14



first two terms of the binomial expansion of the LHS. Thus, more competition

leads to more aggressive bidding.

For our next result, our assumptions is similar to those we have used in the

previous section: bidders weight probabilities according to the linear PWF,

(2.1), and they have positive reference points, (3.2). Then, take any bidder

i ∈ N with vi, again. Now, her ‘weighted’ probability of losing from bidding

b ∈ [0, vi] is,

n−2∑
k=0

(
(n− 1)!

k!(n− k − 1)!
w[1− F (β−1(b))]n−k−1w[F (β−1(b))]k

)
.

where any bidder j ∈ N\{i} follows a symmetric, differentiable strategy

β ∈ Bj. Since it is a part of a binomial expansion, we can write the expected

payoff of bidder i as,

w[F (β−1(b)]n−1λ1(vi − b− r(vi))

−λr(vi)
((
w[1− F (β−1(b))] + w[F (β−1(b))]

)n−1 − w[F (β−1(b)]n−1
)
.

where λ1 equals to 1 if b ≤ vi − r(vi), and λ if otherwise.

Proposition 4. The unique risk neutral symmetric equilibrium in first-price

auctions is characterized by,

β+
B(vi) =


(

1 + ϕ(λ−1)
n

)
βB(vi) , vi

βB(vi)
> 1 + ϕλ

n−ϕ

vi − ϕ
n
vi , o/w

(3.5)

when bidders are assumed to weight probabilities before compounding, and

evaluate payoffs relative to positive reference point in (3.2).

Proof. See Appendix.

According to the next corollary, there is a real number k∗ such that any

bidder bids less aggressively if ϕ ≤ k∗.
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Corrolary 5. In first-price auctions, risk neutral bidders bid,

β+,∗
B (vi) =


(

1 + ϕ(λ−1)
n

)
β∗B(vi) , vi

β∗
B(vi)

> 1 + ϕλ
n−ϕ

vi − ϕ
n
vi , o/w

if they weight probabilities before compounding according to the linear PWF,

(2.1), and evaluate payoffs relative to positive reference point in (3.2). Thus,

agents bid more aggressively than those with zero reference point. Besides,

for any values of λ, η, µ and n; there is k∗ ∈ R such that when ϕ ≤ k∗, any

bidder bids less aggressively than the RNNE.

Proof. As it is also utilized in the proof of Corollary 2, ϕ(λ−1)
n

> 0, so that

β+,∗
B (vi) > β∗B(vi).

For the existence of k∗ ∈ R, we consider the case where vi
β∗
A(vi)

> 1 + ϕλ
n−ϕ ,

and simply solve β+,∗
B (vi) < βRN(vi) for vi. This inequality holds if

ϕ(λ− 1) <
vi

β∗B(vi)

(
η

µvi
− ηn

µvi(η + µvi)n−1

)
.

We have β∗B(vi) < vi, so the RHS is always greater than
(

η
µvi
− ηn

µvi(η+µvi)n−1

)
,

which is decreasing in vi. Thus, we also have

η

µvi
− ηn

µvi(η + µvi)n−1
>
η

µ
− ηn

µ(η + µ)n−1
.

Now, we conclude that if

ϕ ≤ η

µ(λ− 1)

(
1−

(
η

η + µ

)n−1)
= k∗ ,

then bidders bid less than the RNNE. Note that, k∗ is positive by our as-

sumptions on η, µ and λ. Also, notice that, under such ϕ values, β+,∗
B (vi)

is less than RNNE, thus the other case of the equilibrium function is never

realized.
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Although this result implies that overbidding in first-price auctions cannot

be explained by our prospect theoretic model, it shows a way to build a proper

model.9 Trivially, if ϕ is too small, then β+
B is too close to βB. We have

showed in Corollary 4 that β∗B(vi) < βRN(vi) for any valuation. However,

imposing further restrictions on ϕ under which the inequality in the proof

of Corollary 5 is never satisfied, completes a proper model that provides a

partial explanation for overbidding. In order to do that, we impose a lower

bound for ϕ.

