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Proposition 1 has an immediate consequence.
Corollary 1: Consider an interval matrix �, its center ���� and its

right end ���
�, defined in accordance with equality (1). If ���� is an es-

sentially nonnegative matrix, then ��������
�� is the right end-point of

the eigenvalue range of �, i.e., the following equality holds:

�
���� � ��������

��� (22)

Proof: We have the matrix equality� � ���
� and condition ���

in the hypothesis of Proposition 1 (ii) is fulfilled.
The values ����� provided by Proposition 1 (ii) (or, equivalently,

Corollary 1) for the interval matrices �� (4), �� (6) are given in the
fifth column of Table I, in Section IV-D. Note that Proposition 1 (ii)
cannot be applied to�� (5), but Proposition 1 (i) yields the right outer
bound �

�
�
���� given in the fifth column of Table I.

D. Brief Comparative Analysis

Table I summarizes the key points of a comparative analysis on the
use of Theorem 1 [1] versus the three methods discussed in Section IV,
by referring to the interval matrices �� (4), �� (5), �� (6). We have
extended this analysis to numerous other examples that were not repro-
duced here for brevity reasons. The considered examples do not intend
to prove that methods in Sections IV-A–IV-C ensure high accuracy; a
thorough testing of these methods is obviously beyond the objective of
our note. The note focuses on the power/significance of Theorem 1 [1],
and the mentioned methods serve only as comparison instruments.

As an overall point of view, Theorem 1 [1] presents a theoretical
interest, but it is not suitable for applications. Its hypothesis and As-
sumption 1 [1] are quite restrictive conditions, and even when these
conditions are fulfilled, the right outer bound calculated by Theorem
1 [1] may be less accurate than the values given by the methods in
Sections IV-A–IV-C.

V. CONCLUSION

The commented paper proposes numerical tools for assessing the
stability of interval systems, which provide a right outer bound of the
eigenvalue range. The approach focuses on the theoretical support, and
pays less attention to the practical use of these tools in applications.
This type of approach generates some debatable problems, for which
the reader does not find direct answers in the original text or in the
cited references. Therefore, our note can be regarded as a natural con-
tinuation of the commented paper, bringing the following contribu-
tions. Section II shows that Example 1 is erroneous and the true value
of the right outer bound, calculable by Theorem 1, is less accurate
than claimed by the commented paper. Section III analyzes several
drawbacks encountered in the exploitation of Theorem 1. Section IV
presents three methods for assessing the stability margin of interval
systems, which are founded on different bases than Theorem 1. The
whole note stimulates a broad understanding of the research progress
in the considered area and constructs meaningful comparisons between
works relying on different instruments, but targeting similar objectives.
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Strong Stabilization of a Class of MIMO Systems

A. N. Gündeş and H. Özbay

Abstract—Stabilization of finite dimensional linear, time-invariant,
multi-input multi-output plants by stable feedback controllers, known as
the strong stabilization problem, is considered for a class of plants with
restrictions on the zeros in the right-half complex plane. The plant class
under consideration has no restrictions on the poles, or on the zeros in the
open left-half complex plane, or on the zeros at the origin or at infinity;
but only one finite positive real zero is allowed. A systematic strongly sta-
bilizing controller design procedure is proposed. The freedom available in
the design parameters may be used for additional performance objectives
although the only goal here is strong stabilization. In the special case of
single-input single-output plants within the class considered, the proposed
stable controllers have order one less than the order of the plant.

Index Terms—Linear time-invariant (LTI), multi-input multi-output
(MIMO), parity interlacing property (PIP).

I. INTRODUCTION

This note discusses the strong stabilization problem for a class of
linear time-invariant (LTI), multi-input multi-output (MIMO) plants
that have restrictions on their zeros in the region of instability. Strong
stabilization refers to output feedback stabilization of a given plant by
a stable controller. Interest in the strong stabilization problem is due
to important practical considerations as well as due to the equivalence
of simultaneous stabilization of two plants to the strong stabilization
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A. N. Gündeş is with the Department of Electrical and Computer Engineering,
University of California, Davis, CA 95616 USA (e-mail: angundes@ucdavis.
edu).

H. Özbay is with the Department of Electrical and Electronics Engineering,
Bilkent University, Ankara 06800, Turkey (e-mail: hitay@bilkent.edu.tr).

Digital Object Identifier 10.1109/TAC.2011.2114450

0018-9286/$26.00 © 2011 IEEE



1446 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 6, JUNE 2011

of one related system [15]. Although stable stabilizing controller de-
sign is important, not all plants are strongly stabilizable. A given plant
is strongly stabilizable if and only if it satisfies the parity interlacing
property (PIP); a plant is said to satisfy the PIP if the number of poles
(counted according to their McMillan degrees) between any pair of
blocking-zeros on the extended positive real-axis is even [15], [16].

