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Abstract—Formulations of the turbo equalization approach to
iterative equalization and decoding vary greatly when channel
knowledge is either partially or completely unknown. Maximum
aposteriori probability (MAP) and minimum mean-square error
(MMSE) approaches leverage channel knowledge to make explicit
use of soft information (priors over the transmitted data bits)
in a manner that is distinctly nonlinear, appearing either in a
trellis formulation (MAP) or inside an inverted matrix (MMSE).
To date, nearly all adaptive turbo equalization methods either
estimate the channel or use a direct adaptation equalizer in which
estimates of the transmitted data are formed from an expressly
linear function of the received data and soft information, with this
latter formulation being most common. We study a class of direct
adaptation turbo equalizers that are both adaptive and nonlinear
functions of the soft information from the decoder. We introduce
piecewise linear models based on context trees that can adaptively
approximate the nonlinear dependence of the equalizer on the
soft information such that it can choose both the partition regions
as well as the locally linear equalizer coefficients in each region
independently, with computational complexity that remains of
the order of a traditional direct adaptive linear equalizer. This
approach is guaranteed to asymptotically achieve the performance
of the best piecewise linear equalizer, and we quantify the MSE
performance of the resulting algorithm and the convergence of its
MSE to that of the linear minimum MSE estimator as the depth
of the context tree and the data length increase.

Index Terms—Context tree, decision feedback, nonlinear equal-
ization, piecewise linear, turbo equalization.

I. INTRODUCTION

I TERATIVE equalization and decoding methods, or
so-called turbo equalization [1]–[3], have become increas-

ingly popular methods for leveraging the power of forward
error correction to enhance the performance of digital commu-
nication systems in which intersymbol interference or multiple
access interference are present. Given full channel knowledge,
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maximum a posteriori probability (MAP) equalization and de-
coding give rise to an elegant manner in which the equalization
and decoding problems can be (approximately) jointly resolved
[1]. For large signal constellations or when the channel has a
large delay spread resulting in substantial intersymbol inter-
ference, this approach becomes computationally prohibitive
and lower complexity linear equalization strategies are often
employed [4]–[6]. Computational complexity issues are also
exacerbated by the use of multi-input/multi-output (MIMO)
transmission strategies. It is important to note that MAP and
MMSE formulations of the equalization component in such
iterative receivers make explicit use of soft information from
the decoder that is a nonlinear function of both the channel
response and the soft information [5], which can be efficiently
calculated for certain configurations [7]. In a MAP receiver,
soft information is used to weight branch metrics in the receiver
trellis [8]. In an MMSE receiver, this soft information is used
in the (recursive) computation of the filter coefficients and
appears inside of a matrix that is inverted [5].
In practice, most communication systems lack precise

channel knowledge and must make use of pilots or other
means to estimate and track the channel if the MAP or MMSE
formulations of turbo equalization are to be used [5], [8].
Increasingly, however, receivers based on direct adaptation
methods are used for the equalization component, due to their
attractive computational complexity [4], [9], [10]. Specifically,
the channel response is neither needed nor estimated for direct
adaptation equalizers, since the transmitted data symbols are
directly estimated based on the signals received. This is often
accomplished with a linear or decision feedback structure that
has linear complexity in the channel memory, as opposed to
the quadratic complexity of the MMSE formulation, and is
invariant to the constellation size [9]. A MAP receiver not
only needs a channel estimate, but also has complexity that
is exponential in the channel memory, where the base of the
exponent is the transmit constellation size [8]. For example,
underwater acoustic communications links often have a delay
spread in excess of several tens to hundreds of symbol pe-
riods, make use of 4 or 16 QAM signal constellations, and
have multiple transmitters and receive hydrophones [10], [11].
In our experience, for such underwater acoustic channels,
MAP-based turbo equalization is infeasible and MMSE-based
methods are impractical for all but the most benign channel
conditions [10]. As such, direct-adaptation receivers that form
an estimate of the transmitted symbols as a linear function of
the received data, past decided symbols, and soft information
from the decoder have emerged as the most pragmatic solu-
tion. Least-mean square (LMS)-based receivers are used in
practice to estimate and track the filter coefficients in these
soft-input/soft-output decision feedback equalizer structures,
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which are often multi-channel receivers for both SIMO and
MIMO transmissions [4], [6], [9].
While such linear complexity receivers have addressed the

computational complexity issues that make MAP and MMSE
formulations unattractive or infeasible, they have also unduly
restricted the potential benefit of incorporating soft information
into the equalizer. Although such adaptive linear methods may
converge to their “optimal”, i.e., Wiener solution, they usually
deliver inferior performance compared to a linear MMSE turbo
receiver [12], since the Wiener solution for this stationarized
problem, replaces the time-varying soft information by its time
average [5], [13]. It is inherent in the structure of such adaptive
approaches that an implicit assumption is made that the random
process governing the received data and that of the soft-infor-
mation sequence are both mean ergodic so that ensemble aver-
ages associated with the signal and soft information can be esti-
mated with time averages. The primary source of performance
loss of these adaptive algorithms is due to their implicit use of
the log likelihood ratio (LLR) information from the decoder as
stationary soft decision sequence [12], whereas a linear MMSE
turbo equalizer considers this LLR information as nonstationary
a priori statistics over the transmitted symbols [5].
Indeed, one of the strengths of the linear MMSE turbo equal-

