
VOLUMETRIC RENDERING TECHNIQUES FOR
SCIENTIFIC VISUALIZATION

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Erhan Okuyan

June, 2014

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Uğur Güdükbay (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. İsmail Hakkı Toroslu

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. İbrahim Körpeoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Ceyhun Bulutay

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

iii

ABSTRACT

VOLUMETRIC RENDERING TECHNIQUES FOR
SCIENTIFIC VISUALIZATION

Erhan Okuyan
Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Uğur Güdükbay
June, 2014

Direct volume rendering is widely used in many applications where the inside of a
transparent or a partially transparent material should be visualized. We have explored
several aspects of the problem. First, we proposed a view-dependent selective refine-
ment scheme in order to reduce the high computational requirements without affecting
the image quality significantly. Then, we explored the parallel implementations of
direct volume rendering: both on GPU and on multi-core systems. Finally, we used di-
rect volume rendering approaches to create a tool, MaterialVis, to visualize amorphous
and/or crystalline materials.

Visualization of large volumetric datasets has always been an important problem.
Due to the high computational requirements of volume-rendering techniques, achiev-
ing interactive rates is a real challenge. We present a selective refinement scheme
that dynamically refines the mesh according to the camera parameters. This scheme
automatically determines the impact of different parts of the mesh on the output im-
age and refines the mesh accordingly, without needing any user input. The view-
dependent refinement scheme uses a progressive mesh representation that is based
on an edge collapse-based tetrahedral mesh simplification algorithm. We tested our
view-dependent refinement framework on an existing state-of-the-art volume renderer.
Thanks to low overhead dynamic view-dependent refinement, we achieve interactive
frame rates for rendering common datasets at decent image resolutions.

Achieving interactive rates for direct volume rendering of large unstructured volu-
metric grids is a challenging problem, but parallelizing direct volume rendering al-
gorithms can help achieve this goal. Using Compute Unified Device Architecture
(CUDA), we propose a GPU-based volume rendering algorithm that itself is based on
a cell projection-based ray-casting algorithm designed for CPU implementations. We
also propose a multi-core parallelized version of the cell-projection algorithm using

iv

v

OpenMP. In both algorithms, we favor image quality over rendering speed. Our algo-
rithm has a low memory footprint, allowing us to render large datasets. Our algorithm
support progressive rendering. We compared the GPU implementation with the ser-
ial and multi-core implementations. We observed significant speed-ups, that, together
with progressive rendering, enabling reaching interactive rates for large datasets.

Visualization of materials is an indispensable part of their structural analysis. We
developed a visualization tool for amorphous as well as crystalline structures, called
MaterialVis. Unlike the existing tools, MaterialVis represents material structures as a
volume and a surface manifold, in addition to plain atomic coordinates. Both amor-
phous and crystalline structures exhibit topological features as well as various defects.
MaterialVis provides a wide range of functionality to visualize such topological struc-
tures and crystal defects interactively. Direct volume rendering techniques are used
to visualize the volumetric features of materials, such as crystal defects, which are
responsible for the distinct fingerprints of a specific sample. In addition, the tool pro-
vides surface visualization to extract hidden topological features within the material.
Together with the rich set of parameters and options to control the visualization, Ma-
terialVis allows users to visualize various aspects of materials very efficiently as gen-
erated by modern analytical techniques such as the Atom Probe Tomography.

Keywords: Volume visualization, direct volume rendering, view-dependent refine-
ment, progressive meshes, unstructured tetrahedral meshes, Graphics Processing Unit
(GPU), Compute Unified Device Architecture (CUDA), OpenMP, material visualiza-
tion, crystals, amorphous materials, crystallography, embedded nano-structure visual-
ization, crystal visualization, crystal defects.

ÖZET

BİLİMSEL GÖRÜNTÜLEME İÇİN
HACİM BOYAMA YÖNTEMLERİ

Erhan Okuyan
Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Uğur Güdükbay
Haziran, 2014

Doğrudan hacim boyama saydam ya da kısmen saydam olan üç boyutlu hacim veri-
lerinin içini görüntülemeyi gerektiren pek çok uygulamada kullanılan bir yöntemdir.
Biz bu problemi değişik boyutları ile inceledik. Öncelikle, yüksek işlemci gereksini-
mini resim kalitesini önemli ölçüde bozmadan azaltmak amacıyla, bir bakışaçısına
bağlı seçici sadeleştirme mekanizması önerdik. Daha sonra doğrudan hacim
görüntüleme probleminin, grafik işleme ünitesi (GPU) ve çok çekirdekli işlemcili
sistemler üzerindeki paralel uygulamalarını inceledik. Ve son olarak, doğrudan
hacim görüntüleme tekniklerini kullanarak, amorf ve kristal yapıları görüntülemeyi
amaçlayan, MaterialVis aracını geliştirdik.

Büyük hacim veri kümelerinin görüntülenmesi her zaman önemli bir problem
olmuştur. Hacim görüntüleme tekniklerinin yüksek işlemci zamanı gereksinimleri
dolayısıyla görüntülemeyi interaktif seviyelere çıkarmak kolay bir iş değildir. Biz,
hacim veri kümesini bakış açısına bağlı olarak dinamik bir şekilde seçici sadeleştiren
bir mekanizma önerdik. Bu mekanizma, hacim veri kümesinin farklı kısımlarının
sonuç resim üzerinde ne kadar etkisi olacağını otomatik olarak tahmin eder ve veri
kümesini buna göre sadeleştirir. Sonuç resim üzerinde çok etkisi olacak kısımlar
daha detaylı temsil edilirken, az etkisi olan kısımlar daha az detayla temsil edilir.
Görüş bağımlı sadeleştirme mekanizması, kenar göçertme tekniği tabanlı tetrahedral
ağ sadeleştirme algoritması üzerine kurulu bir ilerlemeli tetrahedral ağ veri yapısı
kullanır. Önerdiğimiz görüş bağımlı sadeleştirme mekanizmamızı en gelişmiş hacim
görüntüleme araçlarında test ettik. Görüş bağımlı sadeleştirme mekanizmamızın düşük
ek iş yükü sayesinde, yaygın veri kümelerinde yeterli çözünürlükler için interaktif se-
viyelere çıkmayı başardık.

vi

vii

Büyük hacim veri kümelerinin görüntülenmesinde etkileşimli hızlara ulaşmak ko-
lay değildir. Ancak, hacim görüntüleme algoritmalarının paralelleştirilmesi faydalı
olacaktır. Bu amaçla, Birleşik Cihaz Hesaplama Mimarisi (CUDA) kullanarak grafik
işlem ünitesi üzerinde çalışacak, hücre izdüşümü ve ışın fırlatım tabanlı bir hacim
görüntüleme algoritması önerdik. Aynı zamanda, OpenMP kullanarak bu algoritmanın
çok çekirdekli işlemciler üzerinde çalışacak versiyonunu da geliştirdik. İki algoritmada
da, sonuç resim kalitesini, işleme hızının önünde tuttuk. Algoritmalarımızın düşük
hafıza kullanımları büyük veri kümelerini işleyebilmemize olanak sağladı. Grafik
işlemci tabanlı algoritmayı ve çoklu çekirdek tabanlı algoritmayı seri tek çekirdek ta-
banlı algoritmayla karşılaştırdık ve ciddi hız artışları gözlemledik. Aşamalı örüntü
işleme yöntemiyle beraber, büyük veri kümeleri için etkileşimli işleme hızlarına
ulaşmayı başardık.

Materyallerin görüntülenmesi analizlerinin önemli bir parçasını oluşturur. Amorf
ve kristal yapıların görüntülenmesi amacıyla, MaterialVis adında bir araç geliştirdik.
Hem amorf hem kristal yapılar topolojik özellikler sergiler. Kristal yapılarda, ayrıca
kristal hataları da bulunabilir. MaterialVis hem topolojik özellikleri hem kristal hata-
larını görüntülemek amacıyla birçok işlev içerir. MaterialVis materyalleri düz atomik
koordinatlara ek olarak hem hacim hem de yüzey manifoldu olarak tanımlar. Direk
hacim görüntüleme teknikleri materyallerin hacimsel özelliklerini görüntülemek için
idealdir. Kristal hataları, kristal özellikleri olarak tanımlanıp görüntülenebilir. Materi-
alVis aracı aynı zamanda yüzey görüntüleme tekniklerini de destekler. Kullanıcıların
görüntülemeyi kontrol etmesini sağlayan zengin parametre ve seçenekler sayesinde,
materyallerin çeşitli özellikleri etkili bir şekilde görüntülenebilir. Bu sayede, amorf ve
kristal yapıları çeşitli işleme biçimlerinde interaktif olarak işleyip topoloji ve kristal
hataları gibi önemli materyal özellikleri ortaya konulabilir.

Anahtar sözcükler: Hacim görüntüleme, doğrudan hacim görüntüleme, bakış açısına
bağlı sadeleştirme, kademeli ağlar, düzensiz tetrahedral örüntüler, grafik işleme birimi
(GPU), Birleşik Cihaz Hesaplama Mimarisi (CUDA), OpenMP, materyal görüntüleme,
kristaller, amorf materyaller, kristalografi, gömülü nano-yapı görüntüleme, kristal
görüntüleme, kristal kusurları.

Acknowledgement

I would like to express my gratitude to my thesis supervisor Prof. Dr. Uğur Güdükbay

for his encouragement, support and belief in my work.

I would like to thank our collaborators; Assoc. Prof. Dr. Ceyhun Bulutay, Prof. Dr.

Veysi İşler and Prof. Dr. Karl-Heinz Heinig for their valuable contributions. I would

especially like to thank Dr. Bulutay for his guidance, which significantly improved the

quality of our work.

I would like to thank my thesis monitoring commitee and jury members Prof. Dr.

Özgür Ulusoy and Prof. Dr. İsmail Hakkı Toroslu and my jury member Assoc. Prof.

Dr. İbrahim Körpeoğlu, for spending their time to read and comment on my thesis. I

am grateful for their constructive comments.

I am thankful to Erkan Okuyan, Enver Kayaaslan and Ümit Keleş for their discus-

sions and valuable comments on my thesis work.

I am grateful to Koji Koyamada for the volumetric datasets. The Comb dataset

is courtesy of NASA. The Sf1 and Sf2 datasets are courtesy of David R. O’Hallaron

and Jonathan R. Shewchuk (CMU). The Sponge dataset is the courtesy of Dr. Karl-

Heinz Heinig of Helmholtz-Zentrum Dresden-Rossendorf. Quantum dot datasets are

the courtesy of Dr. Ceyhun Bulutay.

Finally, I would like thank my wife Ceyda, father Mehmet, mother Gülseren and

brother Erkan for their support and understanding throughout my thesis study. Last but

not least, I want to thank my little daughter Nihal whose mere existance helped me a

lot to finish my thesis study.

viii

ix

To my beloved wife Ceyda and our precious daughter Nihal...

Contents

1 Introduction 1

1.1 View-Dependent Refinement Techniques 2

1.2 Parallel Implementations on Multi-Core CPUs and GPUs 3

1.3 MaterialVis: Material Visualization Tool based on Direct Volume and

Surface Rendering Techniques . 6

2 Related Work 9

3 View-Dependent Selective Refinement 13

3.1 Proposed Framework . 13

3.1.1 Volumetric Data Representation 14

3.1.2 Active Vertex Mechanism 15

3.1.3 Progressive Mesh Representation of Volumetric Data 17

3.2 View-Dependent Refinement . 19

3.2.1 Importance Metric . 21

3.2.2 Required Modifications for Volume Renderers 24

x

CONTENTS xi

3.3 Results . 25

4 Parallelization for GPU and Multi-Core CPUs 33

4.1 Cell-projection Algorithm . 33

4.1.1 Data Structures . 34

4.1.2 Algorithm . 36

4.1.3 Multi-Core Implementation with OpenMP 40

4.2 Cell-projection Algorithm on GPU 40

4.2.1 CUDA Implementation . 41

4.2.2 Progressive Rendering . 47

4.2.3 Memory Management . 49

4.3 Results . 51

5 MaterialVis: Material Visualization Based on . . . 55

5.1 General Framework . 55

5.2 Preprocessing . 56

5.2.1 Construction of the Volumetric Representation 57

5.2.2 Quantifying Crystal Defects 58

5.2.3 Lossless Mesh Simplification 60

5.3 Rendering . 62

5.3.1 Volume and Surface Rendering 62

5.3.2 Volume Rendering . 67

CONTENTS xii

5.3.3 Surface Rendering . 69

5.3.4 XRAY Rendering . 70

5.3.5 Atom-Ball Model Rendering 71

5.4 Demonstration: Embedded Quantum Dot Datasets 71

5.5 Benchmarks . 73

6 Conclusion 77

Bibliography 80

Appendices 87

A MaterialVis Algorithms 87

A.1 Delaunay Tetrahedralization Algorithm 87

A.2 Pattern-based Tetrahedralization Algorithm 89

A.3 Defect Quantification Algorithm . 92

A.4 Lossless Mesh Simplification Algorithm 95

A.5 Volume and Surface Rendering Algorithm 97

A.6 XRAY Rendering Algorithm . 101

B MaterialVis User Manual 103

B.1 Installation Notes . 103

B.2 File Formats . 104

B.3 Hardware and Software Requirements 104

CONTENTS xiii

B.4 Usage . 105

B.5 Pre-processing . 106

B.6 Rendering . 107

B.6.1 Controls . 107

B.6.2 Display Options . 108

B.6.3 Rendering Parameters . 109

List of Figures

3.1 The overview of the proposed framework. 14

3.2 Vertex split and edge collapse. 15

3.3 Active vertex mechanism: (a) initial mesh, (b) simplified mesh. 16

3.4 Covering a volume multiple times in a tetrahedral mesh due to tetrahe-

dron flips. 24

3.5 Rendered images of the Bucky dataset. a) finest, b) coarsest, c)

selectively-refined, d) non-selectively refined 28

3.6 Rendered images of the Comb dataset. a) finest, b) coarsest, c)

selectively-refined, d) non-selectively refined 29

3.7 Rendered images of the Sf2 dataset. a) finest, b) coarsest, c)

selectively-refined, d) non-selectively refined 30

3.8 Rendered images of the Aorta dataset. a) finest, b) coarsest, c)

selectively-refined, d) non-selectively refined 31

3.9 Rendering times and PSNR values for Bucky Ball and Sf2 datasets. . 32

4.1 Reduction example. 46

4.2 Progressive rendering. 49

xiv

LIST OF FIGURES xv

4.3 Rendered images of various datasets: (a) Comb dataset, (b) Bucky

dataset, (c) Sf2 dataset and (d) Sf1 dataset, (e) Aorta dataset. 52

4.4 Speed-ups for various resolutions of different datasets: (a) multi-core

implementation and (b) GPU implementation. 54

5.1 The overall framework of MaterialVis 56

5.2 The preprocessing stage data flow 57

5.3 Illustration of the defect quantification for the NaCl crystal 59

5.4 The raycasting framework . 63

5.5 Color composition along tetrahedron-ray intersections for direct vol-

ume. a) Tetrahedron-ray intersection and sample points, and b) face-

ray intersection and normal-light angle 65

5.6 Rendered images of various dataset: (a) NaCl cracked, (b) Cu line

defect, (c) A centers (substitutional nitrogen-pair defects) in diamond. 67

5.7 Volume rendering mode: (a) NaCl cracked, (b) A centers (substitu-

tional nitrogen-pair defects) in diamond, (c) Palladium with hydrogen. 68

5.8 An example color map . 69

5.9 Sample images in different rendering modes. (a) Surface rendering

mode - Sponge dataset, (b) XRAY rendering mode - CaCuO2 spiral

dataset, (c) Atom-ball model rendering mode - NaCl cracked dataset . 69

5.10 InGaAs quantum dots: (a) without random alloying, (b) with random

alloying. 74

A.1 The illustration of the pattern-based tetrahedralization 91

A.2 The illustration of the query and reference grids 94

LIST OF FIGURES xvi

B.1 MaterialVis Loader with raw input selected. 105

B.2 MaterialVis Loader with pre-processed input selected. 106

B.3 MaterialVis pre-processing interface 106

B.4 MaterialVis rendering tool interface 107

B.5 The Display Options Menu . 108

B.6 The Rendering Parameters Menu - Overview 110

B.7 The Rendering Parameters Menu - Volume and Surface Parameters . . 111

B.8 The Rendering Parameters Menu - Surface Parameters 113

B.9 The Rendering Parameters Menu - Volume Parameters 115

B.10 The Rendering Parameters Menu - XRAY Parameters 116

B.11 The Rendering Parameters Menu - Atom-Ball Model Parameters . . . 117

B.12 The Help Menu . 117

List of Tables

3.1 The PSNR values and rendering times for various volumetric datasets. 26

4.1 Rendering times and speed-ups of GPU, multi-core and serial cell-

projection algorithms. 51

5.1 Preprocessing and rendering times of each dataset (in milli-seconds). . 75

xvii

List of Publications

This dissertation is based on the following publications. The rights to use the whole

content of these publications in this thesis are obtained from the publishers.

1. E. Okuyan, U. Güdükbay, and V. İşler. Dynamic view-dependent visualization

of unstructured tetrahedral volumetric meshes. Journal of Visualization, 15:167–

178, 2012.

2. E. Okuyan and U. Güdükbay. Direct volume rendering of unstructured tetrahe-

dral meshes using CUDA and OpenMP. Journal of Supercomputing, 67(2):324–

344, 2014.

3. E. Okuyan, U. Güdükbay, C. Bulutay, K.H. Heinig. MaterialVis: Material Visu-

alization Tool Using Direct Volume and Surface Rendering Techniques. Journal

of Molecular Graphics and Modelling, 50:50–60, 2014.

xviii

Chapter 1

Introduction

Direct Volume Rendering is a useful method for examining volumetric datasets. How-

ever, it is computationally expensive making it impractical for any reasonable size

datasets. We studied this problem from different perspectives: devising a novel view-

dependent selective refinement technique and exploring the GPU and multi-core par-

allelization of the volume rendering algorithms. We developed a material visualization

tool, MaterialVis, based on direct volume rendering techniques.

We introduced a novel view-dependent selective refinement approach. We aim to

selectively reduce the detail level of the dataset at regions that do not significantly con-

tribute to the rendered image quality. This way we can reduce the dataset size, thus

speeding up the rendering process significantly, without adversely affecting the im-

age quality noticeably. In order to achieve this goal, we proposed a progressive mesh

representation which support LOD (Level of Detail) representation of the dataset. We

also proposed a view-dependent selective refinement algorithm, that estimates con-

tributions of each regions in the volume on the rendered image. The algorithm sets

the detail level for each volume region according to their importance. This work is

published [1].

We explored the parallel implementations of direct volume renderers. We focused

on parallel implementations for multi-core CPU’s and GPU’s, which are widely avail-

able nowadays. These parallel implementations utilize the available hardware effi-

ciently and significantly increases the performance. We published this work in [2].

1

CHAPTER 1. INTRODUCTION 2

Lastly, we employed direct volume rendering techniques on a field where it has not

been used before, but fits in naturally. We developed a volume rendering based ma-

terial visualization tool, MaterialVis, that utilize these techniques. Volume rendering

techniques, are quite useful to visualize the embedded topology and defects in mate-

rials. Thus, MaterialVis offers a quite useful tool that can demonstrate these features

of materials better than existing tools. This work is published in [3]. We also created

BilKristal 2.0 tool, which is an extended version of our earlier work BilKristal [4], as a

supporting tool for MaterialVis. BilKristal 2.0 is published as a new version announce-

ment [5].

This dissertation is based on three research mentioned above. Each of these is

summarized in the following sections.

1.1 View-Dependent Refinement Techniques

Visualization of large volumetric datasets is an important and challenging area. We

focus on the view-dependent refinement of unstructured tetrahedral meshes, widely

used in computational fluid dynamics. A representation to store the volume data that

allows progressive refinement is crucial for this purpose. A good decimation algorithm

is an important factor in constructing the levels of detail of the original mesh to obtain

a progressive representation. With a progressive mesh representation, the mesh should

be refined during runtime in a view-dependent fashion.

We propose a framework for dynamic view-dependent visualization of unstructured

volumetric meshes. The framework uses a progressive representation of the volumetric

data that supports view-dependent refinement. The progressive mesh representation is

based on the representation presented in [6], with a few key differences. We propose an

algorithm that dynamically refines the progressive volumetric data in a view-dependent

fashion, without requiring user input. Since the volume data can be highly transparent,

a simple view test based on a screen space error threshold will not work. To accurately

determine the importance of different regions of the volume data, the whole volume

should be rendered. This should be done quickly; we propose a heuristic algorithm

that performs a fast simplified rendering of the volumetric mesh. In this way, we can

CHAPTER 1. INTRODUCTION 3

roughly calculate the importance of the different parts of the mesh for the final image

with a small computational overhead.

Two notable studies on selective refinement of tetrahedral meshes are by

Cignoni et al. [6] and Callahan et al. [7]. Our work differs from these in one key

aspect; regions of the mesh are refined automatically according to their expected im-

pact on the rendered image. We estimate the importance of different regions of the

mesh according to the camera parameters, transfer functions etc. and refine the regions

with higher importance while coarsening other regions. Cignoni et al. use user input

to determine the regions to refine. Users specify certain spatial regions or field val-

ues of the mesh and refinements are performed according to this input. Callahan et

al. propose several heuristics to determine the resampling of the faces. Most of these

heuristics do not consider dynamic properties such as camera parameters; thus they

are static resampling methods. Only view-aligned resampling method uses camera pa-

rameters, but in a limited way. Our method automatically refines the mesh regions

occluded by transparent regions while coarsening the transparent regions. Similarly,

it refines opaque mesh regions while coarsening the occluded regions by this opaque

region. Our method can be used with any volume renderer that use irregular tetrahedral

meshes.

1.2 Parallel Implementations on Multi-Core CPUs and

GPUs

Volume visualization is useful in many areas. Medical fields extensively benefit from

this method, and computational fluid dynamics uses it to inspect several properties of

fluid flow. In general, any discipline that studies the internal structure of a volume

benefits from volume visualization. Volumetric data can be represented in different

forms, depending on the application and data-capture technologies. We focus on di-

rectly rendering unstructured tetrahedral meshes where volume’s interior needs to be

visualized. There are many approaches to rendering unstructured grids and accuracy is

usually important. Ray-casting-based methods, which our work focuses on, are widely

accepted. These techniques provide accurate results but are computationally costly;

CHAPTER 1. INTRODUCTION 4

many actual volume datasets contain millions of tetrahedra. Rendering such complex

data in a timely manner is a real challenge.

We propose direct volume rendering (DVR) algorithms for parallel architectures

that achieve interactive rates for large datasets with good image quality and memory

efficiency. We modified the cell-projection algorithm described in [8] to exploit paral-

lelization and used OpenMP to parallelize the implementation for multi-core systems.

We extended our cell-projection algorithm for GPUs using CUDA and focused on en-

hancing the highly parallelizable characteristic of the algorithm.

There are many works done on volume rendering. A large proportion of recent

volume renderers are based on shader programming in order to achieve high rendering

rates. Although, such approaches are fast, they have various drawbacks. First of all,

shader programming is quite restrictive. There are memory and instruction limitations.

The total memory available to each shader unit is quite low. Also the available in-

struction set is limited and the total number of instructions in a shader program have

an easily reachable upper bound. Accordingly, many algorithms are too complex to

be implemented with a shader program. Thus, shader-based volume renderers usually

use approximation in order to satisfy shader restrictions, leading to inferior graphical

quality. These volume renderers have very limited support to incorporate additional

features, such as LOD approaches, lighting effects, iso-surface effects.