For single-input multi-output plants, and single-input single-output
(SISO) plants as a special case, several procedures are available
for obtaining strongly stabilizing controllers involving interpolation
constraints to construct a unit in stable rational functions and usu-
ally resulting in very high order controllers (e.g. [5], [15], [16]). A
parametrization of all strongly stabilizing controllers can be obtained
for SISO plants using interpolation with infinite dimensional transfer
functions [15]. Extensions of these interpolation techniques to MIMO
plants are also available (e.g., [13]), and strong stabilization of MIMO
plants has been studied extensively in the literature, some using
numerical approaches and some under�� or�� performance criteria
(e.g., [2]–[4], [8], [9], [11], [12], [17], [18]). Analytical synthesis
methods to design stable stabilizing controllers were explored for
MIMO plants that have at most two blocking-zeros on the extended
non-negative real axis in [10], where connections to the sufficient
conditions in [18] were also established. These results excluded plants
that have transmission-zeros (instead of blocking-zeros) and plants
that have more than a total of two zeros at the origin and infinity. In
the special case of SISO plants, this implied that the results were not
applicable for plants with relative degree larger than two. In this work,
we obtain a stable stabilizing controller design procedure that applies
to a large class of MIMO strongly stabilizable plant with any number
of (transmission and blocking) zeros at the origin and at infinity, and
at most one finite positive real zero. The constraints of [10] on the
number of zeros at the origin and at infinity are removed here and
the results are generalized to include transmission-zeros as well as
blocking-zeros. The plant class under consideration has no restrictions
on the poles; the zeros in the open left-half complex plane are also
completely unrestricted. However, these plants have no unstable
zeros except on the extended non-negative real axis. We assume two
“positive eigenvalue” conditions for certain matrices, and show that
these conditions are sufficient for existence of strongly stabilizing
controllers. These eigenvalue conditions are in fact equivalent to PIP
in the case of single-output (SISO or fat) plants, and hence they are
necessary for strong stabilizability. Analogous eigenvalue conditions
assumed for the case of tall plants are similarly necessary for the case
of single-input plants.

Various design methods are available for MIMO plants without re-
strictions on the unstable zeros but assuming other sufficient conditions
in addition to PIP to obtain strongly stabilizing controllers, e.g., [1], [2],
[4], [12]. When the plant has two complex conjugate zeros located in
such a way that the PIP is about to be violated (as the imaginary part
goes to zero), many of the existing finite dimensional controller design
techniques fail because the minimum order of the strongly stabilizing
controllers can be very large (grows as the imaginary part gets smaller)
[14]. The method proposed here is simple, and allows freedom in the
design parameters, which may be used for additional performance ob-
jectives that are not considered here. Using standard robustness argu-
ments, the designed controllers provide robust closed-loop stability if
the plant is subject to stable additive or pre-multiplicative perturba-
tions. In the special case of SISO plants, the proposed design method
gives a stable stabilizing controller whose order is one less than the
order of the given plant.

The technical note is organized as follows: Section II gives the
problem formulation, and defines the class of plants considered for
strong stabilization. The main result in Section III, Theorem I, provides
a systematic procedure of constructing strongly stabilizing controllers

Fig. 1. Unity-Feedback System ��������.

for the class of MIMO plants considered. Illustrative examples are
given in Section IV, where SISO plant examples are also provided to
demonstrate that the proposed method gives a low-order controller
(order one less than that of the plant). Concluding remarks are in
Section V.

Although we discuss continuous-time systems, all results apply also
to discrete-time systems with appropriate modifications. The following
standard notation is used:

Notation: Let , �, denote real, positive real, and complex num-
bers, respectively. The extended closed right-half plane is � � �� �
������ � ����	�;�� denotes real proper rational functions of �;
� 
 �� is the stable subset with no poles in � ;���� is the set of ma-
trices with entries in �; � is the identity matrix (of appropriate dimen-
sion). A transfer-matrix � � ���� is called unimodular iff ��� �
����. The ��-norm of � � ���� is denoted by ��� (i.e., the
norm � 
 � is the usual operator norm ��� �� ������� 	�������,
where 	� is the maximum singular value and �� is the boundary of � ).
For simplicity, we drop ��� in transfer-matrices such as����where this
causes no confusion. When	 � 
, we use coprime factorizations over
�; i.e., for � � ����

� , � � ���
 denotes a left-coprime-factoriza-
tion (LCF), where 
 � ����, � � ����, 
����	� �� �. When
	 � 
, the results are stated in terms of a right-coprime-factorization
(RCF) � � 

 
���, where 

 � ����, 
� � ����, 
�� 
��	� ��
�. For full normal rank � (i.e., ����� ��� � ����	�
�), we say
that � � � is a � -zero of � if ����
��� � ����	�
� (equiv-
alently, ���� 

��� � ����	�
�); these zeros include both trans-
mission-zeros and blocking-zeros in � . In the product notation used
throughout,it is assumed that �

���
�� � � if � � �.

II. PROBLEM DESCRIPTION AND PLANT CLASSES

Consider the standard LTI, MIMO unity-feedback system
�������� shown in Fig. 1, where � � �

���
� and � � �

���
�

denote the plant’s and the controller’s transfer-matrices, respectively.
The objective is to design a stabilizing controller � , which is stable
itself. It is assumed that the feedback system is well-posed, � and
� have no unstable hidden-modes, and the plant � � ����

� is full
normal rank equal to ����	�
�. We discuss the “square or fat” plant
case �	 � 
� in detail; the “tall” plant case �	 � 
� is similar and
can be obtained using simple modifications as explained briefly in Re-
mark 1. Let � � ���
 be an LCF of the plant and � � 
��

��
� be

an RCF of the controller, where 
 , �, 
�, �� � ���� are matrices
with appropriate sizes,
����	� �� �, 
�����	� �� �. The system
�������� is said to be stable iff the closed-loop transfer-function
from ��� �� to ��� �� is stable. The controller � is said to stabilize �
iff � is proper and the system �������� is stable. The controller �
stabilizes � � ����� if and only if

� �� ��� �

� (1)

is unimodular. The stabilizing controller � is stable if and only if �
in (1) is unimodular with a unimodular ��; in this case � is said to
strongly stabilize � . There exist strongly stabilizing controllers for a
plant � if and only if � satisfies the PIP. Let ��� � � � � �	 � � � be
the non-negative real-axis blocking-zeros of � in the extended closed
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right-half-plane, i.e., ����� � � for � � � � �. Then � satisfies the
PIP if and only if �������� is sign invariant for � � � � � (e.g., [15]).

