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Süleyman Serdar Kozat(Advisor)

Sinan Gezici

Elif Vural

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
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ABSTRACT

AN ASYMPTOTICALLY OPTIMAL SOLUTION FOR
CONTEXTUAL BANDIT PROBLEM IN

ADVERSARIAL SETTING

Mohammadreza Mohaghegh Neyhabouri

M.S. in Electrical and Electronics Engineering

Advisor: Süleyman Serdar Kozat

May 2018

We propose online algorithms for sequential learning in the contextual multi-

armed bandit setting. Our approach is to partition the context space and then

optimally combine all of the possible mappings between the partition regions

and the set of bandit arms in a data driven manner. We show that in our

approach, the best mapping is able to approximate the best arm selection policy

to any desired degree under mild Lipschitz conditions. Therefore, we design our

algorithms based on the optimal adaptive combination and asymptotically achieve

the performance of the best mapping as well as the best arm selection policy. This

optimality is also guaranteed to hold even in adversarial environments since we

do not rely on any statistical assumptions regarding the contexts or the loss of the

bandit arms. Moreover, we design efficient implementations for our algorithms

in various hierarchical partitioning structures such as lexicographical or arbitrary

position splitting and binary trees (and several other partitioning examples). For

instance, in the case of binary tree partitioning, the computational complexity

is only log-linear in the number of regions in the finest partition. In conclusion,

we provide significant performance improvements by introducing upper bounds

(w.r.t. the best arm selection policy) that are mathematically proven to vanish

in the average loss per round sense at a faster rate compared to the state-of-the-

art. Our experimental work extensively covers various scenarios ranging from

bandit settings to multi-class classification with real and synthetic data. In these

experiments, we show that our algorithms are highly superior over the state-

of-the-art techniques while maintaining the introduced mathematical guarantees

and a computationally decent scalability.

Keywords: Contextual bandit, online learning, adversarial bandit, hierarchical

structures, regret analysis.
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ÖZET

ÇEKIŞMELI ORTAMLARDA BAĞLAMSAL HAYDUT
PROBLEMI IÇIN ASIMPTOTıIK OLARAK EN UYGUN

ÇÖZÜM

Mohammadreza Mohaghegh Neyhabouri

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Süleyman Serdar Kozat

Mayıs 2018

Bağlamsal çok silahlı haydut algoritması çerçevesinde sıralı öğrenme için

çevrimiçi algoritmalar öneriyoruz. Yaklaşımımız, bağlam uzayını bölmek ve daha

sonra, bölünen kısımları ve haydut kolları arasındaki olası tüm eşleştirmeleri

değerlendirerek, bunları veri odaklı bir şekilde en uygun şekilde birleştirmektir.

Bizim yaklaşımımızda, en iyi haritalamanın, en iyi kol seçim politikasını, ra-

hat Lipschitz koşullarında istenen herhangi bir dereceye kadar tahmin ede-

bileceğini gösteriyoruz. Bu nedenle algoritmalarımızı en uygun uyarlanır kom-

binasyona göre tasarlıyoruz ve en iyi haritalama performansının yanı sıra en iyi

kol seçim politikasını asimptotik olarak gerçekleştiriyoruz. Bu en iyilemenin,

aynı zamanda, çekişmeli ortamlarda bile sağlanması garanti altına alınmaktadır

çünkü bağlamlar veya haydut kollarının hatası ile ilgili herhangi bir istatistik-

sel varsayıma dayanmıyoruz. Ayrıca, algoritmalarımız için, sözlüksel veya ras-

gele bir şekilde bölme ve ikili ağaçlar (ve diğer birkaç bölümleme örnekleri)

gibi çeşitli hiyerarşik bölümleme yapılarında verimli uygulamalar tasarlıyoruz.

Örneğin, ikili ağaç bölümlemesi durumunda, hesaplama karmaşıklığı, en iyi

bölümdeki bölgelerin sayısında logaritmik olarak doğrusaldır. Sonuç olarak,

son teknoloji ile kıyaslandığında, her tur başına ortalama kayıpta matematik-

sel olarak kanıtlanmış olan üst sınırları (en iyi kol seçim politikası) tanıtarak

önemli performans iyileştirmeleri sağlamaktayız. Deneysel çalışmalarımız, hay-

dut düzeninden gerçek ve sentetik verilere sahip çok sınıflı sınıflamaya kadar çeşitli

senaryoları kapsamaktadır. Bu deneylerde, sunulan matematiksel garantileri ve

hesaplanabilir ölçeklenebilirliği korurken, algoritmalarımızın en son teknolojiler-

den oldukça üstün olduğunu göstermekteyiz.
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Chapter 1

Introduction

We study online learning [1, 2] in the contextual multi-armed bandit setting

[3, 4, 5, 6, 7, 8]. In the classical formulation of the multi-armed bandit problem,

one of the available M bandit arms (or actions) is chosen at each round to obtain

a reward (or loss), and the reward (or loss) of all of the other unchosen M − 1

arms stay oblivious. The objective is to maximize the cumulative reward of the

selected arms in a series of rounds. Since the reward we would obtain from the

other arms remain hidden, this setting can be considered as a limited feedback

version of prediction with expert advice [9, 10, 11, 12, 13, 14]. Additionally, the

well-known fundamental trade-off between exploration and exploitation [15, 16]

naturally appears in multi-armed bandits. One should balance exploitation of

actions that gave the highest payoffs in the past and exploration of actions that

might give higher payoffs in the future.