On the other hand, CPU-based volume renderers have great flexibility. Such re-

strictions on shader-based renderers do not exist for these renderers. Very accurate

images can be rendered and there are no restriction on adding new features. How-

ever, CPU-based volume renderers are much slower than shader programming based

renderers. They cannot give enough performance to be used interactively.

Our main motivation was to develop a volume renderer without the restrictions of

shader-based renderers and is much faster than CPU-based renderers. Our goal was

to focus on image quality first. We performed the computations as accurately as pos-

sible. For example, some shader-based volume renderers use pre-integration tables,

represented as 3D textures, to compute the effects of tetrahedra. The size limitation

on the 3D texture limits the accuracy of the computation. On the other hand, we per-

form the actual computation leading to accurate results. We also did not allow any

CHAPTER 1. INTRODUCTION 5

visual artifacts. Our second goal is to reach interactive rates while rendering decent

image resolutions. We developed a CUDA-based volume renderer to satisfy both of

our goals. CUDA provides a rich programming environment that allows the implemen-

tation of complex algorithms. Thus, we can implement accurate rendering algorithms

and produce high quality images. Since CUDA provides GPU acceleration, the per-

formance would be much higher than CPU implementations. In order to improve the

interactive usability we also supported progressive rendering. Progressive rendering

allows rendering the volume in low-resolution first and then progressively improving

the image to the desired resolution. Since the low-resolution image can be rendered

much faster, it can be displayed much earlier, improving the interactivity significantly.

Progressive rendering is particularly useful for very high resolutions, where rendering

takes much longer.

Our volume renderer can be integrated with additional features, like lighting and

iso-surface effects. The modular architecture and the flexible programming environ-

ment provided by CUDA, allow the implementation of complex algorithms and easy

integration. Our volume renderer can also be integrated with level-of-detail (LOD)

approaches. It can be used in a dynamic view-dependent refinement setup ([1]),

where the volumetric data can be selectively refined based on viewing parameters.

View-dependent refinement can significantly reduce rendering costs without notice-

able degradation of image quality.

Memory efficiency is crucial for volume renderers, especially if they are GPU

accelerated. Our implementation focuses on keeping the memory overhead as low

as possible without significantly affecting the performance. We have also employed

mechanisms to allow rendering a volume in several iterations, reducing the memory

requirement significantly. Accordingly, our volume renderer can handle large volume

datasets.

CHAPTER 1. INTRODUCTION 6

1.3 MaterialVis: Material Visualization Tool based on

Direct Volume and Surface Rendering Techniques

Extracting the underlying atomic-level structure of natural as well as synthetic materi-

als is vital for materials scientists, working in the fields such as electronics, chemistry,

biology, geology etc. However, as the topology and other important properties are

buried under a vast number of atoms piled on top of one another, this inevitably con-

ceals the targetted information. Without any doubt, the visualization of such embedded

materials can help to understand what makes a certain sample unique in how it behaves.

However, rudimentary visualization of atoms would fall short because it will not reveal

any topological structure or crystalline defects.

In order to visualize the material topology, the data must be represented as a surface

manifold, whereas, visualization of crystalline defects require extracting and quantify-

ing defects and representing the data volumetrically. Current visualization tools lack

such features, and hence, they are not very effective for visualizing the material topol-

ogy and crystalline defects.

Material visualization tools require atomic coordinates of the materials as input.

Acquisition of real-space atomic coordinates of a sample has been a a major obstacle,

until recently mainly restricted to the surfaces. One can call this period as the dark ages

of material visualization. However, recent techniques, such as Atom Probe Tomogra-

phy [9], can extract atomic coordinates much easier than before. This is also a very

active research field, with the promise of many new advances in the near future. Ac-

cordingly, as the data acquisition phase for materials gets more efficient and accurate,

the necessity for sophisticated material visualization tools becomes self-evident.

Our motivation on MaterialVis is to provide such a visualization tool that can reveal

the underlying structure and various properties of materials through several rendering

modes and visualization options. In this way, we intend to provide a good material

analysis tool that will be useful in a wide range of related disciplines. MaterialVis

supports visualization of both amorphous and crystalline structures. Amorphous struc-

tures only present the topological features while crystalline structures present both

CHAPTER 1. INTRODUCTION 7

topological features and defects. The structure of a material can be best visualized

using surface rendering methods. The underlying surfaces of the material should be

extracted and visualized. On the other hand, defects such as the disposition of some

atoms, vacancies or interstitial impurity atoms in the structure, cannot be visualized by

simply drawing the atoms or rendering the surface of the crystal. These defects can be

best visualized using direct volume rendering techniques. MaterialVis supports direct

volume rendering and surface rendering, as well as combining them in the same visu-

alization. It provides the functionality-driven visualization of the same structure with

several techniques; thus it helps the user to analyze the material structure by combining

the output of individual rendering modes.

We tested the tool with three real-world and seven synthetic datasets with various

structural properties, sizes and defects. For instance, the sponge dataset [10] is a mate-

rial produced from silicate, which has interesting nano-technological properties. Very

recently, it has been experimentally shown that a silicon-rich oxide film can decay

into a silicon nanowire network embedded in SiO2 by spinodal decomposition during

rapid thermal treatment [11], which has also been confirmed by accompanying kinetic

Monte Carlo simulations [12]. The underlying goal in such a line of research is to

achieve a nano-scale feature control and transfer it to inexpensive large-scale thin-film

technology for silicon-based optoelectronics through growth kinetics. However, the

direct imaging of such structures through transmission electron microscopy has not

been satisfactory due to low contrast between Si and SiO2 regions. We believe that it

forms an ideal candidate for demonstrating the need for a direct volume imaging tool.

Direct volume rendering so far has not been widely used in material visualization,

even though it is a well-studied subject in other application domains, such as medicine

and computational fluid dynamics. Direct volume rendering algorithms render the vol-

umetric data without generating an intermediate surface representation; they are useful

when the inside of a material, such as a translucent fluid or gas, should be rendered.

The 3D representations of the human body parts can be constructed from the images

obtained using magnetic resonance imaging (MRI) techniques. These representations

can be visualized using direct volume rendering techniques where the partially trans-

parent body fluids are visible. The temperature and pressure variations in an engine

block can be visualized using direct volume rendering techniques. Volume rendering

CHAPTER 1. INTRODUCTION 8

techniques are especially useful for the visualization of attribute variations in the vol-

ume. Crystals are usually homogeneous structures that lack of such features. However,

we observed that direct volume rendering is a suitable way to visualize the crystal de-

fects because one can easily accentuate the errors by changing the viewing and lighting

parameters and colors.

Chapter 2

Related Work

Volume rendering is a well-studied subject. There are two main types of volume data:

regular and irregular grids. Regular grid representations are widely used in medical

imaging, with texture-based techniques dominating. Earlier approaches sampled vol-

ume with parallel planes along the view direction [13, 14]. The nature of graphics

card allows storing the volume data in the GPU as 3D textures; Ertl et al. used

a pre-integration approach to efficiently render volume using 3D texture representa-

tion [15, 16].

Although regular grids can be efficiently rendered, they can be large, limiting the

detail level of the volume data. Unstructured grids can be represented in much more

compact form, thus they can reach much higher detail levels. Iso-surface techniques

allow fast rendering of volume data, which can be useful if surfaces are the critical

regions in the volume. Lorensen and Kline proposed the Marching Cubes algorithm

[17], which became the basis for many later algorithms.

In our work, we focus on direct volume rendering algorithms, of which visibility

ordering is an important part. If the mesh primitives (faces or polyhedra) are ordered in

a way that no primitive is occluded by an earlier primitive in the list, the list is visibility

ordered. Such lists can be efficiently rendered by graphics cards. Cook et al. [18]

and Kraus and Ertl [19] proposed methods for efficient visibility sorting. Shirley and

Tuchman proposed a projected tetrahedra algorithm [20], which was later extended

to GPUs using vertex shaders by Wylie et al. [21]. Maximo et al. [22] present some

9

CHAPTER 2. RELATED WORK 10

methods to render tetrahedra as primitives using vertex shaders.

Garrity [23] and Koyomada [24] exploited connectivity to achieve fast cell traver-

sals. Koyamada’s algorithm [24], is one of the earlier influential algorithms that is more

suitable for software implementations. This approach was later extended to GPUs by

Weiler et al. [25], where the mesh and the connectivity information are represented

as 3D and 2D textures, respectively. Callahan et al. introduced a visibility ordering

algorithm, HAVS [26, 7], which performs a rough sorting on the CPU and finalizes the

sorting in the GPU. The initial CPU sorting phase sorts the face primitives according

to their center-to-eye distances. The resulting list contains errors but they are corrected

in the GPU using the k-buffer approach. See Silva et al. [27] for an extensive survey of

volume rendering techniques.

Mesh simplification is an important part of our work. There are various types of

mesh representations and simplification algorithms proposed for them. Many triangu-

lar mesh simplification algorithms could be used as base for tetrahedral mesh simpli-

fication algorithms. Hoppe proposes the progressive mesh representation in [28, 29].

This representation is efficient and well-accepted, allowing view-dependent refinement

of the mesh in a progressive fashion. The error metric used in a simplification algo-

rithm is very crucial. Garland and Heckbert propose a quadric error metric in [30],

which is used in many simplification algorithms.

Trotts et al. simplify tetrahedral meshes via repetitive collapses of the tetrahedra’s

edges [31]. Tetfusion collapses a tetrahedron into a vertex in one step [32], iteratively

selecting the tetrahedron that will cause minimal error to the mesh. Staadt and Gross

propose dynamic tests to avoid tetrahedron flips altogether [33]. These algorithms do

not support level-of-detail adjustments or view-dependent refinement.

Visibility ordering is an important part of volume rendering algorithms.

Cook et al. [18] and Kraus and Ertl [19] propose methods for performing visibility sort-

ing efficiently. Shirley and Tuchman proposed a projected tetrahedra algorithm [20]

for visibility sorting. Wylie et al. [34] later extend this algorithm to GPUs using vertex

shaders.

CHAPTER 2. RELATED WORK 11

Cignoni et al. [35] develop a multiresolution representation for volume data, us-

ing refinement-based and decimation-based approaches. Their model supports view-

dependent refinement. They select mesh regions from different detail levels and merge

them, and correct inconsistencies on the connecting surfaces. Cignoni et al. [6] also

propose a progressive mesh representation that supports view-dependent refinement.

This approach refines the mesh based on selective refinement queries specified by the

user whereas our approach automatically refines the mesh based on camera parame-

ters. Du et al. [36] propose an out-of-core simplification algorithm and crack-free LOD

volume rendering. This approach also support selective refinement with user queries.

Sondershaus et al. [37] propose a segmentation-based mesh representation of volume

data, which allows view-dependent refinement using a hierarchy of pre-constructed

segments. Our framework allows view-dependent refinement based on the progressive

mesh representation.

As for the material visualization, there are many commercial and free tools. Crys-

talMaker [38], Shape Software [39], XtalDraw [40], Vesta [41], Diamond [42] and

Mercury [43] are some examples. There are also some studies on the analysis of

crystals that also provide some visualization functionality, such as the work of by

Ushizima et al. [44]. These tools are essentially crystal analysis tools, which also

provide some visualization functionality. Their visualization capabilities are not very

advanced. They mostly offer just atom-ball models with some variations. Some of the

tools support primitive surface rendering, which allows examining the crystal on the

unit cell level. However, they are not sufficient to examine the underlying topology of

a dataset.

There are also general visualization tools such as AtomEye [45], VisIt [46], and

XCrySDen [47]. These tools provide sophisticated visualization capabilities but they

lack the ability to create volumetric representations of materials, cannot use direct

volumetric rendering techniques, and cannot quantify defects of crystal structures.

Iso-surface rendering techniques provide fast surface rendering of the volume data.

They are especially useful when the surfaces are the regions of interest for the volumet-

ric data. Doi and Koide [17] propose an efficient method for triangulating equi-valued

surfaces by using tetrahedral cells based on the Marching Cubes algorithm [48].

CHAPTER 2. RELATED WORK 12

MaterialVis is primarily based on direct volume rendering. There are mainly two

types of volume data. The first type is the regular grid representation, which is widely

used in medical imaging. Mostly texture-based techniques are used for the visual-

ization of regular grids. Earlier approaches use sampling the volume along the view

direction with parallel planes [13, 14]. New graphics cards allow storing the volume

data as 3D textures in the GPU. Ertl et al. [15, 16] use a pre-integration mechanism

to render the volume using 3D textures. Regular grid representation can be rendered

efficiently, but the datasets using this representation are very large. The second type of

data, unstructured grid representation, can be significantly compacted, so it can give

much higher detail levels for the same size.

Chapter 3

View-Dependent Selective Refinement

3.1 Proposed Framework

We propose a framework for the view-dependent refinement of unstructured volumetric

models. The framework supports direct volume visualization and selective refinement

of different parts of the model for different viewing parameters. The framework is

based on a new progressive volume-data representation that supports selective refine-

ment. The detail level of the mesh can be set independently at different parts of the

model depending on the viewing parameters. The framework consists of three stages.

The first stage constructs the progressive mesh representation that will store the vol-

ume data. The second stage determines the detail levels of different parts of the volume

according to the viewing parameters via the selective refinement algorithm. The last

stage uses the direct volume renderer to support direct volume visualization for differ-

ent viewing parameters with the proposed progressive representation.

Figure 3.1 gives an overview of the proposed framework. The tetrahedral mesh is

the input of the framework, containing the vertices, which includes the position and

scalar values, and the tetrahedra. The mesh simplification tool works on the input

and creates the progressive mesh representation (PMR). It uses a decimation algorithm

to obtain lower detail levels of the mesh and creates the vertex hierarchy that is the

backbone of the PMR. The construction of the PMR is the preprocessing step of the

13

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 14

Dynamic View−Dependent
Refinement

Direct Volume Renderer

Vertex Hierarchy

Progressive Tetrahedral
Mesh Representation

R
U

N
T

IM
E

P
R

E
P

R
O

C
E

S
S

View

User

Parameters

Rendered Image Sequence

Tetrahedral Mesh

Mesh
Simplification

Tool

Figure 3.1: The overview of the proposed framework.

framework; the PMR is used as input to the volume renderer.

In order to render the PMR, the dynamic view-dependent refinement algorithm re-

fines the PMR according to the viewing parameters. This algorithm first estimates

which regions will have a higher impact and which regions will have a lower impact

on the output image. Then the costs and benefits of refining and coarsening different

parts of the mesh can be estimated. The important parts of the mesh are represented

in high detail, and the unimportant parts in lower detail. Using this method, the sim-

plification ratios can be much higher than using non-view-dependent detail adjustment

approaches for the same target quality.

3.1.1 Volumetric Data Representation

We use a volumetric data representation that allows view-dependent volume rendering.

Our representation is based on the data representation presented by Cignoni et al. [6]

with some key differences. Similar to Cignoni et al.’s work, we use an edge-collapse

based decimation algorithm to obtain lower detail levels. Repeated edge collapses

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 15

construct binary vertex trees, which are the backbone of the progressive mesh repre-

sentation.

k

h

b

e j

g

d

f

i i

a
c

EdgeCollapse(a,b)

VertexSplit(v)

e
j

kg

c f

d
h

v

Figure 3.2: Vertex split and edge collapse.

Figure 3.2 shows the two basic operations of the edge-collapse decimation algo-

rithm. Edge collapses and vertex splits, which are the inverse of each other, are used to

coarsen or refine the mesh. Figure 3.2 presents a simple tetrahedral mesh with eleven

vertices and eight tetrahedra. The tetrahedra are abcd, abde, abef, acdh, adei, aefj,

befk, and bcdg. The edge ab is collapsed into vertex v. As a result of this collapse, the

tetrahedra that use both a and b vertices are collapsed as well. The tetrahedra that use

one of the a and b vertices are modified to use vertex v instead. The resulting mesh

contains five tetrahedra: vcdh, vdei, vefj, vefk, and vcdg. Splitting the vertex v restores

the vertices a and b, obtaining the initial version of the mesh.

There are two key differences between Cignoni et al.’s representation and ours.

The first difference is the active vertex mechanism, which eliminates the necessity of

maintaining tetrahedral information during the refinement. The second one is related

to handling possible tetrahedral flips during selective refinement.

3.1.2 Active Vertex Mechanism

In Cignoni et al. [6], whenever a vertex splits or an edge collapses, affected tetrahedra

are updated accordingly. This brings significant overhead. We avoid this using active

vertex mechanism. Before the mesh simplification begins, the tetrahedra contain point-

ers to the vertices in the original mesh. During the simplification, pairs of vertices are

collapsed into a newly created parent vertex, and tetrahedra that use one of these col-

lapsed vertices must be modified to use the newly created parent vertex. Figure 3.3 (a)

shows an example vertex hierarchy. In this example, the vertices of the original mesh

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 16

are all active; i.e., the mesh is in its finest state. The tetrahedron T consists of four ver-

tices, v0, v1, v2, and v4, which are all active in this example. Assume that we change

the detail level of this mesh by performing some collapses and thus obtain the mesh

shown in Figure 3.3 (b). In this case, only the vertices v0, v1, v8, and v11 are active.

The vertices v2 and v4 of T are no longer active. We must now use a mechanism that

will map v2 to v8 and v4 to v11 because v8 and v11 are the vertices that represent the

inactive ones.

T(V0,V1,V2,V4)

V10

V7 V8 V9

V0 V1 V2 V3 V4 V5 V6

V11

T(V0,V1,V2,V4)

V10

V7 V8 V9

V0 V1 V2 V3 V4 V5 V6

V11

(a) (b)

Figure 3.3: Active vertex mechanism: (a) initial mesh, (b) simplified mesh.

Our idea is to keep the references in the tetrahedron structure and find the active

vertex that represents the vertex stored in the tetrahedron structure during runtime. For

example, when the volume renderer processes T in Figure 3.3 (b), it requests vertices

v0, v1, v2, and v4. v0 and v1 are active vertices and can be used. v2 and v4 have to be

mapped to the active vertices. The mapping is done by following the parent links, until

an active vertex is found. The dashed lines in Figure 3.3 (b) show such link traversals.

With a simple caching mechanism, the overhead of these traversals is reduced signifi-

cantly. Whenever an active vertex of a vertex is accessed, first the validity of the cached

information is checked. If the cached information is valid, then it is used. Otherwise,

with the described link traversals, correct information is found. The cached informa-

tion along the traversal path are also updated. Thus, a link traversal would be required

only if there has been a related vertex hierarchy change which invalidate the cached

information. Accordingly, active vertex mechanism does not bring any redundant link

traversal overhead.

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 17

The volume renderer traverses each tetrahedron and finds its active vertices. If all

active vertices of a tetrahedron are different, then the tetrahedron is active. Otherwise,

the resulting geometry is not a tetrahedron. While refining or coarsening the mesh with

this mechanism, simply maintaining the vertex hierarchy is sufficient; maintaining the

active tetrahedra, which could take up a significant time, can be avoided. The active

vertex mechanism also groups the task of finding the active tetrahedra together. If

the tetrahedral information were to be updated, the list of active tetrahedra could be

maintained during the refinement. However, this job would be distributed among many

refinement operations. With active vertex mechanism, such list can be maintained with

a single traversal of tetrahedra. Such traversal can be very efficiently parallelized with

GPU whereas tetrahedral updates have to be done serially on CPU. Thus, even though

active vertex mechanism increases the total work volume of finding active tetrahedra,

since all the tetrahedra have to be traversed not just affected ones, due to parallelism

the process would be faster.

3.1.3 Progressive Mesh Representation of Volumetric Data

The two data structures defining the unstructured tetrahedral meshes are the vertex

and tetrahedron structures. The vertex structure minimally contains the coordinates

and the scalar value of the vertex. In order to support selective refinement, our repre-

sentation adds additional fields; active vertex id, pointer to edge-collapse/vertex-split

record, parent and child vertex pointers. Parent and child vertex pointers define the

vertex hierarchy and active vertex id stores the cached active vertex information. Edge-

collapse/vertex-split record stores the information that will be used to split a vertex or

collapse an edge, such as error values and the affected vertices. The tetrahedron struc-

ture contains ids of the tetrahedron’s vertices in the finest mesh. Since the number of

vertices is significantly smaller than the number of tetrahedra, the memory overhead

of the added fields is relatively small.

We use an edge-collapse based decimation algorithm. The decimation algorithm

iteratively selects the edges and collapses them until the desired simplification level is

reached. At each iteration, a prey edge is selected, collapsed and the mesh consistency

is maintained. The success of the algorithm depends on the collapse order of the edges,

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 18

which is based on geometric and attribute errors. The quadric error metric proposed

by Garland and Heckbert [30] is used to determine collapse errors. To ensure mesh

consistency, tetrahedron flips should be handled. Collapse operations affect some tetra-

hedra by moving one of their vertices to the opposite side of their unaffected face, thus

flipping their volume (cf. Figure 3.4). The edges that would cause tetrahedron flips are

not collapsed.

The boundary surface geometry is extremely important for mesh quality. Deforma-

tions of the surface produce significant visual impairments. Not allowing any surface

edge to collapse eliminates surface deformations. However, it is quite restrictive and

adversely affects the achievable simplification ratios. We classify surface vertices as

sharp and smooth. A surface vertex v is considered sharp, if the angle between the nor-

mals of any two faces on the surface using the vertex is more than a certain threshold.

We do not allow the collapse of any edge that contain a sharp vertex. This issue could

also be solved by including boundary preservation into the error metric.

Another issue of mesh consistency is self-intersections, which cause similar

problems like tetrahedron flips. Surface preservation eliminates most of the self-

intersection cases. During our experiments, we did not observe any artifacts due to

self-intersecting mesh. However, our framework does not guarantee to eliminate all

the cases. In order to reduce computational complexity, we prefer not to perform extra

checks to eliminate all these cases. The approaches described by Cignoni et al. [49]

and Staadt and Gross [33] could be used to avoid self-intersections during decimation.

In the preprocessing stage, the decimation algorithm constructs the PMR. The PMR

supports selective refinement of the mesh during runtime using vertex splits and edge

collapses. The algorithm can only collapse edges whose vertices are both active and

siblings in the hierarchy. Figure 3.3 (b) provides examples of allowed edge-collapse

and vertex-split operations. The vertices v0, v1, v8 and v11 are active in the given

example. Because no other pair of sibling vertices are active, only the edge between

v0 and v1 can be collapsed. If that edge is collapsed, then v7 becomes active, thus the

edge between v7 and v8 becomes a candidate for collapse. Similarly, only the vertices

v8 and v11 are candidates for vertex splits, since they are the only active vertices who

have children.

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 19

The vertex-split operation activates the child vertices and deactivates the input ver-

tex. Then the vertex split candidates and the edge collapse candidates structures are

maintained. The edge-collapse operation is executed in a similar manner to the vertex-

split operation. Basically, these two operations are inverses of each other.

These two operations simply activate or deactivate vertices in the vertex hierarchy.

The tetrahedra information is not updated with these operations as the direct volume

renderers must check if a tetrahedron is active or inactive before processing it. Thus,

updating the vertex hierarchy is sufficient to refine or coarsen the mesh selectively.

3.2 View-Dependent Refinement

The proposed progressive mesh representation supports selective refinement during

runtime. The regions of the mesh that have higher impact on the rendered image are

automatically refined, while other regions coarsened. This ability is the main difference

between this work and other related works. To this end, the detail levels of different

parts of the mesh should be determined according to the viewing parameters. How-

ever, determining the important regions of the mesh is not an easy task. The volume

is rendered through tetrahedra but the refinement is performed on vertex hierarchies.

