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Reversible band-gap engineering in carbon nanotubes by radial deformation
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We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of
zigzag and armchair single wall carbon nanotubes using the first-principle plane wave method. The nanotubes
were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The
atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated
self-consistently to determine the response of individual bands to the radial deformation. The band gap of the
insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the
elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic
structure is formed on an individual nanotube and its band lineup is determined from first principles. The
elastic energy due to the radial deformation and elastic constants are calculated and compared with classical
theories.
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I. INTRODUCTION

Modification of electronic properties of condensed s
tems by an applied external pressure or strain in the ela
range have been subject of active study. However, in mos
the cases, the changes one can induce by the elastic d
mation is minute even negligible due to the rigidity of th
crystals. On the other hand, the situation is rather differ
for single wall carbon nanotubes~SWNT’s! owing to their
tubular geometry.1–9 SWNT’s are highly flexible and have
very large Young’s modulus. They sustain remarkable ela
deformations, and it has been shown that the structure
electronic properties undergo dramatic changes by th
deformations.10–20 Similarly, significant radial deformation
of SWNT’s can be realized in the elastic range, whereby
curvature is locally changed. This way, zones with high
and lower curvatures relative to the undeformed SWNT
be attained on the same circumference. Hence, one exp
that radial deformation can induce important modifications
the electronic and conduction properties of nanotubes.21–27

Tight-binding calculations have indicated that a SWN
may undergo an insulator-metal transition under a uniaxia
torsional strain.18,19 Multiprobe transport experiments20 on
individual SWNT’s showed that the electronic structure c
be modified by bending the tube, or by applying a circu
ferential deformation. Empirical extended Hu¨ckel
calculations10 predicted that the conductance of an armch
SWNT can be affected by the circumferential deformatio
and a band gap can develop on a metallic armchair SW
upon twisting. The effect of the radial deformation a
squeezing have been investigated by using vari
methods.21–27 However, in spite of these theoretic
studies,24,25 a systematic analysis of the effect of the rad
deformation on the electrical properties has not been car
out yet.

The objective of this paper is to provide a better und
standing of the effect of radial deformation on the electro
band structure and elastic properties of SWNT’s, based
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the extensive first-principle~ab initio! total energy and elec
tronic structure calculations with fully optimized structure
In the next section, a brief review of the the first-princip
pseudopotential plane wave method that we used will
given. The effect of the radial deformation on the atom
structure will be discussed in Sec. III A. We discuss the el
tic properties of SWNT’s under radial strain in Sec. III B. W
show that the calculated elastic deformation energies a
function of radial strain can be described very well with
the classical theory of elasticity. In Sec. III C, we discuss
effect of the radial deformation on the electronic properti
We find that zigzag nanotubes are metallized under ra
deformation in the elastic range. In Sec. III D, this prope
is exploited to realize various quantum well structures o
single nanotube with tunable electronic properties. We
plied two different radial deformations to two adjacent r
gions of a (8,0) nanotube to generate band offsets at
interface, which in turn lead to multiple quantum well stru
tures. Our conclusions are given in Sec. IV.

II. METHODOLOGY

The first-principles total energy and electronic structu
calculations have been performed using the pseudopote
plane wave method28 within the generalized gradient ap
proximation ~GGA!.29 Calculations have been carried o
within periodically repeating supercell geometry because
the necessity of using the periodic boundary conditions w
the plane wave method. We used a tetragonal supercell
lattice constantsasc, bsc, andcsc. The lattice constantsasc
andbsc are chosen such that the interaction between nea
neighbor tubes is negligible~the minimum C-C distance be
tween two nearest neighbor tubes is taken as 6.2 Å!. The
lattice constant along the axis of the tubecsc is taken to be
equal to the one-dimensional~1D! lattice parameterc of the
tube. The tube axis is taken along thez direction, and the
circular cross section lies in the (x,y) plane. In the 1D Bril-
©2002 The American Physical Society10-1
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louin zone~BZ!, the wave vectorkz varies only along thez
axis.

Plane waves up to an energy cutoff of 500 eV are us
With this energy cutoff and using ultrasoft pseudopotent
for carbon atoms,30 the total energy converges within 0.
meV/atom. In addition to this, finite basis set correction31

are also included. Owing to the very large lattice constant
the supercellasc and bsc, k-point sampling is done only
along the tube axis. The Monkhorst-Pack specialk-point
scheme32 with with 0.02 Å21 k-point spacing resulting 5
and 10k points within the irreducible BZ of the tetragon
supercell are used for (n,0) and (n,n) tubes, respectively.