The plants under consideration for strongly stabilizing controller
synthesis have no restrictions on their poles; there are no restrictions
on the zeros in the open left-half complex plane � � , at the origin
� � �, and at infinity. The finite non-zero � -zeros are restricted. We
only consider the case where the plant � has at most one non-zero
finite transmission-zero in the region of instability � and it does not
have a � -pole at that same point. It may have any number of trans-
mission-zeros at the origin and at infinity; if the plant has zeros at the
origin, then we assume that it does not also have a pole at � � �.

At the � -zeros of � � �
���
� , where � � 	, the numerator

� in any LCF � � ���� drops rank; i.e., � � � is a � -zero if
	
������ 
 �. Let �� denote an 	 � � right-inverse of � �
�
���; if � has any � -zeros, then �� is not stable. For square plants,

�� � ���. Write �� as in (2), where ��� � 
�� � �, � � �� 
 
 
 � 	,
� � �� 
 
 
 ��

�� �
���

�� �������������������

� (2)

Then the largest numerator invariant-factor �� � � is a least-common-
multiple of all 
�� , and hence, ������ � ����. There are four pos-
sibilities for �� depending on whether � has a finite � -zero or zeros at
infinity or at the origin:

Case (i) If � has no transmission-zeros in the unstable region � ,
then � � ����

� has a stable right-inverse �� � ����
� ; an LCF

is given by � � ���� , where � has a stable right-inverse, and
�� � �.
Case (ii) If� has a finite non-zero {\cal U}b zero, then the general
expression for the largest invariant-factor �� of � is

�� �
��� ����

��� ��

	

���

�

��� ���
�	

	

���

�

��� ���
(3)

where � � �, �� � � for � � � � ��, �� � � for � �
� � �
. The total number of � -zeros of �� is � � �� � �
 ��,
where �
 is the number of zeros at the origin � � �, and �� is
the number of zeros at infinity. If � has no zeros at infinity or at
the origin, and has one finite positive zero, then the expression (3)
is still valid with �� � � or with �
 � �. If �� �� �, we assume
that all eigenvalues of � defined in (4) have positive real parts. If
�
 �� �, we assume that all eigenvalues of � defined in (5) have
positive real parts

� ����������	� (4)

� ������������� (5)

In the single-output case (including SISO), the eigenvalue condi-
tions become � � � and � � �, which is equivalent to the PIP:
If � ��� � � �	� � � ��� � �, then � satisfies the PIP if and
only if ����, ��	�, ���� all have the same sign.
Case (iii) If � does not have a finite non-zero � -zero but it has
zeros at infinity and at the origin, then take � �	 in (3) and the
expression for the largest invariant-factor �� of � is

�� �
�

��� ��

	

���

�

��� ���
�	

	

���

�

��� ���
(6)

where � � �, �� � � for � � � � ��, �� � � for � �
� � �
. The total number of � -zeros of �� is � � �� � �
 ��;
the number of zeros at infinity now becomes �� � �, and �

is the number of zeros at the origin � � �. In this case, � �
��	�����	� � � . If �
 �� �, we assume that all eigenvalues
of � �� ��������	� have positive real parts, which is again
equivalent to PIP for single-output plants.
Case (iv) If the � -zeros of � are only at the origin, and � has
no finite positive zeros and no zeros at infinity, then � � � and
�� � �; the term �� � ������� � �� in (3) is replaced with
��� ������ �� � ����� �� and hence, the expression for ��
in (3) becomes

�� �
�� �

��� ��
�	

	

���

�

��� ���
(7)

where, with � � � and �� � �, the number of zeros of �� at
� � � is �
 � � � �. In this case, � � ���������� � � .

Some examples of plants in the classes being
considered are as follows: For the non-square plant �� �
������ �� � ��� ������ ��

� ��� ������ ��� ��� ������ ��
, let �,

� � �; �� has zeros at � � � and at � � 	, with
�� � �. The square plant, as shown in the equation at the
bottom of the page, has � -zeros at � � � and at � � 	,
with �� � � and �
 � �, i.e., � � �. The plant �� �
��� ����� ������ ����� �� ��� ������ ������ ����� ��

���� ������ ����� �� ��� ������ ����� ��
has � -zeros at � � � and at � � 	; since it has no finite non-zero
zero, we would consider � � 	 as in (6) and hence, �� � �,

�
 � �, i.e., � � �. Let �� �
�� �

� ��
, where � can be any stable

� � � matrix; �� has � -zeros at � � �, � � 	 and � � �, with
�� � �, �
 � �, i.e., � � �. Let �	 � ���
������, where 
��� is
any polynomial and � is the relative degree of ��
���; �	 has � -zeros
at � � �, � � 	 and � � �, with �� � � � �, �
 � �, � � � � �.
On the other hand, �
 � ���
������ has � -zeros at � � 	 and
� � �, with �� � �, �
 � �, � � � � �. The plants �	 and �
 have
blocking-zeros at � � 	 and � � �, whereas all � -zeros in
��� ��� ��� �� are transmission-zeros.

In Section III we propose strongly stabilizing controllers for the plant
class described with �� as in (3) when the � -zeros are at � � �� ��	,
or as in (6) and (7) when the � -zeros are all at � �	 and � � �.

III. STRONGLY STABILIZING CONTROLLERS

Case (i): It is obvious that plants that have no transmission-zeros
in the unstable region (the extended closed right-half plane � ) as in
Case (i) are strongly stabilizable. Let �� denote a stable right-inverse
of � � ���� � ����

� , with � � 	, and let �� denote a stable
right-inverse of � ; �� and �� are stable because � has no � -zeros.
All stable controllers � that stabilize such plants are trivially obtained

� � ������� � �� � ���� ��� (8)

for any unimodular � � ���� (an RCF of � in (8) is �� � � �
���� ���, �� � �). If the plant is square, then an LCF is given by

�� �
���� � ���� �������� ����� �� ���� � �� � ���� ������� ����� ����� ��

��� ����� ������ ����� � �� ��� ������ � ��
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� � ���� � �������� , and (8) becomes� � ����� . If� � 	,
let ��, ��� denote a stable left-inverse of � � �� ���� � �

���
� ,

and a stable left-inverse of �� . All stable controllers that stabilize such
plants are � � � �� ���� � ���� � � �� � ��� ���, for any unimodular
�� � ����.