Thus the effect of the refinement of a vertex will be distributed through the volume of

tetrahedra that use it. Furthermore, the refinement of seemingly unrelated parts of the

mesh will affect the geometries of several tetrahedra and change the effects of previous

refinements. Mapping vertex hierarchies to tetrahedra is non-trivial, making selective

refinement a non-trivial task. We develop a heuristic algorithm, taking into account

several parameters that affect the importance of a vertex-split/edge-collapse operation;

i.e., how much the output image quality changes after performing the operation. Five

parameters contribute to the importance metric. The first two represent the normalized

mesh error values introduced with an edge collapse. The other values represent the

weight of the mesh error, affecting the output image. The formulations of the parame-

ters will be given on the vertex split operation v→(p,q).

Color error: The scalar values of vertices are used to calculate the color values using

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 20

the transfer function, which is then used to calculate the color error. The color

error can be defined as |p.color - v.color|2 + |q.color - v.color|2, where colors

are normalized RGBA vectors.

Geometric error: The geometric error can be defined as |p.position - v.position|2
+ |q.position - v.position|2, where the positions are coordinates of the vertices.

Since vertex coordinates does not change via the selective refinement, geometric

errors can calculated in the preprocessing stage.

Light intensity: The regions of a volume affect the final image in a way directly

proportional to the intensity of the light reaching these regions.

Affected volume: The affected volume for a vertex represents the total volume of

tetrahedra that will be affected by the refinement of that vertex. The larger the

volume, the bigger the affected image segment will be.

Camera distance: The regions of the volume close to the camera usually have high

impact on the rendered image, especially for opaque surfaces.

Ray-casting-based volume renderers send rays through each pixel. While passing

through the volume, rays lose some of their intensity depending on the transparen-

cies of the tetrahedra on the path. The effect of each tetrahedron that the ray visits

are combined to calculate the pixel’s intensity. The intensity of the light reaching a

region directly affects how much that region can contribute to the color of the ray.

Thus, calculating light intensities in each part of the volume is necessary to determine

the importance of that region, which is computationally intensive. As a solution, we

approximate the intensities to determine the importance of different regions.

In order to answer light intensity queries in a timely manner, we construct an oc-

tree representation of the volume data. The octree does not replace the proposed PMR,

but is a low-resolution representation of the original data. The octree structure is con-

structed bottom-up using only the vertices. The approximate light intensity calcula-

tions are performed during runtime before rendering. In principle, the calculations

are similar to any ray-casting-based volume renderer. Due to the regularity of the oc-

tree structure, the approximate light intensity calculations can be done very efficiently.

The octree should be updated during refinement operations. We use flooding-based

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 21

techniques to update the octree during the refinement. Whenever a refinement opera-

tion changes the vertex hierarchy, the corresponding octree cell is found. The owner

vertices of the cells are updated starting from this cell and continuing to its neighbors.

3.2.1 Importance Metric

The selective refinement algorithm must decide the vertices to split and edges to

collapse in the vertex hierarchy. Since the algorithm must determine the edge col-

lapse/vertex split operations that will be executed, the importance metric should be

defined for edge collapse/vertex split records. Since the vertex hierarchies do not di-

rectly reflect the specific effects of the vertices, defining an ideal importance metric is

very difficult; thus we employ a heuristic approach. We use the weighted combination

of a few parameters as the importance metric. We multiply the parameters in order to

combine them and use the exponents as weights. The importance metric is given in

Equation 3.1.

I(v) =ColorError(v)α ×GeometricError(v)β ×LightIntensity(v)γ×
Volume(v)θ ×CameraDistance(v)σ

(3.1)

Selective refinement splits the vertices with the highest importance and collapse the

edges with lowest importance. However, since refinements can only be done on active

vertices in the vertex hierarchy, the refinement of a seemingly unimportant vertex can

enable the refinements of more important vertices. The importance metric given in

Equation 3.1 is updated to take this into account by taking a weighted average of the

importance of a vertex and the importances of its children (Equation 3.2).

Iupdated(v) = 0.50× I(v)+0.25× I(v.child0)+0.25× I(v.child1) (3.2)

Because the importance metric is used during the view dependent refinement, it

must be calculated on the fly. Even though we use approximations for many para-

meters, the rendered images do not contain notable artifacts. Determining exponent

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 22

weights in the importance metric is an important problem on its own. The optimal

weights highly depend on the mesh characteristics and viewing parameters. Since

the importance values are used for comparisons, the respective values of weights are

important; i.e., scaling all weights up or down will have no effect. Color errors and

geometric errors are computed only using the vertices of edge collapse/vertex split

operations. For the collapse of an edge of a very thin tetrahedron, color errors and

geometric errors can be very high. However, since the affected volume will be small,

the effect of such high errors would be small. The weights of geometric errors (β)

should be higher when the tetrahedra of the mesh are more regular; i.e., closer to De-

launay tetrahedralization, since the affected volume will be more related to geometric

errors. The weight of the color errors (α) also depend on the affected volume. It

should be higher for meshes with regular and uniform sized tetrahedra, since the af-

fected volume sizes of the vertices would be closer to each other. The affected volume

parameter is included in the importance metric as a support mechanism for geometric

and color errors. For tetrahedral meshes with high regularity and uniformity, α and β
values should be higher compared to the weight of the affected volume parameter (θ).

However, for more irregular meshes, θ should be higher compared to α and β values.

The weight of the light intensity parameter (γ) depend on the accuracy of light

intensity calculations. Light intensity calculations use a low-resolution regular grid

rendering mechanism, which will introduce a blending effect on the light intensity

estimations. If the opacity of the mesh is more uniform, the accuracy will be better.

Otherwise, due to the blending effect, the accuracy will be worse. The γ value should

be higher for more accurate estimations.

Although the affected volume parameter is very important it does not directly re-

flect the affected image area. If the volume is closer to the camera, the affected image

area would be larger. The camera distance parameter is used to correct this effect.

The vertex camera distance is converted to a coefficient that will relate the affected

volume parameter to the size of the affected image region. The weight of the camera

distance parameter (σ) should be equal to θ . However, the camera distance parameter

also have correction effect on light intensity parameter. Usually, the blurring effect of

the intensity calculations builds up for distant parts of the mesh, making intensities of

these parts less accurately estimated than closer parts. Favoring the closer parts of the

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 23

mesh results in better refinement, due to higher accuracy of light intensity estimations.

We employed a semi-automatic method to determine the weights. First, a few

sample camera parameter values are selected to perform the tests. Then the mesh is

rendered at the highest detail with these values to obtain the reference images. Ini-

tial weights are determined as described above or can be set to 1. We perform a

convergence-based tuning approach. During this step, we set σ equal to θ for sim-

plicity. After we determine the converged weights, we refine the σ value. To quantify

the success of a certain weight set, we refine the mesh with these weights to 15%, and

render with the sample camera parameters. The output images are compared with the

reference images using PSNR (peak signal-to-noise ratio) as the quality metric. PSNR

is an exponential metric and higher PSNR values indicate higher quality. The average

of PSNR values indicates the performance of the tested weight set. At each iteration

of the convergence algorithm, we individually scale up and down the α , β , γ and θ pa-

rameters, and obtain eight new weight sets. We test these sets and compare them with

the current set. We select the best performing weight set and continue the convergence

algorithm with it. The iterations end when the current weight set performs better than

all of the newly tested weight sets.

The optimal weights are sensitive to the changes in opacity mapping due to the

change in transfer functions. However, only α and γ values are affected. Thus, re-

running convergence algorithm by starting from the previously optimal weights and

working only on these two parameters will re-optimize the weights much faster. Also

pre-computing the optimal weights for a few opacity map profiles would work well.

Since the weights are not very sensitive to small changes, such approach would work

eliminating any need to re-optimization of weights during runtime.

The selective refinement algorithm is a heuristic algorithm that sets different re-

gions of the volume data to the appropriate level of detail. It is called just before the

rendering and refines the mesh according to the viewing parameters. The algorithm

keeps track of every vertex that can be split and every edge that can be collapsed. The

importance of these primitives are calculated and the mesh is updated accordingly for

the desired detail level.

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 24

3.2.2 Required Modifications for Volume Renderers

The proposed selective refinement framework can be used with a wide variety of direct

volume renderers. To this end, two modifications are needed on volume renderers. The

first modification is to use the active vertex mechanism for selective refinement. The

second modification is handling tetrahedron flips during selective refinement. When a

tetrahedron flip occurs, the volume of the flipped tetrahedron is covered by more than

one tetrahedron. That inconsistency can cause artifacts. Figure 3.4 presents a simple

example to demonstrate this point. The collapse of the edge (a,e) causes tetrahedron

Tabcd to flip and cover some volume below its base face. The tetrahedra Tabch and Tbcde

are also affected with the edge collapse and they are stretched to cover the volume of

Tabcd .

a

c

h

f

i

Edge−Collapse(a,e)c

e

h

fd

g

g

b

b

d

Figure 3.4: Covering a volume multiple times in a tetrahedral mesh due to tetrahedron
flips.

Flipped tetrahedra cause artifacts for two reasons. They can cause over-rendering

of the flipped volume and mis-representations of the volume. Flips can be handled in

different ways, depending on the volume renderer and rendered datasets. One approach

is to allow tetrahedron flips. It is suitable for volume renderers, which process the mesh

as a set of faces, such as HAVS [26]. HAVS extracts the faces from the tetrahedra

and sorts them in visibility order. It determines the contribution of a face on a pixel

according to the distance between the face and the next face; thus, the flipped tetrahedra

cannot cause over-rendering. They may cause mis-representations. Another approach

is subtracting the contributions of the flipped tetrahedra. Since the flipped tetrahedra

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 25

can be considered to have negative volumes, subtracting their contributions prevents

over-rendering. It also cannot eliminate mis-representations. This approach is suitable

for ray casting-based volume renderers. The mis-representations caused by tetrahedron

flips do not cause notable artifacts for most datasets. If the artifacts are noticeable,

tetrahedron flips should be eliminated, e.g., using the approach described by Cignoni et

al. [6] and El-Sana et al. [50]. However, it introduces extra computational and memory

overhead for selective refinement, since directed acyclic graphs have to be constructed

and maintained. These approaches can be incorporated into our framework without

any difficulty.

3.3 Results

We analyze the performance of the proposed framework on different datasets. We use

HAVS [26] for volume rendering to measure rendering times for selective and non-

selective refinement. The k-buffer size is set to 6. We also use a software-based volume

renderer, which is slow but generates high quality images, with the proposed frame-

work to compare the image quality of selective and non-selective refinement schemes.

Transfer functions are selected to highlight the important features of the volumetric

datasets. Transfer functions leading to blurry images or very opaque transfer functions

are avoided. Some sophisticated techniques, such as visibility-driven transfer functions

[51], could also be used for this purpose. We use a wide range of camera parameters,

in order to highlight the dynamic view-dependent refinement property. We compare

the selective refinement scheme with non-selective refinement scheme. Non-selective

version refines the mesh in reverse decimation order.

With the datasets used in experiments, HAVS generated some artifacts due to insuf-

ficient k-buffer size, particularly for simplified meshes where tetrahedra become more

irregular. Since higher k-buffer sizes are not supported with current implementation,

we were not able to compare our simplification method against HAVS’s LOD meth-

ods [7]. We also were not able to compare our approach to Cignoni et al.’s selective

refinement queries [6], since the implementation is not publicly available.

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 26

We used four well-known datasets in our experiments. The Bucky-Ball dataset rep-

resents the C60 molecule. It is a cube shaped dataset with internal structure. The Comb

dataset represents the temperature and pressure fields inside a combustion chamber.

The Aorta dataset represent the structure and pressure fields of a human aorta. It has a

very irregular shape. And the Sf2 dataset presents geographic information about certain

parts of San-Francisco city.

In the first group of tests, we set a certain level of image quality as the target qual-

ity. Then the mesh is selectively and non-selectively refined until the target quality

is reached. The rendering times indicate the success of the refinement schemes. The

quality of the mesh is measured in terms of Peak- Signal-To-Noise Ratio (PSNR) val-

ues, a widely accepted logarithmic scale for image comparisons. PSNR values are not

perfectly accurate, however they are a good tool for general evaluations. For selec-

tive refinement, the average per-frame overhead is added to the rendering times. For

comparison, the finest and coarsest meshes are also included in the tests. Please note

that the quality comparisons of coarsest, selectively refined and non-selectively refined

meshes are done using finest meshes as the reference. Accordingly, PSNR values for

finest meshes are not available.

Dataset Bucky Comb
LOD F S N C F S N C
Refinement ratio 100.0 12.3 47.1 0.5 100.0 10.2 70.8 3.0
No. tetrahedra 1250.2 153.9 588.4 6.5 215.0 21.9 152.2 6.4
PSNR value N.A. 32.43 32.37 10.41 N.A. 37.46 37.36 16.57
Rendering times 718 406 609 203 125 64 108 46

Dataset Aorta Sf2
LOD F S N C F S N C
Refinement ratio 100.0 19.4 38.0 2.0 100.0 9.6 83.6 0.9
No. tetrahedra 1386.9 255.1 526.5 28.0 2067.7 199.3 1728.5 19.3
PSNR value N.A. 38.19 38.16 18.39 N.A. 40.94 40.39 14.71
Rendering times 593 327 405 187 936 344 842 266

Table 3.1: The PSNR values and rendering times for various volumetric datasets. F:
Finest; S: Selective Refinement; N: Non-selective; C: Coarsest. No. tetrahedra are
given in thousands and Rendering times are given in milliseconds

The tests are performed on a PC with an nVidia 8800GT graphics card and an

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 27

Intel Core 2 Duo 2.66GHz CPU. The resolution is 512×512. The preprocessing step

takes less than 30 minutes for the largest dataset, Sf2 with over two million tetrahedra.

Table I show that selective refinement gives significant improvement over non-selective

refinement. Depending on the dataset, up to 60% speed-ups are observed. Selective

refinement also significantly reduces the number of rendered tetrahedra (up to 88%),

which greatly reduces the memory requirements on the GPU.

The selective refinement is more successful for datasets where the parts of the mesh

that define the features in the output image are spatially localized. Selective refinement

can find and refine such localized regions where non-selective refinement cannot focus

on a certain part of the mesh. Due to the irregular topology of the Aorta dataset, the

octree representation is not as successful as in other datasets. Accordingly, selective

refinement performance is affected. Using a higher octree size could produce better

results for this dataset.

In the second group of tests, we compare the quality of images that selective and

non-selective refinement schemes generate for a fixed budget of rendering time. The

finest and coarsest meshes are also rendered to give a comparison. Figures 3.5, 3.6,

3.7, and 3.8 show that significant quality improvements are obtained with selective

refinement. For some datasets, the quality of the selectively refined mesh reaches just

below the finest mesh, for a fraction of the rendering time. Figure 3.9 shows frame

rendering times and PSNR values for the visualization of Bucky and Sf2 datasets. The

resolution for the animations are 1024×1024.

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 28

(a) (b)

(c) (d)

Figure 3.5: Rendered images of the Bucky dataset. a) finest, b) coarsest, c) selectively-
refined, d) non-selectively refined

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 29

(a) (b)

(c) (d)

Figure 3.6: Rendered images of the Comb dataset. a) finest, b) coarsest, c) selectively-
refined, d) non-selectively refined

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 30

(a) (b)

(c) (d)

Figure 3.7: Rendered images of the Sf2 dataset. a) finest, b) coarsest, c) selectively-
refined, d) non-selectively refined

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 31

(a) (b)

(c) (d)

Figure 3.8: Rendered images of the Aorta dataset. a) finest, b) coarsest, c) selectively-
refined, d) non-selectively refined

CHAPTER 3. VIEW-DEPENDENT SELECTIVE REFINEMENT 32

0 100 200 300 400 500 600 700
Frames

0

200

400

600

800

1000

1200

1400

R
en

de
ri

ng
 t

im
e

pe
r

fr
am

e
(m

se
c)

Bucky

Finest
Coarsest
Selective Refinement
Nonselective Refinement

0 100 200 300 400 500 600 700
Frames

0

5

10

15

20

25

30

P
SN

R

Bucky

Coarsest
Selective Refinement
Nonselective Refinement

0 200 400 600 800 1000 1200
Frames

0

200

400

600

800

1000

1200

R
en

de
ri

ng
 t

im
e

pe
r

fr
am

e
(m

se
c)

Sf2

Finest
Coarsest
Selective Refinement
Nonselective Refinement

0 200 400 600 800 1000 1200
Frames

0
5

10
15
20
25
30
35
40
45
50
55
60
65

P
SN

R

Sf2

Coarsest
Selective Refinement
Nonselective Refinement

Figure 3.9: Rendering times and PSNR values for Bucky Ball and Sf2 datasets.

Chapter 4

Parallelization for GPU and
Multi-Core CPUs

In this chapter, the parallelization of well-known cell-projection direct volume render-

ing algorithm is discussed. Parallel implementations for multi-core CPU systems and

GPUs are explained and the results are compared to the serial algorithm running on a

the single core of a CPU.

4.1 Cell-projection Algorithm

Direct volume rendering is a computationally-intensive process. Early algorithms fo-

cused on single-processor environments, then the trend shifted to parallel algorithms

for PC clusters. With the recent developments in multi-core CPUs and GPU-based

computing techniques, volume rendering algorithms for these platforms have increased

in importance because single CPUs are not powerful enough to render even simple vol-

ume data into reasonable resolutions in acceptable time frames. We based our work on

a well-known direct volume rendering algorithm: the cell-projection algorithm.

The cell-projection algorithm is simple yet efficient; it does not rely on tetrahedra’s

neighborhood information to order them. The data representation requirement is low

and the data access patterns are relatively uniform, making this algorithm suitable for

33

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 34

GPU implementation. In this section, we present the single-core version of the cell-

projection algorithm. We describe the data types used by the algorithm and then outline

its steps. Then we describe the implementation of the algorithm on multi-core systems

using OpenMP.

4.1.1 Data Structures

Volume data used in real-world application have grown, with datasets of tens of mil-

lions of tetrahedra being quite common. This growth has also increased memory re-

quirements for direct volume rendering (DVR) implementations; to satisfy such re-

quirements with common computer configurations, the data structures used in this

work are kept as minimal as possible:

• Vertex: Vertex structure contains the coordinate and scalar values associated with

the vertex. Float values are used to store these data, making the vertex structure

16 bytes in size.

• Tetrahedron: Tetrahedron structure contains indices of four vertices, which com-

prise the tetrahedron. Integer values are used to store index values, making the

tetrahedron 16 bytes in size. The size can be reduced with encoding. Each in-

dex value is a decimal value between zero and the number of vertices in the

dataset. Thus dlog2 (NumberOfVertices)e bits are enough to represent an index

value. Usually, 24 bits are sufficient to represent a vertex index of a sizable

volume dataset, making it possible to reduce the tetrahedron size 25% or more,

depending on the number of vertices. Processing an unencoded index value is

much faster, however, because index values are extensively used. For that reason,

we decided to use the integer type to store index values to avoid such encoding

overheads.

• Intersection record: Direct volume rendering algorithms throw a ray from

each pixel. As the ray travels through the volume, it intersects with sev-

eral tetrahedra. The effects of such intersections are used to determine the

pixels’ final color. The intersection record consists of the pixel value from

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 35

where the ray has been thrown and the tetrahedron’s index that the ray inter-

sected with. Because all the intersection records have to be created before

they are consumed, their total size can be very large, and encoding the inter-

section record is necessary. An intersection record can be represented with

dlog2 (NumberOfTetrahedra)e+dlog2 (NumberOfPixels)e bits. To store individ-

ual records, this size should be rounded up to a multiple of eight bits. A record

size of six bytes is sufficient for all the datasets and resolutions tested in this

implementation.

• Per-pixel intersection lists: The procedure that extracts the intersection records

groups them according to their pixel values, which is done via per-pixel inter-

section lists. This structure is simply a collection of intersection record arrays,

one per each pixel value. As these arrays can increase their sizes dynamically,

this structure does not introduce too much memory overhead.

• Intersection effect: An intersection effect structure is produced after an intersec-

tion record is processed. It includes the eye distance to the first point that the

thrown ray hits on the tetrahedron. This value is used to sort the intersection

effects. The color effect left by the tetrahedron on the intersecting ray is also

recorded. As the color is stored as four floats, representing the rgba values, the

size of this structure is 20 bytes. Because the structure is created and destroyed

on a per-pixel basis, its effect on the memory requirement is low.

• Color map: A color map is the tabulated form of the transfer function. It is an

array of color values. A minimum scalar value is assigned to the first entry and

a maximum scalar value is assigned to the last entry. The scalar values associ-

ated with the remaining entries are calculated by interpolating the minimum and

maximum scalars. Color entries are found by using the transfer function with

the associated scalars.

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 36

4.1.2 Algorithm

The overall flow of the single-core version of the cell-projection algorithm is given in

Algorithm 1. First, screen space coordinates of the vertices are calculated and the inter-

section records are extracted. Then calculating, sorting and compositing intersection

effects occurs in a sequence for every pixel. The steps of the algorithm are described

below.

CellProjectionAlgorithm()
begin

IntersectionRecord *PerPixelIntersectionLists[Width][Height];
SSC=ComputeScreenSpaceProjections(Vertices);
ExtractIntersectionRecords(Tetrahedra, Vertices, SSC, PerPixelIntersectionLists);
for i = 0 upto Width do

for j = 0 upto Height do
list=PerPixelIntersectionLists[i][j];
IntEffctList=CalculateIntersectionEffects(list);
SortIntersectionEffects(IntEffctList);
Color c = ReduceIntersectionEffects(IntEffctList);
Image[i][j]=c;

end

Algorithm 1: Cell-projection algorithm.

Screen space projection of vertices: In this step, vertices are projected onto the screen

according to the view parameters, and their screen space coordinates are calculated.

These coordinates are stored in the SSC array, which is then used during tetrahedron

projections.

Extracting intersection records: This step can be considered as the screen space pro-

jection of the tetrahedra. The algorithm calculates screen space projections of each

tetrahedron. Rays thrown for any pixel under the projection of a tetrahedron intersect

with the tetrahedron. Thus, a tetrahedron will contribute to the colors of the pixels

under its projection. The cell-projection algorithm extracts any such tetrahedron-pixel

pairs (the intersection records). Intersection records are stored in pixel index-based

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 37

array, called PerPixelIntersectionLists.

Intersection records are found by traversing each tetrahedron; the algorithm calcu-

lates its screen space projections by projecting its four vertices. When the projection

points of these vertices are connected, a triangle or a quadrilateral will be formed,

and with a basic scan-line algorithm, the pixels covered by this projection area can be

calculated. The tetrahedron id and the pixel values are then encoded into an Intersec-

tionRecord and inserted into the PerPixelIntersectionLists.

Calculating intersection effects: When a thrown ray travels through a tetrahedron, it

loses intensity and its color is affected. The effects of all the tetrahedra that a ray has

travelled through can be combined to obtain the final effect on the ray. This procedure

(Algorithm 2) uses the intersection record list for the current pixel and calculates the

intersection effects for each record in the list individually.