The multi-armed bandit problem has attracted significant attention due to

the applicability of the bandit setting in a wide range of applications from online

advertisement [17] and recommender systems [18, 19, 20] to clinical trials [21] and

cognitive radio [22, 23]. For example, in the online advertisement application,

different ads available to display to users are modeled as the bandit arms and the

act of clicking by the user on the displayed ad is modeled as the reward [17].
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In many instances of the bandit algorithms, additional information is available

[24] such as the age or the gender of the patient in clinical trials [25], which is use-

ful about the arm selection decision. However, most of the conventional bandit al-

gorithms do not exploit or fail to fully exploit this information[26, 27, 28]. To rem-

edy, contextual multi-armed bandit algorithms are introduced [29, 17, 16], where

the additional information is represented as a context vector. For example, in the

online advertisement applications, this context vector may contain certain infor-

mation about the users such as historical activities or demographic/geographical

information. Then the goal of the multi-armed bandit problem is extended to

maximally exploit this additional information, i.e., the context, for optimizing

the arm selection strategy and therefore gaining more rewards (or suffering less

loss).

We consider the contextual extension in the online setting, where we operate

sequentially on a stream of observations from a possibly non-stationary, chaotic

or even adversarial environment [30, 31, 32]. Hence, we have no statistical as-

sumptions on the context vectors and behavior of the bandit arms so that our

results are guaranteed to hold in an individual sequence manner [16]. We fol-

low a competitive algorithm perspective [16] and define the performance (total

time accumulated reward or loss) with respect to a competition class of context

dependent bandit arm selection policies. For this purpose, we design an exponen-

tially large and parameterized competition class of predetermined mappings from

the space of context vectors to the bandit arms such that the best arm selection

policy1 can be approximated arbitrarily well to a desired degree by the optimal

mapping in the competition class. We point out that each mapping in our com-

petition class partitions the space of context vectors into several disjoint regions

and assigns each one of these regions to one of the bandit arms, i.e., each map-

ping selects the bandit arm corresponding to the region containing the observed

context vector. Based on this competition class of such mappings, our goal is

1This best arm selection policy is based on the fixed best partitioning of the context space
and the best assignment of the arms to the regions of that best partition. It is not necessarily
in our competition class. However, it can be approximated arbitrarily well by the optimal
mapping in the class by varying the class parameter; and it can be determined only when the
complete data stream is observed.
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to asymptotically -at least- achieve2 the performance of the optimal mapping as

well as the performance of the best arm selection policy at a faster convergence

(performance-wise or in terms of the convergence of the regret upper bound to

zero) rate compared to the state-of-the-art as more data is observed.

In order to generate partitions of the context space and therefore a rich com-

petition class, we use various hierarchical partitioning structures [33] such as the

ones based on lexicographical or arbitrary position splitting, binary trees and

several other partitioning examples, cf. Chapter 4. In our design, each of these

structures leads to a different competition class but approximates (arbitrarily

well, and even perfectly if desired) the same best arm selection policy by the

optimal mapping in the corresponding competition class. However, each hierar-

chical structure encodes the best arm selection policy differently and one of them

is the most efficient in the sense of the required number of partition regions (i.e.

less number of regions means higher efficiency). Therefore, we explore various

hierarchical structures and introduce algorithms for each of such structures by

using a carefully designed weighting over the corresponding competition class.

The output of the introduced algorithms is the optimal data adaptive combina-

tion (w.r.t. the designed weighting) of the policies (aforementioned mappings) in

the competition class. Our weighting/adaptive combination favors simpler mod-

els in the beginning of the data stream and gradually switches to more complex

ones as the data overwhelms.

As a result, our algorithms are guaranteed to asymptotically perform -at least-

as well as the best arm selection policy. We achieve this performance optimality

at a faster convergence rate (for instance, at the rate O(
√

(RM lnM lnN)/T )

in the case of binary tree partitioning after averaging the regret bound over T

where R is the number of regions in the optimal partition, M is the number of

bandit arms, N is the number of regions in the finest partition in the competi-

tion class and T is the number of rounds) compared to the state-of-the-art3 rate

2In addition to achieving, we might well outperform since our approach is data driven and
based on combination of partitions, i.e., we do not rely on a single fixed partition.

3The convergence rates given here samples our general regret results (after averaging over
T ) in the case of binary tree partitioning. Our rates for other partitionings in our generic class
of hierarchical structures naturally vary but our superiority compared to the state-of-the-art
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O(
√

(MN lnM)/T ). Note that here, typically, N >> R is the dominating factor.

Our superior performance is due to exploiting the right hierarchical partitioning

structure that encodes the best policy more efficiently and therefore assigns higher

initial weights to the optimal partition. This exploitation of the right structure

with the introduced weighting scheme also mitigates the overfitting issue as an

additional merit.