izer lies in its ability to employ a distinctly different linear equal-
izer for each transmitted symbol [5], [6]. This arises from the
time-varying nature of the local soft information available to the
receiver from the decoder. Hence, even if the channel response
were known and fixed (i.e., time-invariant), the MMSE-optimal
linear turbo equalizer corresponds to a set of linear filter coeffi-
cients that are different for each and every transmitted symbol
[5], [14]. This is due to the presence of the soft information in-
side an inverted matrix that is used to construct the MMSE-op-
timal equalizer coefficients. As a result, a time-invariant channel
will still give rise to a recursive formulation of the equalizer co-
efficients that require quadratic complexity per output symbol.
As an example in Fig. 1, we plot for a time invariant channel
the time varying filter coefficients of the MMSE linear turbo
equalizer, along with the filter coefficients of an LMS-based,
direct adaptation turbo equalizer that has converged to its time
invariant solution. This behavior is actually manifested due to
the nonlinear relationship between the soft information and the
MMSE filter coefficients.
In this paper, we explore a class of equalizers that maintain

the linear complexity adaptation of linear, direct adaptation
equalizers [9], but attempt to circumvent the loss of this non-
linear dependence of the MMSE optimal equalizer on the soft
information from the decoder [5]. Specifically, we investigate
an adaptive, piecewise linear model based on context trees [15]
that partition the space of soft information from the decoder,
such that locally linear (in soft information space) models may
be used. However instead of using a fixed piecewise linear
equalizer, the nonlinear algorithm we introduce can adaptively
choose the partitioning of the space of soft information as well
as the locally linear equalizer coefficients in each region with
computational complexity that remains on the order of a tradi-
tional adaptive linear equalizer [8]. The resulting algorithm can
therefore successfully navigate the short-data record regime, by
placing more emphasis on lower-order models, while achieving
the ultimate precision of higher order models as the data
record grows to accommodate them. The introduced equalizer

Fig. 1. An example of time varying filter coefficients of an MMSE turbo
equalizer (TREQ) and steady state filter coefficients of an LMS turbo equalizer
(TREQ) in a time invariant ISI channel [0.227, 0.46, 0.688, 0.46, 0.227] at the
second turbo iteration. ( , ,

, BPSK, random interleaver and 1/2 rate convolutional code
with constraint length of 3 are used).

can be shown to asymptotically (and uniformly) achieve the
performance of the best piecewise linear equalizer that could
have been constructed, given full knowledge of the channel
and the received data sequence in advance. Furthermore, the
mean square error (MSE) of this equalizer is shown to converge
to that of the minimum MSE (MMSE) estimator (which is a
nonlinear function of the soft information) as the depth of the
context tree and data length increase.
Context trees and context tree weighting are extensively used

in data compression [15], coding and data prediction [16]–[18].
In the context of source coding and universal probability as-
signment, the context tree weighting method is mainly used to
calculate a weighted mixture of probabilities generated by the
piecewise Markov models represented on the tree [15]. In non-
linear prediction, context trees are used to represent piecewise
linear models by partitioning the space of past regressors [16],
[18], specifically for labeling the past observations based on a
certain criteria. Note that although we use the notion of con-
text trees for nonlinear modeling as in [15], [17]–[20], our re-
sults and usage of context trees differ from [15], [17]–[19] in
a number of important ways. The “context” used in our con-
text trees correspond to a spatial parsing of the soft information
space, rather than the temporal parsing as studied in [15], [17],
[18].
In addition, the context trees here are specifically used to rep-

resent the nonlinear dependency of equalizer coefficients on the
soft information. We emphasize that such application is natu-
rally different than application of context trees to data predic-
tion, where nonlinear prediction is carried out by employing
context trees to partition space of past relatives past regres-
sors, either for clean [19] or noisy [20] past observations. In
this sense, as an example, the time adaptation here is mainly
(in addition to learning) due to the time variation of the soft in-
formation coming from the decoder, unlike the time dependent
learning in [20] or [19]. Hence, here, we explicitly calculate the
MSE performance and quantify the difference between theMSE
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of the context tree algorithm and the MSE of the linear MMSE
equalizer, which is the main objective.
The paper is organized as follows. In Section II, we intro-

duce the basic system description and provide the objective
of the paper. The nonlinear equalizers studied are introduced
in Section III. In Section III, we first introduce a partitioned
linear turbo equalization algorithm, where the partitioning of
the regions is fixed. We continue in Section III-B with the turbo
equalization framework using context trees, where the corre-
sponding algorithm with the guaranteed performance bounds is
introduced. Furthermore, we provide the MSE performance of
all the algorithms introduced and compare them to theMSE per-
formance of the linear MMSE equalizer. The paper concludes
with numerical examples demonstrating the performance gains
and the learning mechanism of the algorithm.

II. SYSTEM DESCRIPTION

Throughout the paper, all vectors are column vectors and rep-
resented by boldface lowercase letters. Matrices are represented
by boldface uppercase letters. Given a vector ,
is the -norm, where is the conjugate transpose, is the or-
dinary transpose and is the complex conjugate. For a random
variable (or a vector ), (or ) is the expec-
tation. For a vector , is a diagonal matrix constructed
from the entries of and is the th entry of the vector. For
a square matrix , is the trace. The sequences are rep-
resented using curly brackets, e.g., . denotes the
union of the sets , where . The operator
stacks columns of a matrix of dimension into an
column vector [21]. Furthermore, for functions and ,

represents .
The block diagram of the system we consider with a

linear turbo equalizer is shown in Fig. 2. The information
bits are first encoded using an error correcting
code (ECC) and then interleaved to generate . The
interleaved code bits are transmitted after symbol
mapping, e.g., for BPSK signaling, through
a baseband discrete-time channel with a finite-length im-
pulse response , , represented by