Algorithm 2 calculates the intensity and color of a tetrahedron intersection on the

ray. The first step calculates two intersection points (ip0 and ip1) of the ray and the

input tetrahedron. Let ip0 be the closer point to the eye. The distance between the eye

point and ip0 is recorded in the intersection effect record; this value will be used in

the sorting phase. The ray’s path, which is the line segment between ip0 and ip1, is

divided into a pre-defined number (NumOfSamples) of line segments. At the starting

point of these line segments, the scalar value is calculated with interpolations using

the vertices of the tetrahedron. The color of this point is determined by the ColorMap

table. As the ray travels from ip0 to ip1, the color and intensity contributions can be

approximated. We describe the interpolation process by the following example:

Let ip0 be (10,10) and ip1 be (22,19). Dividing the path into three segments,

the points we are interested in are ip01 =(14,13) and ip02 =(18,16). The algorithm

approximates the path that the ray travels with three line segments of length five: [ip0,

ip01], [ip01, ip02] and [ip02, ip1]. The ray starts traveling with full intensity and each

segment is assumed to have a uniform color, which is the color at the beginning of the

segment. The color contributions of the line segments to the pixel are proportional to

the color attributes of the traveled region, the travel distance, the opacity coefficient of

the region and the intensity of the ray itself. The ray loses most of its energy while

traveling through non-transparent regions; thus later regions have a lesser effect on the

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 38

final color. After the ray travels through all regions, its final color is recorded.

CalculateIntersectionEffects(Tetrahedron t, Pixel p)
begin

IntersectionEffect record;
Ray *R=new Ray(p);
[ip0, ip1]=RayTetrahedronIntersection(R,t);
record.dist = |ip0−EYE|;
d= |ip1−ip0|

NumOfSamples ;
Color c=[0, 0, 0, 0];
record.color=[0, 0, 0, 0];
for i = 0 to NumOfSamples do

Point ip=ip0+d× i ;
s=InterpolateScalar(t,ip);
c=getColorFromScalar(s);
for j = 0 to 4 do

record.color[j]+=DistConst
×d× (1− record.color[3])× record.color[j];

return record;
end

Algorithm 2: Calculating the effect of the intersection between a ray and a tetra-
hedron on the ray.

Accurately calculating the scalar value of a point on a tetrahedron is important, as

poor interpolations may cause significant artifacts. The interpolation process is given

in Algorithm 3. It starts by selecting a reference vertex, which can be any one of a

tetrahedron’s vertices. Then the M matrix, which contains the positions of the other

three vertices of the tetrahedron relative to the reference vertex, is calculated. The

N vector stores the relative position of the input point to the reference vertex. The

scalar vector (Scalar) contains scalar value differences of the vertices relative to the

scalar values of the reference vertices. Then the equation M×R = Scalar is solved

to obtain the R vector, which represents a coefficient vector that will give the relative

scalar value of a point when multiplied with the relative position vector of that point.

The SolveEquation function calculates this coefficient, dot product of the relative

position vector of point (N) and the coefficient vector (R). By adding the scalar value

of the reference vertex, the interpolated scalar is found.

Sorting intersection effects: This step is achieved using the dist parameter. The number

of elements to sort is usually in the low hundreds. Although many sorting algorithms

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 39

InterpolateScalar(Tetrahedron t, point p);
begin

float M[3][3];
float Scalar[3];
float N[3],R[3];
float s;
for i = 0 upto 3 do

M[i]=t.V[i+1].coords - t.V[0].coords;

N=p-t.V[0].coords;
for i = 0 upto 3 do

Scalar[i]=t.V[i+1].scalar - t.V[0].scalar;

SolveEquation(M, Scalar, R);
/* Solves the equation M×R = Scalar for R. */
s=R ·N+ t.V[0].scalar;
return s;

end

Algorithm 3: Interpolation of scalar value within a tetrahedron.

can be used for this job, the size of the list favors some of them; we found that quicksort

performs well for the size range of the intersection lists.

Compositing intersection effects: Sorting the intersection effects by the distance of

the first intersection point to the eye orders the tetrahedra by the ray’s visit order.

Algorithm 4 describes the composition of the contributions along the ray. If the opacity

of accumulated color exceeds a pre-defined threshold, the ray terminates because the

remaining tetrahedra will have no significant effects (early ray termination).

ComposeIntersectionEffects(IntersectionEffect ∗list);
begin

Color c=[0, 0, 0, 0];
for i = 0 upto list.length do

Color r=list[i].color;
for j = 0 to 3 do

c.color[j]+=(1 -c.color[3])× r.color[j];

if c.color[3]>=0.9999 then
break;

return c;
end

Algorithm 4: Composition of intersection effects.

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 40

4.1.3 Multi-Core Implementation with OpenMP

The cell-projection algorithm is highly suitable for parallelization, because, for the

most part, memory accesses are structured, and race conditions are thus avoided.

OpenMP provides a useful interface for parallelization on multi-core processors with a

shared memory architecture. It divides the workload among threads and then executes

them through different cores. Since the cores use the shared memory, there are no data

transfer issues as there are with parallel clusters.

OpenMP also supports parallelization of for-loops by distributing the iterations

among threads. This approach works unless one iteration requires data produced by

another iteration or there are race conditions among iterations. Screen space projection

of vertices can be parallelized trivially, since no race conditions exist. The for-loops

that process intersection records for each pixel can also be parallelized, but as the

iterations in these loops use some temporary data, that data should be replicated for

each thread to avoid confusion.

Extracting intersection records necessitates travelling through the tetrahedra and

inserting intersection records to the per-pixel intersection lists under a tetrahedron’s

projection. Since different tetrahedra can have projections on the same pixel, a race

condition on that pixel’s intersection list is possible. To avoid this scenario, the Per-

Pixel Intersection Lists structure should be replicated. After the extractions are com-

plete, the lists of each thread can be combined. While this approach is amenable to

OpenMP parallelization we observed that it does not improve computation time signif-

icantly; thus, we used the serial version.

4.2 Cell-projection Algorithm on GPU

Although the CPU-based cell-projection algorithm’s performance is reasonable for

small datasets, it is not sufficient for large datasets. However, this algorithm is well

suited to a GPU implementation, as it focuses on one group of data at a time and its

memory accesses are structured. Further, as the algorithm is well structured in terms

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 41

of execution flow, it can be efficiently parallelized. In this section, we detail CUDA

implementation and memory management issues and discuss progressive rendering.

4.2.1 CUDA Implementation

Although the cell-projection algorithm is highly suitable for parallel implementa-

tion, to increase efficiency, hardware restrictions and capabilities must be considered.

Graphics cards contain many processing units, but as each computation unit is much

slower than a CPU core, their computation power depends on a high level of paral-

lelism. Memory is another important restriction. Current GPUs usually have fewer

than 2GBs of memory, with 1GB of memory more common. Since volume data can be

very large, such memory restrictions can easily result in a bottleneck. The algorithm

should consider such restrictions and be able to work with limited memory.

We present our GPU implementation of the cell-projection algorithm using CUDA

in Algorithm 5. The serial version processes each pixel individually, but this approach

is not suitable for GPUs. First of all, each pixel’s workload is too low to be effi-

ciently parallelized; the number of CUDA threads should be at least in the tens of

thousands. The number of intersection records per pixel would be much less. Assign-

ing one pixel’s process to different threads, similar to multi-core implementation, is

also not suitable, as the execution flow and memory access patterns are unorganized.

Further, each pixel’s workload differs drastically, which would cause significant work-

load imbalance among threads.

For the GPU, we grouped the pixels, calling each group a hash block, and processed

one group at each iteration. The NumOfRenderIterations variable represents the num-

ber of hash blocks, which depends on the dataset size. If the value of NumOfRen-

derIterations is low, the workload per render iteration increases, which allows more

efficient parallelization but increases the memory requirement. The amount of avail-

able memory thus limits the number of iterations. In our implementation, we used 16

or 64 rendering iterations. We describe the steps of the GPU-based algorithm below.

CPU to GPU data transfer: The tetrahedra and vertices data are copied just once

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 42

GPUCellProjectionAlgorithm();
begin

CopyToGPU(Vertices);
CopyToGPU(Tetrahedra);
CopyToGPU(ColorMap);
CopyToGPU(ViewParameters);
GPU.Run(ComputeScreenSpaceProjections(Vertices));
SSC=CopyFromGPU(ScreenSpaceCoordinates);
IntersectionRecord *PerHashBlockIntersectionLists[NumOfRenderIterations];
ExtractIntersectionRecords(Tetrahedra, Vertices, SSC,
PerHashBlockIntersectionLists);
for i=0 upto NumOfRenderIterations do

CopyToGPU(PerHashBlockIntersectionLists[i]);
GPU.Run(processHashBlock);
GPU.Run(sortHashBlock);
GPU.Run(composeHashBlock);

Display(Out putImage);
end

Algorithm 5: GPU-based cell-projection algorithm.

after CUDA initialization is completed. The view parameters are copied at the begin-

ning of each rendering; i.e., whenever the volume is redrawn. The color map is copied

at the beginning, but can be updated if the transfer function changes. We assume the

graphics card contains enough memory to hold these data, leaving some space. The

data transfer between the main memory and the GPU memory is very fast and has little

effect on rendering times.

Screen space projection of vertices: This function runs on the GPU using 512

blocks with 256 threads each. Usually using the same computation, each thread cal-

culates the screen space coordinates of one vertex; the execution flow differs only if

exceptions are observed, which is not frequent. Vertices are assigned to threads se-

quentially; thus memory access patterns are uniform and the shared memory is highly

utilized. As a result, this function is very efficiently parallelized.

Extracting intersection records: This step can be considered the screen space pro-

jection of the tetrahedra and is executed on the CPU. After the screen space coordinates

of the vertices are calculated, they are copied back to the CPU. This operation takes lit-

tle time, since the data size is small and the data transfer rates are high. This algorithm

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 43

works similarly to its serial version; the only difference is that instead of the inter-

section records being grouped according to their pixel coordinates, they are grouped

according to their hash blocks. A pixel’s hash block is simply computed as follows:

The last two or three bits of a pixel’s x and y coordinates are concatenated. With two

bits, 16, and with three bits 64, hash blocks are addressed. The most important prop-

erty of the hash function, which helps balance the workload of each hash block, is to

ensure that the pixels in each block represent a sub-sampling of the whole image rather

than being grouped in certain parts of the image.

We implemented this function on CPU because of irregularity and memory con-

cerns. Each tetrahedron has a different projection area, and the execution flow of the

scan-line algorithm differs for each tetrahedron. The number of pixels in each tetrahe-

dron’s projection area differs significantly, unevenly distributing the workload. Most

importantly, race conditions will be observed. Many tetrahedra will have projections

on the same hash blocks, thus they will try to write into identical locations. The only

solution for such race conditions is to extract the intersection records first and organize

them into hash blocks later. Although such an approach works, it introduces significant

overhead.

Calculating intersection effects: Apart from GPU-specific optimizations, this al-

gorithm is similar to its serial version. It starts by copying the intersection records for

the current hash block to the GPU. Each thread is assigned an intersection record and

responsible for producing the corresponding intersection effect data. Execution flows

are mostly uniform. Continuous threads are assigned to process contiguous intersec-

tion records, thus, memory accesses are also uniform for some parts. However, the

tetrahedra contain references to vertices, which are not contiguous, and accesses to the

vertices cannot be made uniform. However, for repeated access to non-uniform data,

the algorithm uses shared memory to store the data temporarily, which makes the sub-

sequent memory accesses uniform and much faster. This function is launched with a

grid of 1024 blocks; because of the size difference of the shared memory between de-

vices, those with a computing capability of 2.0 or higher are launched with 192 threads

per block and others use 64 threads per block.

Sorting intersection effects: The sort operation differs from its serial counterpart

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 44

significantly. In the serial version, the intersection effects for each pixel must be sorted,

and thus, many small sorting jobs are done independently, which enables efficient use

of sorting algorithms like quicksort. However, in the CUDA version, intersection ef-

fects for every pixel in a hash block are mixed; the sorting function must group an

individual pixel’s intersection effects and then sort these groups. Further, in the CUDA

version, the sort lists are much larger. In this work, we used efficient radix sort im-

plementation by Satish et al. [52] from the Thrust library [53]. This library includes

optimized implementations of various functions for GPUs and, integrated with CUDA,

it can use device memory allocated from there. Radix sort has O(n) time complexity,

which allows us to use larger hash blocks (thus fewer rendering iterations) without

negatively affecting sorting times. It can also be efficiently parallelized.

Radix sorting is not a comparison-based sorting technique. It uses standard data

types, given as input arrays, as the key and takes another array of standard data types as

data. Using the keys, it sorts the keys and the data. Since radix sort cannot use custom

structures, we divided the data inside the intersection effect structure into different

arrays: pix, dist and clr. The pix array (pixel) does not exist in the serial version,

but because sorting is not done on a per-pixel basis in this version, this distinction is

needed. The pix array elements are computed from the pixel coordinates, with the

current rendering iteration revealing the last two or three bits of each pixel’s x and

y coordinates. The rest of the bits are packed and each pix value is computed. For

example, let the resolution be 1024×1024 and the number of iterations be 16. Then,

each pixel’s x and y coordinates can be represented with eight bits, making each pix

value 16 bits in size.

Our sorting implementation must group the pixels’ intersection effect data, then

sort the groups according to distance. Since radix sort is stable, sorting first according

to distance and then according to the pix value achieves this.

Algorithm 6 shows the sort algorithm. index is an empty buffer, and the algorithm

begins by filling that buffer with the integer sequence 0, 1, 2 . . ., representing the data

index. The data is sorted using dist as the key and index as the data. Then, the pix

array must be reordered according to the new indices from the index array. The gather

function from the Thrust library performs these reorderings.

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 45

SortHashBlock(uint *pix, float *dist, uint *index, color *clr);
begin

thrust.sequence(index);
thrust.sort(dist, index);
thrust.gather(index, pix);
thrust.sort(pix, index);
thrust.gather(index, clr);

end

Algorithm 6: GPU-based sort algorithm for hash blocks.

The initial sorting step sorts the data according to eye distances. The second step,

using pix as the key and index as the data, groups the data. With the final gather, the

pix and clr arrays are sorted by eye distance and grouped by pixel values.

Compositing intersection effects: The ComposeHashBlock function uses the sorted

clr and pix arrays as input. It combines the color values in sorted order for each pixel

and computes the final pixel color. The composition process is described in Algo-

rithms 7 and 8.

ComposeHashBlock(int iteration, uint *pix, color *clr);
begin

color currFB
[

Width×Height
NumOfRenderIterations

]
;

Reset(currFB);
while length>CPUSwitchThreshold do

GPU.Run(Reduce(pix,clr,currFB);

hostPix=CopyToCPU(pix);
hostClr=CopyToCPU(clr);
hostCurrFB=CopyToCPU(currFB);
for i=1 upto hostPix.length do

composeRecord(hostCurrFB[hostPix[i]], hostClr[i],
hostCurrFB[hostPix[i]]);

currFB=CopyToGPU(hostCurrFB);
GPU.Run(updateFrameBuffer(currFB, iteration));

end

Algorithm 7: Composition algorithm for hash blocks.

Algorithm 7 uses a temporary frame buffer, currFB. The size of this buffer is equal

to the number of pixels processed at each iteration. Algorithm 7 runs on the CPU.

It repeatedly calls the Reduce function (Algorithm 8), which runs on the GPU and

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 46

Reduce(uint *pix, color *clr, color *currFB);
begin

tid=block.id× block.size+thread.id;
index=tid;
while index < pix.length do

if pix[2× index] == pix[2× index+1] then
composeRecord(clr[pix[2× index]], clr[pix[2× index+1]],
clr[pix[2× index]]);

else
composeRecord(currFB[pix[2× index+1]], clr[pix[2× index+1]],
currFB[pix[2× index+1]]);

index+=grid.size× block.size;

end

Algorithm 8: Reduction algorithm for hash blocks.

reduces the size of the array by half. This function relies on the input arrays being

sorted, as each thread processes a consecutive pair of entries in the input arrays. First,

the pix values of these pairs are compared. If the values are equal, then, because the

arrays have been sorted, the two color values can be combined and represented as a

single color value. If the pix values are not equal, the later record is output and the

earlier record is retained. A pair’s pix values can be different only if the later record is

the first record of the pixel that has not yet been output.

0,abc

0,a 0,b 0,c 1,d 1,e 1,f 1,g 2,h 2,i 3,j 3,k 3,l 0 1 2 3

2,i 3,jkl

3,j0,c 1,ef 1,g 2,i

0 1,d 2,h

2,h1,d03,kl

1,efg

0,ab

Figure 4.1: Reduction example.

Figure 4.1 illustrates the algorithm with an example. The process starts with 12

pix, clr entries. The right-hand side shows the temporary frame buffer, which is ini-

tially empty. After the first reduction, the data shrinks to six entries. (1, d), (2, h)

and (3, j) entries are output to the frame buffer while (0, c), (1, g) and (2, i) entries

are retained. Entry couples with the same pix values are combined to obtain (0, ab),

(1, ef), and (3, kl). Further reductions are executed in the same way. To reduce two

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 47

entries to one, the algorithm uses the composeRecord function, which takes three col-

ors as input. It combines its first two inputs and writes the result to its third input. This

function works similarly to the serial version.

The result of the Reduce function is an interleaved array. Further reductions can

be performed on the interleaved arrays, or the array can be compacted. We use an op-

timized compaction mechanism. After the first reduction, we compact the interleaved

array into its first half using the gather functionality of the Thrust library. This opera-

tion frees the other half for temporary storage. Further reduction operations write their

results to that free space. This approach eliminates the need to compact reduction op-

erations beyond the first one and allows parallelization of memory accesses for greater

efficiency.

In the Reduce function, each thread is responsible for combining two entries into

one. With further reductions, the arrays shrink significantly; thus after a certain point,

the threads cannot be utilized efficiently. We used two mechanisms to overcome this

problem. (i) We run the Reduce function with size-dependent grid and block sizes.

With large sizes, we use 512 blocks per grid and 256 threads per block. With smaller

sizes, we stepwise reduce the size to 64 blocks per grid and 32 threads per block. (ii)

After a certain length, we complete the reductions in the CPU. Because the data is now

so small, transfers between the CPU and GPU take little time and the CPU executes

the reduction operations more efficiently because parallelism is limited.

After the reductions are complete, all intersection effects are combined into the

temporary frame buffer. With the updateFrameBuffer function, which runs on the

GPU, the data in this buffer is transferred into the actual frame buffer. The naive

version completes the image after all render iterations have been completed; however,

this function also supports progressive rendering, which is very useful for increasing

interactivity.

4.2.2 Progressive Rendering

Volume rendering is time consuming, particularly for high resolutions, and this ad-

versely affects the interactivity. Progressive rendering aims to perform a low-resolution

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 48

volume rendering and progressively improve image quality while displaying the out-

puts to the user. As low-resolution rendering is faster, a low-quality image is displayed

fairly quickly. As the process continues, the image progressively improves, while the

user is observing the latest output.

The hash-block approach provides a natural framework for progressive rendering.

As mentioned earlier, each hash block will produce the overall sub-sampling of the

whole image. For example, if we use 16 hash blocks to render a 1024× 1024 image,

then each hash block will produce a 256×256 image, which is a low resolution version

of the whole image. Each of those low resolution images are slightly shifted from each

other, so that when combined they will constitute the high resolution image. Progres-

sive rendering simply requires processing the hash blocks in a specific order, so that

the processed hash blocks can be combined to obtain higher and higher resolutions

progressively.

The pixel values are assigned to each hash block according to their last two or three

bits. This approach divides the whole image into 4× 4 or 8× 8 sub-windows respec-

tively. Each pixel in a sub-window is processed by a different hash block. Without

progressive rendering, only the values of pixels assigned to the currently processed

hash block are updated in the frame buffer. On the other hand progressive rendering

requires some of the neighboring pixels being updated as well. For example, after the

first hash block has been processed, every pixels values in a sub-window is updated

with the computed pixel’s value. Accordingly, the lower resolution version can be

displayed without waiting the rendering to finish.

Figure 4.2 illustrates the progressive rendering process. In the example, we have 16

render iterations and a 4×4 sub-window. Right bottom corner of each cell displays the

index value of the pixel within the sub-window. The larger value represents the index

of the pixel whose value is currently set to the current pixel. The blue background

indicates the currently processed pixel, and the red background indicates the pixels

whose values are updated with current pixels values.

In the first iteration, the 0th pixel is processed and the results are written to every

pixels. In the second iteration, the 10th pixel is processed and the results are written to

pixels on the top half. At each iteration another pixel is processed and the results are

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 49

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

5 5 2

0 0 2 2

2

15 15

10 10

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12
8 8

8 8

5 5 7

0 0 2 2

7

15 15

10 10

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12
8 8

8 8

5 5 7

0 0 2 2

7

15 15

10 10

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12

8 8

13 13

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 5th Iteration

Final9th Iteration8th Iteration7th Iteration6th Iteration

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12
10 10 10 10

10 10 10 10

0 0 0 0

0 0 0 0
0 21 3

4 5

15

8

6 7

13 14

9 10 11

12
10 10 10 10

10 10 10 10

0 0 2

0 0 2 2

2

8 8

8 8

0 0 2

0 0 2 2

2

10 10

10 10

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12

5 5 2

0 0 2 2

2

10 10

10 10

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12
8 8

8 8

4 5 7

0 1 2 3

6

14 15

10 11

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12

8 9

12 13

0

5 5 7

0 1 2 2

7

15 15

10 10

0 21 3

4 5

15

8

6 7

13 14

9 10 11

12

8 8

13 13

21 3

4 5

15

8

6 7

13 14

9 10 11

12

Figure 4.2: Progressive rendering.

written to some neighboring pixels, until every pixel value is computed.

The processing order of pixels is important for progressive rendering. With the

given ordering, we can obtain various sub-resolutions after certain rendering iterations.

For example, we can output, 1×1, 2×1, 2×2, 4×2 and 4×4 sub-resolutions of our

4×4 sub-windows after 1st ,2nd ,4th,8th and 16th iterations, respectively. As a result, the

low resolution versions can be quickly obtained and displayed, while the resolution

progressively improves. This technique have very little overhead but improves the

interactivity greatly.

4.2.3 Memory Management

Memory is usually the limiting factor for the size of volume data that a renderer can

visualize. We have employed several methods to keep both GPU and system memory

requirement low. Our motivation was to keep memory footprint as low as possible

without adversely affecting the performance or accuracy.

Although system memory is large, it can become a limiting factor for high-image

resolutions, especially, because the cell-projection algorithm extracts the intersection

records and stores them in the memory before processing. To work with the available

memory, our implementation can render images in multiple passes. For example, an

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 50

image with 4096× 4096 resolution can be rendered in four passes of 2048× 2048

or 16 passes of 1024× 1024. This approach introduces some overhead; however, it

guarantees that the application will fit in the physical memory with no swapping, and

thus improves performance.

GPU memory requirement is more crucial, since it is smaller. Vertex and tetrahe-

dron data are the main components of the volume data and should be placed in the GPU

memory. Vertex structure is minimal. Tetrahedron structure can be compacted from 16

bytes to 12 bytes by encoding. However, since this would introduce noticeable perfor-

mance overhead, due to decoding operations and non-uniform memory access patterns,

our implementation use 16 bytes to represent the tetrahedron structure. Accordingly,

16× (NumberO fVertices + NumberO f Tetrahedra) bytes are required to store these

data. For the largest dataset in our test set, sf1 with 14 millions of tetrahedra, tetrahedra

and vertices require about 250 Mb’s of GPU memory.

The maximum possible number of intersection records in a hash block is directly

proportional to the memory requirements during the hash block processing. This value

depends on the dataset and view parameters greatly. On the other hand, this value can

be easily reduced by using higher number of hash blocks or using multi-pass render-

ing. Accordingly we can change the memory requirement according to the available

memory. In our implementation 34 bytes per intersection record is needed. This mem-

ory is reused as much as possible during the processing of hash blocks. When the sf1

dataset is rendered using 64 hash blocks with a 1024×1024 resolution in a single pass,

120 Mb’s of memory is needed for hash block processing. Together with tetrahedra,

vertices and other smaller data structures, the memory requirement falls well below

500 MB’s. Accordingly, a graphics card with 2GB’s of memory would be sufficient to

render a volume of a hundred millions of tetrahedra with similar characteristics to sf1

dataset using 64 hash blocks with a 2048×2048 resolution in a four passes.