We emphasize that our algorithms are designed to work for a generic class of

hierarchical partitioning structures and our optimality results do hold for each

type of structure in this generic class. Therefore, one can use the proposed algo-

rithms with any type of partitioning that is appropriate for the target application

with the corresponding performance guarantees. Such guarantees include upper

bounds on the regret w.r.t. the best arm selection policy that are mathemati-

cally proven to vanish at O(1/
√
T ) (after averaging over T ) in a superior manner

over the state-of-the-art, cf. the following Section 1.1 Related Works and Chap-

ter 4 for detailed comparisons. We also present computationally highly efficient

implementations for the introduced algorithms that, for instance, combine MN

mappings with only computational complexity of O(M lnN) in the case of binary

tree partitioning structure. Through an extensive set of experiments with real and

synthetic data, we demonstrate the proposed approach in several scenarios such

as multi-class classification, online advirtisement and multi-armed bandit along

with various partitioning structures. In these experiments, our algorithms are

shown to significantly outperform the state-of-the-art techniques with real-time

data processing and strong modeling capabilities.

1.1 Related Works

The contextual bandit problem is mostly studied in the stochastic setting [29,

34, 35], where context vectors and losses are assumed to be drawn randomly and

independently from an unknown distribution. Additional assumptions regarding

the relations between the context vectors and the arm losses are also used in

stays valid in a similar manner, cf. Chapter 4 for our complete regret results for all structures.
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other studies, e.g., a linear relation in [17] and [36], and more general ones in

[37]. These algorithms essentially fail to hold their performance guarantees if

the context vectors or the arm losses are chosen by an adversary rather than a

prefixed distribution.

An alternative to the stochastic approaches is the adversarial setting, where

algorithms do not use any assumptions on the behavior of the context vectors

and bandit arms. The well-known EXP3 algorithm [32] formulates the non-

contextual bandit problem in an adversarial setting and achieves a regret upper

bound4 of O(
√
TM lnM) against the best arm. S-EXP3 algorithm [16] is a

naive extension of EXP3 in the contextual setting, which partitions the context

space and runs independent EXP3 algorithms over each one of the partition

regions. S-EXP3 achieves a regret upper bound of O(
√
TNM lnM) against the

best mapping from the regions to the bandit arms, where N is the number of

regions in the partition of the context space. As implied by the regret bound,

the S-EXP3 algorithm works well only when the complexity (the granularity or

the level of detailing/fine-ness) of the required partitioning to model the truly

optimal selection policy is relatively small, otherwise it quickly overfits and suffer

from insufficient data.

The EXP4 algorithm [32] is another extension of EXP3 in the contextual

setting. In this algorithm, a set of K experts observe the context vectors and

suggest distributions on the arms. Their suggestions are adaptively combined to

select the arm to pull. It is shown that EXP4 achieves a regret upper bound

of O(
√
TM lnK) against the best expert. Considering the MN mappings from

a partition of the context space to the arms as the K experts, EXP4 achieves

O(
√
TNM lnM) against the optimal mapping. As we show in Chapter 3, the

EXP4 algorithm can be improved by producing an initial tendency (in earlier

times of the stream) toward the mappings of smaller complexity. In this case,

although the finest partition has N regions (and hence there are MN mappings in

total), it suffices to run EXP4 over O((NM)R) mappings with R regions result-

ing a regret bound of O(
√
TMR ln (NM)), if the optimal partition consists of

4We illustrate regret upper bounds without averaging over T here in this section; but with
averaging in the previous section to demonstrate the convergence to 0 there.
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R regions. However, the main problem with this algorithm is its computational

complexity of O((NM)R). On the other hand, the CSB-FTPL algorithm [38]

achieves a regret upper bound of O(T 2/3M
√

lnK) against the best expert among

a set of K experts with a computational complexity that is polynomial in lnK.

Hence, running CSB-FTPL over O((NM)R) mappings with R disjoint regions

yields a regret upper bound of O(T 2/3M
√
R lnN) with a polynomial computa-

tional complexity in lnN .

We emphasize that we seek to achieve a regret upper bound vanishing (w.r.t.

rounds/time after averaging over T ) faster than that of EXP4 with a computa-

tional complexity linear in lnN which allows us to grow the hierarchical structure

freely. To this end, our algorithms not only drastically reduce the computational

complexity (e.g., down to O(M lnN) in the case of binary tree partitioning) com-

pared to the discussed state-of-the-art techniques, but also achieves a regret upper

bound of O(
√
TMR lnM lnN).

Finally, a simple instance of our hierarchical structures, the context trees, are

widely used in various applications including but not limited to data compres-

sion [39, 40], estimation [41, 42], communications [43], regression [44, 45] and

classification [46]. In all aforementioned applications, context trees are used to

partition the context space in a nested structure, run an independent adaptive

model over each one of the tree nodes and combine the models. On the other

hand, in this thesis, we use a generalized novel notion of hierarchical structures

that is specifically designed for the completely different multi-armed contextual

bandit problem.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, we describe the contex-

tual multi-armed bandit framework. Next, we explain a first mixture of experts

based approach and its challenges in Chapter 3. In Chapter 4, we explain the

6



notion of hierarchical structures and implement our algorithm using these struc-

tures. We introduce an efficient quantization method in Chapter 5, and show

that our algorithm is competitive against any mapping, including the best arm

selection policy, from the context space to the bandit arms. Chapter 6 contains

the experimental results over several synthetic and well known real life datasets

in Section 6.1, followed by the concluding remarks in Section 6.2.
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Chapter 2

Problem Description

Throughout this thesis, all vectors are column vectors and denoted by boldface

lower case letters. For a K-element vector u, ui represents the ith element and

‖u‖ =
√
uTu is the l2-norm, where uT is the transpose. Indicator function 1{·} ∈

{0, 1} outputs 1 only if its argument condition holds. A function f : Rn → R
is Lipschitz continuous over a region W ⊂ Rn, if there exists a non-negative

constant c such that |f(x1)− f(x2)| ≤ c‖x1 − x2‖ for all x1,x2 ∈ W .

