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Reversible band-gap engineering in carbon nanotubes by radial deformation
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We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of
zigzag and armchair single wall carbon nanotubes using the first-principle plane wave method. The nanotubes
were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The
atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated
self-consistently to determine the response of individual bands to the radial deformation. The band gap of the
insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the
elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic
structure is formed on an individual nanotube and its band lineup is determined from first principles. The
elastic energy due to the radial deformation and elastic constants are calculated and compared with classical
theories.
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[. INTRODUCTION the extensive first-principléb initio) total energy and elec-
tronic structure calculations with fully optimized structures.
Modification of electronic properties of condensed sys-In the next section, a brief review of the the first-principle
tems by an applied external pressure or strain in the elastipseudopotential plane wave method that we used will be
range have been subject of active study. However, in most ajiven. The effect of the radial deformation on the atomic
the cases, the changes one can induce by the elastic defatructure will be discussed in Sec. lll A. We discuss the elas-
mation is minute even negligible due to the rigidity of the tic properties of SWNT’s under radial strain in Sec. Il B. We
crystals. On the other hand, the situation is rather differenshow that the calculated elastic deformation energies as a
for single wall carbon nanotubedSWNT's) owing to their  function of radial strain can be described very well within
tubular geometry-? SWNT'’s are highly flexible and have a the classical theory of elasticity. In Sec. Il C, we discuss the
very large Young's modulus. They sustain remarkable elastieffect of the radial deformation on the electronic properties.
deformations, and it has been shown that the structure angle find that zigzag nanotubes are metallized under radial
electronic properties undergo dramatic changes by thesgeformation in the elastic range. In Sec. Il D, this property
deformations®~%° Similarly, significant radial deformation s exploited to realize various quantum well structures on a
of SWNT’s can be realized in the elastic range, whereby thgingle nanotube with tunable electronic properties. We ap-
curvature is locally changed. This way, zones with highemplied two different radial deformations to two adjacent re-
and lower curvatures relative to the undeformed SWNT camjions of a (8,0) nanotube to generate band offsets at the
be attained on the same circumference. Hence, one expegiierface, which in turn lead to multiple quantum well struc-
that radial deformation can induce important modifications intures. Our conclusions are given in Sec. IV.
the electronic and conduction properties of nanotbes.
Tight-binding calculations have indicated that a SWNT
may undergo an insulator-metal transition under a uniaxial or
torsional strait®® Multiprobe transport experimerifson
individual SWNT’s showed that the electronic structure can The first-principles total energy and electronic structure
be modified by bending the tube, or by applying a circum-calculations have been performed using the pseudopotential
ferential deformation. Empirical extended “¢kel plane wave methdd within the generalized gradient ap-
calculations® predicted that the conductance of an armchairproximation (GGA 29 Calculations have been carried out
SWNT can be affected by the circumferential deformationswithin periodically repeating supercell geometry because of
and a band gap can develop on a metallic armchair SWNThe necessity of using the periodic boundary conditions with
upon twisting. The effect of the radial deformation andthe plane wave method. We used a tetragonal supercell with
squeezing have been investigated by using varioufattice constantsg,, bg., andcs.. The lattice constantag,
methods}=2’ However, in spite of these theoretical andbg are chosen such that the interaction between nearest
studies?*?® a systematic analysis of the effect of the radialneighbor tubes is negligibléhe minimum C-C distance be-
deformation on the electrical properties has not been carrietiveen two nearest neighbor tubes is taken as 6.2The
out yet. lattice constant along the axis of the tubg is taken to be
The objective of this paper is to provide a better under-equal to the one-dimensionélD) lattice parametec of the
standing of the effect of radial deformation on the electronictube. The tube axis is taken along thelirection, and the
band structure and elastic properties of SWNT's, based onircular cross section lies in the,fy) plane. In the 1D Bril-
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louin zone(BZ), the wave vectok, varies only along the a) (7x0) d) (6x6)