. The communication channel
is unknown. The transmitted signal is assumed to be
uncorrelated due to the interleaver. The received signal is
given by

where is the additive complex white Gaussian noise with
zero mean and circular symmetric variance . If a linear equal-
izer is used to reduce the ISI, then the estimate of the desired
data, i.e., , using the received data is given by

where is length

linear equalizer, and
note that we use negative indices with a slight abuse of notation.
The received data vector is given by ,

where and

Fig. 2. Block diagram for a bit interleaved coded modulation transmitter and
receiver with a linear turbo equalizer.

is the convolutionmatrix corresponding to , the
estimate of can be written as

(1)

given that the mean of the transmitted data is known.
However, in turbo equalization, instead of only using an

equalizer, the equalization and the decoding are jointly per-
formed iteratively at the receiver of Fig. 2. The equalizer
computes the a posteriori information using the received
signal, transmitted signal estimate, channel convolution matrix
(if known) and a priori probability of the transmitted data.
After subtracting the a priori information, , and de-inter-
leaving the extrinsic information , a soft input soft output
(SISO) channel decoder computes the extrinsic information

on coded bits, which are fed back to the linear equalizer
as a priori information after interleaving.
If one uses the linear MMSE equalizer in , the mean

and the variance of are required to calculate and
. These quantities are computed using the a priori infor-

mation from the decoder as 1

and . As an example,
for BPSK signaling, the mean and variance are given as

and . However, to
remove dependency of to due to using and

in (1), one can set while computing ,
yielding and [5]. Then, the linear MMSE
equalizer is given by

(2)

where is
a diagonal matrix (due to uncorrelateness assumption on )

with diagonal entries ,
, is

the th column of , is the reduced form of
where the th column is removed. The linear MMSE
equalizer in (1) yields

(3)

1With a slight abuse of notation, the expression is interpreted
here and in the sequel as the expectation of with respect to the prior distri-
bution .
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where . In this sense the linearMMSE equalizer
can be decomposed into a feedforward filter processing

and a feedback filter processing .
Remark 1: Both the linear MMSE feedforward and feedback

filters are highly nonlinear functions of , i.e.,

(4)

where . We point out that time
variation in (2) is due to the time variation in the vector of vari-
ances (assuming is time-invariant).
To learn the corresponding feedforward and feedback filters

that are highly nonlinear functions of , we use piecewise linear
models based on vector quantization and context trees in the
next section. The space spanned by is partitioned into disjoint
regions and a separate linear model is trained for each region
to approximate functions and using piecewise linear
models.
Note that if the channel is not known or estimated, one can

directly train the corresponding equalizers in (3) using adaptive
algorithms such as in [4], [12] without channel estimation or
piecewise constant partitioning as done in this paper. In this
case, one directly applies the adaptive algorithms to feedforward
and feedback filters using the received data and the mean
vector as feedback without considering the soft decisions
as a priori probabilities. Assuming stationarity of , such an
adaptive feedforward and feedback filters haveWiener solutions
[12]

(5)

Note that assuming stationarity of the log likelihood ra-
tios [12], is constant in time, i.e., no time index
for , in (5). When PSK signaling is used such that

, the filter coefficient vector in
(5) is equal to the coefficient vector of the MMSE equalizer in
[5] with the time averaged soft information, i.e., time average
instead of an ensemble mean. Comparing (5) and (2), we
observe that using the time averaged soft information does not
degrade equalizer performance in the no a priori information,
i.e., or perfect a priori information, i.e., ,
cases. In addition, the performance degradation in moderate ISI
channels is often small [5] when perfect channel knowledge is
used. However, the performance gap increases in ISI channels
that are more difficult to equalize, even in the high SNR region
[12], since the effect of the filter time variation increases in
the high SNR region. Comparison of an exact MMSE turbo
equalizer without channel estimation error and an MMSE turbo
equalizer with the time averaged soft variances (i.e. when an
ideal filter for the converged adaptive turbo equalizer is used)
via the EXIT chart [22] is given in Fig. 3. As the adaptive turbo
equalizer, a decision directed (DD) LMS turbo equalizer is
used in the data transmission period, while LMS is run on the
received signals for the first turbo iteration and on the received
signals and training symbols for the rest of turbo iterations in
the training period. Note that the tentative decisions can be

Fig. 3. The EXIT chart for the exact MMSE turbo equalizer, the LMS
turbo equalizer and their trajectory in a time invariant ISI channel

. Here, we have , ,
, feedback filter length , ,

, , BPSK signaling, random inter-
leaver and rate convolutional code with constraint length of 3.

taken as the hard decisions at the output of the linear equalizer
or as the soft decisions from the total LLRs at the output of
decoder. When we consider nonideality, both of the MMSE
turbo equalizer with channel estimation error and DD-LMS
turbo equalizer loose mutual information at the equalizer in
first few turbo iterations.2 Even though there is a loss in mutual
information at the equalizer in the first and second turbo itera-
tion due to using decision directed data or channel estimation
error, both algorithms follow their ideal performance at the end.
(i.e., the DD LMS turbo equalizer can achieve the performance
of the time-average MMSE turbo equalizer as the decision data
gets more reliable). However, there is still a gap in achieved
mutual information between the exact MMSE turbo equalizer
and the LMS adaptive turbo equalizer except for the no a
priori information and perfect a priori information cases. Note
that such a gap can make an adaptive turbo equalizer become
trapped at lower SNR region while an MMSE turbo equalizer
converges as turbo iteration increases.
To remedy this, in the next section, we introduce piecewise

linear equalizers to approximate and . We first dis-
cuss adaptive piecewise linear equalizers with a fixed partition
of (where ). Then, we introduce adap-
tive piecewise linear equalizers using context trees that can learn
the best partition from a large class of possible partitions of

.