III. RADIALLY DEFORMED NANOTUBES

A. Geometric structure

The radial deformation that is treated in this study is g
erated by applying uniaxial compressive stresssyy on a nar-
row strip on the surface of a SWNT. In practice such a
formation can be realized by pressing the tube between
rigid and flat surfaces. As a result, the radius is squeeze
the y direction, while it is elongated along thex direction,
and hence the circular cross section is distorted to the e
tical one with major and minor axisa andb, respectively. A
natural variable to describe the radial deformation is
magnitude of the applied strain along the two axes

eyy5
R02b

R0
~1!

and

exx5
R02a

R0
, ~2!

whereR0 is the radius of the undeformed~zero strain! nano-
tube. We note that the point group of the undeformed na
tubes isDnh or Dnd for n even or odd, respectively. Unde
radial deformation described above, the point group beco
C2h or D2h ~see Fig. 1!. However, depending on the nan
tube orientation around the tube axes the in-plane mi
symmetry can be broken. For the (6,6) tube, we studied s
eral different orientations in order to investigate the effect
mirror symmetry on the band crossing at the Fermi lev
Three different orientations with point groupsC2v , C2, and
D2 are shown in Fig. 1~d!.

For different values of straineyy , we carried out full
structural optimization under the constraint that the min
axis was kept fixed at a preset value. The strains are in
elastic range, since the deformed tubes relax back to
undeformed state when the applied strain is removed.
structural relaxation is done in following steps: first, depen
ing on rotational orientation of the SWNT, either a sing
bond or a carbon atom at both ends of the minor axis
pressed towards each other by (12eyy)R0 and are kept
fixed. Then, under this constraint, the coordinates of the
maining atoms and the lattice parameter of the tubec are
optimized. At this step, some resultant forces remain on
fixed atom~s! with components opposite to the applied stra
15541
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as well as perpendicular to it. In the second step, the fi
bond lengths are optimized together with all the internal
ordinates of the atoms andc parameter. Eventually, in the
final fully relaxed structure the only remaining force is th
restoring force, opposite to the applied strain, on the fix
atoms. All other force components on these fixed carbon
oms and all the forces on the rest of carbon atoms are o
mized to be less than 0.01 eV/Å. Figure 1 shows the cro
sectional view perpendicular to the tube axis of the fu
optimized undistorted and distorted SWNT’s as well as
restoring force vector.

Figure 2~a! shows the pair distribution function in a de
formed and undeformed~7,0! SWNT. The first peak in Fig.
2~a! corresponds to the first nearest neighbor distance, wh
is slightly broadened without a shift of the peak position w
deformation. This indicates that the C-C bond length
('1.41 Å) are practically unaltered under the appli
strain. Similarly, the second peak in Fig. 2~a! is also slightly
broadened, indicating a small effect of the distortion on
second nearest neighbor distances. The effect of the ra
deformation becomes apparent only for the third and furt
nearest neigbor distances.

Given that first and second nearest neighbor distances
not change significantly with the radial deformation, the on
remaining degrees of freedom is the bond angle as cle
seen from the angular distribution function shown in F
2~b!. The main peak around 120° does not change with
plied strain, but the other peak a few degrees below the m
peak for undeformed tube splits intoj new peaks wherej is
the number of peaks in the radius distribution of zigz
(7,0), (8,0), and (9,0) SWNT’s. On the other hand, for t
armchair ~6,6! SWNT, although the main peak is no
changed with strain, the second peak is broadened by a
degrees. One direct consequences of this observation is
for zigzag tubes the lattice parameterc decreases very
slightly with radial strain, whereas it is almost constant f
the ~6,6! SWNT.

FIG. 1. Top view of the undeformed and deformed nanotub
The arrows indicate restoring forces on the fixed carbon atoms.
in-plane mirror symmetry can be broken depending on the ro
tional orientation of the tube@see ~d!#. The corresponding poin
groups of nanotubes are also indicated.
0-2
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In summary, the radial deformation does not have a
ticeable effect on the first and second nearest neighbor
distances but it induces significant changes in the b
angles. This observation is therefore important and has t
taken into account in tight binding studies of SWNT’s wi
radial deformation.