axis. o u‘ _
o ~
Plane waves up to an energy cutoff of 500 eV are used. ¥ Dh ' Con | f 4\# L/LL\\
With this energy cutoff and using ultrasoft pseudopotentials 3\‘ e \\Wc ! Dg | ¢ Cv |
for carbon atomé&? the total energy converges within 0.5 - K\‘ S k‘?’?’”f
meV/atom. In addition to this, finite basis set correctidns b) (8x0) e
are also included. Owing to the very large lattice constants of .
the supercellag. and bg., k-point sampling is done only {' - ¢° D ,»i .‘»ﬁa\\
along the tube axis. The Monkhorst-Pack spedigboint 8h P 2n o 'Y ﬁk\ 4 D, '
schemé with with 0.02 A k-point spacing resulting 5 " T 2\\& F J
and 10k points within the irreducible BZ of the tetragonal “r‘ nY

. c) (9x0)
supercell are used fon(0) and f,n) tubes, respectively.
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A. Geometric structure

The radial deformation that is treated in this study is gen- FIG. 1. Top view of the undeformed and deformed nanotubes.

erated _by applying uniaxial compressive stre§_§ on a nar- The arrows indicate restoring forces on the fixed carbon atoms. The
row strip on the surface of a SWNT. In practice such a de-

. . . in-plane mirror symmetry can be broken depending on the rota-
fpr.matlon can be realized by pressing the .tUb(.a between twﬁonal orientation of the tubésee (d)]. The corresponding point
rigid and flat surfaces. As a result, the radius is squeezed IBroups of nanotubes are also indicated.
the y direction, while it is elongated along thedirection,
and hence the circular cross section is distorted to the ellipas well as perpendicular to it. In the second step, the fixed
tical one with major and minor axis andb, respectively. A bond lengths are optimized together with all the internal co-
natural variable to describe the radial deformation is theordinates of the atoms and parameter. Eventually, in the

magnitude of the applied strain along the two axes final fully relaxed structure the only remaining force is the
restoring force, opposite to the applied strain, on the fixed

Ro—b atoms. All other force components on these fixed carbon at-
€yy= Ro () oms and all the forces on the rest of carbon atoms are opti-
mized to be less than 0.01 eV/A. Figure 1 shows the cross-
and sectional view perpendicular to the tube axis of the fully
optimized undistorted and distorted SWNT's as well as the
Ro—a restoring force vector.
Exx Ry 2) Figure Za) shows the pair distribution function in a de-
formed and undeforme’,0) SWNT. The first peak in Fig.
whereR, is the radius of the undeformédero strain nano-  2(a) corresponds to the first nearest neighbor distance, which
tube. We note that the point group of the undeformed nanois slightly broadened without a shift of the peak position with
tubes isD, or D4 for n even or odd, respectively. Under deformation. This indicates that the C-C bond lengths
radial deformation described above, the point group becomgs~=1.41 A) are practically unaltered under the applied
C,p, or Dy, (see Fig. 1L However, depending on the nano- strain. Similarly, the second peak in FigaRis also slightly
tube orientation around the tube axes the in-plane mirrobroadened, indicating a small effect of the distortion on the
symmetry can be broken. For the (6,6) tube, we studied sewsecond nearest neighbor distances. The effect of the radial
eral different orientations in order to investigate the effect ofdeformation becomes apparent only for the third and further
mirror symmetry on the band crossing at the Fermi levelnearest neigbor distances.
Three different orientations with point grou@s, , C,, and Given that first and second nearest neighbor distances did
D, are shown in Fig. ). not change significantly with the radial deformation, the only
For different values of straire,,, we carried out full remaining degrees of freedom is the bond angle as clearly
structural optimization under the constraint that the minorseen from the angular distribution function shown in Fig.
axis was kept fixed at a preset value. The strains are in the(b). The main peak around 120° does not change with ap-
elastic range, since the deformed tubes relax back to thplied strain, but the other peak a few degrees below the main
undeformed state when the applied strain is removed. Thpeak for undeformed tube splits inf;mew peaks whergis
structural relaxation is done in following steps: first, depend-the number of peaks in the radius distribution of zigzag
ing on rotational orientation of the SWNT, either a single (7,0), (8,0), and (9,0) SWNT's. On the other hand, for the
bond or a carbon atom at both ends of the minor axis ararmchair (6,6) SWNT, although the main peak is not
pressed towards each other by—«&,)R, and are kept changed with strain, the second peak is broadened by a few
fixed. Then, under this constraint, the coordinates of the redegrees. One direct consequences of this observation is that
maining atoms and the lattice parameter of the takere  for zigzag tubes the lattice parameter decreases very
optimized. At this step, some resultant forces remain on thalightly with radial strain, whereas it is almost constant for
fixed atongs) with components opposite to the applied strainthe (6,6) SWNT.
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FIG. 2. (@) Pair distribution;(b) bond angle distribution func-