III. NONLINEAR TURBO EQUALIZATION USING
PIECEWISE LINEAR MODELS

A. Piecewise Linear Turbo Equalization with Fixed
Partitioning

In this section, we divide the space spanned by
(assuming BPSK signaling for notational sim-

plicity) into disjoint regions , e.g.,

2This performance loss in the first few turbo iterations can cause the iterative
process to terminate prematurely in low SNR region.



KIM et al.: LINEAR MMSE-OPTIMAL TURBO EQUALIZATION USING CONTEXT TREES 3045

for some and train an independent linear equalizer in each
region to yield a final piecewise linear equalizer to approxi-
mate and . As an example, given such
regions, suppose a time varying linear equalizer is assigned to
each region as , , , such that at each
time , if , the estimate of the received signal is given
as

(6)

We emphasize that the time variations in and in
(6) are not due to the time variation in unlike (3). The fil-
ters and are time varying since they are produced
by adaptive algorithms sequentially learning the corresponding
functions and in region . Note that if is large and
the regions are dense such that (and ) can be consid-
ered constant in , say equal to for some in region
, then if the adaptation method used in each region converges

successfully, this yields and
as . Hence, if these regions are dense and there is enough
data to learn the corresponding models in each region, then this
piecewise model can approximate any smoothly varying
and [23].
In order to choose the corresponding regions , we

apply a vector quantization (VQ) algorithm to the sequence of
, such as the LBG VQ algorithm [24]. If a VQ algorithm

with regions and Euclidean distance is used for clustering,
then the centroids and the corresponding regions are defined as

(7)

(8)

where
, and . We emphasize that we

use a VQ algorithm on to construct the corresponding
partitioned regions in order to concentrate on vectors that are
in since and should only be learned around

, not for all . After the regions are con-
structed using the VQ algorithm and the corresponding filters
in each region are trained with an appropriate adaptive method,
the estimate of at each time is given as if

.
In Fig. 4, we introduce such a sequential piecewise linear

equalizer that uses the LMS update to train its equalizer filters.
Here, is the learning rate of the LMS updates. One can use dif-
ferent adaptive methods instead of the LMS update, such as the
RLS or NLMS updates [25], by only changing the filter update
steps in Fig. 4. The algorithm of Fig. 4 has access to training data
of size . After the training data is used, the adaptive methods
work in decision directed mode [25]. Since there are no a priori
probabilities in the first turbo iteration, this algorithm uses an
LMS update to train a linear equalizer with only the feedforward
filter, i.e., , without any regions or mean vec-
tors. Note that an adaptive feedforward linear filter trained
on only without a priori probabilities (as in the first itera-
tion) converges to [12] (assuming zero variance in convergence)

which is the linear MMSE feedforward filter in (2) with
.
In the pseudo-code in Fig. 4, the iteration numbers are dis-

played as superscripts, e.g., , are the feedfor-
ward and feedback filters for the th iteration corresponding
to the th region, respectively. After the first iteration when

become available, we apply the VQ algorithm to get
the corresponding regions and the centroids. Then, for each re-
gion, we run a separate LMS update to train a linear equal-
izer and construct the estimated data as in (6). In the start of
the second iteration, in line A, each feedforward filter is initial-
ized by the feedforward filter trained in the first iteration. Fur-
thermore, although the linear equalizers should have the form

, since we have the correct in the
training mode for , the algorithms are trained using

in (line B), i.e.,
is scaled using , to incorporate the uncertainty
during training [26]. After the second iteration, in the start of
each iteration, in line C, the linear equalizers in each region, say
, are initialized using the filters trained in the previous iteration
that are closest to the th region, i.e.,

, , and .
Assuming large with dense regions, we have

when . To get the vectors that the LMS trained linear
filters in region eventually converge, i.e., the linearMMSE es-
timators assuming stationary , we need to calculate

, which is assumed to be diag-
onal due to the interleaving [12], yielding

due to the definition of and assuming stationary distribution
on . This yields that the linear filters in region converge to

(9)

where , assuming zero variance at convergence.
Hence, at each time , assuming convergence, the difference
between the MSE of the equalizer in (9) and the MSE of the
linear MMSE equalizer in (2) is given by

(10)

as shown in Appendix A. Due to (10) as the number of piecewise
linear regions, i.e., , increases and approaches
0, the MSE of the converged adaptive filter more accurately
approximates the MSE of the linear MMSE equalizer.
Note that the algorithm in Fig. 4 uses the LBG VQ for clus-

tering and separate piecewise linear equalizers, one for each
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Fig. 4. A piecewise linear equalizer for turbo equalization. This algorithm requires computations.

region. At the start of each turbo iteration, the LBG VQ algo-
rithm requires computations [24], where
is the number of clusters, is the data length, is

the size of each variance vector and is an upper bound on
the number of iterations that the LBG VQ requires for conver-
gence. Then, at each time , the LBG VQ requires

computations, i.e., number of addi-
tions and multiplications.3 At each time , after observing ,
the algorithm requires computations to find
the region that belongs to, computations to
calculate the output for that region and compu-
tations to update the piecewise linear equalizer for that regions
with the LMS algorithm. Hence, for each time (or per each
output), the algorithm in Fig. 4 requires

computations.
In the algorithm of Fig. 4, the partition of the space of

is fixed, i.e., partitioned regions are fixed at the
start of the equalization, after the VQ algorithm, and we sequen-

3If the complexity of the LBG is significant compared to the adaptive algo-
rithms, then one can replace it with a more appropriate partitioning method. As
an example, the complexity of the LBG VQ can be significantly reduced by
changing the distance measure to the Chaudhuris distance [27] instead of the
Euclidian distance, which requires no multiplications.

tially learn a different linear equalizer for each region. Since
the equalizers are sequentially learned with a limited amount of
data, these may cause training problems if there is not enough
data in each region. In other words, although one can increase
to increase approximation power, if there is not enough data

to learn the corresponding linear models in each region, this
may deteriorate the performance. To alleviate this, one can try
a piecewise linear model with smaller in the start of the
learning and gradually increase to moderate values if enough
data is available. In the next section, we examine the context tree
weighting method that intrinsically does such weighting among
different models based on their performance, hence, allowing
the boundaries of the partition regions to be design parameters.