We study the contextual bandit problem in an adversarial setting. Recall

that the original multi-arm bandit problem is a sequential game. One of the

available bandit arms It ∈ {1, ...,M} is selected at each round t and then a

related loss lt,It is observed. We assume lt,It ∈ [0, 1] for simplicity, however, it

can be straightforwardly shown that our results hold for any bounded loss after

shifting and scaling in magnitude. The objective is to minimize the accumulated

loss
∑T

t=1 lt,It in a sequence of T rounds. In the contextual extension, a context

vector st from a context space S is additionally provided at each round before

selecting the arm. For example, S is [0, 1]2 in Fig. 2.1. Then the objective stays

same but can be improved with the available context.

We consider this contextual bandit problem in adversarial setting without mak-

ing any statistical assumptions about the context vectors and the bandit arms

8
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0
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Select the 
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(a) An example mapping
from the context space
[0, 1]2 to the set of bandit
arms {1, 2}.

1

1

0

0

(b) Closest mapping in
the quantized competition
class with 16 quantization
levels to the mapping in
Fig. 2.1a.

1

0

0 1

(c) Closest mapping in
the quantized competition
class with 64 quantization
levels to the mapping in
Fig. 2.1a.

Figure 2.1: An example mapping from the context space to the set of bandit arms and its
approximations in the quantized competition classes. In each mapping above, the dark and
bright sections are mapped to the arms 1 and 2, respectively.

[32], and propose algorithms that are guaranteed to work in an individual se-

quence manner. Our algorithms are strictly sequential such that at each round

t, they select an arm It according to the information coming from the previ-

ous rounds including observed context vectors, selected arms and their losses,

alongside the context vector we are currently observing, i.e.,

It = ft(st; st−1, It−1, lt−1,It−1 ; ...; s1, I1, l1,I1). (2.1)

In design of our algorithms, we aim at sequentially learning the optimal parti-

tioning of the context space with the optimal assignment between the regions of

the learned partition and the set of arms. For this purpose, we investigate a gen-

eral framework of hierarchical structures to generate context space partitions and

eventually learn the asymptotically optimal, time varying, context driven arm

chooser ft. We show that our approach, compared to the state-of-the-art tech-

niques, yields computationally highly superior algorithms with real time data

processing capabilities while achieving a faster convergence rate to the optimal

conditions (in terms of the convergence of the regret upper bounds to 0). The

superiority of the proposed algorithms is due to that the set of all possible con-

text space partitions considered here can theoretically achieve arbitrarily high

9



degree of granularity (can be of arbitrarily high capacity) whereas the true com-

plexity of the optimal partition is limited (cf. Chapter 4) in reality. Based on

this observation, our approach additionally allows the regret analysis to incorpo-

rate an upper bound on the complexity of the optimal partition, which in turn

significantly improves the convergence of the presented algorithms in almost all

practical scenarios. This gain is essentially from O(
√
N) to O(

√
lnN) (N is mea-

suring the granularity, cf. Chapter 4). If the complexity of the optimal partition

cannot be upper bounded, which would be a purely theoretical consideration as

the true complexity is almost always limited and finite in real scenarios, our regret

analysis then produces similar rates of convergence in that very worst theoretical

scenario. Nevertheless, in any case, the proposed algorithms are computationally

highly efficient and superior, and asymptotically optimal in the adversarial setting

including the very worst scenario regardless of the stationary or non-stationary

or perhaps chaotic source statistics.

To this end, we consider a large class G of deterministic mappings, i.e., ∀g ∈ G,

g : S → {1, ...,M}. Each such mapping is composed of a fixed partition of the

context space and an arm is assigned to each partition region. Depending on

the partition region that a context st falls in, g chooses the assigned arm g(st).

An example is shown in Fig. 2.1a in the case of 2 dimensional context space

S = [0, 1]2 with 2 bandit arms, where g([0.5, 0.5]T ) = 1. Note that for a given

g ∈ G, all of the other deterministic mappings resulting from all possible arm

assignments to the regions of the partition of g are also included in G. Since we

work in the adversarial setting and therefore refrain from making any statistical

assumptions about the context vectors and the loss of the bandit arms [32], we

next define our performance w.r.t. the optimum (minimum loss) mapping in the

“competition” class G based on the following regret:

R(T,G) , max
g∈G

E

[
T∑
t=1

lt,It −
T∑
t=1

lt,g(st)

]
, (2.2)

where the expectation is w.r.t. the internal randomization in our algorithms

(the internal randomization here is not related to data statistics). Our goal is

to upper bound the regret by a term that depends sublinearly in T , and hence

10



asymptotically achieve -at least- the performance of the best g in G (in the av-

eraged regret per round sense). Achieving this goal is equivalent to achieving

the performance of the chooser of the optimal context space partition with the

optimal assignment to the arms. Here, optimality of the context space partition

should be understood w.r.t. the class G which is certainly not restrictive, since it

can be arbitrarily improved by generalizing (detailing) G to a desired degree, cf.