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 51

4.3 Results

We used a PC with a four-core AMD CPU with SMP architecture running at 3.2 GHz,

4GB of system memory and an nVidia GTX 560 graphics card. We tested our im-

plementations on five different datasets (see Figure 4.3). We rendered each dataset

with three different view parameters and for three different resolutions: 512× 512,

1024×1024 and 2048×2048. We report the average results for each resolution.

D
at

as
et

D
at

a
Si

ze

R
es

ol
ut

io
n

Serial Multi-Core GPU

Time Time Speed-up Time Speed-up

C
om

b

21
5.

0 512×512 10.45 2.96 3.531 0.53 19.863

1024×1024 41.64 11.77 3.537 1.61 25.877

2048×2048 168.19 48.72 3.452 5.97 28.179

B
uc

ky

12
50

.2 512×512 71.76 20.07 3.576 3.16 22.735

1024×1024 285.94 82.45 3.468 10.33 27.671

2048×2048 1334.23 523.23 2.550 47.57 28.049

A
or

ta

13
86

.9 512×512 31.70 9.45 3.356 1.27 25.055

1024×1024 125.06 37.21 3.361 4.09 30.547

2048×2048 554.41 196.12 2.827 16.99 32.633

Sf
2

20
67

.7 512×512 40.34 11.80 3.418 2.44 16.516

1024×1024 159.48 47.08 3.387 6.77 23.554

2048×2048 637.79 193.30 3.300 28.76 22.180

Sf
1

13
98

0.
1 512×512 82.77 26.41 3.135 6.63 12.484

1024×1024 318.24 97.04 3.280 18.19 17.492

2048×2048 1615.24 732.10 2.206 100.01 16.152

Table 4.1: Rendering times and speed-ups of GPU, multi-core and serial cell-projection
algorithms. Data size is given in thousands of tetrahedra. Rendering times are in
seconds.

Table 4.1 show that significant speed-ups are obtained with the multi-core and GPU

implementations. The multi core implementation achieves a 3.2-fold increase in speed

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 52

(a) (b)

(c) (d)

(e)

Figure 4.3: Rendered images of various datasets: (a) Comb dataset, (b) Bucky dataset,
(c) Sf2 dataset and (d) Sf1 dataset, (e) Aorta dataset.

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 53

on average. Considering the rendering has a significant input-output (IO) component,

these speed-ups are very promising. The GPU implementation achieves 23.3-fold in-

crease in speed on average, with some speed-ups reaching above 32-fold. Considering

we used a middle-segment graphics card in the tests, these speed-ups are also very

promising.

Figure 4.4 (a) shows the speed-ups obtained for various resolutions of different

datasets using the multi-core implementation. This implementation achieves almost

identical speed-ups for 512× 512 and 1024× 1024 resolutions. For the 2048× 2048

resolution, speed-ups are slightly slower because of memory limitations. Our multi-

pass rendering approach solves high-memory requirement problem, but introduces

some overhead, which reduces the speed. For resolutions above 2048× 2048, we

expect speed-ups to be higher because serial implementation will also incur multi-pass

rendering overheads.

The GPU implementation produces higher speed-ups for the 1024× 1024 and

2048×2048 resolutions (cf. Figure 4.4 (b)) because, larger jobs use the GPU’s tens of

thousands threads more efficiently. The 512×512 resolution does not utilize the graph-

ics hardware as much, resulting in lower speedups. The multipass rendering overhead

affected the speed-up of 2048×2048 resolution, but particularly for smaller datasets,

the associated overhead was balanced by the higher utilization. For resolutions above

2048×2048, we expect that speed-ups would remain high.

CHAPTER 4. PARALLELIZATION FOR GPU AND MULTI-CORE CPUS 54

(a)

(b)

Figure 4.4: Speed-ups for various resolutions of different datasets: (a) multi-core im-
plementation and (b) GPU implementation.

Chapter 5

MaterialVis: Material Visualization
Based on Direct Volume and Surface
Rendering Techniques

In this chapter first we outline the general framework of MaterialVis, followed by two

sections on the preprocessing and rendering steps. In these sections the main algo-

rithms are presented in the form of pseudo-codes, leaving technical details to the ac-

companying Appendices. Then, some of the capabilities of the tool are demonstrated

using an embedded quantum dot data set. Even though our primary emphasis in Ma-

terialVis is on functionality, but not the speed, nevertheless we provide performance

benchmarks for a wide range of datasets.

5.1 General Framework

Figure 5.1 illustrates the framework of MaterialVis which has two main stages: pre-

processing and rendering. The preprocessing stage takes the raw input and constructs

the volumetric representation. For (poly)crystalline structures the preprocessing step

further continues and assigns error values to atoms representing crystal defects. The

rendering stage visualizes the constructed volume representation. The input reader

55

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 56

Atom−Ball Model

XRAY

Volume

(Amorphous)
(a2) Raw Input

(b) Preprocessed Input

Volume & Surface

Surface

Rendering Mode and Parameters
Camera and Light Controls

In
pu

t R
ea

de
r

O
pe

nG
L

M
od

ul
e

Rendering Tool

Renderers

MaterialVis

Preprocessor

Q
ua

nt
ifi

ca
tio

n
D

ef
ec

t

R
ep

re
se

nt
at

io
n

V
ol

um
e(a1) Raw Input

(Crystalline)

Figure 5.1: The overall framework of MaterialVis

module reads the volumetric representation and initializes the renderers. At any time,

one of five renderers is selected by the user and the visualization is performed. These

renderers use the OpenGL-based drawing module to display the volumetric data. The

rendering tool is an interactive tool. The user interactively provides various inputs to

renderers, such as camera and light information and several renderer-specific parame-

ters.

5.2 Preprocessing

MaterialVis operates on a very simple input format. For amorphous materials, the

types and atomic coordinates of each atom in the material is sufficient. However,

for crystalline structures, the tool also requires primitive and basis vector information

of the crystal structure. If this information is not readily available, our earlier work,

BilKristal [4, 5], could be utilized to extract the unit cell information from the crystal

structure.

MaterialVis construct a volumetric representation using the coordinates of a set of

points representing atoms in the material. There are two types of volumetric represen-

tations: regular and unstructured grids. Regular grid representation is widely used in

medical imaging fields where the input data is fixed in resolution. For material visu-

alization, interest points are the atoms; crystalline defects are attributed to them and

they constitute the surface structure. Because the regular grid representation is defined

independent to atoms, a fairly high grid resolution must be used in order to capture

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 57

crystal defects and surface structures in high detail. On the other hand, unstructured

grid representation uses atoms as vertices. Accordingly, despite using the connectivity

information, the unstructured grid representation is more compact and suited better for

material visualization. Because the tetrahedra are the simplest 3D primitives, we per-

form tetrahedralization to convert atomic coordinates into an unstructured volumetric

representation.

After tetrahedralization, we extract the surface polygons of the created volume.

The surface polygons are required by the surface rendering modes. MaterialVis fo-

cuses on visualizing crystal defects; thus, for the crystal structures the defects must

be quantified for each atom in the crystal. The preprocessing stage performs these

tasks and produces a data file storing the volumetric representation of the material. For

crystal structures, quantified crystal defects are also included. In our experiments, we

observed that the datasets with sizes up to half a million atoms could be preprocessed

in less than twenty minutes. The preprocessing stage data flow is summarized in Fig-

ure 5.2.

(Primitive, Basis Vectors)

Defect
QuantificationComputation

Normal
Extraction

SurfaceTetrahedralization

Atomic Errors

Face and Atom Normals

Surface Mesh

Tetrahedral Mesh

Atomic Coordinates, Unit Cell Info

Figure 5.2: The preprocessing stage data flow

5.2.1 Construction of the Volumetric Representation

The construction of the volume representation starts with tetrahedralization of atoms.

Each atom is represented as a point in 3D space. Tetrahedra cannot overlap with other

tetrahedra and all parts of the volume must be covered by exactly one tetrahedra. The

generated tetrahedra must be as close to a regular tetrahedron as possible (all sides are

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 58

equilateral triangles) because volumes containing many sliver tetrahedra do not repre-

sent the volume accurately and may cause rendering artifacts. Delaunay tetrahedraliza-

tion is the approach that generates such tetrahedra and it is the default tetrahedralization

scheme in MaterialVis because it produces superior results. We adapt Bowyer-Watson

Delaunay triangulation [54, 55] to generate Delaunay tetrahedra. Because Delaunay

tetrahedralization is not scalable for data sets containing millions of points, we devised

a pattern-based tetrahedralization algorithm.

Our pattern-based tetrahedralization algorithm is based on the fact that the crystal

structures have regular repeating patterns. The algorithm tetrahedralizes a unit cell of

the crystal and searches for the occurrence of this pattern in the actual dataset con-

taining atoms. Hence, it cannot handle arbitrarily unstructured point sets or highly

deformed crystals. It does not work on amorphous materials. It can tolerate small de-

formations, some interstitial impurity atoms and some vacancies. It can handle cavities

in the crystal structures, as long as the crystal remains as a single piece. The volumet-

ric representation constructed by the pattern-based tetrahedralization is not as good as

the one obtained by the Delaunay tetrahedralization, thus may produce inferior ren-

dering results; but the pattern-based tetrahedralization is much faster for larger input

sizes. MaterialVis only switches to pattern-based tetrahedralization for very large input

datasets, which otherwise would take hours to pre-process. For the details of Delaunay

tetrahedralization and pattern-based tetrahedralization, please refer to Appendix A.

After the tetrahedralization, the preprocessing stage continues with surface extrac-

tion. The surface extraction process simply extracts faces of tetrahedra which are not

shared by another tetrahedra. For each face, the normal values are calculated. The face

normals are used in flat shading. For smooth shading, the vertex normals should be

computed by averaging the normals of the faces sharing the vertex.

5.2.2 Quantifying Crystal Defects

We classify crystal defects into three groups. The first group of defects is the positional

defects, which are caused by the deviation of atoms from their perfect positions relative

to their neighbors. The graphite crystal with slightly shifted layers is an example.

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 59

Atoms in these shifted layers have positional defects. The second group of defects is

caused by vacant positions in crystals where some atoms should exist. The third group

of defects is caused by extra (interstitial impurity) atoms where some foreign atoms

could be found at off-lattice sites. The majority of crystal defects can be represented

as one of these or a combination of them.

MaterialVis calculates defect values of atoms for each type of defect. They are

calculated using the local neighborhood of atoms; any defect in the local neighborhood

of an atom contributes to the atom’s defect. In this way, the defects are represented and

visualized properly because a large volumetric region is affected.

ClNaClNaCl

Na Cl Na Cl Na
H

Na Cl Na Cl Na

ClNaNaCl Cl

Na

Na

Na

NaCl

Cl Na

NaCl

Cl

Na

NaCl

Cl

of the center Na atom

Cl Na Na

Local neighborhood vector

Na

NaNa

NaCl

ClNa

Na

Cl

Na

Na

NaCl

K

Unit cell of the NaCl crystal

PV 0

PV 1

Feature vector of the central Na atom Defects affecting the central Na atom

Positional defect

Vacancy

Substitutional impurity

Interstitial impurity atomCl

Cl

Figure 5.3: Illustration of the defect quantification for the NaCl crystal

Figure 5.3 illustrates a sample crystal structure with various defects. The unit cell

and the primitive vectors of the NaCl crystal are shown on the left. Although there

are simpler primitive vectors for the NaCl structure, we use the given primitive vectors

for demonstration purposes. In the middle part, the feature vector of a Na atom is

given. It includes every atom within the maximum primitive vector length distance

to it in a perfect crystal. On the right part of the figure, a sample crystal segment

demonstrates various types of crystal defects. The local neighborhood (the yellow

background region) vector of the atom is compared with the feature vector of the atom

and the error values that will be assigned to the atom are computed accordingly.

The defect quantification process is described in Algorithm 9. Defect quantifica-

tion is performed for every atom in the crystal. First, the local neighborhood vector

(LNV) of the atom is extracted. LNV includes all the atoms within a certain distance to

the atom. We used the maximum primitive vector length as the distance, however this

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 60

value can be tuned by the user. Then, the feature vector, which is the local neighbor-

hood vector of the atom in a perfect crystal, is computed.

DefectQuantification(Atoms A)

begin
foreach (Atom a in A) do

//Extract all atoms within a certain distance to

atom a
LNV=extractLocalNeighborhoodVector(a);

//Extract all atoms within a certain distance to

atom a in a perfect crystal
FV=computeFeatureVector(a.type);

//Assign defect upon feature comparisons
a.defect=compareFeatures(FV, LNV);

end

Algorithm 9: Defect quantification algorithm

Lastly, the local neighborhood and the feature vectors are compared to quantify the

defect value. The comparison process matches each atom in the local neighborhood

vector to its corresponding atom in the feature vector. Hence, it finds any positional dif-

ferences between corresponding atoms and any vacancies or interstitial impurity atoms

in the local neighborhood vector. The detailed description of the defect quantification

algorithm can be found in Appendix A.

5.2.3 Lossless Mesh Simplification

In order to capture small material features, like surface topology and crystalline de-

fects, MaterialVis use highly detailed tetrahedralization where each atom is repre-

sented with a vertex. On the other hand, this representation is usually over-detailed

for uniform regions in the material structures. Crystal defects constitute the volumetric

features of materials for visualization purposes. MaterialVis aims to use volume ren-

dering techniques to visualize such defects. Amorphous materials or perfect crystalline

structures do not contain any defects; hence, their structure is mostly uniform. More-

over, many materials containing crystal defects still contain a significant portion of

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 61

uniform structure. Representing such uniform regions at a low level of detail would re-

duce the mesh size significantly. We propose a lossless mesh simplification algorithm

that would simplify the volumetrically uniform regions in the material improving the

rendering performance, without affecting the surface structure and the regions bearing

some crystalline defects.

LosslessMeshSimplification(Atoms A, Tetrahedra T)

begin
//Extract and sort all non-surface edges with no defect
EdgeList=ExtractEdgeList(T);

while EdgeList is not empty do
e=EdgeList.getShortestEdge();

if No tetrahedron with a vertex having non-zero defect will be affected from

the collapse of edge e then
//Collapse edge e into newly created vertex v′

v′=collapse(e);

//Delete tetrahedra that use edge e and update

tetrahedra that use a vertex of edge e to use v′

instead
UpdateTetrahedra(T , e, v′);

//Update the edge list upon tetrahedral changes

UpdateEdgeList(EdgeList, e, v′);

end

Algorithm 10: Lossless mesh simplification algorithm

The lossless mesh simplification algorithm is based on edge-collapse-based re-

duction techniques. This algorithm was first proposed by Hoppe [28] for triangular

meshes. We extended the simplification algorithm to tetrahedral meshes [1]. Edge-

collapse technique works by repeatedly collapsing edges into new vertices. An edge-

collapse would eliminate tetrahedra using the collapsed edge and stretch the tetrahedra

using only one vertex of the collapsed edge. We specify the constraints for selecting

the edges to collapse in such a way to ensure lossless compression. The details are

given in Algorithm 10. In order to preserve surface details, no surface edge can be

collapsed. Also, an edge with a vertex on the surface can only be collapsed onto the

surface vertex. After an edge collapse, various tetrahedra are affected by either being

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 62

deleted or being stretched. If any of these affected tetrahedra contain an atom with a

non-zero defect value, the edge is not collapsed because it will modify the visual out-

put. The simplification ratio depends highly on the dataset. With the test datasets we

used, we achieved simplification ratios of up to 30% of the original size. The detailed

description of the lossless mesh simplification algorithm can be found in Appendix A.

5.3 Rendering

MaterialVis provides rendering functionality with various modes and display options,

such as lighting and cut-planes. It utilizes graphics acceleration via OpenGL graph-

ics application programming interface (API). The rendering tool supports five modes:

volume and surface rendering, volume rendering, surface rendering, XRAY rendering,

and atom-ball model rendering. Each rendering mode is useful for some aspect of

material analysis. A user-friendly graphical interface is provided, allowing users to

control the tool easily. For detailed explanation about features and functionalities of

the MaterialVis tool, please refer to the users manual provided online.

5.3.1 Volume and Surface Rendering

Volume and surface rendering aims to visualize both the material topology and the

crystal defects. It is the slowest but most flexible rendering mode. The user can

set many properties of the visualization. The volume rendering is based on the cell-

projection algorithm (see Section 4.1) that we used in our earlier work [1]. We ex-

tended the mentioned algorithm to handle surfaces. We selected the cell-projection

algorithm for several reasons. First of all, cell-projection is a very robust and flexible

algorithm. It can be modified to support advanced features easily. It does not require

any auxiliary data such as neighboring information. Its execution flow and memory

access patterns are mostly uniform, making it ideal for parallel implementations [2].

Our implementation utilizes multi-core CPU hardware. We can achieve almost linear

speed-ups [2]; i.e., 3.0 to 3.5-fold speed-ups for quad-core CPUs (see Section 4.3).

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 63

Thrown Ray

Camera

Screen
Volumetric Models

Current Pixel

Figure 5.4: The raycasting framework

We decided not to use GPU-based implementation for two reasons. First, the con-

ventional GPU based volume rendering algorithms, albeit being fast, cannot support

features, such as surface processing, multi-variable visualization, advanced transfer

functions, because they rely on limited shader programming techniques. Secondly,

although the CUDA or OpenCL based GPU implementations are capable to support

required features, they are not very robust and they are highly hardware dependent.

The cell projection algorithm is a ray-casting-based rendering technique. Fig-

ure 5.4 demonstrates the processing of a single pixel. The visualization parameters

are the camera position, orientation and the projection angle. A ray is cast for every

pixel on the screen image, traveling the volume and hitting the center of the pixel. The

ray starts with full intensity. While the ray traverses the volume, its color is affected by

the volume it visited and its intensity is reduced. The final color that the ray assumes

after exiting the volume defines the pixel color. Algorithm 11 presents our version of

the cell-projection algorithm.

The cell-projection algorithm projects each tetrahedron and face onto the image as

the first step. All the pixels that lie under the projections of each face and tetrahedra

are found and associated with those faces and tetrahedra. The algorithm constructs the

image pixel by pixel. First, the list of tetrahedra and faces associated with the cur-

rent pixel are extracted. Then intersection contributions are calculated for each face or

tetrahedra in the list. While calculating the contributions, tetrahedra and face intersec-

tions are treated differently. The intersection contribution structure contains two pieces

of data. The first one is the camera distance to the entry point of the tetrahedron or the

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 64

VolumeAndSurfaceRenderer()
begin

//Associate the tetrahedra and the faces with the
pixels that they are projected onto

ProjectTetrahedraOntoImageSpace();
ProjectFacesOntoImageSpace();
//Process pixel by pixel
foreach Pixel p do

//Extract the faces and tetrahedra that are
projected upon p

list=getProjectedFacesAndTetrahedra(p);
foreach Face or Tetrahedra fot in list do

//Compute the contibution of fot on the ray cast
from p

CalculateIntersectionContributions(fot,p);
SortByEyeDistance(list);
p.color={0,0,0,0};
//Combine the intersection contributions with alpha
blending and alpha correction to compute p’s color

foreach Face or Tetrahedra fot in list do
CompositeColor(p.color,fot);

end

Algorithm 11: The cell-projection algorithm

face which is used in visibility sorting of intersection records. The second piece of

data is the color and intensity of a full intensity ray that travels through the tetrahedron

or the face.

After the intersection contributions are computed, the results are sorted according

to the camera distance. Then starting from near to far, the intersection contributions

are composited into a single intensity value, which is assigned as the pixel color.

The calculation of tetrahedron intersection contributions starts by finding the entry

and exit points of the ray on the tetrahedron (cf. Figure 5.5 (a)). It takes several samples

on the line segment between the entry and exit points. The color and transparency of

each sample is calculated by interpolation. The sampled colors are combined into a

single color. While combining the colors, front-to-back alpha-blending is used and

the alpha channel value is corrected for each sample. The contribution of each color

is proportional to the segment length of the sample. The larger the tetrahedron, the

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 65

Ray

Tetrahedron

Exit PointEntry Point

Sample Points

Face

Normal Light

Normal−Light Angle

Ray

Intersection Point

a) b)

Figure 5.5: Color composition along tetrahedron-ray intersections for direct volume.
a) Tetrahedron-ray intersection and sample points, and b) face-ray intersection and
normal-light angle

higher its contribution will be. The remaining light intensity is directly proportional to

the contribution. For example, for a fully-opaque volume, only the entry color matters

because the ray will lose all of its intensity at the beginning.

Volumetric features are generally revealed by the use of appropriate transfer func-

tions. The transfer functions are simply mapping functions that compute the color and

intensity values for each set of attributes. They are very critical for the perception. The

transfer function should be defined in a way to highlight the features of prime interest.

Defects in crystal structures can be an example of such interested features. Usually,

interesting features are present in a small fraction of the volume data. In that case, very

transparent colors should be assigned to the attributes that one is not interested in and

a range of relatively opaque colors should be assigned to interesting features. Thus,

the interesting features can be visualized in high detail while the other parts are barely

represented. Although general principles can be laid out easily, defining good transfer

functions is an important research area.

MaterialVis uses a simple but flexible approach for defining the transfer function.

The colors of vertices are determined by the defects associated with the atom defining

the vertex. The quantified defect values of an atom a are converted into color values

using the defect parameters of the atom as follows:

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 66

a.Color =BaseColor+

a.positionalDefect×PositionalDefectColor×PositionalDefectMultiplier+

a.extraAtomDefect×ExtraAtomColor×ExtraAtomMultiplier+

a.vacancyDefect×VacancyColor×VacancyDefectMultiplier

The color and error multipliers used in the equation are tunable by the user. The face

intersections are used to handle the effects of the surface. The calculation of the face

intersection contributions handles the lighting effects that are missing in pure volume

renderers. The color and transparency of the faces and the lighting parameters are

tunable by the user.

Lighting effects underline the surface structure without hiding the volume visual-

ization. The face intersection contribution calculation starts by finding the intersection

point between the face and the ray. The distance from the camera to the intersection

point is computed. The color of intersection is computed using interpolation of the

colors of face vertices. The normal for the intersection point is calculated. If the shad-

ing mode is flat, than the face normal is used. If shading mode is smooth, the vertex

normals are interpolated. Figure 5.5 (b) demonstrates the face ray intersection and the

light-normal angle.

We use Phong illumination model for this rendering mode because the specification

of an excessive number of lighting parameters used by complex illumination models

puts the burden on the user. The main focus in this rendering mode is still the volume

rendering part; hence, a simpler lighting model works well and is more user-friendly.

More detailed explanations about volume and surface rendering algorithm can be found

in Appendix A.

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 67

(a) (b) (c)

Figure 5.6: Rendered images of various dataset: (a) NaCl cracked, (b) Cu line defect,

(c) A centers (substitutional nitrogen-pair defects) in diamond.

Figure 5.6 shows the visualization of some material datasets using this mode. We

tuned the rendering parameters to focus on the defects in the crystal volume and the sur-

face related parameters to give an impression of the structure itself but not overwhelm

the volume visualization. Since the volume and surface rendering mode is flexible, the

user can visualize the material in various ways and analyze various aspects of the data

efficiently.