B. Elasticity

In order to describe the in-plane elasticity and deform
tion of the SWNT’s, we use first-principle calculations of th
elastic deformation energy, i.e., the amount of energy sto
in a SWNT as a result of radial deformation, and the class
theory of elasticity. The relation between stress and strai
given by generalized Hooke’s law, for the radial deformati
described in the previous section

sxx505C11exx1C12eyy ~3!

and

syy5
Fy

A
5C12exx1C11eyy , ~4!

whereFy is the restoring force applied on the surface areaA.
C11 andC12 are the in-plane elastic stiffness constants. A
suming the validity of the Hooke’s law, the strain ener
becomes a quadratic function of strain as

ET~exx ,eyy!5ET~0!1
1

2
V~C11exx

2 1C11eyy
2 12C12exxeyy!.

~5!

FIG. 2. ~a! Pair distribution;~b! bond angle distribution func-
tions for the (7,0) SWNT. Solid line is for undeformed SWN
while the dotted line is for radially deformed one.
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The in-plane Poisson’s ratio,n i , relatesexx and eyy , from
Eq. ~3!

n i52
exx

eyy
5

C12

C11
. ~6!

The strain components are plotted in Fig. 3~a!. As presented
in Table I,n i decreases with increasing nanotube radius
is slightly smaller than 1.0. Equations~4! and~5! can be cast
in a simpler form by introducingn i :

FIG. 3. ~a! The strain componentexx5(R02a)/R0 along the
major axis as a function of applied straineyy5(R02b)/R0. The
slope is the in-plane Poisson ration i . ~b! Variation of the elastic
deformation energy per carbon atom.~c! The restoring force on
fixed carbon atoms. For (8,0) SWNT, the force is scaled by
since it is only on one carbon atom, while for the other tubes it is
two carbon atoms.

TABLE I. In-plane elastic constants of SWNT’s. All elastic con
stants are in GPa exceptn i which is unitless.Ceff5C11(12n i

2).

Radius~Å! n i Ceff C11 C12

~7,0! 2.76 0.904 129.88 713.36 645.15
~8,0! 3.14 0.874 98.70 416.88 364.20
~9,0! 3.52 0.864 91.02 319.67 270.36
~6,6! 4.06 0.828 86.12 273.46 226.34
0-3
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syy5
Fy

A
5C11~12n i

2!eyy5Ceffeyy ~7!

and

ED5VF1

2
~11n i

2!C112n iC12Geyy
2 , ~8!

whereED is the elastic deformation energy obtained from t
difference between the total energies of radially deform
and undeformed SWNT’s expressed in Eq.~5! @i.e.,
ET(exx ,eyy)2ET(0)#. At this point we examine how the
stress and the elastic deformation energy calculated from
principles compare with the linear and quadratic forms
Eqs.~7! and ~8! obtained from classical theory. To this en
we plot ED and the corresponding restoring forcesFy as a
function of eyy in Figs. 3~b! and 3~c!, respectively. Interest
ingly, the quadratic form obtained from classical theory fi
very well to the elastic deformation energy calculated fro
the first principles. Hooke’s relation, and hence elastic ch
acter of the deformations, persists up toeyy50.25. It is also
noted that the SWNT becomes stiffer asR decreases. The
variation of the restoring forces is expected to be linear in
elastic range. The restoring forces in Fig. 3~c! are in overall
agreement with this argument, except the deviations at
tain data points due to uncertainties in the first-principle c
culations, which are amplified because the force is a der
tive quantity. Calculated elastic constants are listed in Ta
I. It is interesting to note that there are discrepancies in
theoretical results for Young’s modulus, due to the assi
ment of thethickness hof the tube wall.33,34Two commonly
used values are 3.4 Å~based on graphite interlayer spacin!
and 0.6 Å~based on thep orbital extent!. The wall thickness
h can be estimated from the present radial deformation d
first by calculating the volume,V from Eq. ~8!. Then,h is
solved by assuming that the tube is a slab with thicknesh.
From this analysis, we found thath is radius dependent and
decreases from 0.88 Å for~7,0! tube to 0.74 Å for~6,6! tube.

C. Electronic structure

We now discuss in detail the electronic structure
SWNT’s under applied radial strain. The calculated ba
structures of undeformed and radially deformed zigz
(7,0), (8,0), (9,0) and armchair (6,6) SWNT’s are presen
near the Fermi level in Fig. 4. The band gaps of zigzag tu
reduce with applied strain, and eventually vanish leading
metallization. Figure 5 summarizes the variation of band g
and density of states at the Fermi levelD(EF) as a function
of the applied strain. For (7,0) and (8,0) SWNT’s the ba
gaps decrease monotonically and the onset of an insula
metal transition follows with the band closures occurring
different values of strain. Upon metallizationD(EF) in-
creases with increasing strain. The behavior of the (9,0) t
is, however, different. Initially, the band gap increases w
increasing strain, but then decreases with strain exceedi
certain threshold value and eventually diminishes. For
these zigzag SWNT’s the band gap strongly depend on
magnitude of the deformation, andEg is closed at 13, 22, and
17 % strain for~7,0!, ~8,0!, and~9,0! nanotubes, respectively
15541
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Whereas, the armchair (6,6) SWNT, which is normally m
tallic, remains metallic with a slowly decreasingD(EF) even
for significant radial deformation. Earlier Delaneyet al.35,36