Chapter 3.

In the following chapter, we construct the class G and provide a mixture-of-

experts based first solution to the introduced problem.
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Chapter 3

A Contextual Bandit Algorithm

Based on Mixture of Experts

The ultimate goal in the contextual bandit problem is ideally to achieve the per-

formance of the best mapping in the set U of all arbitrary mappings from the

context space to the bandit arms. Note that this set U consists of all possible

arbitrary context space partitions (not confined to G) with all possible assign-

ments of partition regions to the arms. Since this set of all arbitrary mappings is

too powerful to compete against in design of an algorithm, as the first step, we

uniformly quantize the context space S into N disjoint regions r1, r2, ..., rN , i.e.,

∪Ni=1ri = S and ri ∩ rj = ∅ for ∀i 6= j. We use uniform quantization for sim-

plicity, however, one can incorporate any arbitrary type of quantization into our

framework straightforwardly. In our framework, we consider all possible assign-

ments between the set of disjoint regions and the set of bandit arms, and call each

context mapping resulting from one of those assignments an N -level quantized

mapping. Therefore, each N -level quantized mapping is essentially a function

from ∪Ni=1ri = S to {1, ...,M}: a context s ∈ r∗ ⊂ S is mapped to the bandit arm

that the region r∗ is assigned to. Two examples of such quantized mappings of

different levels for the case of 2-armed bandit with the context space [0, 1]2 are

shown in Fig. 2.1b and Fig. 2.1c. Given a quantized context space S = ∪Ni=1ri,

we define the class GN of N -level quantized mappings as the “competition class”

12
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1

Figure 3.1: All possible mappings in a 2-armed bandit problem with a predetermined quan-
tization of the context space S = [0, 1]2 into 4 regions. In each mapping above, the dark and
bright regions are mapped to the arms 1 and 2, respectively.

with N quantization levels consisting of all arbitrary assignments between the

bandit arms and the given N regions {ri}Ni=1.

Remark: We seek to achieve the performance of the best quantized mapping

in GN , which can get arbitrarily close (and N can be freely chosen in our frame-

work) to the performance of the best arbitrary mapping in U , i.e., the best arm

selection policy, as N increases. For example, suppose that the mapping shown

in Fig. 2.1a is the best arbitrary mapping. In this case, the mappings in Fig. 2.1b

and Fig. 2.1c of improving optimalities will be the best mappings in G16 and G64,

respectively.

Based on MN different mappings in GN , we consider an expert chooser that

is one-to-one-corresponding to each of those mappings such that gj(s) is the arm

chosen by expert Ej for the context s, i.e., Ej ↔ gj, 1 ≤ j ≤ MN . An example

of all 16 mappings followed by the experts for the case of M = 2 and N = 4 is

shown in Fig. 3.1, where, unlike Fig. 2.1, we choose a nonuniform quantization

13



to demonstrate the generality in our approach. One of these experts in Fig. 3.1

is G4-optimal for the underlying sequence of losses, however, naturally, we do

not know which. Hence, instead of committing to a single expert, we next use a

mixture of experts approach to learn the best one during rounds.

In order to achieve the performance of the best expert, we assign each expert

Ej a weight αt,j (showing our trust on the expert Ej at round t) and use ex-

ponentiated weights to adaptively combine them. After observing context st at

each round t, we randomly select one of the experts using the probability sim-

plex βt = (βt,1, ..., βt,MN ), where βt,j = αt,j/
∑Mn

k=1 αt,k is the normalized weight.

Importantly, the probability of selecting each arm then follows the probability

simplex pt = (pt,1, ..., pt,M), where

pt,i =
MN∑
j=1

βt,j1{gj(st)=i}. (3.1)

We initially set the weights α1,i according to the complexity of the mappings of

experts from GN , and use exponentiated losses to update during rounds: at each

round t ≥ 2, we have

αt,i = α1,ie
−η

∑t−1
τ=1 l̃τ,gi(sτ ) , (3.2)

where η ∈ R+ is the (constant) learning rate and l̃τ,gi(sτ ) is the unbiased estimator

of lτ,gi(sτ ). Since we do not observe the loss lt,m of the unchosen arms, we use the

unbiased estimator

l̃t,m =


lt,m
pt,m

m = It

0 m 6= It
, (3.3)

where E[l̃t,m] = lt,m. Using this bandit arm selection probability assignment

defined through (3.1), (3.2) and (3.3), we have the following regret result.

Theorem 1. Consider an M-armed contextual bandit problem. If the context

space is quantized into N disjoint regions, and experts Ej’s are following the MN

possible mappings in GN as described in Chapter 3, then R(T,Ej) satisfies

R(T,Ej) ≤
ln (1/β1,j)

η
+
MTη

2
(3.4)
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based on the probability assignments defined through (3.1), (3.2) and (3.3),

where T is the number of rounds, η ∈ R+ is the learning rate parameter in (3.2)

and β1,j is the normalized initial weight of the jth expert Ej.

Proof of Theorem 1: This proof follows similar lines to the proof of Theorem

4.2 in [16] with certain variations due to our arbitrary initial weighting as opposed

to uniform initial weights of the experts in [16]. The complete proof is as follows.