Since the challenge is to find stable controllers when the plant has
zeros in � , we focus on cases (ii)-(iii)-(iv).

Cases (ii)-(iii)-(iv): Theorem 1 gives a systematic strongly stabi-
lizing controller design method for the plant class described in Sec-
tion II. The plants � � ����

� under consideration are strongly stabi-
lizable, and have at most one finite non-zero � -zero 
 � � , described
with �� as in (3), (6) or (7). It is also assumed that � has no poles
coinciding with its transmission-zeros in � . Hence, if � has a zero at

 � � , then ��
� is non-singular; if it has a zero at � � �, then
���� is non-singular. Theorem 1 shows that these plants are strongly
stabilizable under the sufficient condition that 
 and � in (4), (5)
have eigenvalues with positive real parts. These conditions are equiv-
alent to PIP for single-output plants as shown in Section II and hence,
they are necessary and sufficient for strong stabilization of this class of
single-output plants that have a finite non-zero zero and zeros at � ��
or � � �.

Theorem 1 (Strongly stabilizing controller synthesis): � �
���� � ����

� , � � 	, be described with �� as in (3), (6) or (7).
If �� �� �, then assume that all eigenvalues of 
 have positive real
parts. Define

�� ��

�

���

��
�� ��

(9)

for � � 	� 
 
 
 � ��; if � � ��, then �� � �. Choose �� � �,
�� � � for � � 	� 
 
 
 � �� satisfying (10), (11), where �� � ����
is defined as in (12)

�� � � ����������� � (10)

�� � � ������
���� � �� (11)

�� �� � �������
����������� � ��
 �������
�

��

�

���

���

�� ��
��

��

� (12)

Define �� and �� as

�� ��
�� if �� � �

��
 ��� � ��
 ��������� if �� �� �,
(13)

�� ������ � ���
������������� (14)

If �	 �� �, then assume that all eigenvalues of � �� ��������
�
have positive real parts. Define


�� ��

�


��

�

�� �

(15)

for � � 	� 
 
 
 � �	; if � � �	, then 
�� � �. Choose �� � �, �
 � �

for � � 	� 
 
 
 � �	 satisfying (16), (17), where �
 � ���� is defined
as in (18)

�� � ��� ����� ���� ���� �
��

(16)

�
 � ��� ������
���� � �
���
��

(17)

�
��� �� � �������
����������� � ��� �

����� �������
�
�

�
��


��

���

��� ���

��

� (18)

Define �	 as

�	��� �
�� if �	 � �

�� ��� � ��� �
��
������ if �	 �� �.

(19)

Then the stable controller � given by

���� � ����� ���
�������������	��� (20)

strongly stabilizes � . Furthermore, with � � ���� as in (20), the
controller in (21) also strongly stabilizes � for all � � ���� satis-
fying (22)

�� �� �� (21)

	�	 � �� � ������
��

� (22)

Remark 1 (Strongly stabilizing controllers for tall plants): Theorem
1 can be modified for plants with more outputs than inputs. Let � �
�� ���� � ����

� , � � 	. Let the 	 � � matrix ��� denote a left-
inverse of �� � ����, and write the fat matrix ��� as in (2). Then
��� ��

�� � ����, where �� is given as in (3), (6) or (7). If �� �� �,
then assume that all eigenvalues of �
 have positive real parts; if �	 ��
�, then assume that all eigenvalues of �� have positive real parts

�
 �� ����� ���
���� �� �� ���
� �������� (23)

In the special case of single-inputs plants �	 � � � ��, the eigenvalue
conditions become �
 � � and �� � �; therefore they are equivalent
to the PIP and hence, these conditions are necessary and sufficient for
existence of strongly stabilizing controllers for this class of plants. For
� � 	� 
 
 
 � ��, define �� �� �

���
������� ����; if � � ��, then

�� � �. Choose ��� � �, ��� � � for � � 	� 
 
 
 � �� satisfying
(24), where ��� � ���� is defined as in (25)

��� � � ������� ������ � �

��� � ����
���
��� ������ � (24)

��� �� � � ���
��� ����� � ���������� � ��� �
 �

� �����
�

���

���

���

�� ���
���

��

� (25)

Define ��� �� � if �� � �, ��� �� ��� � ��� �
 ������ �
�����
if �� �� �; define ��� �� ����� � ���� ���
� � ������. For � �
	� 
 
 
 � �	, define 
�� �� �


��
����� ��
�; if � � �	, then 
�� � �.