Corrolary 6. When bidders weight probabilities before compounding accord-

ing to the linear PWF, (2.1), and evaluate gains with relative to positive

reference point in (3.2), any agent with a sufficiently low valuation under-

bids. Moreover, if µ > 6η, λ ≥ 2, and ϕ ∈
(
8
9
, 1
)
; any bidder i ∈ N with a

valuation vi ∈ [1
2
, 1) bids more aggressively than the RNNE.

Proof. For the existence of an underbidder, we simply take the derivative of

β+,∗
B (vi) with respect to vi and evaluate at vi = 0. The result is 0, which is

less than n−1
n

(the derivative of βRN(vi) with respect to vi). Since β+
B(0) =

0 = βRN(0), we conclude that, β+,∗
B (vi) < βRN(vi) for small enough vi.

For the latter part, we again consider the case, vi
β∗
A(vi)

> 1 + ϕλ
n−ϕ , of the

bidding function. If the claim holds for this case, it would hold for the other

case as well, since vi− ϕ
n
vi > βRN(vi). Now, we suppose there is some bidder

i ∈ N with valuation vi ∈ [1
2
, 1) who underbids. Then, β∗B(vi) ≥

(
1
2
− η

2η+µ

)
vi

for any values of n. As the maximum value of

(
1−

(
η

η+µvi

)n−1)
is 1, the

inequality in (8) becomes ϕ(λ − 1) ≤ 4η+2µ
µ

η
µvi

. Using the lowest possible

values for λ, vi and µ leads us to our conclusion: ϕ ≤ 8
9
, a contradiction to

ϕ ∈
(
8
9
, 1
]
. Thus, there is no such bidder. Hence, any bidder i ∈ N with a

valuation vi ∈ [1
2
, 1) bids more aggressively than the RNNE.

Now, we focus on the reason for weighting before compounding to be more

9We are unable to do so with weighting after compounding method because of the result
in Corollary 3.
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successful than weighting after compounding. Notice that, under weighting

before compounding method, the number of overweighters are not affected

by the number of competitors: For any n, the bidders with valuation in

(0, a
1−b) are the overweighters. However, when we consider weighting after

compounding, for n = 2, the bidders with valuation in (0, a
1−b) are the over-

weighters whereas for n = 3, the bidders with valuation in (0,
√

a
1−b) are the

overweighters. More generally, the number of overweighters are increasing in

n. In other words, when n is too high, almost every bidder overweights her

winning probability. As the shape10 of the PWF changes with n, so does the

behavior of equilibrium bidding function which is remarked by Corollary 3.

Our results show that prospect theoretic approach with a linear PWF

fails to explain overbidding in first-price auctions. However, under suggested

restrictions, our model is successful in explaining overbidding in first-price

auctions, for bidders with high valuations. We also show that, subjective

probability weighting with zero reference point suggests that any bidder bids

less aggressively than the RNNE, whereas positive reference point without

subjective probability weighting leads to overbidding for any bidder. In ad-

dition, we suggest that weighting before compounding is more successful in

explaining overbidding in first-price auctions.

10By shape, we mean the amount of overweighting. Recall that, prospect theory sug-
gests overweighting for small probabilities only. Thus, under weighting after compounding
method, we move away from the axiomatic properties of prospect theory as the number of
bidders increases.
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CHAPTER 4

NON-LINEAR PROBABILITY

WEIGHTING

To our knowledge; Goeree et al. (2002), Armantier and Treich (2009a),

Armantier and Treich (2009b), and Ratan (2009) are the studies that adapt

subjective probability weighting into an auction framework. The estimation

of Goeree et al. (2002) suggests a PWF function which underweights any

probability as the most successful PWF to explain overbidding. However, as

Goeree et al. (2002) argue, their findings are not in accord with the suggested

PWF of prospect theory literature. Although, there is such discordance, their

suggested PWF is verified by a later experimental study. In the experiment

conducted by Armantier and Treich (2009b), subjects are asked to tell their

winning probabilities given their valuations, the number of bidders, and the

distribution. Armantier and Treich (2009b) observe that subjects’ winning

probabilities are greater than their answers, and claim that bidders under-

weight probabilities in a first-price auction setting.