From the definition, denoting the mapping followed by the jth expert by gj(.),

we have

R(T,Ej) = E

[
T∑
t=1

lt,It −
T∑
t=1

lt,gj(st)

]
(3.5)

Here, lt,It can be expanded as

lt,It = Ej∼βt l̃t,gj(st)

=
1

η

(
ln
(
Ej∼βte

−ηl̃t,gj(st)
)

+ ηEj∼βt l̃t,gj(st)
)

− 1

η
lnEj∼βte

−ηl̃t,gj(st) . (3.6)

The first term in (3.6) can be bounded using the inequalities lnx ≤ x − 1 and

exp(−x)− 1 + x ≤ x2/2, for all x ≥ 0, as

ln
(
Ej∼βte

−ηl̃t,gj(st)
)

+ ηEj∼βt l̃t,gj(st)

≤ Ej∼βt
[
e
−ηl̃t,gj(st) − 1 + ηl̃t,gj(st)

]
≤ Ej∼βt

η2l̃2t,gj(st)

2
=
η2l2t,It
2pt,It

≤ η2

2pt,It
. (3.7)

In order to bound the second term in (3.6), we just rewrite the expectation using

(3.2) as follows. For t = 1, we have

−1

η
lnEj∼β1e

−ηl̃1,gj(s1) = −1

η
ln

∑MN

j=1 α1,je
−ηl̃1,gj(s1)∑MN

j=1 α1,j

, (3.8)

and for t ≥ 2, we have

−1

η
lnEj∼βte

−ηl̃t,gj(st) = −1

η
ln

∑MN

j=1 α1,je
−η

∑t
τ=1 l̃τ,gj(sτ )∑MN

j=1 α1,je
−η

∑t−1
τ=1 l̃τ,gj(sτ )

. (3.9)
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Putting the bounds in (3.7) and (3.9) into (3.6), we have

T∑
t=1

lt,It ≤ −
1

η
(
T∑
t=2

ln

∑MN

j=1 α1,je
−η

∑t
τ=1 l̃τ,gj(sτ )∑MN

j=1 α1,je
−η

∑t−1
τ=1 l̃τ,gj(sτ )

+ ln

∑MN

j=1 α1,je
−ηl̃1,gj(s1)∑MN

j=1 α1,j

) +
ηT

2pt,It
. (3.10)

Opening the first two term in (3.10), we have

T∑
t=1

lt,It ≤ −
1

η
ln

MN∑
j=1

α1,je
−η

∑T
τ=1 l̃τ,gj(sτ ) +

1

η
ln

MN∑
j=1

α1,j +
ηT

2pt,It
. (3.11)

Since
∑MN

j=1 α1,je
−η

∑T
τ=1 l̃τ,gj(sτ ) ≤ α1,je

−η
∑T
τ=1 l̃τ,gj(sτ ) , we have

T∑
t=1

lt,It ≤ −
1

η
lnα1,j +

T∑
τ=1

l̃τ,gj(sτ ) +
1

η
ln

MN∑
j=1

α1,j +
ηT

2pt,It

=
ln 1/β1,j

η
+

ηT

2pt,It
+

T∑
τ=1

l̃τ,gj(sτ ). (3.12)

Taking expectation from both sides (with respect to It ∼ pt) and substituting

E[l̃τ,gj(sτ )] = lτ,gj(sτ ) and E[ 1
pt,It

] = M into the result concludes the proof.

We observe that the regret bound is logarithmically dependent on the recipro-

cal of the prior weight of the optimal partitioning in the competition class (i.e.,

its complexity cost). Hence, by using equal prior weights on the MN experts,

our regret bound will be in the order1 of O(
√
NT ) (after optimizing the learning

rate). We point out that this result is similar to the EXP4 algorithm [16], which

achieves a regret upper bound of O(
√
NT ) with optimum selection of the learning

rate. Furthermore, S-EXP3 algorithm [16] achieves a regret upper bound of the

same order O(
√
NT ) using an independent EXP3 algorithm over each quantized

region of the context space. This square root dependency of the regret bound

on the quantization level is prohibitive and working against our motivation of

approximating the performance of the best arbitrary mapping by freely increasing

the number of quantization levels. Instead, we would like our regret bound to be

1For ease of exposition and simplicity in our order notation here, we drop the variables, on
which the dependency of order is similar or same or negligible across the compared algorithms.
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dependent on the actual number R of disjoint regions that is needed and suffi-

cient to model the actual complexity of the best arbitrary mapping whatever the

quantization level N is. Hence, we want to achieve the order O(
√
RT ). More-

over, working with these MN parameters αt,1, ..., αt,MN has quite high space and

computational complexities of O(MN).

To this end, we introduce hierarchical structures to generate context space

partitions and exploit the level of complexity that is sufficient to model the best

mapping over the introduced hierarchy. Thus, we achieve a regret upper bound

with square-root dependency on the actual number of regions R in a computa-

tionally highly superior manner with significantly low space complexity.
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Chapter 4

Hierarchical Structures

We use hierarchical structures to implement our contextual bandit algorithm

efficiently in terms of both the regret upper bound convergence to 0 in average

loss per round sense as well as computational and space complexities. Suppose

that we have H nodes in a hierarchical structure labeled vi, i ∈ {1, 2, ..., H}. We

assign each node vi a region ri from the context space and there is hierarchical

connection from each parent node to its child nodes. Let Φi be the set of child

node groups of the node vi, where each group φ ∈ Φi consists of child nodes such

that the union of their corresponding regions gives the region associated with the

parent node vi.