tions for the (7,0) SWNT. Solid line is for undeformed SWNT
while the dotted line is for radially deformed one.

In summary, the radial deformation does not have a no-
ticeable effect on the first and second nearest neighbor C—@
distances .bUI it |ndu_ces_ 5|gn|flcant_changes in the bon lope is the in-plane Poisson ratig. (b) Variation of the elastic
angles. This observation is therefore important and has to bg.¢rmation energy per carbon atoe) The restoring force on

taken into account in tight binding studies of SWNT's with fiyaq carbon atoms. For (8,0) SWNT, the force is scaled by 0.5
radial deformation.

FIG. 3. (8 The strain component,,=(Ry,—a)/R, along the
ajor axis as a function of applied straé),=(Ro—Db)/R,. The

since it is only on one carbon atom, while for the other tubes it is on
two carbon atoms.
B. Elasticity

In order to describe the in-plane elasticity and deforma-The in-plane Poisson’s ratio;, relatese,, and e, , from
tion of the SWNT's, we use first-principle calculations of the Eq. (3)
elastic deformation energy, i.e., the amount of energy stored
in a SWNT as a result of radial deformation, and the classical

theory of elasticity. The relation between stress and strain is = Exx _ gu 6)
given by generalized Hooke’s law, for the radial deformation I €y Cii
described in the previous section

Ty= 0= Ci16,+ Cro6yy (3) The strain components are p_Iotted in Figa)3As preser_lted

in Table I, v, decreases with increasing nanotube radius and
and is slightly smaller than 1.0. Equatio) and(5) can be cast
. in a simpler form by introducing :
y
O'yy:K =Cpo€xxt C:llfyy ) (4)

TABLE I. In-plane elastic constants of SWNT’s. All elastic con-

. . . . _ _ 2
whereF, is the restoring force applied on the surface akea St aré in GPa excepy which is unitlessCe=Cay(1 - ().
C,, andC,, are the in-plane elastic stiffness constants. As-

suming the validity of the Hooke’s law, the strain energy Radius(A) Y Ce Cu Crz
becomes a quadratic function of strain as (7,0 2.76 0.904 129.88 713.36 645.15
1 (8,0 3.14 0.874 98.70 416.88 364.20
E-(€,y,€9)=E(0)+ =Q(C 62 +C 62 +2C €€, (9,0 3.52 0.864 91.02 319.67 270.36
(& €y) ZEr(0)+ 5 Q(Cract Craehy+ 2C1oe0eyy) (6,6 4.06 0828 8612 27346  226.34