5.3.2 Volume Rendering

Volume rendering aims to visualize the defects in the crystal. Since surfaces are not

represented, it gives only a very rough idea about the topology of the material. We use

Hardware Assisted Visibility Sorting (HAVS) for volume rendering [26]. The algorithm

performs some of the computations and rendering on the graphics hardware; hence, it

is partially GPU accelerated. It is not as fast as surface rendering. Figure 5.7 presents

the visualization of some datasets with this mode.

The high performance of the HAVS algorithm is due to its use of the graphics hard-

ware. The algorithm converts the volume rendering problem into a simpler version that

can be solved on the GPU. Although this approach is fast, it also has drawbacks. The

first problem is in visibility sorting. HAVS performs a rough but fast visibility sorting

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 68

(a) (b) (c)

Figure 5.7: Volume rendering mode: (a) NaCl cracked, (b) A centers (substitutional
nitrogen-pair defects) in diamond, (c) Palladium with hydrogen.

on the CPU, which may have errors. The algorithm relies on a shader program running

in the GPU to correct these errors before rendering. Due to the limitations in the graph-

ics hardware, all of the errors might not be corrected, leading to visual artifacts. This

situation is very particular for irregular tetrahedralizations. Luckily, material structures

have fairly regular tetrahedralization, thus HAVS work well with MaterialVis.

The second problem is the limitations on color computations. HAVS use a pre-

integration table in terms of 3D textures to compute the contributions of tetrahedra.

This brings a restriction on color computations so that the visualization attribute of the

volume, the quantified defect value in our case, can only be a scalar. In the defect quan-

tification stage, we assign three defect attributes to each vertex: positional, vacancy,

and extra (interstitial impurity) atom defects. HAVS cannot handle three attributes; thus

these defect values must be merged as a single defect. We compute a weighted sum

using the user-specified weights: positional defect multiplier, extra atom multiplier,

and vacancy defect multiplier. We calculate the scalar defect value of atom a using the

defect parameters of the atom as follows:

a.scalar =a.positionalDefect×PositionalDefectMultiplier+

a.extraAtomDefect×ExtraAtomMultiplier+

a.vacancyDefect×VacancyDefectMultiplier

After all defect values are computed, they are normalized to the range [0, 1].

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 69

The scalar-to-color conversions are performed using a simple color map specified

by the user. The color map is a set of entries mapping a certain scalar value to a certain

color and intensity. The colors and intensities of intermediate scalar values are found

using linear interpolation between the color map entries. Figure 5.8 shows a sample

color map where five entries are defined and the whole scalar range is computed from

these entries. The example map focuses on the scalar range [0.4, 0.6]; thus, it can

distinguish scalar values in this range much better than the other parts.

0.0 0.4 0.5 0.6 1.0

Figure 5.8: An example color map

5.3.3 Surface Rendering

Surface rendering aims to visualize the topological structure of the material and is

suited to visualize datasets with an underlying topological structure. The sponge

dataset is one example. Figure 5.9 (a) presents the rendered output of sponge dataset

with this mode. For regular datasets without any specific shape, this mode cannot

provide much information.

(a) (b) (c)

Figure 5.9: Sample images in different rendering modes. (a) Surface rendering mode
- Sponge dataset, (b) XRAY rendering mode - CaCuO2 spiral dataset, (c) Atom-ball
model rendering mode - NaCl cracked dataset

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 70

We can easily render the surface of the material because the surface data is present

in the volume representation. Cut-planes change the surface structure but with the sur-

face reconstruction algorithm, the current surface data is maintained. The rendering

is performed using OpenGL rendering functionality. The triangular mesh that repre-

sents the surface is rendered by OpenGL directly. Vertex or face normals are fed to

the shaders, depending on the selected shading model being smooth or flat, respec-

tively. The color and the shininess of the surface material can be specified by the user.

Because surface data is directly rendered with OpenGL, surface rendering is GPU ac-

celerated. The surface data is only a small portion of the volume data; hence, surface

rendering is a fast rendering mode, compared to the other rendering modes.

5.3.4 XRAY Rendering

XRAY rendering mode can be considered as a simplified volume visualization tech-

nique. Its output resembles the XRAY images, hence it is named after it. Figure 5.9 (b)

presents a material rendered in this mode. This rendering mode is particularly useful

for visualizing the internal structure of crystals. It is aimed to fill a small gap that other

rendering modes cannot address well. XRAY rendering mode does not visualize the

errors in the structure of a crystal. Similar to the surface rendering mode, it focuses on

the topology. However, unlike the surface rendering mode, it does not just visualize

the outer surface but visualizes the volume.

The algorithm is a simplified version of volume and surface rendering algorithm.

Basically, for each thrown ray, the faces it intersects with are found and sorted with

intersection order. The odd numbered faces would be the entry faces, where ray enters

inside the material and even numbered faces would be the exit faces. These faces are

used to calculate the distance that the ray travels inside the material. The calculated

distance is then used as the opacity coefficient for the pixel that ray is thrown for.

Because the algorithm uses surface polygons to visualize the volume, the input size

is much smaller than the modes that use tetrahedra. This mode is relatively fast even

though the implementation is not GPU accelerated.

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 71

5.3.5 Atom-Ball Model Rendering

Atom-ball model rendering mode visualizes the material as a group of atoms. It

does not consider the volumetric properties and the surface structure of the material.

This mode is useful to understand the relations between atoms and to examine small

datasets. It is the only mode that distinguishes between different types of atoms in the

material because it treats the material as a set of atoms, rather than as a volume or a

surface. Atoms are drawn as spheres. The user can set the colors of each atom type.

The atom radii given in the input file are used as the radii of the spheres representing

atoms. However, the user is allowed to set a parameter, which scales down the radii.

In this way, the user can visualize the crystal with actual atom radii in a very compact

form, or scale down the radii to obtain a spacious version where individual atoms can

be distinguished easily.

Atom-ball model rendering can visualize the crystal defects in a restricted way. The

user can set the transparency of atoms that do not contain any defects, which makes the

atoms with defects distinguished easily. However, this mode cannot help to assess the

magnitude of defects and differentiate different defect classes. Figure 5.9 (c) depicts

the visualization of NaCl cracked dataset with this rendering mode.

The rendering is done using basic OpenGL functionality to draw spheres repre-

senting atoms. However, in order to handle transparency, the atoms should be sorted in

visibility order. This mode is also GPU accelerated; it is a fast mode and can be used

interactively.

5.4 Demonstration: Embedded Quantum Dot Datasets

In order to demonstrate the usage and various capabilities of MaterialVis, we describe

the steps of how we have used the tool for the structural analysis of two real-world

quantum dot datasets that we have been working on. Quantum dots are semiconductors

with built-in structural irregularities. Such irregularities provide the semiconductor

unique electrical properties. Quantum dots have possible uses in various areas such as

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 72

quantum computing, solar cells, medical imaging, LEDs and transistors. Biasiol and

Heun [56] and Ulloa et al. [57] present in-depth information about the structure and

physical properties of quantum dots.

We used two InGaAs type quantum dot datasets, one with random alloying among

the cations and one without. The base semiconductor is the GaAs compound. The

quantum dot is grown layer by layer. The atoms belonging to each layer are deposited

onto existing layers. Deposited atoms use the existing lattice structure to bind. When

the quantum dot layers are to be grown, indium atoms are deposited instead of gal-

lium atoms at certain regions. Although the indium atoms are larger than the gallium

atoms, they still fill the binding sites for gallium atoms. The resulting crystal structure

becomes highly stressed. Eventually, indium atoms cause deformations in the crys-

tal structure, relaxing to stable positions. The crystal regions with such deformations

have significantly different electrical properties. By managing the deposition of indium

atoms, building quantum dots with various shapes and properties is possible.

Both of the quantum dot datasets contain just under 1.5 million atoms. Due to the

deformations in the crystal structure, pattern-based tetrahedralization cannot be used

for quantum dot datasets. They must be treated as amorphous materials where Delau-

nay tetrahedralization must be used; hence, it is crucial to keep input sizes low. How-

ever, in order to simplify our task, we can mask the Arsenic atoms from the dataset.

Arsenic is the common atom that is found throughout the whole material more or less

homogeneously. What we are really interested in is the distribution of Gallium and

Indium atoms. If Arsenic atoms are included, they will have significant effect on the

volume visualization, reducing the effects of interested properties of the material. Sec-

ondly, masking the Arsenic atoms reduces the size of the datasets significantly. This

helps to keep pre-processing times low.

We can also employ another input simplification technique. Volume rendering

techniques mainly visualize the gallium and indium distributions in the material. It

does not depend on the density of atoms in a certain region. For example, in InGaAs

quantum dots, certain parts of the material will be made of just regular GaAs alloy

and certain parts will be made of just InAs alloy. Because we masked the Arsenic

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 73

atoms, those parts will be composed of just single type of atoms. For volume render-

ing purposes, it does not matter if we represent such regions with all the atoms or just

a fraction of them; hence, we can reduce the input size significantly.

We employed a simple data size reduction technique. First, we included the atoms

belonging to the surface of the material. Because our datasets have rectangular prism

shape, determining the boundary atoms was straightforward. Secondly, we uniformly

sampled the whole material and included the sampled atoms, which helps to keep the

tetrahedralization regular. Finally, we included every atom that has another atom of

different type within a certain distance. With this technique, we can capture the regions

with Gallium-Indium transitions with high detail. We also reduced the sizes of our

two datasets to 5.8% and 8.5% to their original sizes, without losing any information

regarding the visualization.

The next step is scalar assignment. Because we are only interested in Gallium-

Indium transitions, we assigned 0.0 to Gallium atoms and 1.0 to Indium atoms. How-

ever, users can assign any scalar values depending on the properties they want to visu-

alize. After scalar assignments, the datasets are ready to be pre-processed. Because the

data sizes are kept low, pre-processing takes just a few minutes. After pre-processing,

we tuned the rendering parameters. We used volume and surface rendering. We set

the surface lighting parameters so that the material surfaces are just identifiable. We

assigned a green, high transparency color as the base color. This color represent the

Gallium atoms bearing 0.0 scalar value. The scalar values are used as the positional

defect. We used a high opacity red color to positional defect. Accordingly, we ob-

served the Indium atoms in red. Figure 5.10 depicts the rendered images of our sample

datasets.

5.5 Benchmarks

Minimum hardware requirements of MaterialVis are rather modest. We tested the

tool without any problems on various low end computers. On the other hand, the

rendering times heavily depend on available computational power. The performance of

the volume and surface rendering and the XRAY rendering modes depend on the CPU

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 74

(a) (b)

Figure 5.10: InGaAs quantum dots: (a) without random alloying, (b) with random
alloying.

power. They can also benefit from multi-core CPUs. Other rendering modes are GPU

bound modes; high-end graphics cards will increase the performance significantly. The

minimal configuration should have a graphics card with OpenGL 1.5 support. Stand-

alone graphics cards with private memory is recommended. Memory requirements

heavily depend on the input size. In our tests, we barely reached 1GB of memory

usage. A standard personal computer with a stand-alone graphics card could run the

tool without any significant latency.

We tested the tool with various datasets. In the sponge dataset [10], which was

already mentioned in the introduction section, we tackled the volumetric imaging of a

highly complicated structure. In the dataset we used, the stoichiometry of SiOx was

fixed to x = 1, i.e., SiO by setting the silicon excess to 30 vol. %. There are more than

half a million atoms in total.

The quantum dot represents a self-assembled InGaAs quantum dot embedded in

a GaAs matrix. It contains a lens-shaped quantum dot placed on an InAs half-

monolayer-thick wetting layer. The random alloy variant has 20% indium and 80%

gallium compositional alloying between the cation atoms. Both structures are first pre-

pared in the zinc blende sites of the GaAs crystal, followed by strain relaxation using

molecular statics as implemented in the LAMMPS code [58]. Here, the interatomic

force fields are described by the Abell-Tersoff potentials [59, 60]. The sponge and

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 75

Number Pre- Volume and Volume Surface XRAY Atom-ball
of processing surface rendering rendering rendering rendering

atoms rendering

NaCl
25,725 9,254 707 66 11 275 28

Cracked

Cu Line
173,677 171,559 1,329 269 15 302 187

Defect

Diamond
44,982 17,824 891 109 14 266 49Vacancy

Defect

A Centers

45,005 18,072 879 112 15 265 49
(Substitutional
Nitrogen-pair
Defects) in
Diamond

Graphite
66,576 140,563 1,405 138 13 284 72

Slided

Palladium
137,549 103,399 1,471 254 14 298 148with

Hydrogen

CaCuO2
199,764 114,221 1,484 305 16 337 216

Spiral

Sponge 534,841 602,869 2,748 1,015 22 471 578

Quantum

86,338 84,376 611 145 16 175 114
Dot without
Random
Alloying

Quantum

125,595 1,161,757 730 196 16 182 181
Dot with
Random
Alloying

Table 5.1: Preprocessing and rendering times of each dataset (in milli-seconds).

quantum dot datasets are real-world datasets that are researched actively.

The NaCl Cracked dataset represent a NaCl crystal with some positional defects.

The atoms with defects represent a crack. The datasets Cu Line Defect, Diamond

Vacancy Defect, A Centers (Substitutional Nitrogen-pair Defects) in Diamond [61],

and Graphite Slided represent crystals with some well-known defects. The Palladium

with Hydrogen dataset represents a block of palladium metal absorbing hydrogen from

one of its faces. The CaCuO2 Spiral dataset presents a cylinder-shaped crystal with

a spiral sculptured from inside. These datasets are synthetic datasets and they are

specifically designed to showcase various crystal defects and interesting topological

structures using the features and capabilities of our rendering tool.

CHAPTER 5. MATERIALVIS: MATERIAL VISUALIZATION BASED ON . . . 76

Table 5.1 presents the preprocessing and rendering times of each dataset on a

middle-end PC with 3.2 GHz quad-core CPU and nVidia GTX560 GPU. The longest

preprocessing time is less than 20 minutes. Despite the high computational cost of vol-

ume and surface rendering mode, the highest rendering time is 2.7 seconds for tested

datasets. With other rendering modes, interactive rendering rates were achieved for all

tested datasets.

Chapter 6

Conclusion

We propose a low overhead dynamic selective refinement scheme for unstructured

tetrahedral meshes. We use a progressive mesh representation that support selective

refinement. In addition to static selective refinement queries, such as spatial refine-

ments or field value based refinements, we incorporate dynamic refinement capabili-

ties. We propose a heuristic selective refinement algorithm, which automatically re-

fines the mesh according to the camera parameters. We propose an importance metric

that estimates the effect of the vertices on the rendered image.

We test the proposed scheme on several datasets with different characteristics and

viewing parameters. The results are quite satisfactory. We achieve up to 60% speed-

ups and up to 88% reduction in GPU memory requirements for the same image quality

with selective refinement as compared to the non-selective refinement. We also show

that different direct volume renderers can be modified to work with the our framework

with little extra effort.

We propose multi-core and GPU implementations of the cell-projection algorithm

for direct volume rendering. The proposed algorithms are designed to be highly mem-

ory efficient, using available system and GPU memories. With the multi-pass render-

ing approach, our implementation is able to render high resolution images. We tested

our implementations with several large datasets with different characteristics and un-

der various view parameters. The multi-core implementation produced up to 3.5-fold

speed-ups, while the GPU implementation reached 32-fold speed-ups. Together with

77

CHAPTER 6. CONCLUSION 78

the progressive rendering mechanism, we achieved interactive rates for many datasets.

MaterialVis is a functional visualization tool, which can easily process million-

atom datasets. It supports many rendering modes to accentuate both the topology

and the defects within the nanostructures. What distinguishes MaterialVis from other

visualization tools is that it can handle the materials as a volume or a surface manifold,

as well as a set of atoms.

MaterialVis provides many features for material visualization. It includes a user-

friendly visualization environment. The user can analyze the material structure in a

flexible way. MaterialVis supports many rendering modes, each one is useful for visu-

alizing different aspects of the material. It is a powerful visualization tool for rendering

both the topology and the defects of crystal structures. While MaterialVis implementa-

tion is based on various important works, many improvements are also made. Several

features are added in order to improve the capabilities and usability of the tool.

MaterialVis combines our knowledge on direct volume visualization on a real-

world application. The volume rendering framework is based on our earlier works on

selective refinement for unstructured tetrahedral meshes, and multi-core parallelization

of cell-projection algorithms. MaterialVis, to the best of our knowledge, is the only

material visualization tool, that treats the materials as volumes and surface manifolds

in addition to a simple set of atoms. This approach allows to visualize various aspects

of the materials, such as crystalline defects and surface topology, that have been very

difficult to visualize before. Together with our experience on volume visualization, the

MaterialVis tool can reach interactive speeds, despite its high computational workload.

We believe that MaterialVis will be an instrumental software for crystallographers,

polymer and macromolecule researchers, solid state physicists, or more generally ma-

terial scientists in need to analyze nanostructures embedded within a matrix of atoms.

Although only a small part of its visualization capabilities could be demonstrated

throughout this work, the user can easily tune the rendering parameters with the user-

friendly interface to obtain custom visual representations of materials.

There are several possible improvements to our work. The importance metric

CHAPTER 6. CONCLUSION 79

weight computations can be automated. Optimal weights significantly differ depend-

ing on the dataset and transfer function characteristics. We determined the exponen-

tial weights experimentally. The reason for this approach was keeping the research

focused. However, an algorithm that analyzes the dataset and the transfer function to

compute optimal weights would be an improvement on our view-dependent refinement

framework.

In our GPU implementation of Cell Projection algorithm, we proposed several so-

lutions to improve scalability, such as multi-pass rendering and high hash block sizes.

Although these approaches make rendering images with very high resolutions feasible,

they are not optimized for speed. Our current implementation relies on the vertices

and tetrahedra information being able to fit in the GPU memory with some extra GPU

memory to spare for temporary data. This approach limits the size of the dataset that

can be rendered with our implementation. These issues, which could enable rendering

large datasets, would be investigated. These techniques are also applicable to other

GPU-based algorithms.

MaterialVis tool provides a unique perspective on visualization of materials. How-

ever, it can be converted into a much powerful material analysis tool. Because the tool

represents the material as a volume, a surface manifold and a set of atoms; it contains

the infrastructure to perform several topological, atomic level and quantum level analy-

sis. Thus, in collaboration with domain experts, such analysis functionalities could be

added to the tool, converting it into a much capable material analysis tool.

Bibliography

[1] E. Okuyan, U. Güdükbay, and V. İşler, “Dynamic view-dependent visualization

of unstructured tetrahedral volumetric meshes,” Journal of Visualization, vol. 15,

pp. 167–178, 2012. 10.1007/s12650-011-0122-x.

[2] E. Okuyan and U. Güdükbay, “Direct volume rendering of unstructured tetrahe-

dral meshes using CUDA and OpenMP,” Journal of Supercomputing, vol. 67,

no. 2, pp. 324–344, 2014.

[3] E. Okuyan, U. Güdükbay, C. Bulutay, and K. H. Heinig, “Materialvis: Material

visualization tool using direct volume and surface rendering techniques,” Journal

of Molecullar Graphics and Modelling, vol. 50, no. 1, pp. 50 – 60, 2014.

[4] E. Okuyan, U. Güdükbay, and O. Gülseren, “Pattern information extraction from

crystal structures,” Computer Physics Communications, vol. 176, no. 7, pp. 486–

506, 2007.

[5] E. Okuyan and U. Güdükbay, “Bilkristal 2.0: A tool for pattern information ex-

traction from crystal structures,” Computer Physics Communications, vol. 185,

no. 1, pp. 442–443, 2014.

[6] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno, “Selective

refinement queries for volume visualization of unstructured tetrahedral meshes,”

IEEE Trans. on Vis. and Comp. Graph., vol. 10, no. 1, pp. 29–45, 2004.

[7] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva, “Interactive render-

ing of large unstructured grids using dynamic level-of-detail,” in Proc. of IEEE

Visualization, pp. 199–206, 2005.

80

BIBLIOGRAPHY 81

[8] H. Berk, C. Aykanat, and U. Güdükbay, “Direct volume rendering of unstructured

grids,” Computer & Graphics, vol. 27, no. 3, pp. 387–406, 2003.

[9] B. Gault, M. P. Moody, J. M. Cairney, and S. P. Ringer, “Atom probe crystallog-

raphy,” Materials Today, vol. 15, no. 9, pp. 378–386, 2012.

[10] J. Kelling, G. Ódor, M. F. Nagy, H. Schulz, and K.-H. Heinig, “Comparison

of different parallel implementations of the 2+1-dimensional KPZ model and

the 3-dimensional KMC model,” The European Physical Journal Special Top-

ics, vol. 210, no. 1, pp. 175–187, 2012.

[11] D. Friedrich, B. Schmidt, K. H. Heinig, B. Liedke, A. Mcklich, R. Hbner,

D. Wolf, S. Klling, and T. Mikolajick, “Sponge-like Si-SiO2 nanocompositemor-

phology studies of spinodally decomposed silicon-rich oxide,” Applied Physics

Letters, vol. 103, no. 13, 2013.

[12] B. Liedke, K.-H. Heinig, A. Mcklich, and B. Schmidt, “Formation and coarsen-

ing of sponge-like Si-SiO2 nanocomposites,” Applied Physics Letters, vol. 103,

no. 13, 2013.

[13] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker, “A streaming

narrow-band algorithm: Interactive computation and visualization of level sets,”

IEEE Transactions on Visualization and Computer Graphics, vol. 10, pp. 422–

433, 2004.

[14] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Interactive volume

on standard pc graphics hardware using multi-textures and multi-stage rasteriza-

tion,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on

Graphics hardware, HWWS ’00, (New York, NY, USA), pp. 109–118, ACM,

2000.

[15] K. Engel, M. Kraus, and T. Ertl, “High-quality pre-integrated volume render-

ing using hardware-accelerated pixel shading,” in Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Workshop on Graphics hardware, HWWS ’01, (New

York, NY, USA), pp. 9–16, ACM, 2001.

BIBLIOGRAPHY 82

[16] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser, “Smart hardware-

accelerated volume rendering,” in Proceedings of the Symposium on Data Visu-

alisation, VISSYM ’03, (Aire-la-Ville, Switzerland, Switzerland), pp. 231–238,

Eurographics Association, 2003.

[17] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface

construction algorithm,” ACM Computer Graphics (Proceedings of SIGGRAPH),

vol. 21, pp. 163–169, July 1987.

[18] M. Kraus and T. Ertl, “Cell-projection of cyclic meshes,” in Proceedings of IEEE

Visualization, pp. 215–559, 2001.

[19] R. Cook, N. L. Max, C. T. Silva, and P. L. Williams, “Image-space visibility

ordering for cell projection volume rendering of unstructured data,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 10, no. 6, pp. 695–707,

2004.

[20] P. Shirley and A. Tuchman, “A polygonal approximation to direct scalar volume

rendering,” Proceedings of the 1990 Workshop on Volume Visualization, vol. 24,

pp. 63–70, November 1990.

[21] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno, “Tetrahedral projection using

vertex shaders,” in Proceedings of the IEEE Symposium on Volume Visualization

and Graphics, VVS ’02, (Piscataway, NJ, USA), pp. 7–12, IEEE Press, 2002.

[22] A. Maximo, R. Marroquim, and R. Farias, “Hardware-assisted projected tetrahe-

dra,” Comp. Graph. Forum, vol. 29, pp. 903–912, 2010.

[23] M. P. Garrity, “Raytracing irregular volume data,” in Proceedings of the IEEE

Workshop on Volume Visualization, (New York, NY, USA), pp. 35–40, ACM,

November 1990.

[24] K. Koyamada, “Fast traversal of irregular volumes.,” in Visual Computing -

Integrating Computer Graphics with Computer Vision, (Berlin), pp. 295–312,

Springer, 1992.