For instance, consider the binary tree of depth 2 in Fig. 4.1, which quantizes

the 2-dimensional context space S = [0, 1]2. Each node of such binary tree

corresponds to a region of the context space, as shown in the figure. The region

corresponding to each node is the union of the regions of its child nodes. Hence,

for each node vi in this tree (except for the leaf nodes), the set Φi is of size 1,

which consists of only one group of cardinality 2 (which is the parent node’s child

pair). For the leaf nodes, Φi is the empty set and, hence, has a size of 0.

Next, we use this hierarchical structure to compactly represent our experts

and combine them in an efficient manner.
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Figure 4.1: A binary tree of depth D = 2 over the context space [0, 1]2. The regions corre-
sponding to each node are filled with black color.

4.1 A Weighted Mixture of Experts Algorithm

Using Hierarchical Structures

In the following, we explain the details of our efficient implementation of the mix-

ture of experts algorithm (described in Chapter 3) by using hierarchical structures

and present several examples. In addition to achieving computational scalabil-

ity in our implementation, another goal of our work is to incorporate the model

complexity of the best expert to improve the upper bound on the regret.

Here, each expert is composed of a partition of the context space and an arm

assigned to each partition region. The partition corresponding to each expert

can be represented using several nodes of the hierarchical structure. Hence, each

expert can be represented using several nodes (showing the partition) and an

arm corresponding to each one of them (showing the arm assignments). As an

example, consider a 2-armed bandit problem. Suppose that we use a binary tree

of depth 2 to quantize the context space into 4 regions. In this case, we define

24 = 16 experts as in Fig. 3.1. We represent 4 samples among these 16 experts

19



Select arm 2

Select arm 2

Select arm 1

Select arm 2 Select arm 1 Select arm 1 Select arm 1Select arm 2 Select arm 2

Select arm 1

Figure 4.2: Representation of 4 sample mappings in Fig. 3.1 over the binary tree in Fig. 4.1.

on our binary tree in Fig. 4.2. In this figure, the nodes representing the partition

corresponding to the experts are marked using the circles and the arm selected

by the expert at each one of these nodes is declared over the node. We seek to

adaptively combine all of the experts to achieve the performance of the best one

as explained in Chapter 3.

In order to implement our mixture of experts, over each node vi, we define M

parameters αt,m,i for m = 1 to M as the weight of mth arm in the node vi. This

weight shows our trust on the mth arm when the context vector falls into the

region corresponding to the node vi. We set α1,m,i = 1 for all m’s and vi’s, and

for t ≥ 2,

αt,m,i = exp

(
−η

t−1∑
τ=1

lIτ
pτ,m

1{Iτ=m}1{sτ∈ri}

)
. (4.1)

We can easily update these weights as follows. At each round t, after we receive
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st, calculate pt, select Ith
t arm and observe the loss lt,It , we calculate

αt+1,m,i = αt,m,i exp

(
−η lIt

pt,m
1{It=m}1{st∈ri}

)
. (4.2)

We point out that the weight of each expert αt,k in (3.2) can be written as a

multiplication of its initial weight and our weight parameters (i.e. αt,m,i’s) on the

tree nodes corresponding to the mapping followed by the expert. To this end, in

order to obtain the expert weights (cf. Theorem 2), we define another variable

wt,i over each node vi such that

wt,i =
1

(|Φi|+ 1)M

M∑
m=1

αt,m,i +
1

|Φi|+ 1

∑
φ∈Φi

(∏
j∈φ

wt,j

)
. (4.3)

Hence, if Φi is the empty set (i.e. |Φi| = 0), then the equation simply becomes

wt,i =
1

M

M∑
m=1

αt,m,i. (4.4)

The following proposition shows that using this recursion to calculate wt,i vari-

ables, the weight of the root node wt,1 becomes equal to the sum of the expert

weights, i.e.,
∑

k αt,k (as defined in (3.2)).

Proposition 1. Using the recursive formula in (4.3), at each node vi, we have

wt,i =
∑
k∈Γi

αt,k, (4.5)

where Γi is the set of all experts defined over node vi.

Proof of Proposition 1: We prove this proposition using induction. For

leaf nodes where Φi = ∅, we have

wt,i =
1

M

M∑
m=1

αt,m,i. (4.6)

From the definition of αt,m,i in (4.1) we have

wt,i =
M∑
m=1

1

M
exp(−η

∑
τ<t
sτ∈ri

l̃τ,m) =
∑
k∈Γi

αt,k, (4.7)
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where α1,k = 1/M for all k ∈ Γi. Consider the node vi. Suppose ∀φ ∈ Φi,∀j ∈ φ
we have

wt,j =
∑
k∈Γj

αt,k. (4.8)

It suffices to show that

wt,i =
∑
k∈Γi

αt,k. (4.9)

The set of experts defined over vi, i.e., Γi, can be decomposed into the following

subsets:

• Γoi : The set of experts, which map the whole context space into a fixed

arm. This set contains M experts.