©)
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F ™ -
“yy:Ky =C1a(1—vf) €y =Cerreyy @ < et
K e
and > :
dh) u“h-[..’." .
Ep=0Q/5(1+ vf)C11—¥|C1s| €5y, (8 Siiegimein,

whereE is the elastic deformation energy obtained from the <
difference between the total energies of radially deformeda
and undeformed SWNT's expressed in E) [i.e., S
Et(exx,€yy) —E(0)]. At this point we examine how the g
stress and the elastic deformation energy calculated from firs"
principles compare with the linear and quadratic forms in
Egs.(7) and(8) obtained from classical theory. To this end,
we plot Ep and the corresponding restoring fordésas a &
function of €, in Figs. 3b) and 3c), respectively. Interest- 2
ingly, the quadratic form obtained from classical theory fits @
very well to the elastic deformation energy calculated from &
the first principles. Hooke’s relation, and hence elastic char-
acter of the deformations, persists upetg=0.25. It is also
noted that the SWNT becomes stiffer Rsdecreases. The
variation of the restoring forces is expected to be linear in th
elastic range. The restoring forces in Figc)3are in overall
agreement with this argument, except the deviations at cer
tain data points due to uncertainties in the first-principle cal-g
culations, which are amplified because the force is a deriva-
tive quantity. Calculated elastic constants are listed in Table
. It is interesting to note that there are discrepancies in the

theoretical results for Young’s modulus, due to the assign- FIG. 4. Energy band structures of undefornitedt) and radially
ment of thethickness fof the tube walf33* Two commonly ~ deformed €,,=0.23) (right) SWNTs along thd’-Z direction: (a)
used values are 3.4 fbased on graphite interlayer spaging 2nd(® (7.0), (c) and(d) (8,0), (e) and(f) (9,0), (g) and(h) (6,6).
and 0.6 A(based on ther orbital extent. The wall thickness ~ >°lid line is the Fermi level.

h can be estimated from the present radial deformation dal
first by calculating the volume() from Eg. (8). Then,h is

y

nergy (eV)
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t\%/hereas, the armchair (6,6) SWNT, which is normally me-

solved by assuming that the tube is a slab with thickress ;a"'Ct fe.rf‘?a'”f mSFaIH'g va'th aflowlé chreSS|:ZfQEF) F?,\éegg
From this analysis, we found thhats radius dependent and it or significant radial deformation. Earlier Delaneyal.

showed that ther* -conduction andmr-valence bands of a
decreases from 0.88 A f¢f,0) tube to 0.74 A 1016,6) tube. (10,10) tube which normally cross at the Fermi level with

quasilinear dispersion, open a pseudogap in the range of
~0.1 eV at certain directions of the BZ perpendicular to the
We now discuss in detail the electronic structure ofaxis of the tube owing to tube-tube interactions in a rope.
SWNT’s under applied radial strain. The calculated bandThe opening of the gap is caused by the broken mirror sym-
structures of undeformed and radially deformed zigzagmetry. Lammertet al’® pointed out the gapping by squash-
(7,0), (8,0), (9,0) and armchair (6,6) SWNT's are presentedng (20,20) and (36,0) metallic tubes, since circumferential
near the Fermi level in Fig. 4. The band gaps of zigzag tubegegions are brought into close proximity. Uniaxial stress of a
reduce with applied strain, and eventually vanish leading tdew kilobars can reversibly collapse a small radius tube in-
metallization. Figure 5 summarizes the variation of band gapmlucing a 0.1 eV gap, while the collapsed large radius tubes
and density of states at the Fermi le@®(E) as a function are stable. In the study of Pagk al,?* the bandgap of the
of the applied strain. For (7,0) and (8,0) SWNT'’s the band(5,5) tube were monotonically increasing probably due to
gaps decrease monotonically and the onset of an insulatobilayer interactions, since the separation of the two nearest
metal transition follows with the band closures occurring atwall of the tube became comparable to the interlayer distance
different values of strain. Upon metallizatioR(Eg) in-  of graphite.
creases with increasing strain. The behavior of the (9,0) tube In order to explain the band gap variation @f,Q) tubes,
is, however, different. Initially, the band gap increases withthe energies of a few bands near the band gap are plotted as
increasing strain, but then decreases with strain exceedingafunction of strain in Fig. 6. The singlet* state in the
certain threshold value and eventually diminishes. For alconduction band shifts downwards in energy much faster
these zigzag SWNT's the band gap strongly depend on thihan the other states do with increasing strain. This is due to
magnitude of the deformation, aiid is closed at 13, 22, and the increasing curvature with increasing radial deformation.
17 % strain for(7,0), (8,0), and(9,0) nanotubes, respectively. Since the singletr* state lies below the double degenerate