BIBLIOGRAPHY 83

[25] M. Weiler, M. Kraus, M. Merz, and T. Ertl, “Hardware-based ray casting for

tetrahedral meshes,” in Proceedings of the 14th IEEE Visualization, VIS ’03,

pp. 44–, IEEE Computer Society, 2003.

[26] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva, “Hardware-assisted

visibility sorting for unstructured volume rendering,” IEEE Trans. on Vis. and

Comp. Graph., vol. 11, no. 3, pp. 285–295, 2005.

[27] C. T. Silva, J. L. D. Comba, S. P. Callahan, and F. F. Bernardon, “A survey of

GPU-based volume rendering of unstructured grids,” RITA, vol. 12, no. 2, pp. 9–

30, 2005.

[28] H. Hoppe, “View-dependent refinement of progressive meshes,” in Proc. of ACM

SIGGRAPH, pp. 189–198, 1997.

[29] H. Hoppe, “Progressive meshes,” in Proc. of ACM SIGGRAPH, pp. 99–108,

1996.

[30] M. Garland and P. Heckbert, “Surface simplification using quadric error metrics,”

in Proc. of ACM SIGGRAPH, pp. 209–216, 1997.

[31] I. Trotts, B. Hamann, K. Joy, and D. Wiley, “Simplification of tetrahedral

meshes,” IEEE Visualization, pp. 287–295, 1998.

[32] P. Chopra and J. Meyer, “Tetfusion: An algorithm for rapid tetrahedral mesh

simplification,” in Proc. of IEEE Visualization, pp. 133–140, 2002.

[33] O. Staadt and M. Gross, “Progressive tetrahedralizations,” in Proc. of IEEE Visu-

alization, pp. 397–402, 1998.

[34] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno, “Tetrahedral projection using

vertex shaders,” in Proceedings of the IEEE Symposium on Volume Visualization

and Graphics, VVS ’02, pp. 7–12, 2002.

[35] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, “Multiresolution represen-

tation and visualization of volume data,” IEEE Trans. on Vis. and Comp. Graph.,

vol. 3, no. 4, pp. 352–369, 1997.

BIBLIOGRAPHY 84

[36] Z. Du and Y.-J. Chiang, “Out-of-core simplification and crack-free LOD volume

rendering for irregular grids,” Comp. Graph. Forum, vol. 29, pp. 873–882, 2010.

[37] R. Sondershaus and W. Straßer, “View-dependent tetrahedral meshing and ren-

dering,” in Proc. of the 3rd Int. Conf. on Computer Graphics and Interactive

Techniques in Australasia and South East Asia, pp. 23–30, 2005.

[38] CrystalMaker Software Ltd., “CrystalMaker,” 2013. Available at

http://www.crystalmaker.com/crystalmaker/index.html.

[39] Shape Software, “Shape Software,” 2012. Available at

http://www.shapesoftware.com/00_Website_Homepage.

[40] Robert T. Downs et al., “XtalDraw,” 2004. Available at

http://www.geo.arizona.edu/xtal/group/software.htm.

[41] K. Momma, “VESTA – JP-Minerals,” 2011. Available at

http://jp-minerals.org/vesta/en.

[42] Crystal Impact, “Diamond crystal and molecular structure visualization,” 2012.

Available at

http://www.crystalimpact.com/diamond.

[43] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor,

M. Towler, and J. van de Streek, “Mercury: Visualization and analysis of crystal

structures,” Journal of Applied Crystallography, vol. 39, pp. 453–457, Jun 2006.

[44] D. Ushizima, D. Morozov, G. H. Weber, A. G. Bianchi, J. A. Sethian, and E. W.

Bethel, “Augmented topological descriptors of pore networks for material sci-

ence,” IEEE Trans. on Visualization and Computer Graphics, vol. 18, no. 12,

pp. 2041–2050, 2012.

[45] J. Li, “AtomEye: An efficient atomistic configuration viewer,” Modelling and

Simulation in Materials Science and Engineering, vol. 11, no. 2, p. 173, 2003.

[46] Dept. of Energy and Advanced Simulation and Computing Initiative, “VisIt,”

2013. Available at

https://wci.llnl.gov/codes/visit/home.html.

BIBLIOGRAPHY 85

[47] A. Kokalj, “XCrySDen - A new program for displaying crystalline structures

and electron densities,” Journal of Molecular Graphics and Modelling, vol. 17,

no. 3 - 4, pp. 176–179, 1999.

[48] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface

construction algorithm,” in Proceedings of ACM SIGGRAPH’87, (New York, NY,

USA), pp. 163–169, ACM, 1987.

[49] P. Cignoni, C. Costanza, C. Montani, C. Rocchini, and R. Scopigno, “Simpli-

fication of tetrahedral meshes with accurate error evaluation,” in Proc. of IEEE

Visualization, pp. 85–92, Oct. 2000.

[50] J. El-sana and A. Varshney, “Generalized view-dependent simplification,” Comp.

Graph. Forum, vol. 18, pp. 83–94, 1999.

[51] C. Correa and K.-L. Ma, “Visibility histograms and visibility-driven transfer

function,” IEEE Trans. on Vis. and Comp. Graph., vol. 17, no. 2, pp. 192–204,

2011.

[52] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms for

manycore GPUs,” Tech. Rep. NVR-2008-001, NVIDIA Corporation, September

2008.

[53] J. Hoberock and N. Bell, “Thrust: A parallel template library,

http://www.meganewtons.com,” 2012. Version 1.3.0.

[54] A. Bowyer, “Computing Dirichlet tessellations,” The Computer Journal, vol. 24,

no. 2, pp. 162–166, 1981.

[55] D. F. Watson, “Computing the n-dimensional Delaunay tessellation with applica-

tion to Voronoi polytopes,” The Computer Journal, vol. 24, no. 2, pp. 167–172,

1981.

[56] G. Biasiol and S. Heun, Compositional Mapping of Semiconductor Quantum

Dots and Rings. Physics reports, Elsevier, 2011.

[57] J. Ulloa, P. Offermans, and P. Koenraad, “InAs quantum dot formation studied at

the atomic scale by cross-sectional scanning tunnelling microscopy,” Handbook

BIBLIOGRAPHY 86

of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics

and Electronics, p. 165, 2011.

[58] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Jour-

nal of Computational Physics, vol. 117, pp. 1–19, 1995.

[59] D. Powell, M. Migliorato, and A. Cullis, “Optimized tersoff potential parame-

ters for tetrahedrally bonded iii-v semiconductors,” Physical Review B, vol. 75,

no. 11, p. 115202, 2007.

[60] C. Bulutay, “Quadrupolar spectra of nuclear spins in strained InxGa1−x as quan-

tum dots,” Phys. Rev. B, vol. 85, p. 115313, 2012.

[61] G. Davies, “The a nitrogen aggregate in diamond-its symmetry and possible

structure,” Journal of Physics C: Solid State Physics, vol. 9, pp. L537–L542,

1976.

Appendix A

MaterialVis Algorithms

A.1 Delaunay Tetrahedralization Algorithm

Algorithm 12 describes the Bowyer-Watson Delaunay tetrahedralization. The algo-

rithm starts by constructing an initial tetrahedron with four newly introduced points:

a, b, c, and d. This initial tetrahedron is selected large enough to contain every point

in the point set inside. Then each point in the input data set are iteratively inserted

into the existing tetrahedralization constructed so far. Each tetrahedra define a sphere

because four points in space defines a sphere.

The findCollidingTetrahedra finds the tetrahedra whose spheres contain the cur-

rently inserted point. These tetrahedra violate the Delaunay property and they need to

be deleted. The findCollidingTetrahedra function uses an octree structure to search for

such tetrahedra in an efficient way. The parameters of the enclosing sphere of each

tetrahedron are computed and stored into the octree structure. Insertions into the oc-

tree structure are performed according to the center coordinates of these spheres as in

a regular octree. The range information, the minimum bounding box containing all the

spheres inserted into an octree node, is also stored in the corresponding node. This

range information is used by the findCollidingTetrahedra function to decide whether

to continue the search on an octree branch or not.

After the tetrahedra whose enclosing spheres contain the point to be inserted are

87

APPENDIX A. MATERIALVIS ALGORITHMS 88

Tetrahedralization(PointSet P)
begin

//Build the initial tetrahedron with artificial points.
It is defined large enough so that no point in P lies
outside of it

Tetrahedra=new tetrahedron(new points(a,b,c,d));
//Iterative insertion of each point
while P is not empty do

v=P.nextPoint;
//Find the tetrahedra whose spheres contain v
TSet=findCollidingTetrahedra(v);
//Find boundary faces of the volume defined by
colliding tetrahedra

FSet=Set of All Faces from TSet;
FSet=eliminateDuplicates(FSet);
//Delete each tetrahedra in the colliding tetrahedra
list

foreach (tetrahedron t from TSet) do
Tetrahedra.delete(t);

//Create a tetrahedron for each face in the boundary
faces

foreach (face f from FSet) do
Tetrahedra.add(new tetrahedron(f,v));

//Eliminating any tetrahedra with artificial points
foreach (tetrahedron t from Tetrahedra) do

if (t contain points a, b,c or d) then
Tetrahedra.delete(t);

end

Algorithm 12: Delaunay tetrahedralization algorithm

found, the faces of these tetrahedra are extracted as a sub-volume and the duplicate

faces are eliminated. This duplicate elimination step eliminates both copies of the

duplicate faces, thus only the faces on the surface of the sub-volume (boundaries

of the cavity) remain. The extracted faces of the boundary of the cavity is used to

re-tetrahedralize the void volume. The algorithm creates a new tetrahedron for each

boundary face by combining the face with the newly inserted point. As the final step,

any tetrahedra containing the initially introduced points, a, b, c or d, are deleted.

APPENDIX A. MATERIALVIS ALGORITHMS 89

A.2 Pattern-based Tetrahedralization Algorithm

Algorithm 13 describes the pattern-based tetrahedralization. The algorithm tetrahe-

dralizes a unit cell of the crystal and searches for the occurrence of this pattern in the

actual dataset containing atoms. The process starts with the tetrahedralization of unit

cells in the crystal. This part only uses the primitive and basis vectors of the crystal.

One of the basis vectors are translated into the origin and the atoms of the unit cell

are extracted. The unit cells do not just include the basis vectors; they also contain

any atom whose coordinates in terms of primitive vectors relative to the basis vector

translated to the origin is in the unit range at all dimensions. In other words, unit cell

atoms include atoms from neighboring unit cells whose atoms lie on the shared faces.

This set of unit cell atoms are tetrahedralized using Delaunay tetrahedralization. How-

ever, some restrictions are applied. Mainly, the tetrahedralization of the unit cell must

be constrained so that the corresponding faces, namely top-bottom, left-right, far-near,

must match. This constraint is crucial because these faces will be shared when unit

cells are stacked in the crystal and the constraint ensures the created tetrahedra from

neighboring unit cells fit together perfectly.

Figure A.1 demonstrates how pattern-based tetrahedralization works. For illustra-

tion purposes, we use a simple two-dimensional cubic lattice with just nine atoms,

instead of a three-dimensional lattice. The unit cell of the lattice contains a single ba-

sis vector; thus, it has four corner atoms. The unit cell triangulation for the 2D case

contains two triangles (tetrahedra for the 3D case). The calculation of new triangles

starts with a random vertex, the third vertex in the example. To determine the unit cell

of this vertex, the algorithm checks the existence of three other unit cell vertices with

correct relative coordinates to the third vertex. The 0th, 1st and 4th vertices are found.

The first and second triangles (tetrahedra) are defined using the unit cell triangulation

(tetrahedralization) template. The atoms in the immediate neighborhood of the third

vertex, 0th, 4th and 6th vertices, are inserted into a processing queue. The vertices are

processed in the order they are inserted into the queue. The green vertex represents the

currently processed atom, the turquoise vertices represent the atoms in the processing

queue, and the brown vertices are the processed atoms.

The algorithm uses an octree structure to speed up the search of atoms in a specific

APPENDIX A. MATERIALVIS ALGORITHMS 90

PBT(PointSet P, UnitCellInfo uci)
begin

//Construct the unit-cell tetrahedralization template
UCT=UnitCellTetrahedralization(uci);
//Construct the Octree and insert every point into it
Octree pointTree = createOctree(P);
//Initialize the breath-first queue
Queue BFQueue=new Queue();
point p=selectSeed(P,uci);
BFQueue.enqueue(p);
//Unit-cell discoveries with breath-first approach
while BFQueue is not empty do

p=BFQueue.dequeue();
//Search for template points centering p
foreach (point q in UCT) do

pointTree.search(p + q);

if (no point in UCT could be found) then continue;
//Tetrahedra discoveries
foreach (tetrahedron t in UCT) do

if (every point in t has been found) then
Tetrahedra+=new tetrahedron(p, t);

//Enqueue the seeds of neighboring unit-cells into
the BFQueue

for (i = −1 to 1) do
for (j = −1 to 1) do

for (k = −1 to 1) do
if (i, j,k) = (0,0,0) then continue;
point q=p+i×uci.PV [0]+ j×uci.PV [1]+ k×uci.PV [2];
if (q has not been enqueued before) then

BFQueue.enqueue(q);

ReconstructSurface();
end

Algorithm 13: Pattern-based tetrahedralization algorithm

APPENDIX A. MATERIALVIS ALGORITHMS 91

v5v5

v2v1v0

v7 v8v6

v7 v8v6 v7 v8v6 v7 v8v6

v2v1v0

v2v1v0 v2v1v0 v2v1v0

v7 v8v6v7 v8v6

v0 v1 v2

v4
v3 v5v5v4

v3v4
v3 v5

v3
v4

v3 v5v4
v3

v4
v0

process

process

T0
T1

T2
T3

T5

T6

T7 v1, v5, v8, v2

T4

A
to

m
 C

oo
rd

in
at

es

process
v7

v6
process

process
T0

T1

T2
T3 v4

T0
T1

T2
T3

T5
T4

T0
T1

T2
T3

v3

T0
T1

process

Figure A.1: The illustration of the pattern-based tetrahedralization

region. It selects a seed point to start the search process. The seed can be any atom from

the crystal with the same type of the basis vector at the origin. The algorithm searches

for unit cells with the same type of basis vector using a breadth-first strategy because

this strategy works better to locate the crystal defects than other search strategies, such

as depth-first search. After the seed is selected, it is inserted into the BFQueue structure

and the search starts. At each iteration of the breadth-first search, the algorithm selects

the first atom, p, from the BFQueue. Then it tries to match the neighbors of p to the

unit cell tetrahedralization (UCT) template. The algorithm checks the existence of

each point in the UCT template relative to p in the actual crystal. Each UCT tetrahedra

whose all points relative to p have been identified are inserted into Tetrahedra list.

After the search of the unit cell tetrahedra is completed for this seed point, the

algorithm finds new seed points and the search continues in the same manner. The

breadth-first search continues by checking the immediate neighbors of p’s unit cell. If

the base points of these unit cells have not been enqueued before, they are enqueued.

It should be noted that the algorithm does not require the existence of such points. In

fact, if such points do not exist in the crystal, virtual points are introduced and inserted

into the BFQueue. This is required in cases such as the seed point could be a missing

atom or an atom near the surface of crystal because ignoring such atoms will cause

missing the remaining unit cell. The algorithm ensures the termination by stopping the

breath first search on current seed when no atom could be found from its unit cell.

Because the pattern-based tetrahedralization utilizes unit cells to tetrahedralize the

APPENDIX A. MATERIALVIS ALGORITHMS 92

crystal, it cannot handle surfaces that do not align with unit cell faces. In such cases,

very rough and jagged surfaces are created. In order to smooth such surfaces, the

algorithm simply adds some new tetrahedra in rough parts to fill the cavities on the

surface.

A.3 Defect Quantification Algorithm

MaterialVis calculates defect values of atoms for each type of defect. They are calcu-

lated using the local neighborhood of atoms; any defect in the local neighborhood of an

atom contributes to the atom’s defect. In this way, the defects are represented and visu-

alized properly because a large volumetric region is affected. The defect quantification

is described in Algorithm 14.

Defect quantification starts by determining the boundaries of the local neighbor-

hood. We define the local neighborhood as the sphere around the atom whose radius is

the length of largest primitive vector, called local neighborhood radius (LNR). Using

small LNR values will reduce the size of the local neighborhood, thus any defect will

be represented in a small part of the crystal. Using large LNR values will make any

defect to be represented in a large part of the crystal, which increases the computa-

tional cost. The trade-off between the computational cost and the visualization quality

is controlled with a user-specified parameter.

The next step is to construct the feature vectors for each basis vector. The feature

vector is a sample that represents the appearance of the perfect crystal. The createFea-

tureVector function takes a basis vector, translates it to the origin and identifies all the

atoms around it within the distance LNR or closer from the perfect crystal. The algo-

rithm continues by determining the local neighborhood of each atom from the actual

crystal and comparing it to the feature vector. However, determining the local neigh-

borhood of atoms is not a trivial task. The brute-force approach is to scan all the atoms

and extract the ones that lie in the local neighborhood. This leads to quadratic com-

putational cost and it is very time consuming for large datasets. Octrees storing range

data could be utilized to speed up the process. Because of the overhead of construct-

ing and maintaining the octree, we use regular grids to speed up the process, whose

APPENDIX A. MATERIALVIS ALGORITHMS 93

construction and maintenance is simple.

DefectQuantification(Atoms A, UnitCellInfo uci)

begin
//Define the local neighborhood radius; the distance

that an atom is affected from defects within
LNR=LengthOfLargestPrimitiveVector;

//Compute the feature vectors; the type and relative

position of atoms to each basis vector within LNR

distance in the perfect crystal
for (i = 0 upto NumOfBasisVectors) do

FV[i]=createFeatureVector(i, uci, LNR);

//Construct the grids
atom QueryGrid[32][32][32];

atom RefGrid[32][32][32];

CreateGrid(A, LNR, QueryGrid, RefGrid);

//Compare the feature vector and local neighborhood

vector for each atom using grid approach
for (i = 0 upto 32) do

for (j = 0 upto 32) do
for (k = 0 upto 32) do

foreach (Atom atomR in RefGrid[i][j][k]) do
LNV=NULL;

//Extract the local neighborhood vector
foreach (Atom atomQ in QueryGrid[i][j][k]) do

if (distance(atomR, atomQ) ≤ LNR) then
LNV+=atomQ;

//Assign defect upon feature comparisons
atomR.defect=compareFeatures(FV[atomR.type], LNV);

end

Algorithm 14: Defect quantification algorithm

Figure A.2 illustrates a simple 2D cubic lattice with 64 atoms mapped by a 2 × 2

grid. Query grids have the exact dimensions of 4 × 4. Thus the lattice is divided

equally into four query grids. For each query grid, there is a corresponding reference

APPENDIX A. MATERIALVIS ALGORITHMS 94

grid. The reference grid contains every atom that is within maximum feature vector

length distance to any atom in the query grid for any dimension. To find the feature

vector of any atom in a query grid, only searching the atoms in the corresponding

reference grid is sufficient.

QueryGrid[0,1] QueryGrid[1,1]

Q
ueryG

rid[1,0]R
ef

G
ri

d[
0,

0]

Q
ue

ry
G

ri
d[

0,
0]

Figure A.2: The illustration of the query and reference grids

The algorithm constructs regular grids to speed-up the local neighborhood extrac-

tion process. The regular grid divides the volume into 32× 32× 32 = 32,768 cells

(sub-volumes). Then atoms are inserted into one of these cells of the reference grid

(RefGrid) according to their coordinates. The query grid (QueryGrid) is constructed

in a different way. Any atom whose coordinate values differ by at most LNR at each

axis from the boundaries of a cell of the QueryGrid is inserted into that cell. In other

words, for any atom a in the cell RefGrid[x][y][z], we identify all the atoms within

LNR distance to a in QueryGrid[x][y][z]. This process is repeated for each cell in the

regular grid. The local neighborhood vectors, LNV, for each atom in RefGrid[x][y][z],

are found using the query grid cell QueryGrid[x][y][z]. Although the algorithm still

have quadratic time complexity, the number of comparisons are significantly reduced

with the regular grid approach.

The compareFeatures function compares the feature and local neighborhood vec-

tors of an atom and assigns the defect value. The first step is to match the elements

of the feature and local neighborhood vectors. Two atoms are matched only if their

atom types are identical and their positions relative to their origin differ less than a

APPENDIX A. MATERIALVIS ALGORITHMS 95

pre-specified threshold. After matchings are completed, the squares of the relative

distance differences between matched atoms are added. This value multiplied with

a constant depending on the unit cell size and assigned to the atom as the positional

defect, or simply defect. The number of atoms left unmatched in the feature vector is

assigned as the missing atom defect, and the number of atoms left unmatched in the

local neighborhood vector is assigned as the extra atom defect.

There are also some special cases that compareFeatures function should handle.

First of all, near the boundaries of vectors, the positional defects can cause false miss-

ing and extra atom defects. For example, an atom that matches to an atom near the

boundaries of the feature vector (FV) might be left out of the local neighborhood vec-

tor (LNV) due to some positional defect, leading to a false missing atom defect. Simi-

larly, some atoms that must have been left out of the local neighborhood vector (LNV)

could be included, leading to a false extra atom defect. In order to avoid these cases,

unmatched atoms near the boundaries of the feature vector and the local neighborhood

vectors are not counted as defects. Secondly, atoms very close to the surface will cause

significant missing atom defects. Because such missing atoms are caused by the topol-

ogy of the crystal, they should not be treated as missing atoms. The algorithm simply

ignores missing atom defects very close to the surface.

A.4 Lossless Mesh Simplification Algorithm

The lossless mesh simplification algorithm is based on edge-collapse based reduction

techniques. Edge-collapse technique works by repeatedly collapsing edges into new

vertices. An edge-collapse would eliminate tetrahedra using the collapsed edge and

stretch the tetrahedra using only one vertex of the collapsed edge. We specify the con-

straints for selecting the edges to collapse in such a way to ensure lossless compression.

The details are given in Algorithm 15. In order to preserve surface details, no surface

edge can be collapsed. Also, an edge with a vertex on the surface can only be collapsed

onto the surface vertex. After an edge collapse, many tetrahedra are affected by being

deleted or being stretched. If any of affected tetrahedra contain an atom with non-zero

defect value, the edge is not collapsed since it will modify the visual output.

APPENDIX A. MATERIALVIS ALGORITHMS 96

LosslessMeshSimplification(Atoms A, Tetrahedra T)
begin

//Construct the edge list that stores collapse
candidates

foreach Edge e of T do
if e is not a surface edge AND both vertices of e have zero defect then
EdgeList.Insert(e);

Sort(EdgeList);
//According to edge length from shortest to longest
while EdgeList is not empty do

e=EdgeList.getFirst();
//Get the first edge and remove it from the EdgeList
AffectedTetrahedra=getAffectedTetrahedra(e);
//Find and return any tetrahedra in T that contain
one or both vertices of e; these would be affected
from the collapse of e

//Continue to collapse e only if the collapse will
not affect any part with non-zero defect values

if If no tetrahedron in AffectedTetrahedra contain a vertex with non-zero
defect value then

v′=collapse(e);
//If e contains no surface vertices, v′ is set to
the center of two vertices of e. If e contains
one surface vertices, v′ is set to that surface
vertex

foreach tetrahedron t in AffectedTetrahedra do
if t contain both vertices of e then T .delete(t);
//Delete any tetrahedra that use e as an edge

else Update(t,e,v′);
//Update any reference to vertices of e in t to
the new vertex v′

UpdateEdgeList(EdgeList,e,v′);
//Delete any edge in EdgeList which use one of
the vertices of e and insert every newly created
edge that use v′ to the EdgeList

end

Algorithm 15: Lossless mesh simplification algorithm

APPENDIX A. MATERIALVIS ALGORITHMS 97

The simplification ratio highly depends on the dataset. With the test datasets we

used, we achieved simplification ratios up to 30% of the original size.