The findings of Goeree et al. (2002) and Armantier and Treich (2009b) also

mean that, using a non-linear PWF that satisfies the suggested properties of

PWFs1 (Currim and Sarin, 1989) would be less successful. In fact, our result

about the existence of an agent who underbids is also valid under reverse-s

1In the current literature, PWFs are suggested to be reverse-s shaped.
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shaped PWFs.

From the equilibrium results of this paper, one can deduce that the effect

of η is significant. For example, if we violate the overbidding property by

choosing a negative η we would obtain overbidding for each bidder and any

values of µ. Under the assumption of a reverse-s shaped PWF, right-handed

limit of the PWF at 0 equals to 0, thus such an effect would not be observed.

On the other hand, the unreasonable bidding behavior under weighting after

compounding vanishes as Corollary 3 would not be holding any more. Notice

that, this result is also related with above η argument.

With these observations and the results of Goeree et al. (2002), one can

claim that overweighting leads to underbidding. Besides, underweighting

leads to overbidding unless the underweighters are not affected by the de-

crease in the bids of overweighters. Such an effect can be too significant,

so that each bidder bids less than the RNNE although most of them are

underweighters, as we can see in our results.

To sum up, with a reverse-s shaped PWF, one can provide a better expla-

nation for overbidding. However, it would still be a partial explanation since

an underbidder always exists.
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CHAPTER 5

CONCLUSION

Our paper is motivated by the experimental studies in which overbidding

is observed in first-price auctions. As it is mentioned earlier, there are several

auction models trying to explain overbidding. In this paper, we use prospect

theory with linear probability weighting. For subjective probability weight-

ing, we suggest two different methods. We deduce that weighting before

compounding is more successful in providing an explanation, since weight-

ing after compounding leads to unreasonable bidding behavior. To be more

clear, bidding function converges to 0 as the number of bidders increases, if

weighting after compounding method is used.

We show that, if bidders weight before compounding and consider out-

comes with respect to a zero reference point, they bid less aggressively. Intro-

ducing a positive reference point also does not work, as too small reference

points are not strong enough to increase the bids sufficiently. According to

our results, for both reference point assumptions, bidders who weight after

compounding bid even less aggressively.

To obtain overbidding, we suggest imposing further assumptions on the

reference point. To be more specific, if the reference points of the bidders

are sufficiently high, then most of the bidders bid more aggressively than

the RNNE. Thus, prospect theory with linear probability weighting provides
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a partial explanation for overbidding. Moreover, because of the result that

there always exists a bidder who underbids, linear probability weighting is

unable to provide a stronger explanation.

In addition, we show that value function with a positive reference point

is enough to explain overbidding in first-price auctions, if bidders do not

weight probabilities subjectively. Thus, although the models with subjective

probability weighting mostly fail, we provide a strong and simple explanation

for overbidding in first-price auctions.

As a final remark, the literature on prospect theory suggests a non-linear

PWF, thus assuming a non-linear PWF would provide a better answer to

our question. The weighting methods and reference point assumptions would

still be valid under the assumption of a non-linear PWF. Moreover, one can

combine the assumptions of this model with other assumptions, such as risk

aversion or regret theory, and obtain the collective effect of these assumptions

on the equilibrium strategies. After all, Kagel and Roth (1992) may be right:

“... risk aversion cannot be the only factor and may not well be the most

important factor behind bidding above the RNNE”.
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Kőzsegi, B., Rabin, M., Nov 2006. A Model of Reference Dependent Prefer-
ences. The Quarterly Journal of Economics 121 (4), 1133–1165.

Krishna, V., 2002. Auction Theory. Academic Press, San Diego.

Lange, A., Ratan, A., 2010. Multi-Dimensional Reference-Dependent Prefer-
ences in Sealed-Bid Auctions - How (most) Laboratory Experiments Differ
From the Field. Games and Economic Behavior 68, 634–645.

23



Metzger, L. P., Rieger, M. O., 2009. Equilibria in Games with Prospect The-
ory Preferences, working Paper.

Prelec, D., May 1998. The Probability Weighting Function. Econometrica
66 (3), 497–527.