C. Electronic structure
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FIG. 5. The variation of the band gdfy (a) and the density of
states at the Fermi levé@P(Eg) (b) as a function of applied strain

Eyy-

7* states for both (7,0) and (8,0) SWNT's, their band gaps FIG. 7. Charge density of the highest valence band state &t the
are closed monotonically with increasirg,. On the other point of a undeformeda) and deformedb) (9,0) SWNT. The pan-
hand, for the (9,0) SWNT this singlet* state is above the els(c) and(d) show the the singlet “conduction” band states.
double degenerate* states. The increase of the band gap at

the initial stages of radial deformation is connected with relaof states near the band edges. The effect of the deformation
tively higher rate of downward shift of the double degeneratgs remarkable on the singlet state; charge moves from the low
m-valence band relative to the*-conduction band under curvature regions to the high curvature regions as the strain
low strains. Once the singlet* band, which shows faster s increased. Significant charge rearrangements with radial
decrease with strain, crosses the doublet conduction bangkformation can modify the chemical activity of the surface
and enters into the gap, the band gap begins to decrease wighthe SWNT relative to foreign atoms and molecules. Since
increasing strain. a SWNT can sustain large elastic deformations, it allows

Finally, we examined the effect of the radial deformationsignificant charge rearrangements on its surface. Hence, this
on the charge density. In Fig. 7 we show the charge densitgffect can be used to control chemical reactivity of specific

carbon atoms in SWNT%.
o -~

b) (8x0)- ¢) (9x0) D. Strain induced quantum structures

It is clear from the above discussion that the band gap of
an insulating SWNT can be modified, and even an insulator-
metal transition can be induced by radial deformation in the
elastic range. If the applied deformation is not uniform but
has different strength at different zones of the tube, it renders
variable electronic structure along the tube axis. For ex-
ample, each zone of an individual SWNT undergoing differ-
ent radial deformation attains a different band gap. Owing to
the band offsets at the junction, quantum structures can be
e e ) e engineered on an individual tube.

Experimental and theoretical methods have been proposed

FIG. 6. The variation of energy eigenvalues of states near thén the past to determine the band offsets, and hence to reveal
band gap at th€ point of the BZ as a function of the applied strain. the band diagram perpetuating along the superlattice%xis.
The shaded region is the valance band. The singlet state originatifgowever, there are some ambiguities in the case of SWNT
in the conduction band is indicated by squares. superlattices A,,B.,), which are formed by periodically re-

0.0

a) (7x0)

Energy (eV)
Energy (eV)
Energy (eV)
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peating undeformed regions(of n unit celly and radially [ ' ' ' '

deformedB regions(of munit celly: (i) The alignment of the 30 zm‘} r‘“‘}
valence and conduction bands of thandB regions and the 20 + Nl A il
resulting band lineup is a complex process involving charge _

transfer betweer andB, and also modification of the crys- s 10

tal potential in the deformed region. In fact, the above analy- 1> a 1

sis of radial deformation has shown that the valence and
conduction band edges can be lowered when a zigzag SWNT -10
is radially deformed. Therefore, a realistic treatment of the !
band alignment requires self-consistent calculation of the ‘200 '
crystal potential(ii) Even if the band diagram were known, z(A)

it is not obvious whether the effective mass approximation

(EMA) is applicable for an individual, nonuniformly de- FIG. 8. The plgnar averaged crystal potgntial_ along the axis_ of
formed SWNT. Therefore, instead of applying EMA to a 1D the AgBg sgperlattlce nanotqbe. Dotted vertical lines show the in-
real space band diagram or quantum well structure, one hagrfaces. Circular cross section of the undeforr(@0) nanotube in

to perform electronic structure calculations on the,B,) regionA and elliptical cross section of radially deformed nanotube