B. Piecewise Linear Turbo Equalization Using Context Trees

We first introduce a binary context tree to partition the side
information space, , into disjoint regions. An ex-
ample binary context tree is provided in Fig. 5. In a binary con-
text tree, starting from the root node, i.e., the top node, we have
a left hand child and a right hand child. Each left hand child and
right hand child have their own left hand and right hand chil-
dren. This splitting yields a binary tree of depth with a total
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Fig. 5. A full binary context tree with depth, , with 4 leaves. The leaves
of this binary tree partitions , i.e., , into 4
disjoint regions.

of leaves at depth and a total of nodes including
the root and the leaves. The example context tree in Fig. 5 has

and partitions , i.e.,
, into 4 disjoint regions. Each one of these 4 disjoint re-

gions is assigned to a leaf in this binary tree. Then, recursively,
each internal node on this tree represents a region (shaded areas
in Fig. 5), which is the union of the regions assigned to its chil-
dren. Each node of the context tree represents a certain region
(or part) of the side information space.
Using a binary context tree of depth , one can represent

a doubly exponential number, , of different “parti-
tions” of the side information space. As an example, in Fig. 6,
we provide the five partitions that can be represented by our bi-
nary tree with labeled as . Each partition rep-
resented by this context tree is assigned to a “complete” subtree.
A complete subtree is constructed from a subset of the nodes
of the original tree, starting from the same root node, and the
union of the regions assigned to the leaves of the subtree yields

. For example, the subtree, in Fig. 6, which has
the left-child, the right-left child and the right-right child as its
leaves provides a complete partition of . For any
subtree defined in the binary tree, if the regions assigned to its
leaves are labeled as where is the number of
leaves of the subtree , then . Each

of the subtree corresponds to a node in the original tree.
To construct our context tree based piecewise linear equal-

izer, we first partition the side information space with the LBG
VQ algorithm as in the previous section and then construct our
context tree over these regions as follows. We emphasize that
the context tree is not directly used to partition the side infor-
mation space but rather represents the possible partitions that
can be constructed as the union of the final regions produced
by the LBG VQ. Suppose the LBG VQ algorithm is applied to

with to generate regions [24]. These regions
are assigned to the leaves of a binary context tree of depth .
Then, recursively, each internal node represents a region, which
is the union of its children nodes. Note that one can arbitrarily
assign the regions produced by the LBG VQ to the leaves of the
context tree. However, the LBGVQ algorithm uses a tree notion

similar to the context tree introduced in Fig. 6 such that the LBG
VQ algorithm intrinsically constructs the context tree. The LBG
VQ algorithm starts from a root node and calculates the mean
of all the vectors in as the root codeword, and binary
splits the data as well as the root codeword into two segments.
Then, these newly constructed codewords are iteratively used
as the initial codebook of the split segments. These two code-
words are then split in four and the process is repeated until the
desired number of regions are reached. At the end, this binary
splitting and clustering yield regions with the corresponding
centroids , , which are assigned to the leaves of
the context tree. Note that since each couple of the leaves (or
nodes) come from a parent node after a binary splitting, these
parent codewords are stored as the internal nodes of the context
tree, i.e., the nodes that are generated by splitting a parent node
are considered as siblings of this parent node where the centroid
before splitting is stored. Hence, in this sense, the LBG VQ al-
gorithm constructed the context tree.
Given such a context tree, we have different

partitions of the space and can construct a piece-
wise linear equalizer, say , as in Fig. 4 for each such parti-
tion. One of these partitions, with the piecewise adaptive linear
model defined on it achieves the minimal loss, e.g., the min-
imal accumulated squared error ,
for some . However, the best piecewise model with the best
partition is not known a priori. We point out that although we
have a doubly exponential number of piecewise linear models
defined on the context tree, all these piecewise linear equalizers
are constructed using subsets of nodes
of the tree. Hence, suppose we number each node on this con-
text tree and assign a linear equalizer
to each node as . The linear
models , that are assigned to node , train only on
the data assigned to that node as in Fig. 4, i.e., if is in the re-
gion that is assigned to the node , say , then and
are updated. Then, the piecewise linear equalizer corre-
sponding to any partition is defined such
that if and is the node that is assigned to , i.e.,

, then

(11)

We emphasize that this observation is critical while we intro-
duce an algorithm that achieves the performance of the best par-
tition with the best linear model that achieves the minimal ac-
cumulated square-error with complexity only linear in the depth
of the context tree per sample, i.e., complexity
instead of , where is the depth of the
tree.
Remark 2: We note that the partitioned model that corre-

sponds to the union of the leaves, i.e., the finest partition, has
the finest partition of the space of variances. Hence, it has the
highest number of regions and parameters to model the non-
linear dependency. However, note that at each such region, the
finest partition needs to train the corresponding linear equalizer
that belongs to that region. As an example, the piecewise linear
equalizer with the finest partition may not yield satisfactory re-
sults in the beginning of the adaptation if there is not enough
data to train all the model parameters. In this sense, as will be
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Fig. 6. All partitions of using binary context tree with . Given any partition, the union of the regions represented by the leaves of each partition is
equal to .