Choose ��� � �, ��
 � � for � � 	� 
 
 
 � �	 satisfying (26), where
��
 � ���� is defined as in (27)

��� � ��� ����� ����� ������ �
��

�

��
 � ��� ��
��� ���
��� ������ �
��

(26)

��
��� �� � � ���
��� ����� � ���
��� �����

���� � ��� �� � �����
�

�
��


��

���

��� ����

��

� (27)
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Define ��� �� � if �� � �, ��� �� �� ��� � ��� �� ����	���� if �� �� �.
Then

���� � ��� ������ ���	�� ����� �
���� (28)

is a stable controller that strongly stabilizes � .
Remark 2 (The order of the proposed controllers): In the case of

SISO plants, the order of the controller � in (20) is one less than the
plant’s order. Although coprime factorizations are unique only up to a
unit in �, it can be assumed that the chosen numerator in the factor-
ization � � ���
 is in the form of the largest invariant-factor ��
in (3), (6) or (7). For discussing the order, we write the numerator and
denominator factors of the plant in polynomial form as

� �
�
� �
	��� �

�
(29)

where � is an ��-th order polynomial whose roots are the zeros of the
plant in the stable region � � , and � is a polynomial of degree � �
�� � �� � �� � 
. Then a coprime factorization � � ���
 over �
is given by

� �
�

�
� �
	��� �
��

�
�

���� �� �

���
��� ���

�

���
��� ���

(30)


 ��� �
�
� �
	���

��� �� �

���
��� ���

�

���
��� ���

� (31)

Using ��
 in (30), (31), the controller � in (20) becomes

� � ���� ���	�������� �

���	����� ��

�

���

��� ���

�

���

��� ���� ������� 


�
� �
	��� ���� ��� ���� ��� �	��� �	���

where the numerator of ���	�� �� has a zero at � � 	 and hence,
cancels the term �
��
	� from the denominator of� . The polynomial
terms ������� ���� ��� �	���

�	��� that remain in the denominator
after cancelations have order �� � �� � ��, where the degree of 	���
is ���
 and the degree of �	��� � ���
. Therefore, the order of the
controller� is �������� � ��
, where � is the order of the plant.

We showed that the controller order is one less than the plant order
for the case where the plant has at least one non-zero zero on the ex-
tended non-negative real-axis so that �� is as in (3). Using entirely
similar steps, it can be concluded that the controller order is again one
less than the plant order when �� is given by (6) or (7).

Remark 3 (Robustness of the proposed strongly stabilizing con-
trollers): Under the assumptions of Theorem 1, let the stable controller
� be given by (20), and �� � � � � for any � � �

��	 satisfying
(22). Standard robustness arguments lead to the following conclusions
[15], [19]: a) (Additive perturbations): The controller �� strongly sta-
bilizes � �
 for all 
 � �

	�� satisfying �
� � ����
��
� ����.

b) (Coprime factor perturbations): Let 

 � �
	���
� � �

	�	

be such that ��
� 

 �� � � �



���

� ���,where �� � � �
��
is unimodular by design for all �� � � � �. Then the controller ��
strongly stabilizes all plants in the form �� � 
��

���
 � 

 �.
Once � is fixed, � can be optimized to maximize the allowable
perturbation magnitude.

IV. EXAMPLES

We consider two MIMO examples to illustrate the strongly stabi-
lizing controller design approach using the synthesis procedure of The-
orem 1. The plant models in Examples 1–2 are obtained from process
control applications. The only objective considered in these designs is
strong stabilization. Other performance objectives (e.g. robustness op-
timization as shown above) may be possible to achieve by choosing
� and other free parameters in Theorem 1 accordingly. An SISO ex-
ample demonstrates that the controller order is one less than that of the
plant following the procedure of Theorem 1 with a coprime factoriza-
tion � � ���
 � ����� .

Example 1: The unstable plant in this example is obtained from a
linearized model of a sugar mill process [7]. Let the plant’s transfer-ma-

trix be � �
��
����� 
� ��� � �������� 
�
���� 
��



����� 
� �������
�
,

where the � -zeros of � are at 	 � ��
�� and infinity; � has also a
zero � � ���
��� 
� � . For any � � �, an LCF is � � ���
 �

 ���
��

� �
��� ��

��
�
��
������� 
� �
��� 
�

�
����� 
���� �� �������
��� ��
.

The choice of � � � effects the closed-loop pole locations.
With 	 � ��
�� � � , and any �� �� � �, the largest invariant
factor �� � �
� �
��
���
��� ����� ��� of 
 is in the form
of (3), with �� � 
, �� � �. Since �� � 
 �� �, we check

that the eigenvalues of � � ��	������� �

 ���
��	

� 
 � �
	
are both positive (for any � � �), and hence, the assumptions
of Theorem 1 hold for this plant. Choose �� satisfying (10) as

�� � ���������� � ��� � �
� �

� ���
��� ��
� � �.

With �� � ��� ��� � ��� ��� and �� � � , for �� � �,
the controller in (20) is � � 
�����	� � ������ �
� ���������� 
�
��� ��
�����	�� ��� � 	���

� �
�������� 
�
����� ��
�����	�� ��� � 	���
. The

stable controller �� � � � � also stabilizes the given plant for any
� � �

��� satisfying ��� � ��
��� as in (22). For example, we

can choose � �
����� 
�
������ 
�� �

� �
, where ��� � ��
,

and we can choose � � 
�, �� � �� � �. Then with the controller,
as shown at the bottom of the page, the closed-loop poles are at
����������
������	 �
�����

.

Example 2: In this example we consider a chemical reactor
plant obtained by linearizing the model given in [6], where the
concentration of the inlet reactant and the rate of heat input are
manipulated to regulate the outlet reactant concentration and
the reactor temperature. The linearization around one of the
operating points gives the unstable plant transfer-matrix � �




���
�
����� ��
���� �����
��

��
�� ���
���� ��
�
��
, with � � �� �

����
����� ��
���, where � has poles at � � ����
� � � and � �
����
��, and a zero at infinity. For any second-order monic Hurwitz

polynomial �, an LCF is given as � � ���
 �

 �����

� ��
��

��


���
�
����� ��
���� �������
�
����� ��
����

��
��

��� ���
���� ��
�
��

���
. Since �

has no finite � -zeros, we set 	 � �; for any �� �� � �, the largest
invariant factor �� � �� � ������ � ���

�� of 
 is in the form of
(3), with �� � 
, �� � �; the number of zeros of �� at infinity
is � � 
 � �� � �. In this case, � � ���������� � �
obviously satisfies the positive eigenvalue assumption of Theorem 1.