Ratan, A., 2009. Reference-Dependent Preferences in First Price Auctions,
working Paper, University of Maryland.

Reny, P. J., 2011. On the existence of monotone pure strategy equilibria in
bayesian games. Econometrica 79 (2), 499–553.

Tversky, A., Kahneman, D., 1992. Advances in Prospect Theory: A Cumu-
lative Representation of Uncertainity. Journal of Risk and Uncertainity 5,
297–323.

24



APPENDIX

Proof of Proposition 1. First order condition with respect to b is,

∂w[G(β−1(b))]

∂β−1(b)

∂β−1(b)

∂b
(vi − b)− w[G(β−1(b))] = 0 .

Arranging terms yield,

∂w[G(β−1(b))]

∂β−1(b)

1

β′(β−1(b))
(vi − b) = w[G(β−1(b))] .

As we assume symmetric equilibrium, b = β(vi) should be the maximizer of

the objective function, i.e. would solve the above equality. Thus,

∂w(G(vi))

∂vi

1

β′(vi)
(vi − β(vi)) = w(G(vi)) .

Arranging terms yield,

w(G(vi))β
′(vi) +

∂w(G(vi))

∂vi
β(vi) =

∂w(G(vi))

∂vi
vi .

Then, we obtain,

∂

∂vi
[w(G(vi)β(vi)] = vi

∂w(G(vi))

∂vi

which implies,

βA(vi) =
1

w(G(vi))

∫ vi

0

y
∂w(G(y))

∂y
dy = vi −

∫ vi
0
w(G(y))dy

w(G(vi))
.

Now, βA is the only candidate for the symmetric equilibrium. It is straight-
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forward that it is less than vi for any vi ∈ (0, 1). By differentiating βA with

respect to vi we conclude that it is increasing in vi, since

1−
w2(G(vi))− ∂w(G(vi))

∂vi

∫ vi
0
w(G(y))dy

w2(G(vi))
> 0 ,

by noting that both the derivative and the integral in the numerator are

positive terms. The following argument states that bidding βA(vi) is a best

response for bidder i with valuation vi given that the others follow βA as well.

Now, suppose that bidder i acts as if her valuation is z. Note that, bidding

higher than βA(1) is not a best response, since bidding slightly less yields

more. Then her expected payoff from bidding βA(z) < vi is,

EPA(z) = w(G(z))(vi − βA(z)) = w(G(z))(vi − z) +

∫ z

0

w(G(y))dy .

Then, EPA(vi)− EPA(z) is,

w(G(z))(z − vi)−
∫ z

vi

w(G(y))dy ,

which is, ∫ z

vi

w(G(z))dy −
∫ z

vi

w(G(y))dy .

Since, G is an increasing function, this difference is non-negative for any values

of z, concluding that bidding βA(vi) is a best response. Thus, βA is the unique

symmetric equilibrium. Since we assume that F is a uniform distribution,

β∗A(vi) = vi −
∫ vi
0
w(yn−1)dy

w(vn−1i )
.

Proof of Proposition 2. First order condition with respect to b is,
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∂w[G(β−1(b))]

∂β−1(b)

∂β−1(b)

∂b
λ1(vi − b− r(vi))

−∂w[1−G(β−1(b))]

∂β−1(b)

∂β−1(b)

∂b
λr(vi)) = λ1w[G(β−1(b))] .

As we assume symmetric equilibrium, b = β(vi) would solve the above equal-

ity. Thus,

∂w(G(vi))

∂vi

1

β′(vi)
λ1(vi − β(vi)− r(vi))

−∂w(1−G(vi))

∂vi

1

β′(vi)
λr(vi)) = λ1w(G(vi)) .

Arranging terms yield,

∂w(G(vi))

∂vi
λ1(vi − r(vi))−

∂w(1−G(vi))

∂vi
λr(vi)

= λ1

(
w(G(vi))β

′(vi) +
∂w(G(vi))

∂vi
β(vi)

)
= λ1

∂

∂vi
[w(G(vi))β(vi)] .