showed that thep* -conduction andp-valence bands of a
(10,10) tube which normally cross at the Fermi level w
quasilinear dispersion, open a pseudogap in the rang
;0.1 eV at certain directions of the BZ perpendicular to t
axis of the tube owing to tube-tube interactions in a ro
The opening of the gap is caused by the broken mirror sy
metry. Lammertet al.15 pointed out the gapping by squas
ing (20,20) and (36,0) metallic tubes, since circumferen
regions are brought into close proximity. Uniaxial stress o
few kilobars can reversibly collapse a small radius tube
ducing a 0.1 eV gap, while the collapsed large radius tu
are stable. In the study of Parket al.,24 the bandgap of the
(5,5) tube were monotonically increasing probably due
bilayer interactions, since the separation of the two nea
wall of the tube became comparable to the interlayer dista
of graphite.

In order to explain the band gap variation of (n,0) tubes,
the energies of a few bands near the band gap are plotte
a function of strain in Fig. 6. The singletp* state in the
conduction band shifts downwards in energy much fas
than the other states do with increasing strain. This is du
the increasing curvature with increasing radial deformati
Since the singletp* state lies below the double degenera

FIG. 4. Energy band structures of undeformed~left! and radially
deformed (eyy50.23) ~right! SWNTs along theG-Z direction: ~a!
and~b! (7,0), ~c! and~d! (8,0), ~e! and~f! (9,0), ~g! and~h! (6,6).
Solid line is the Fermi level.
0-4
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p* states for both (7,0) and (8,0) SWNT’s, their band ga
are closed monotonically with increasingeyy . On the other
hand, for the (9,0) SWNT this singletp* state is above the
double degeneratep* states. The increase of the band gap
the initial stages of radial deformation is connected with re
tively higher rate of downward shift of the double degener
p-valence band relative to thep* -conduction band unde
low strains. Once the singletp* band, which shows faste
decrease with strain, crosses the doublet conduction b
and enters into the gap, the band gap begins to decrease
increasing strain.

Finally, we examined the effect of the radial deformati
on the charge density. In Fig. 7 we show the charge den

FIG. 5. The variation of the band gapEg ~a! and the density of
states at the Fermi levelD(EF) ~b! as a function of applied strain
eyy .

FIG. 6. The variation of energy eigenvalues of states near
band gap at theG point of the BZ as a function of the applied strai
The shaded region is the valance band. The singlet state origin
in the conduction band is indicated by squares.
15541
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of states near the band edges. The effect of the deforma
is remarkable on the singlet state; charge moves from the
curvature regions to the high curvature regions as the st
is increased. Significant charge rearrangements with ra
deformation can modify the chemical activity of the surfa
of the SWNT relative to foreign atoms and molecules. Sin
a SWNT can sustain large elastic deformations, it allo
significant charge rearrangements on its surface. Hence,
effect can be used to control chemical reactivity of spec
carbon atoms in SWNT’s.37

D. Strain induced quantum structures

It is clear from the above discussion that the band gap
an insulating SWNT can be modified, and even an insula
metal transition can be induced by radial deformation in
elastic range. If the applied deformation is not uniform b
has different strength at different zones of the tube, it rend
variable electronic structure along the tube axis. For
ample, each zone of an individual SWNT undergoing diff
ent radial deformation attains a different band gap. Owing
the band offsets at the junction, quantum structures can
engineered on an individual tube.