I b initi lculati b d f (eyy=0.16) in regionB are shown in the inset. The potential aver-
supercell. Howeverb initio calculations become tedious for aged over the original unit-cells of nanotube is shown by circles and

large supercell size owing to many involved carbon atomsyashe fine. This average potential scaled by 25 for clarity.
Earlier, we used a tight binding method and showed that

states at the band edges are confined in efh@rB regions A indicating a staggered band lineup. This result clearly

of a superlatticesAgBg), (A4B15) and (A;,B4) formed on  shows that by applying periodic radial deformation on an

an individual (7,0) SWNTF® individual semiconducting SWNT one can generate a quan-
In this study, we extend our earlier calculations of quan-tum structure, where the band gap in the direct space along

tum structures on SWNT's and presentaiminitio analysis  the tube axis undergoes a periodic variation which is con-

of band lineup of the A¢Bs) superlattice formed on an in- tinuously tunable and reversible.

dividual (8,0) SWNT. Similar to the previous model, here

the A region is left undeformed, but th region is radially IV. CONCLUSIONS

deformed bye,,=0.16. This system consists of 384 carbon , o .

atoms in a supercell involving 12 original unit cells of the _ !N this work we present an extensive first-principle analy-

(8,00 SWNT. We performed a partial structural optimization sis of the effect of radial deformation on the atomic structure,
for the (AgBs) superlattice, since the full optimization is not energetics and electronic structure of SWNT’s. We find that

tractable within a reasonable computation time. We first op{h€ energy band structure and the variation of the gap with
timized single unit cells in thé and B regions correspond- fadius(or n) differs from what one derived from the zone
ing to e,y=0 and e,,=0.16, respectively. Then, we con- folded band structure of graphene based on simple tight
nectedA and B regions smoothly by one intermediate unit binding calculations. More interestingly, the response of the
cell. Finally, fully self-consistent electronic band structure €Nergy bands around the band gap to the applied radial de-
calculations were carried out on this structure. In Fig. 8 weormation is different for different bands. Depending on the
show the planar Xy) averaged self-consistent potential '€ative position of these bands, the band gap displays differ-

NN . . ent behavior under the radial deformation. In general, the
Ve(2) =/ sVe(r)dxdy'S. HereSis thexy cross section of the band gap is reduced and eventually closed to yield an

ﬁﬁgi;gﬁ*emeaggggggr%:;tgievisg;?egindfﬁgtgii?ebet\f[\feﬁﬂsuIator-metal transition under the elastic radial deforma-
. — €d by 913 tion. The strong dependence of the band gap on the applied
ing the planarly averaged potentd}=[V(z)dZ/I at each  gyrain, its reversible and continuously tunable behavior are
region (X=A or B) over a length of original unit celli.e.,  exploited to form quantum well structure on an individual

| =c) along the tube axi& In Fig. 8, Vy is shown for both  SWNT. A first-principle calculation of the alignment of the
regions of the supercell which constitutes the reference levalalence band is presented. The deformation energy and elas-
for the band lineup. In the next step, we determine the energgic constants under the radial deformation are calculated. We
of the valence band edge from tﬁé andV”Bc calculated for find that the strain energy due to the radial deformation can
two different, uniform (infinite) (8,00 SWNT'’s (one unde- be fitted very well to the quadratic expressions obtained from
formed, the other uniformly deformed witl,,=0.16). the classical theory of elasticity within the Hooke’s law.
These aréy, 5 andEy 5. It is assumed that in the nanotube

superlatticeEy, , andEy, 5 are unaltered. The band lineup of ACKNOWLEDGMENTS
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