A.5 Volume and Surface Rendering Algorithm

Algorithm 16 presents our version of the cell-projection algorithm. The cell-projection

algorithm projects each tetrahedron and face onto the image as the first step. The pro-

jections are stored in terms of intersection records, which represent a certain primitive

is projected upon a certain pixel. For each pixel in the image, a list of intersection

records are maintained. Screen space projections of vertices are computed and stored

in the SSC array. Then the projections of tetrahedra and faces are computed and cor-

responding intersection records are inserted into the PerPixelIntersectionLists array.

Because the pixel coordinates are implicitly stored in array indices of PerPixelInter-

sectionLists array, the inserted records only store a pointer to the face or tetrahedron.

After the projections of all tetrahedra and faces are processed, the PerPixelIntersec-

tionLists array contain a list for each pixel, which stores all tetrahedra and faces that

project onto that pixel.

The algorithm constructs the image pixel by pixel by computing the intensity con-

tributions of each intersection record. Tetrahedra and face intersection records are

treated differently while calculating the intensity, but the output intensity structure is

identical. The intensity contribution structure contains two pieces of data. The first

one is the camera distance to the entry point of the tetrahedron or the face. This data

is used in visibility sorting of intersection records. The second piece of data is the

intensity contribution of the ray that travels through the tetrahedron or the face.

After the intensities are computed, the results are sorted according to the camera

distance. Then starting from near to far, the intensity contributions are composed into

a single intensity value, which is assigned as the pixel intensity.

The calculation of tetrahedron intensity contributions is described in Algorithm 17.

The algorithm starts by finding the entry and exit points of the ray on the tetrahedron

(cf. Figure 5.5 (a)). It samples points along the line segment between the entry and

APPENDIX A. MATERIALVIS ALGORITHMS 98

SurfaceAndVolumeRenderer()
begin

//Calculate the screen-space coordinates of each vertex
SSC=ComputeScreenSpaceProjections(Vertices);
//Group the lists storing every ray-tetrahedron and
ray-face intersections for each pixel

IntersectionRecord PerPixelIntersectionLists[Width][Height];
//Fill out the PerPixelIntersectionLists list via the
projection of tetrahedra and faces onto the screen

foreach (tetrahedron t in volume data) do
ProjectionPixels=ExtractProjectionPixels(t,SSC);
foreach (pixel p in ProjectionPixels) do

PerPixelIntersectionLists[p.x][p.y]+=t;

foreach face f in surface data do
ProjectionPixels=ExtractProjectionPixels(f ,SSC);
foreach (pixel p in ProjectionPixels) do

PerPixelIntersectionLists[p.x][p.y]+= f ;

foreach Pixel p with indices i,j do
list=PerPixelIntersectionLists[i][j];
IntensityContrib IntensityContribList=NULL;
//Cast the ray for the current pixel
Ray R=new Ray(i, j);
//Compute the intensity contributions of each
intersection with R

foreach (IntersectionRecord ir in list) do
if (ir is tetrahedron intersection) then

IntensityContribList+=CalculateTetrahedronIntensityContrib(ir, R);

else if (ir is surface intersection) then
IntensityContribList+=CalculateSurfaceIntensityContrib(ir, R);

//Sort the intensity contributions according to eye
distances

SortIntensityContributions(IntensityContribList);
//Compose the intensity contributions in sorted
order

Color c = ComposeIntensityContributions(IntensityContribList);
Image[i][j]=c;

end

Algorithm 16: The cell-projection algorithm

APPENDIX A. MATERIALVIS ALGORITHMS 99

exit points. The intensity of each sample is calculated by interpolating the intensi-

ties of tetrahedron vertices. The interpolated intensity also contains the alpha channel

value representing the transparency. The sampled intensities are combined into a sin-

gle intensity. While combining the intensities, front-to-back alpha-blending is used

and the alpha channel value is corrected for each sample. The contribution of each

intensity value is proportional to the segment length of the sample. For a fully-opaque

volume, only the entry intensity matters because the ray will lose all of its intensity at

the beginning.

The intensity of vertices are determined by the defects associated with the atom

defining the vertex. The quantified defect values of an atom a are converted into the

intensity values using the following equation:

a.Color =BaseColor+

a.PositionalDefect×PositionalDefectColor×PositionalDefectMultiplier+

a.ExtraAtomDefect×ExtraAtomColor×ExtraAtomMultiplier+

a.VacancyDefect×VacancyColor×VacancyDefectMultiplier

The color and error multipliers used in the equation are tunable by the user. Algo-

rithm 18 calculates the surface intensity contributions. The color and transparency of

the faces and the lighting parameters are tunable by the user.

The algorithm for computing the surface intensities starts by finding the intersec-

tion point between the face and the ray. The distance from the camera to the intersec-

tion point is computed. The intensity of intersection is computed using interpolation

of the intensities of face vertices. The normal for the intersection point is calculated. If

the shading mode is flat, the face normal is used. If shading mode is smooth, the vertex

normals are interpolated. Figure 5.5 (b) demonstrates the face ray intersection and the

light-normal angle. We use Phong illumination model for this rendering mode. The

main focus in this rendering mode is still the volume rendering part; hence, a simpler

lighting model is user-friendly and works well.

APPENDIX A. MATERIALVIS ALGORITHMS 100

CalculateTetrahedronIntensityContrib(ir, R)
begin

IntensityContrib ic;
tetrahedron t=ir.tetrahedron;
//Calculate the entry and exit points of the ray on the
tetrahedron

[EntryPoint, ExitPoint]=findIntersectionPoints(t, R);
ic.distance=|Camera−EntryPoint| ;
//Calculate the sample length

d=|ExitPoint−EntryPoint|/NumOfSamples ;
ic.int=0, 0, 0, 0;
//Sample points along the line segment in the
tetrahedron

for (i=0 upto NumOfSamples) do
//Find the position and the intensity of the sample
point via linear interpolation

point p= i×EntryPoint+(NumOfSamples−i)×ExitPoint
NumOfSamples ;

Intensity pInt=InterpolateIntensity(p, t);
//Add the contribution of current sample on ic.int
ic.int=CombineIntensity(ic.int, pInt, d);

return ie;
end

Algorithm 17: Calculation of tetrahedron intensity contributions.

CalculateSurfaceIntensityContrib(ir, R)
begin

IntensityContrib ic;
face f =ir.face;
//Compute the ray-face intersection point
IntersectionPoint=findIntersectionPoint(f, R);
ic.distance=|Camera− IntersectionPoint| ;
ic.int=InterpolateIntensity(IntersectionPoint, f);
//Use interpolated vertex formals or face normal
depending on the shading model

N=getNormal(IntersectionPoint, f);
foreach (Light l) do

//Calculate the intensity contribution for each
light source using Phong illumination model and
add to the intensity

ic.int += Calculated intensity for light source l;
return ic;

end

Algorithm 18: The calculation of surface intensity contributions.

APPENDIX A. MATERIALVIS ALGORITHMS 101

A.6 XRAY Rendering Algorithm

XRAY rendering mode can be considered as a simplified volume visualization tech-

nique. Algorithm 19 describes XRAY rendering. The algorithm starts similar to the

cell-projection algorithm. The first difference is that this algorithm do not extract in-

tersection records from tetrahedra. The second difference comes from the intensity

calculations. This mode do not calculate the exact intensities; hence, the Calcula-

teXRAYIntensityContrib function just computes the distance from the camera to the

intersection point. The ReduceDistance function calculates the distance that the cur-

rent ray travels inside the material by using the intensity contribution list. The odd

numbered records indicate the faces that the ray enters into the material and the even

numbered records indicate the faces that the ray exited the material. Thus the total dis-

tance the ray travels through can be computed. Finally, the intensity of the pixel can be

computed by multiplying XRAYAlphaLength, XRAYBaseColor, and the distance that

the ray travels through the material.

APPENDIX A. MATERIALVIS ALGORITHMS 102

XRAYRenderer()
begin

//Calculate the screen-space coordinates of each vertex
SSC=ComputeScreenSpaceProjections(SurfaceVertices);
//The list storing every ray-face intersections grouped
into pixels

IntersectionRecord PerPixelIntersectionLists[Width][Height];
//Fill out the PerPixelIntersectionLists list via the
projection of faces onto the screen

foreach (face f in surface data) do
ProjectionPixels=ExtractProjectionPixels(f , SSC);
foreach (pixel p in ProjectionPixels) do

PerPixelIntersectionLists[p.x][p.y]+= f ;

foreach Pixel p with indices i,j do
list=PerPixelIntersectionLists[i][j];
IntensityContrib IntensityContribList=NULL;
//Cast the ray for the current pixel
Ray R=new Ray(i, j);
//Calculate the intersection point to eye distances
for each face intersection with R

foreach (IntersectionRecord ir in list) do
IntensityContribList += CalculateXRAYIntensityContrib(ir, R);

//Sort the intersections with R according to their
eye distance

SortIntensityContribs(IntensityContribList);
//Extract the distance that the ray travels inside
the volume

float d=ReduceDistance(IntensityContribList);
Image[i][j]=d × XRAYAlphaLength × XRAYBaseColor;

end

Algorithm 19: XRAY rendering algorithm

Appendix B

MaterialVis User Manual

B.1 Installation Notes

MaterialVis is a stand-alone program. Simply, the required files must be placed

in the same directory. The MaterialVis.exe, MaterialVisUI.exe and Tetrahedraliza-

tion.exe files are the main executable files. Required dll files, glut32.dll, glew32.dll and

AntTweakBar.dll, must either be copied into a system directory, or be placed alongside

the executables. The shaders directory and its contents (*.vp and *.fp files) must also

be placed alongside the executables. By default, all these files are presented together,

thus no manual work is necessary.

The executables can also be built from the source code. The project is developed

using Microsoft Visual Studio 2005. However, it can be converted to a higher Visual

Studio version and compiled. Apart from the standard libraries coming together with

the Visual Studio, the project requires the GLUT libraries. GLUT is a freeware graph-

ics library and the latest version of the GLUT libraries can be obtained from the In-

ternet. For the installation and the Visual Studio integration, please refer to the GLUT

documentation.

103

APPENDIX B. MATERIALVIS USER MANUAL 104

B.2 File Formats

MaterialVis operates on a very simple input format. The input file contains a line of

text for each atom in the material specifying the type of the atom and its 3D coordi-

nates. For amorphous materials, this data is sufficient. However, if the input material

is a crystal structure, the data also must include primitive and basis vector data of the

crystal structure. The orientations of these vectors must match the crystal structure;

when a crystal structure is analyzed, exactly the same unit cell data must be extracted

from the crystal. The file extension is important. The .dat extension must be used,

for the MaterialVis to determine the type. Please refer to .dat files, from the sample

datasets as examples.

The input datasets with .dat extension are used for pre-processing. The preprocess-

ing stage outputs the volume representation into a file, which can be rendered by the

rendering module. The output file can either be in binary or in text format, depend-

ing on the user’s preference. The binary format is more compact and faster to load,

whereas the text format allows users to take the data generated by the preprocessing

stage and use it with other tools. The binary format uses the .crb extension and the text

format uses .crt extension. MaterialVis runs the rendering tool directly when a .crb or

.crt files are given as input.

Users can save the display options and the rendering parameters that they tuned in

the rendering tool into a view parameter file. The view parameter file has extension

.crtf. These files are self explanatory text files and can also be edited manually.

B.3 Hardware and Software Requirements

The hardware requirements of MaterialVis are modest. We tested the tool without any

problems on various low end computers. On the other hand, the rendering times heav-

ily depend on available computational power. The performance of the Surface and vol-

ume rendering and the XRAY rendering modes depend on the CPU power. They can

also benefit from multi-core CPUs. Other rendering modes are GPU bound modes;

APPENDIX B. MATERIALVIS USER MANUAL 105

high-end graphics cards will increase the performance significantly. The minimal con-

figuration must have a graphics card with OpenGL 1.5 support. Stand-alone graphics

cards with private memory is recommended. Memory requirements heavily depend on

the input size. In our tests, we barely reached 1GB of memory usage. In general, any

standard personal computer with a stand-alone graphics card could run the tool without

any significant delays.

MaterialVis requires Microsoft .NET Framework 2.0 or higher. The graphics card

drivers must be installed properly. The graphics cards 3D acceleration and OpenGL

support must also be enabled.

B.4 Usage

MaterialVisUI.exe must be executed to start MaterialVis Loader. Other executables

are designed to be called by the loader and must not be executed directly. MaterialVis

Loader presents a very simple user interface. Initially, the dataset file must be selected.

If the selected dataset file extension is .dat, i.e., the raw input file is selected, the loader

asks for the output format. The user can select, binary, text or both. Then the pre-

processing stage starts. Figure B.1 displays the MaterialVis Loader when a raw input

is selected.

Figure B.1: MaterialVis Loader with raw input selected.

If a pre-processed input file (a file with .crt or .crb extension) is selected, the user

can go directly to the rendering tool. If a previously saved view parameter file exists, it

can be selected so that the saved configuration can be loaded. If no view parameter file

is selected, then the default view parameters will be loaded. Figure B.2 displays the

MaterialVis Loader when a pre-processed input is selected. The usage of the rendering

APPENDIX B. MATERIALVIS USER MANUAL 106

tool will be explained in Section B.6.

Figure B.2: MaterialVis Loader with pre-processed input selected.

B.5 Pre-processing

The pre-processing stage is automated and no user intervention is required. The pre-

processor window exist for informative purposes. The steps and the operations per-

formed are logged in the window, so the user can observe the progress of the pre-

processing. The user is allowed to cancel anytime. After the operation is completed,

the user can return to the MaterialVis Loader, to continue with rendering. Figure B.3

displays the pre-processing interface.

Figure B.3: MaterialVis pre-processing interface

APPENDIX B. MATERIALVIS USER MANUAL 107

B.6 Rendering

The rendering tool is responsible for the visualization of the material in different ren-

dering modes. Figure B.4 displays the rendering tool interface. The usage is explained

in the following subsections in detail.

Figure B.4: MaterialVis rendering tool interface

B.6.1 Controls

The orientation of the material can be controlled with the mouse and keyboard inputs.

Rotations around the X, Y and Z axes, zooming in or out, and translations on the X

and Y axes are supported. The list of controls and the corresponding actions are listed

as follows:

APPENDIX B. MATERIALVIS USER MANUAL 108

• Left Mouse Drag: Rotate around the X and Y axes

• Control + Left Mouse Drag: Rotate around the Z axis

• Right Mouse Drag: Translate on the X and Y axes

• Shift + Left Mouse Up/Down: Zoom in or out

• Mouse Scroll: Zoom in or out

B.6.2 Display Options

Figure B.5: The Display Options Menu

The display options menu contains renderer-mode-independent parameters, such as the

background color, lighting and cut-plane parameters. Figure B.5 displays the general

APPENDIX B. MATERIALVIS USER MANUAL 109

layout of the menu. The following options are available.

• Enter Full Screen Mode: Switches between full screen and windowed display

(Shortcut: ‘f’).

• Background Color: Selects the background color.

• Menu Color: Selects the menu color.

• Render Mode: Selects the rendering method using the combo box (Short-

cut: ‘d’).

• Shading Mode: Selects the shading model (Shortcut: ‘s’).

• Number of Lights: Minimum one light source must be defined. Maximum eight

light sources are allowed.

• Lights: Sets light position, color and intensity values and enable or disable the

light.

• Number of CutPlanes: Maximum eight cut planes can be defined.

• Cutplanes: Sets the cut plane equation, enable or disable it. Cut plane equation

is defined as ax+by+cz op d. Only atoms whose coordinates satisfy all enabled

cut plane equations are displayed.

• Mouse Controls: Displays a quick help on mouse controls regarding zoom,

rotations and translations.

• Reset Orientation: Resets the model orientation to the initial state (Short-

cut: ‘r’).

• EXIT: Closes the application (Shortcut: ‘q’).

B.6.3 Rendering Parameters

The rendering parameters menu contains renderer specific parameters. Figure B.6 dis-

plays the general layout of the menu.

APPENDIX B. MATERIALVIS USER MANUAL 110

Figure B.6: The Rendering Parameters Menu - Overview

Two options regarding saving the rendering parameters are as follows:

• Parameter File: The file name for saving the parameter file. Enter “default” to

save parameter file with the same name as the dataset.

• Save: Saves currently set parameters to the specified file.

B.6.3.1 Volume and Surface Rendering

Figure B.7 displays the volume and surface rendering parameters in the rendering pa-

rameters menu. The options presented are as follows:

• Volume Alpha Length Constant: Represents the opacity of the volume. In-

creasing this constant makes the volume more opaque.

• Face Alpha Constant: Represents the amount of accentuation of surface poly-

gons. The front facing surface polygons contribute the rendered image propor-

tional to this constant. Color values are determined by interpolating surface

vertex colors.

• Ambient Reflection Coefficient: Represents the amount of ambient reflection

for surface polygons.

• Diffuse Reflection Coefficient: Represents the amount of diffuse reflection for

surface polygons. The contributions from all light sources are accumulated. The

contribution of each light source to the diffuse color is proportional to the cosine

of the angle between the surface normal and the light direction vector.

APPENDIX B. MATERIALVIS USER MANUAL 111

Figure B.7: The Rendering Parameters Menu - Volume and Surface Parameters

• Specular Reflection Coefficient: Represents the amount of specular reflection

for surface polygons. The contributions from all light sources are accumulated.

The contribution of each light source to the specular color is proportional to the

cosine of the angle between the view vector and the reflection vector raised to

the power shininess coefficient.

• Shininess Coefficient: Represents the shininess coefficient for surface poly-

gons.

• Base Color: Represents the color assigned to each atom in the material.

APPENDIX B. MATERIALVIS USER MANUAL 112

• Positional Defect Color: Represents the color assigned to atoms with positional

crystal defects in their neighborhood.

• Positional Defect Multiplier: Represents the weight of the positional crystal

defect color on atoms final colors.

• Extra Atom Defect Color: Represents the color assigned to atoms with extra

atom defects in their neighborhood.

• Extra Atom Defect Multiplier: Represents the weight of the extra atom defect

color on atoms final colors.

• Vacancy Defect Color: Represents the color assigned to atoms with vacancy

defects in their neighborhood.

• Vacancy Defect Multiplier: Represents the weight of the vacancy defect color

on atoms final colors.

• Auto Apply: Enables to update rendering parameters upon any value change.

This trigger re-rendering of the dataset. It is recommended to leave this option

disabled because rendering is time consuming.

• Apply: Applies the rendering parameters and triggers re-rendering. The color

of an atom ‘a’ is computed as

a.color = BaseColor +

a.PositionalDefect×PositionalDefectMultiplier×PositionalDefectColor +

a.extraAtom×ExtraAtomDefectColorMultiplier×ExtraAtomDefectColor +

a.vacancyAtom×VacancyDefectColorMultiplier×VacancyDefectColor

B.6.3.2 Surface Rendering

Figure B.8 displays the surface rendering parameters in the rendering parameters

menu. These parameters are used to define surface material. The options presented

are as follows:

APPENDIX B. MATERIALVIS USER MANUAL 113

• Ambient and Diffuse Color: Represents the ambient and diffuse colors of the

surface material.

• Emission Color: Represents the emission color of the surface material.

• Specular Color: Represents the amount of specular color of the surface mater-

ial.

• Shininess Coefficient: Represents the shininess coefficient for the surface ma-

terial.

• Auto Apply: Enables to update rendering parameters upon any value change.

Rendering in this mode is fast, so auto applying is recommended.

• Apply: Applies the rendering parameters and triggers re-rendering.

Figure B.8: The Rendering Parameters Menu - Surface Parameters

B.6.3.3 Volume Rendering

Figure B.9 displays the volume rendering parameters in the rendering parameters

menu. The options presented are as follows:

APPENDIX B. MATERIALVIS USER MANUAL 114

• Volume Alpha Length Constant: Represents the opacity constant of the vol-

ume. Increasing this constant will make the volume more opaque.

• Positional Defect Multiplier: Represents the weight of positional defects on

the scalar value of an atom.

• Extra Atom Defect Multiplier: Represents the weight of extra atom defects on

the scalar value of an atom.

• Vacancy Defect Multiplier: Represents the weight of vacancy defects on the

scalar value of an atom.

• Number of ColorMap Entries: Minimum two entries must be defined. Maxi-

mum 32 entries are allowed.

• Color Map Entry: Scalar field represents the normalized scalar value. The

valid range is [0,1]. Color field represents the corresponding color.

• Auto Apply: Enables to update the rendering parameters upon any value change,

which triggers re-rendering of the dataset. It is recommended to leave this option

disabled because rendering is time consuming.

• Apply: Applies the rendering parameters and triggers re-rendering. The scalar

value of an atom ‘a’ is calculated as

a.scalar = a.PositionalDefect×PositionalDefectMultiplier +

a.extraAtom×ExtraAtomDefectColorMultiplier +

a.vacancyAtom×VacancyDefectColorMultiplier

After scalars are computed for every atom, the values are normalized to [0,1]

range. These scalar values and color map are used to determine the color of an

atom using linear interpolation.

• Create Scalar Histogram: Creates a histogram file, “histogram.csv” for scalar

values of the atoms. This file can be quite useful while creating the color map.

APPENDIX B. MATERIALVIS USER MANUAL 115

Figure B.9: The Rendering Parameters Menu - Volume Parameters

B.6.3.4 XRAY Rendering

Figure B.10 displays the XRAY parameters in the rendering parameters menu. The

options presented are as follows:

• XRAY Alpha Length Constant: Represents the opacity constant of the volume.

Increasing this constant makes the volume more opaque.

• XRAY Base Color: Represents the base color that the XRAY Renderer uses.

• Auto Apply: Enables to update rendering parameters upon any value change.

This trigger re-rendering of the dataset. Because rendering is time consuming, It

is recommended that this option is disabled.

• Apply: Applies the rendering parameters and triggers re-rendering.

APPENDIX B. MATERIALVIS USER MANUAL 116

Figure B.10: The Rendering Parameters Menu - XRAY Parameters

B.6.3.5 Atom-Ball Model Rendering

Figure B.11 displays the atom-ball model parameters in the rendering parameters

menu. The options presented are as follows:

• Atom-ball Scale: Represents the scaling factor for drawing an atom-ball model.

Value 1.0 indicates drawing each atom with its actual radius.

• Regular Atom Opacity: Represents the opacity coefficient for atoms without

any errors in their neighborhood. This way regular parts of the crystal can be

made semi-transparent revealing the erroneous parts.

• Atom-ball Colors: Sets the color for each atom type.

• Atom-ball Visibilities: Shows or hides each atom type individually.

• Auto Apply: Enables to update rendering parameters upon any value change.

Rendering in this mode is fast, so auto applying is recommended.

• Apply: Applies the rendering parameters and triggers re-rendering.

APPENDIX B. MATERIALVIS USER MANUAL 117

Figure B.11: The Rendering Parameters Menu - Atom-Ball Model Parameters

B.6.3.6 Help

MaterialVis contains an extensive embedded help describing the parameters the user

can modify. The user can access the help in two ways. The help icon at the bottom left

of the screen opens the top-level help menu. There are also several help buttons at the

configuration menus. Figure B.12 displays a small part of the help menu.

Figure B.12: The Help Menu