shown, the context tree algorithm adaptively weights coarser
and finer models based on their performance.
To accomplish this, we introduce the algorithm in Fig. 7,

i.e., , that is constructed using the context tree weighting
method introduced in [15]. The context tree based equalization
algorithm implicitly constructs all , , piece-
wise linear equalizers and acts as if it had actually run all these
equalizers in parallel on the received data. At each time , the
final estimation is constructed as a weighted combina-
tion of all the outputs of these piecewise linear equalizers
as

(12)

where the combination weights are calculated proportional to
the performance of each equalizer on the past data

as explained in detail in Appendix B. However, as shown in (11)
and explained in Appendix B, although there are different
piecewise linear algorithms, at each time , each is equal
to one of the node estimations to which belongs. Hence,
(12) can be implemented as a combination of only outputs
as

with certain combination weights and nodes . How the
context tree algorithm keeps the track of these piecewise
linear models as well as their performance-based combination
weights with computational complexity only linear in the depth
of the context tree is explained in Appendix B.
For the context tree algorithm, since there are no a priori

probabilities in the first iteration, the first iteration of Fig. 7 is the
same as the first iteration of Fig. 4. After the first iteration, to in-
corporate the uncertainty during training as in Fig. 4, the context

tree algorithm is run by using weighted training data [26]. At
each time , constructs its nonlinear estimation of

as follows. We first find the regions to which belongs.
Due to the tree structure, one needs only find the leaf node in
which lies and collect all the parent nodes towards the root
node. The nodes to which belongs are stored in in Fig. 7.
The final estimate is constructed as a weighted com-
bination of the estimates generated in these nodes, i.e., ,

, where the weights are functions of the performance of
the node estimates in previous samples.
For the algorithm in Fig. 7, at the start of each turbo itera-

tion, we need to perform LBG VQ clustering, which requires
computations, i.e., additions and

multiplications, for each time . For each time , we first need to
find the nodes where belongs to, which requires
computations (since due to the tree structure finding the leaf
where belongs to is enough). Then, we need to perform

computations to calculate and combine the out-
puts of each node equalizer and require compu-
tations to update the piecewise linear equalizers at these nodes.
Hence, for each time (or per each output), the algorithm in
Fig. 7 requires
computations.
Theorem 2: Let , and represent the

transmitted, noise and received signals and represents
the sequence of variances constructed using the a priori prob-
abilities for each constellation point produced by the SISO
decoder. Let , , are estimates of

produced by the equalizers assigned to each node on the
context tree. The algorithm , when applied to ,
for all achieves

(13)
for all , , assuming perfect feedback
in decision directed mode i.e., when ,
where is the equalizer constructed as



KIM et al.: LINEAR MMSE-OPTIMAL TURBO EQUALIZATION USING CONTEXT TREES 3049

is the node assigned to the volume in
such that belongs and is the number of regions in .
If the estimation algorithms assigned to each node are selected
as adaptive linear equalizers such as an RLS update based algo-
rithm, (13) yields

(14)

where is an indicator variable for such that if
, then .}
An outline of the proof of this theorem is given in

Appendix B.
Remark 3: We observe from (13) that the context tree al-

gorithm achieves the performance of the best sequential algo-
rithm among a doubly exponential number of possible algo-
rithms corresponding to all partitions. Note that the bound in
(13) holds uniformly for all , however the bound is the largest
for the finest partition, i.e., for the piecewise linear equalizer
constructed using the regions assigned to the leaves. We ob-
serve from (14) that the context tree algorithm also achieves
the performance of even the best piecewise linear model, in-
dependently optimized in each region, for all when the node
estimators in each regions are adaptive algorithms that achieve
the minimum least square-error.
C. MSE Performance of the Context Tree Equalizer

To get the MSE performance of the context tree equalizer,
we observe that the result (14) in the theorem is uniformly true
for any sequence . Hence, as a corollary to the theorem,
taking the expectation of both sides of (14) with respect to any
distribution on yields the following:
Corollary:

(15)

Equation (14) is true for all , and given for any , ,
, i.e.,

(16)

since (14) is true for the minimizing and equalizer vectors.
Taking the expectation of both sides of (16) and minimizing
with respect to and , , yields the corol-
lary.
We emphasize that the minimizer vectors and at

the right hand side of (15) minimize the sum of all the MSEs.
Hence, the corollary does not relate theMSE performance of the
CTW equalizer to the MSE performance of the linear MMSE
equalizer given in (2). However, if we assume that the adaptive
filters trained at each node converge to their optimal coefficient
vectors with zero variance and for sufficiently large and ,
we have piecewise linear models such as for the finest partition

(17)

where we assumed that, for notational simplicity, the th par-
tition is the finest partition, and are
theMSE optimal filters (if defined) corresponding to the regions
assigned to the leaves of the context tree. Note that we require
to be large such that we can assume to be constant in

each region such that these MSE optimal filters are well-de-
fined. Since (14) is correct for all partitions and for the mini-
mizing , vectors, (14) holds for any and ’s pairs including

and pair. Since (14) in the theorem is
uniformly true, taking the expectation preserves the bound and
using (17), we have

(18)

since for the finest partition . Using the MSE defini-
tion for each node in (18) yields

(19)

(20)

where (20) follows from assuming large , the MSE in each
node is bounded as in (10), i.e.,

. Note that at the right hand
side of (10) can further be upper bounded by assuming
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Fig. 7. A context tree based turbo equalization. This algorithm requires computations.

large enough with the partition given in Fig. 5 since we have
regions and . Hence, as ,

the context tree algorithm asymptotically achieves the perfor-
mance of the linear MMSE equalizer, i.e., the equalizer that is
nonlinear in the variances of the soft information. However, for
this to happen, the sample length should go faster to infinity
than as seen from the last term in (20).