�� � � �� �
����� 
�
������ 
�� ���������� 
�
��� ��
�������
���� �������

� ��������� 
�
����� ��
�������
���� �������
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With �� � ���� � ���
��� and �� � � , the controller in (20) is

� � ��������������� � ����� ���
������������� �

�����	 � 
���������	�� � 
�
������ � ����

 ���
��


 ���
,

where �� satisfies (10). Suppose we choose 	 � �� � ���� � 
�;
then (10) is satisfied for �� 
 ����

. If we pick �� � �,
then �� � � � � is also a strongly stabilizing controller for
any � � �

��� satisfying ��� � 
�����. For example, choose

� �
�
����� 
���������� �� 



 

, where ��� � 
��. Then with

the controller, shown as the equation at the bottom of the page, the
closed-loop poles are �����	������
��
��	������ ������
�.

A. Example 3

Consider the unstable plant, shown as the second equation at the
bottom of the page, which has zeros at the origin with �� � �, at
infinity with �� � � � � and at � � ���. We consider two different
cases for � � � and � � �; in both cases the PIP is satisfied with
two poles, or four poles, between 0 and 1.6 and no poles between 1.6
and ��. A coprime factorization is � � ���� where, as shown in
the third equation at the bottom of the page, and as shown in the last
equation at the bottom of the page, � 
 
. The eigenvalues of� �
����������are positive for both � � �, � � �. The eigenvalues of�
are negative when � is odd, positive when � is even. For even values of �,
the procedure of Theorem 1 can be applied to find a strongly stabilizing
controller.

Example 4: Consider � � ���� ������� ��� ����� ����� 
�,
� 
 
; this SISO unstable plant has a finite non-zero zero � � �� � � ,
one zero at infinity, one at � � 
, i.e., �� � �, �� � �. The order
of the given plant is � � 	. As � approaches zero, the plant pole at
�� � ������ approaches the zero at � � �� and the plant gets closer to
violating the PIP; if the pole and zero cancel �� � 
�, then there would
be a single plant pole at �� � � between the zeros at � � 
 and infinity,
Choosing � � 
, �� � �� � 	
 in (30), (31), a coprime factorization
is � � ���� � ���� � ���� � �� � ������� � 	
����������
�������� � 
��� � 	
���.Let � � �. Following Theorem 1, verify
� � �
��
��� 
 
, � � 
�
��	 
 
. With �� � � since �� � �,
(10) is satisfied for �� 
 ��; we choose �� � �
 and find �� using
(14). With ��� � �, (16) is satisfied for �� � 
�����; we choose �� �

��. With �� � ������ ��� and �� � ���� ��� , the strongly
stabilizing controller in (20) becomes � � ����
���� 
��
������

��������������


�. The order of this stable controller is ��� �
�. The closed-loop poles are ��
�����

	��	�������������� �
������
�. Now repeat the design for � � 
��. With� � �
�
�� 
 
,

� � 
�


� 
 
, choose �� � �
 
 ���� satisfying (10), �� �

��� � 
����� satisfying (16). The strongly stabilizing controller in
(20) is � � ������
��� 
���
����� 
����� � �����
�� ��	
�.
The order of this stable controller is again � � � � �. The closed-loop
poles are ��
������������
����������	
�������	��. As � gets
smaller, the positive real-axis zero of the controller gets closer to the
plant pole at �� � �.

V. CONCLUSION

We proposed a simple strongly stabilizing controller synthesis
method for a class of unstable MIMO plants satisfying the PIP, with
at most one positive real zero and any number of zeros at � � 
,
at infinity, and in the open left-half complex plane. No restrictions
were imposed on the number and locations of the poles. We explicitly
constructed robust strongly stabilizing controllers for all plants in this
class. The design offers freedom in the design parameters that may be
used for other performance criteria. In the special case of SISO plants,
the order of the (nominal) strongly stabilizing controller obtained
using the proposed design procedure here is one less than the order of
the plant.

APPENDIX

PROOF OF THEOREM 1

Define �� �� ��� � ��� � and �� �� ��� � ��� �; by as-
sumption, ���� � 	��� and ���� � 	���. We first show that the
controller proposed in (20) is stable. The largest invariant-factor
�� � � is as in either (3), (6) or (7). Let ���� �� ��;
then �� � 	��� and �� � ���� ��. We first show that
� � ������� � ������ ����

��
� ����� � ������ �

���
��
� ������������

��
� ���

� ������� �
����� �	���. Since

�����������
��� � 
, the term ��������������������������

is stable. If �� �� 
, then ���� contains the term �

	��
�� � �	� ��

�, but � �

	��
�� � �	�������

��
� ��� � �. If �� �� 
,

then ���� contains the term ��� �


��
�� � �
� �� �, but

���� �


��
�� � �
����

� ����
���� � �. If � has no finite pos-

itive zero, but it has transmission-zeros at infinity, we take � � �

as in (6); hence, � � � . If all � -zeros of � are at � � 
, then
�� � ������� � �� in �� is replaced with ���� � �� as in (7). In
this case, �� � � , � � � , ��� � ��������
�� ����� � 	���,
���� �


��
����
����

� ������� �
������ � �. Therefore, the con-

troller in (20) is stable in all cases. It remains to show that � stabilizes
� : Step 1: Let �� � � and �� � � ; by (1), � � ���

��
� stabi-

lizes � � ���� if and only if � � � �� is unimodular. With
�� �� ����, write � ����������������� � �������

�� � � �� �
�
����� 
���������� �� ���
����	��� ��	��
�������� 
�
������� ���


 �������� ��	��
������� 
�
������� ���

� �
����� � 	�� ������� ����� ���� �������� ����� � 	�� ������� �����

����� ����� � 	�� ������� ��� ���� �������� � 	�� ������� ���

� �
��� � 	�� ������� ��������� ����� 



 ��� � 	�� ������� ������� �����

� �
����� ����� ���� �������� ����� �����

����� ����� ����� ���� �������� �����
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���������. If �� � �, then �� � � ; go to step 2. If �� � �, de-
fine �� �� ������	���������� �	��	��������	����


��
� �

�� � ����	 � ����	�������� � ��	�����	 � ���

��
� , where

�����	 � ���

��
� � ���� is unimodular since �� � �, and

	����������� ����� since ����������� is strictly-proper.
For �� satisfying (10), �����	�����	������������ � �����	�

����� �	��������� ��� � �������	��������� ��� � � im-
plies that �� is unimodular (see, e.g., [15]). Write� � �����
��

�����
��� 
��� � �����
���	��
��� 
��������
���� �

��
��� � ��� � 
����. If �� � �, then 
� � �; go to
step 2. If �� � �, write � � �������	 � ����
����

��� � �����	 � ����
���� � ��
��� � ��� � 
����,
where �� �� �����	 � ������ � �	��	 � ����� � �� �

����	 � ����	���
��

� � ��	�� � � � ����� � �� �


��� �������	 � ����. For � � �, ���

���
��	 � ������� � �

in (12). Then �� � �� ����
��� ��������
��������
��

�

�� � �	������������
��

� ������
��� ���� � ���� since
�� is unimodular, and (11) becomes �� � �	����
��� � ����� �

�	����
���� �� �� � �	������������
��
�� �	������ � ���,

where ����� � ���� implies 	������ � �� � ����. Therefore,
�� is unimodular for �� satisfying (11). If �� � �, then 
� � �;
go to step 2. If �� � �, write � � �������	 � ����
����

��� � �����	 � ����
���� � ��
��� � ��� � 
����,
where �� �� �����	 � ������ � �	��	 � ����� � �� �

����	 � ����	���
��

� � ��	�� � � � ����� � �� �


��� ��
�

���
�����	 � ����. For � � 
, by (12), �� �

�� � ���
��� � �������
����� ����	� ��������
��

�

�������	 � ��������
��� ���� � ���� since �� is unimodular,
and (11) becomes �� � �	����
���� ����� � �	���

��

� � ���.
Therefore, �� is unimodular for �� satisfying (11). If �� � 
,
then 
� � �; go to step 2. If �� � 
, then continue simi-
larly with �� � � � ����� � �� �
��� ��

�

���
�����	 �

����. Write � � �����������	 � ������
������ ��� �

���������	 � ������
������ � ����
������ ��� �


������, where ���� �� ���������	 � �������� � �	��	 �

������� ��� � ����	� ������	���
��

� � ��	�� . For � � � � �,
by (12), ���� � �� � ���
��� � �
�������������

�

���
��	� ��������

��

� ������
��� ����

�

���
�����	 �

���� � ���� since �� is unimodular, and (11) becomes
���� � �	����
��� � ������� � �	������ � ���. For ����
satisfying (11), �����	�������	������ ���� � �����	��������

�	������ � ��� � �����������	���
��

� � ��� � � im-
plies ���� is unimodular. If �� � � � �, then 
��� � � and
� � �� �� � ��� � ���, where �� is unimodular; go to step
2. Step 2: If �� � �, then �� � � ; go to step 3. If �� � �, define
�� �� ��	��	 � ������ � �����	 � ������ � �	 � ���


��

� �

�� � ��� 	��	 � ����	
��������� � ��	�� �	 � ���


��

� �

� � 	���
� � ����

��

� , where the unimodular matrix
�� � ��
� if �� � � and �� is given by (14) if
�� �� �; �� �	 � ���


��

� is unimodular since �� � �, and
	��������� � �� � ���� since ��� ���� � �	 is zero at 	 � �.
For �� satisfying (16), ���� 	��	 � ����	

��������� � ��� �

���� 	��	�������	
��������� ���� � �� �	

��������� ���� �

� implies that �� is unimodular. Write � � �� 	� 
���
�
� �

��� � 	� 
���
�
�� � 	� �����
� � ��� � 	� ���
��. If

�� � � then �
� � �, � � ��; go to step 3. If �� � �, write
� � 	� �����	��	� �����
� �� �� � 	� ���	��	� �����
�� �

	� �����
� � � �� � 	� ���
��, where �� � �	��	 � ������ �

�����	������ � ������ 	��	������	
����� ��� ��	�	�� � ��

��� � ��	
��� �	��	 � ���� � � � ���
� � ����	

��

�

�	��	 � ����. For � � �, ���

���
�	 � ��� � � in (18). Then

�� � �� ����
��� �����	�
��
��
�

�	���
����
��

�

	��
���

��

� � ��� � ���� since �� is unimodular, and (17) be-

comes �� � �	������
���� �����
��

� �	����� ��� � ���
��

.
Therefore, �� is unimodular for �� satisfying (17). If �� � �,
then �
� � �, � � ��; go to step 3. If �� � �, then continue
similarly with �� � � � ��� � ��	
���

�

���
�	��	 � ���� �

� � ���
� � ����	

��

�

�

���
�	��	 � ����. Write � �

	� �������	��	 � �������
���� ��� � 	� �����	��	 �

�������
���� � 	� ���������
��� � ��� � 	� �����
����,
where ���� � �	��	 � �������� � ���������	 � ������� �

�� � ������	���	 � �������	
����� ��� � �	�	��. For � � � � �,

by (18), ���� � �� � ���
��� � ����	��
��
��
�

�	�����
�
�

���
�	� ����

��

� 	��
���

��

� � ���

�

���
�	��	 � ���� �

���� since �� is unimodular, and (17) becomes ���� �

�	������
���� �������
��

� �	����� ��� � ���
��

. For
���� satisfying (17), �������	���	 � �������	

����� ��� �

�	�� � �������	���	 � ���������	
����� ��� � �	�� � ����

��	����� ��� � �	�� � � implies that ���� is unimodular. If
�� � � � �, then �
��� � � and � � �� is unimodular; go
to step 3. Step 3: If �� � �, then � � �� is unimodular;
�� � �� � ��
� if �� � � and �� is as in (14) if �� �� �. If
�� � �, then � � �� is also unimodular. Since � � � � ��
is unimodular, the controller � in (20) stabilizes � � ���� . For
� � ���� satisfying (22), by standard “small-gain” argument,
������� � ��� � �������� ���� � �������� � �

implies � ������ is unimodular. Therefore, �	 �� ����	 �

�� � ��� � �� � � � �� � ��� � ������ is also
unimodular, and hence, �	 � ���� also stabilizes � .
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Design of Observer-Based Robust
Repetitive-Control System
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Abstract—This technical note deals with the problem of designing a ro-
bust observer-based repetitive-control system that provides a given� dis-
turbance attenuation performance for a class of plants with time-varying
structured uncertainties. A continuous-discrete two-dimensional model is
built that accurately describes the features of repetitive control, thereby en-
abling the control and learning actions to be preferentially adjusted. A suf-
ficient condition for the repetitive-control system to have a disturbance-at-
tenuation bound in the � setting is given in terms of a linear matrix in-
equality (LMI). It yields the parameters of the repetitive controller and
the state observer. Finally, a numerical example demonstrates the effec-
tiveness of the method, whose main advantage is the easy, preferential ad-
justment of control and learning through the tuning of two parameters in
the LMI-based condition.

Index Terms—Disturbance attenuation, linear matrix inequality (LMI),
repetitive control, robust control, state observer, two-dimensional (2-D)
system.

I. INTRODUCTION

Repetitive control has a learning capability. For a given periodic ref-
erence input, a repetitive controller gradually reduces the tracking error
through repeated learning actions, resulting in the tracking of the ref-
erence input without steady-state error.

The key feature of a repetitive controller is that it contains an
internal model of a periodic signal, which theoretically guarantees
asymptotic tracking [1]. It contains a pure-time-delay positive-feed-
back loop, which adds the tracking error of the previous period to the
present error to produce a control signal. This action simulates human
learning. From the standpoint of system theory, a repetitive-control
system is a neutral-type delay system. A repetitive controller contains
an infinite number of poles on the imaginary axis. [2] pointed out that
this type of system can be stabilized only when the relative degree
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of the plant is zero. When the relative degree is larger than that, the
repetitive controller has to be modified by the insertion of a low-pass
filter into the time-delay feedback line. This modification means that
the controller now contains only an approximate internal model of a
periodic signal. As a result, tracking performance is not guaranteed for
periodic signals in the high-frequency band. Since the best tracking
performance is obtainable only when the plant has a relative degree of
zero, the design of a repetitive-control system for this limiting case is
theoretically significant.

Analysis of a repetitive-control system reveals two types of actions:
continuous control within each repetition period and discrete learning
between periods. Due to the difficulty of guaranteeing stability, almost
all methods of designing repetitive-control systems consider only the
overall results in the time domain. Consequently, they are incapable
of making fundamental improvements in control performance. For ex-
ample, [3] discussed the stability and robustness provided by a struc-
tured-singular-value method; but they used a trial-and-error technique
to find approximate upper and lower bounds on a structured singular
value. [4] presented a sufficient stabilization condition in the form of a
linear matrix inequality (LMI); but the tracking performance depends
on the iterative adjustment of the parameters of a low-pass filter and
the repetitive controller.

[5] presented a method of designing a robust, static, output-feed-
back repetitive-control system that is based on two-dimensional (2-D)
system theory [6], [7]; but it only considers the robust stability of the
system. To enable that method to handle a larger class of systems, this
technical note extends the static output feedback to dynamic output
feedback and presents the configuration of an observer-based repeti-
tive-control system. It focuses especially on the problem of designing
a robust repetitive-control system with a prescribed bound on distur-
bance attenuation for a class of linear systems with a relative degree
of zero and time-varying, structured, periodic uncertainties. First, we
build a continuous-discrete 2-D model to describe the system. Next, to
obtain satisfactory disturbance-attenuation performance, we formulate
the design problem as an�� robust-stabilization problem for a contin-
uous-discrete 2-D system. Then, we derive a sufficient robust-stability
condition in the form of an LMI by using 2-D system stability theory
and the singular-value decomposition (SVD) of the output matrix. The
advantage of this method over others, including the one in [5], is that
it allows control and learning to be preferentially adjusted by means of
two parameters in the LMI. Finally, a numerical example demonstrates
the validity of the method.

Throughout this technical note, � is the set of non-negative real
numbers; � is the �-dimensional vector space over complex numbers;
� is the set of non-negative integers; � is the linear space of all the

functions from ��� � � to �.��� ��
��, or just��, is the linear space

of square integrable functions from � to �; and ��� �� ��, or just
��, is the linear space of all the functions from � to � (discrete-time
signal).

II. PROBLEM DESCRIPTION

Consider the repetitive-control system in Fig. 1. ���� is a given pe-
riodic reference signal with a period of � . The compensated single-
input, single-output (SISO) plant has a relative degree of zero and time-
varying structured uncertainties

�	���� � �
� �
���� 	���� � �� � ������
��� �������

���� � �	���� ��
���
(1)

where 	���� � � is the state of the plant; 
���� ���� � are the
control input and output, respectively; and ���� � �������� is the
disturbance input. Setting �� �� � adds the disturbance to the system,

0018-9286/$26.00 © 2011 IEEE