Then, we have,

β(vi) =
1

w(G(vi))

[∫ vi

0

y
∂w(G(y))

∂y
dy −

∫ vi

0

r(y)
∂w(G(y))

∂y
dy

]
− λ

λ1

1

w(G(vi))

∫ vi

0

r(y)
∂w(1−G(y))

∂y
dy ,

and this yields below result when r(y) is replaced with ϕ
n
y as defined above,

β(vi) =
(

1− ϕ

n

) 1

w(G(vi))

∫ vi

0

y
∂w(G(y))

∂y
dy

− λ

λ1

ϕ

n

1

w(G(vi))

∫ vi

0

y
∂w(1−G(y))

∂y
dy .

We, now, check whether the equilibrium bidding function can be greater than

or equal to vi − r(vi). Suppose that b ≥ vi − r(vi) implying that λ1 = λ.1

1We abuse notation here, to be able to study with a compact set. Although we have
defined λ1 as being equal to 1 when b = vi − r(vi), we use λ1 = λ. Such an action will
have no consequence on the result, because when b = vi − r(vi), λ1 will be multiplied by 0
in the expected payoff that we are maximizing.
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Then, above equality becomes,

β(vi) = βA(vi) < vi −
vi
n
< vi − r(vi) ,

which concludes that there is no interior solution. Thus, β(vi) = vi − r(vi),

if we assume that b ≥ vi − r(vi). Now, suppose that b ≤ vi − r(vi), aiming to

check whether b can be less than or equal to vi − r(vi). Then, λ1 = 1. Thus,

β(vi) =

(
1 +

ϕ(λ− 1)

n

)
1

w(G(vi))

∫ vi

0

y
∂w(G(y))

∂y
dy ,

which may be greater than vi − r(vi), for high values of vi and λ. For those

values, we conclude that there is a corner solution which is β(vi) = vi− r(vi).

To sum up,

β+
A (vi) =


(

1 + ϕ(λ−1)
n

)
βA(vi) , vi

βA(vi)
> 1 + ϕλ

n−ϕ

vi − ϕ
n
vi , o/w

First of all, such a function is not differentiable at a breaking point. However,

the value of the function at that point is known by continuity so that the

function is well-defined. It is straightforward that it is increasing in vi, and

less than vi for any vi ∈ (0, 1) since βA is. Now, β+
A is a candidate for the

symmetric equilibrium. Although we do not prove sufficiency, we refer to

a theorem proved by Reny (2011): Under certain conditions (First of all,

each player’s strategy set of monotone pure strategies should be non-empty

and join-closed. Then; the type set is required to be partially ordered, the

density function should be continuous, the strategy set is needed to be a

compact metric space and a semi-lattice with a closed partial order, and the

utility function should be bounded and measurable), a symmetric game has

a symmetric monotone pure strategy equilibrium. And, it is easy to show

that these conditions hold for our model except compact strategy sets and
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the bounded utility function. Notice that, the strategy sets we have defined

are not compact as bidders are allowed to bid as high as they wish. Because

of this, the utility function is not bounded as well. However, with a minor

modification, these two properties can be satisfied. For instance, we can

narrow the strategy set to [0, 1] and nothing would change in the equilibrium

results2. Since β+
A is the unique candidate, it follows that it is the unique

symmetric equilibrium. As we assume that F is a uniform distribution,

β+,∗
A (vi) =


(

1 + ϕ(λ−1)
n

)
β∗A(vi) , vi

β∗
A(vi)

> 1 + ϕλ
n−ϕ

vi − ϕ
n
vi , o/w

Proof of Proposition 3. First order condition with respect to b is,

(n− 1)w(F (β−1(b)))n−2
∂w(F (β−1(b)))

∂β−1(b)

∂β−1(b)

∂b
(vi − b) = w(F (β−1(b)))n−1 .

Arranging terms yield,

(n− 1)
∂w(F (β−1(b)))

∂β−1(b)

1

β′(β−1(b))
(vi − b) = w(F (β−1(b))) .

As we assume symmetric equilibrium, b = β(vi) would solve the above equal-

ity. Thus,

(n− 1)
∂w(F (vi))

∂vi

1

β′(vi)
(vi − β(vi)) = w(F (vi)) .