IV. NUMERICAL EXAMPLES

In the following, we simulate the performance of our algo-
rithms under different scenarios. A rate one half convolutional
code4 with constraint length 3 and random interleaving is used.

4A recursive systematic convolutional code with a generator matrix [101;111]
is used and Log-MAP decoding algorithm is considered as a decoding algorithm
in this paper.
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Fig. 8. Ensemble averaged MSE for the CTW equalizer over 5 turbo iterations
at 12 dB Eb/N0.

In the first set of experiments, we use the time invariant chan-
nels from [8] (Chapter 10)

with the training size and data length 5120 (ex-
cluding training). Training symbols are modulated with same
modulation order of data symbols without encoding. We use
two different adaptive algorithms including the LMS algorithm
and the normalized LMS algorithm (NLMS) [28]. The decision
directed mode is used for all the adaptive algorithms, e.g., for
the ordinary LMS turbo equalizer we compete against and for
all the node filters on the context tree. Our calculation of the
extrinsic LLR at the output of the ordinary LMS algorithm is
based on [10]. For all adaptive filters, we use , ,
length feedback filter. The learning rates
for the LMS and the NLMS algorithms are set to
and , respectively. These learning rates are selected
to guarantee the convergence of the ordinary LMS and NLMS
filter in the training part. The same learning rate is used directly
on the context tree without tuning for fair comparison.
As shown in Fig. 8, the MSE of the CTW equalizer decreases

as the depth of the CTW increases as shown in (10). We also
increase the data length as , since the MSE of the
CTW equalizer depends on both the depth of the context tree
and the data length as demonstrated in (20). Furthermore, the
MSEs of the linear MMSE TREQ and the linear MMSE TREQ
with the finest partitioning are plotted as references, where the
ideal channel estimation is assumed. Note that the difference be-
tween the MSE of the linear TREQ constructed using the finest
partitioning and theMSE of the linearMMSE TREQ is bounded
by the quantization error as shown in (10), where convergence
of the linear filters for the finest partitioning is assumed. For the
converged linear TREQ with the finest partitioning, we use the
linear MMSE TREQ with the finest partition as the genie aided
method. Note that, as expected, the MSE of the linear MMSE
TREQ with the finest partition also decreases as the CTW depth
increases since the quantization error decreases as the depth in-
creases, i.e., the number of regions in the finest partition in-
creases, where quantization level is given by .

Fig. 9. BERs for an ordinary DD LMS algorithm, a CTW equalizer with
and tree given in Fig. 5, the piecewise equalizer with the finest partition, i.e.,

. (BPSK at the th turbo iteration in the ISI channel, ).

In Fig. 9, we plot BERs for an ordinary LMS algorithm, a con-
text-tree equalization algorithm with given in Fig. 7 and
the piecewise linear equalization algorithm with the finest parti-
tion, i.e., , on the same tree. In a decision directed mode,
hard decision data, soft decision data are used in these simula-
tions. Data-aided adaptive algorithms are also demonstrated to
show the ideal performance of the adaptive algorithms. As a
reference, BERs of the MMSE TREQ and the MMSE TREQ
with finest partition, where we assume that channel information
is perfectly known at the receiver side. Note that the piecewise
linear equalizer with the finest partition, i.e., , in Fig. 6, has
the finest partition with the highest number of linear models,
i.e., independent filters, for equalization. However, we em-
phasize that all the linear filters in the leaves should be se-
quentially trained for the finest partition. Hence, as explained
in Section III-B, the piecewise linear model with the finest par-
tition may yield inferior performance compared to the CTW al-
gorithm that adaptively weights all the models based on their
performance. We observe that the context tree equalizer out-
performs the ordinary LMS equalizer and the equalizer corre-
sponding to the finest partition in the hard output result.
In Fig. 10, we plot the weight evaluation of the context tree

algorithm, i.e., the combined weight in line F of Fig. 7, to show
the convergence of the CTW algorithm. Note that the combined
weight vector for the CTW algorithm is only defined over the
data length period 5120 at each turbo iteration, i.e., the com-
bined weight vector is not defined in the training period. We
collect the combined weight vectors for the CTW algorithm in
the data period for all iterations and plot them in Fig. 10. This
results in jumps in the figure, since at each discontinuity, i.e.,
after the data period, we switch to the training period and con-
tinue to train the node filters. The context tree algorithm, un-
like the finest partition model, adaptively weights different par-
titions in each level. To see this, in Fig. 11(a), we plot weights
assigned to each level in a depth context tree. We also
plot the time evaluation of the performance measures in
Fig. 11(b). We observe that the context tree algorithm, as ex-
pected, at the start of the equalization divides the weights fairly
uniformly among the partitions or node equalizers. However,
naturally, as the training size increases, when there is enough
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Fig. 10. Ensemble averaged combined weight vector for the CTW equalizer
over turbo iterations.

Fig. 11. (a) The distribution of the weights, i.e., values assigned to ,
, such that belongs to th level. (b) Time evaluation of which

represents the performance of the linear equalizer assigned to node . Note that
at each iteration, we reset since a new tree is constructed using clustering.

Fig. 12. BER comparison in the case of 16QAM at the th turbo iteration in
the ISI channel, .