Experimental and theoretical methods have been propo
in the past to determine the band offsets, and hence to re
the band diagram perpetuating along the superlattice ax38

However, there are some ambiguities in the case of SW
superlattices (AnBm), which are formed by periodically re

e

ng

FIG. 7. Charge density of the highest valence band state at thG
point of a undeformed~a! and deformed~b! (9,0) SWNT. The pan-
els ~c! and ~d! show the the singlet ‘‘conduction’’ band states.
0-5
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peating undeformedA regions~of n unit cells! and radially
deformedB regions~of m unit cells!: ~i! The alignment of the
valence and conduction bands of theA andB regions and the
resulting band lineup is a complex process involving cha
transfer betweenA andB, and also modification of the crys
tal potential in the deformed region. In fact, the above ana
sis of radial deformation has shown that the valence
conduction band edges can be lowered when a zigzag SW
is radially deformed. Therefore, a realistic treatment of
band alignment requires self-consistent calculation of
crystal potential.~ii ! Even if the band diagram were known
it is not obvious whether the effective mass approximat
~EMA! is applicable for an individual, nonuniformly de
formed SWNT. Therefore, instead of applying EMA to a 1
real space band diagram or quantum well structure, one
to perform electronic structure calculations on the (AnBm)
supercell. However,ab initio calculations become tedious fo
large supercell size owing to many involved carbon atom
Earlier, we used a tight binding method and showed t
states at the band edges are confined in eitherA or B regions
of a superlattices (A8B8), (A4B12) and (A12B4) formed on
an individual (7,0) SWNT.26

In this study, we extend our earlier calculations of qua
tum structures on SWNT’s and present anab initio analysis
of band lineup of the (A6B6) superlattice formed on an in
dividual (8,0) SWNT. Similar to the previous model, he
the A region is left undeformed, but theB region is radially
deformed byeyy50.16. This system consists of 384 carb
atoms in a supercell involving 12 original unit cells of th
~8,0! SWNT. We performed a partial structural optimizatio
for the (A6B6) superlattice, since the full optimization is no
tractable within a reasonable computation time. We first
timized single unit cells in theA andB regions correspond
ing to eyy50 and eyy50.16, respectively. Then, we con
nectedA and B regions smoothly by one intermediate un
cell. Finally, fully self-consistent electronic band structu
calculations were carried out on this structure. In Fig. 8
show the planar (xy) averaged self-consistent potenti
V̄c(z)5*SVc(r )dxdy/S. HereS is thexy cross section of the
supercell. The alignment of the valence band edges betw
undeformedA and deformedB are revealed by first integrat
ing the planarly averaged potentialV̄X5* l V̄c(z)dz/ l at each
region (X5A or B) over a length of original unit cell~i.e.,
l 5c) along the tube axis.39 In Fig. 8, V̄X is shown for both
regions of the supercell which constitutes the reference le
for the band lineup. In the next step, we determine the ene
of the valence band edge from theV̄A

` andV̄B
` calculated for

two different, uniform~infinite! ~8,0! SWNT’s ~one unde-
formed, the other uniformly deformed witheyy50.16).
These areEV,A

` andEV,B
` . It is assumed that in the nanotub

superlatticeEV,A
` andEV,B

` are unaltered. The band lineup o
the valence band is calculated from the differenceDEV

5V̄A2V̄B1EV,A
` 2EV,B

` . For (8,0) SWNT, we findDEV

;180 meV; the valence band edge ofB is lower than that of
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A indicating a staggered band lineup. This result clea
shows that by applying periodic radial deformation on
individual semiconducting SWNT one can generate a qu
tum structure, where the band gap in the direct space a
the tube axis undergoes a periodic variation which is c
tinuously tunable and reversible.

IV. CONCLUSIONS

In this work we present an extensive first-principle ana
sis of the effect of radial deformation on the atomic structu
energetics and electronic structure of SWNT’s. We find t
the energy band structure and the variation of the gap w
radius ~or n) differs from what one derived from the zon
folded band structure of graphene based on simple t
binding calculations. More interestingly, the response of
energy bands around the band gap to the applied radial
formation is different for different bands. Depending on t
relative position of these bands, the band gap displays dif
ent behavior under the radial deformation. In general,
band gap is reduced and eventually closed to yield
insulator-metal transition under the elastic radial deform
tion. The strong dependence of the band gap on the app
strain, its reversible and continuously tunable behavior
exploited to form quantum well structure on an individu
SWNT. A first-principle calculation of the alignment of th
valence band is presented. The deformation energy and
tic constants under the radial deformation are calculated.
find that the strain energy due to the radial deformation
be fitted very well to the quadratic expressions obtained fr
the classical theory of elasticity within the Hooke’s law.
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FIG. 8. The planar averaged crystal potential along the axis
the A6B6 superlattice nanotube. Dotted vertical lines show the
terfaces. Circular cross section of the undeformed~8,0! nanotube in
regionA and elliptical cross section of radially deformed nanotu
(eyy50.16) in regionB are shown in the inset. The potential ave
aged over the original unit-cells of nanotube is shown by circles
dashed line. This average potential scaled by 25 for clarity.
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