Arranging terms yield,

∂w(F (vi))

∂vi
vi =

1

n− 1
w(F (vi))β

′(vi) +
∂w(F (vi))

∂vi
β(vi) .

2Recall that, bidding above the valuation is a dominated strategy.

29



Now, multiply each component of the equality with (n− 1)w(F (vi))
n−2,

w(F (vi))
n−1β′(vi) + (n− 1)

∂w(F (vi))

∂vi
w(F (vi))

n−2β(vi)

= (n− 1)
∂w(F (vi))

∂vi
w(F (vi))

n−2vi .

Then, we obtain,

∂

∂vi

(
w(F (vi))

n−1β(vi)
)

= vi
∂w(F (vi))

n−1

∂vi
.

The result follows,

βB(vi) =
1

w(F (vi))n−1

∫ vi

0

y
∂w(F (y))n−1

∂y
dy = vi −

∫ vi
0
w(F (y))n−1dy

w(F (vi))n−1
.

Now, it is again straightforward that βB is less than vi for any values of

vi ∈ (0, 1). By differentiating βB with respect to vi we conclude that it is

increasing in vi, since

1−
w(F (vi))

2(n−1) − ∂w(F (vi))
n−1

∂vi

∫ vi
0
w(F (y))n−1dy

w(F (vi))2(n−1)
> 0 ,

by noting that both the derivative and the integral in the numerator are

positive terms. For the sufficiency part, we use a similar method as in the

proof of Proposition 1. Consider any bidder i with valuation vi who acts as

if her valuation is z. Her expected payoff from bidding βB(z) < vi while her

competitors follow β is,

EPB(z) = w(F (z))n−1(vi−βB(z)) = w(F (z))n−1(vi−z)+

∫ z

0

w(F (y))n−1dy .

Now, EPB(vi)− EPB(z) is,

w(F (z))n−1(z − vi)−
∫ vi

z

w(F (y))n−1dy ,
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which is not less than 0 by a similar argument. Thus, βB is the unique sym-

metric equilibrium. From the assumption that F is a uniform distribution,

β∗B(vi) = vi −
∫ vi
0
w(y)n−1dy

w(vi)n−1
.

Proof of Proposition 4. First of all, the expected payoff simplifies into

w(F (β−1(b)))n−1λ1(vi − b− r(vi))− λr(vi)
(
κ− w(F (β−1(b)))n−1

)
,

where κ is constant as we consider linear PWFs. For example, with the PWF

we suggest, κ = 2η + µ. First order condition with respect to b is,

(n− 1)w[F (β−1(b))]n−2
∂w[F (β−1(b))]

∂β−1(b)

∂β−1(b)

∂b
(λ1(vi − b) + (λ− λ1)r(vi))

= λ1w[F (β−1(b))]n−1 .

The rest will follow similarly, and thus omitted. The equilibrium bidding

function is,

β+
B(vi) =


(

1 + ϕ(λ−1)
n

)
βB(vi) , vi

βB(vi)
> 1 + ϕλ

n−ϕ

vi − ϕ
n
vi , o/w

First of all, such a function is not differentiable at the breaking point. How-

ever, the value of the function at that point is known by continuity so that

the function is well-defined. It is straightforward that it is increasing in vi,

and less than vi for any vi ∈ (0, 1) since βB is. Now, β+
B is a candidate for

the symmetric equilibrium. Although we do not prove sufficiency, we refer

to a theorem proved by Reny (2011): Under certain conditions, a symmetric

game has a symmetric monotone pure strategy equilibrium.3 And, it is easy

to show that these conditions hold for our model. Since β+
B is the unique can-

3This is the same theorem mentioned in the proof of Proposition 2. Note also that, the
modification for the strategy sets is also valid here.
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didate, it follows that it is the unique symmetric equilibrium. As we assume

that F is a uniform distribution,

β+,∗
B (vi) =


(

1 + ϕ(λ−1)
n

)
β∗B(vi) , vi

β∗
B(vi)

> 1 + ϕλ
n−ϕ

vi − ϕ
n
vi , o/w
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