Fig. 13. BER comparison in the case of 16QAM at the 7th turbo iteration in a
randomly generated channel with length 15.

data to train all the node filters, the context tree algorithm fa-
vors models with better performance. Note that at each iteration,
we reset node probabilities since a new tree is con-
structed using clustering.
As the next set of experiments, we perform BER performance

comparison under 16QAM modulation with the time invariant
ISI channel, . The BER results are plotted in Fig. 12, where
the NLMS TREQ is used with . We observe that BERs
of adaptive algorithms with soft decision data or data-aided
adaptive algorithms are close to the ideal MMSE equalizer. In
the data-aided mode, the CTW algorithm is better than the other
adaptive algorithms. To show the performance in a long delay
spread channel, we performed experiments on a randomly gen-
erated channel of length 15 and provide the BER performance
in Fig. 13. We observe similar performance improvement with
the CTW algorithm in BER for this randomly generated channel
as expected from our derivations.
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V. CONCLUSION

In this paper, we introduced an adaptive nonlinear turbo
equalization algorithm using context trees to model the non-
linear dependency of the linear MMSE equalizer on the soft
information generated from the decoder. We use the CTW
algorithm to partition the space of variances, which are time
dependent and generated from the soft information. We demon-
strate that the algorithm introduced asymptotically achieves
the performance of the best piecewise linear model defined on
this context tree with a computational complexity only of the
order of an ordinary linear equalizer. We also demonstrate the
convergence of the MSE of the CTW algorithm to the MSE of
the linear minimum MSE estimator as the depth of the context
tree and the data length increase.

APPENDIX A

To calculate the difference between the MSE of the equalizer
in (9) and theMSE of the linear MMSE equalizer in (2), we start
with

(21)

where (and the time index in is omitted

for presentation purposes) and .
To simplify the second term in (21), we use the first order ex-
pansion from the Lemma in the last part of Appendix A to yield

(22)

(23)

around . Hence using (23) in (21) yields

(24)

where the last line follows from the Schwartz inequality.

Lemma: We have [21]

(25)

Proof: To get the gradient of
with respect to , we differentiate the identity

with respect
to , i.e., the th and th element of the matrix
and obtain

where is a vector of all zeros except a single 1 at th entry.
This yields

(26)

which yields the result in (25) since (26) is the th element
of the matrix in (25).

APPENDIX B

Outline of the proof of the theorem 2: The proof of the the-
orem follows the proof of the Theorem 2 of [19] and Theorem
1 of [29]. Hence, we mainly focus on differences.
Suppose we hypothetically construct all piecewise linear

equalizers , defined on the context tree and
compute certain weights for all

(27)
where are constants that are used only
for proof purposes such that [15] and is
a positive constant set to [29]. Note
that the weights defined in (27) are normalized functions of the
performance of each on the observed data so far, i.e., the
better performing piecewise linear equalizers would have higher
weights. At each time , if we define a weighted equalizer

(28)

then it follows from Theorem 1 of [29] that the performance of
the weighted equalizer satisfies

(29)
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for all . In this sense, is the desired ,
i.e., it achieves the performance of the best piecewise equal-
izer among piecewise linear equalizers defined on the con-
text tree. The proof that (28) satisfies (29) is based on defining
universal probabilities, using telescoping and certain convexity
arguments, however, straightforward and is not repeated here.
However, even if we have the result in (29), note that re-
quires the outputs of doubly exponential number algorithms
and computes performance based weights in (27), which is
computationally infeasible for large . We next show that such
a doubly exponential number of algorithms and weights can be
efficiently calculated on the context tree, i.e., the weighted sum-
mation in (29) can be efficiently calculated because of the tree
structure.
To circumvent this problem, we first observe that any

defined in the binary tree is constructed from a subset of
node equalizers , . At each time
, for each partition , we find the corresponding node that
belongs to and repeat the output of the corresponding to
that node as the output of . However, at each time , due to
the tree structure of the partitions, can only belong to
regions or nodes on the tree. As an example, if belongs
to the left-left hand child, then it also belongs to the left-hand
child and the root node. For such a , all piecewise linear
equalizers would equal to one of these three node outputs. In
this sense, although we have piecewise equalizers in (27),
these equalizers can only output distinct values, i.e., the
outputs of the nodes that belongs. Hence, at each time ,

is constructed as a weighted sum of only distinct
node predictions. Then, all the weights in (27) with the same
node predictions can be merged.
To be able to define such a merging with computational com-

plexity only linear in , as shown in [19], we define certain
functions of performance for each node as , that are
initialized in (line A) and updated in (line C), (line D), (line E)
of Fig. 7. These variables measure the performance as in (27),
where

is the performance of each node piecewise linear equalizer on
the data observed so far, is the nodes assigned to the and

is the accumulated weight recursively calculated for each
at the inner nodes, where and are the weights for
each child node. Then, the corresponding can be defined as
a merged summation of node outputs as

where contains the nodes that belongs to and are
calculated as shown in (line B) of Fig. 7 based on and

. Hence, the desired equalizer is given by

which requires computing node estimations and updates
only node equalizers at each time and store
node weights. This completes the outline of the proof of (13).
To get the corresponding result in (14), we define the node

predictors as the LS predictors such that

(30)

and , where
, is the indicator variable for node , i.e.,
if otherwise . The affine pre-

dictor in (30) is a least squares predictor that trains only on the
observed data and that belongs to that node, i.e.,
that falls into the region . Note that the update in (30) can
be implemented with computations using fast inversion
methods [30]. For each node , the RLS algorithm is shown to
achieve the excess loss

(31)

where is the number of samples that fall into the node .
Hence, application of this results to each node predictor in (29)
yields the result in (14) as shown in [31].
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