• Γφi , φ ∈ Φi : The set of experts, which partition the context space into the

regions rj, j ∈ φ, and follow a specific expert over each node j ∈ φ, based

on the observed st. If st ∈ rj, the experts in Γφi follow the experts in Γj.

This set contains
∏

j∈φ |Γj| experts. Each experts in Γφi can be represented

by a vector of experts kφ ∈
∏

j∈φ Γj, where kφ(j) is an expert defined over

node j.

We emphasize that even though we have

Γoi ∪ (
⋃
φ∈Φi

Γφi ) = Γi, (4.10)

the intersection of any two of these |Φi| + 1 subsets is not empty necessarily. In

particular, the M experts in Γoi are also included among the elements of Γφi for

all φ ∈ Φi. In fact, each expert in Γoi can be seen as an expert which partitions

the context space into rj’s for j ∈ φ, and follows the experts which select a fixed

arm m over all the nodes vj’s. We have

∏
j∈φ

wt,j =
∏
j∈φ

∑
k∈Γj

αt,k

 =
∑

kφ∈
∏
j∈φ Γj

(∏
j

α
t,kφ(j)

)
. (4.11)
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We open the product term as

∏
j

α
t,kφ(j)

=
∏
j

α
1,kφ(j)

exp

(
−η
∑
τ<t

∑
j

l̃τ,gkφ(j)
(sτ )1{sτ∈rj}

)

=
∏
j

α
1,kφ(j)

exp

−η ∑
τ<t
sτ∈ri

l̃τ,gkφ
(sτ )

 . (4.12)

Putting (4.12) into (4.3) we get

wt,i =
1

(|Φi|+ 1)M

∑
k∈Γoi

αt,k

+
1

|Φi|+ 1

∑
φ∈Φi

 ∑
kφ∈

∏
j∈φ Γj

α
1,kφ exp

−η ∑
τ<t
sτ∈ri

l̃τ,gkφ(sτ )




=
1

(|Φi|+ 1)M

∑
k∈Γoi

αt,k +
1

(|Φi|+ 1)

∑
φ∈Φi

∑
k∈Γφi

αt,k =
∑
k∈Γi

αt,k, (4.13)

where

α1,k =
1

(|Φi|+ 1)M
1{k∈Γoi } +

1

|Φi|+ 1

∑
φ∈Φi

(
1{k=kφ}

∏
j∈φ

α
1,kφ(j)

)
. (4.14)

We have successfully derived (4.9), which concludes the proof.

Now, in order to calculate the probability simplex in (3.1), we define M other

variables to calculate
∑

k αt,k1{gk(st)=i} for i = 1, ...,M . To this end, after we

observe st, we set

γt,m,i =
1

M
αt,m,i, (4.15)

at the nodes vi containing st, where |Φi| = 0 (i.e., leaf nodes). Then, we go up

on the hierarchy using a recursive formula similar to the way we calculate wt,i

variables in (4.3) as

γt,m,i =
1

(|Φi|+ 1)M
αt,m,i +

1

|Φi|+ 1

∑
φ∈Φi

(∏
j∈φ

wt,j

(
γt,m,j
wt,j

)1{st∈rj}
)
. (4.16)

Using this recursion, we calculate γt,m,1 for m = 1, ...,M . The following propo-

sition shows that using this recursion, γt,m,1 is the weighted sum of all experts,
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which select the mth arm when they observe st. Hence, we can build the proba-

bility simplex in (3.1) as

pt,m = γt,m,1/wt,1,∀m ∈ {1, ...,M}. (4.17)

Proposition 2. Using the recursive formula in (4.16), at each node vi, for all

m ∈ {1, ...,M}, we have

γt,m,i =
∑
k∈Γi

αt,k1{gk(st)=m}, (4.18)

where Γi is the set of all experts defined over node vi.

Proof of Proposition 2: Consider a specific bandit arm m∗. Given the

context vector st, for all m ∈ {1, 2, ..,M}, for all nodes vi in the hierarchy, we

define the variables α̃t,m,i as

α̃t,m,i =

0, st ∈ ri,m 6= m∗

αt,m,i, otherwise
. (4.19)

Now, from the definition of γt,m,i in (4.16), we have

γt,m∗,i =
1

(|Φi|+ 1)M

M∑
m=1

α̃t,m,i +
1

(|Φi|+ 1)

∑
φ∈Φi

(∏
j∈φ

w̃t,j

)
. (4.20)

The exact same lines of the proof of Theorem 1 hold to show that

w̃t,i =
∑
k∈Γi

α̃t,k, (4.21)

where

α̃t,k =

αt,k, gk(st) = m∗

0, otherwise
. (4.22)

Hence, (4.18) holds.

With the proposed implementation of the algorithm, at each round t, after

observing st, we first calculate γt,m,1 for m = 1, ...,M and then divide by wt,1 to

form the probability simplex pt = (pt,1, ..., pt,m), using which we select an arm
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Algorithm 1 Hierarchical Structure based Bandits (HSB)

1: Parameter:
2: Set constant η ∈ R+

3: Initialization:
4: Initialize the structure including nodes vi, the regions ri and the hierarchical

relations Φi.
5: Initialize α1,m,i = 1 for all m, i.
6: Initialize w1,i for all i using (4.3)
7: Algorithm:
8: for t = 1 to T do
9: Observe st

10: for m = 1 to M do
11: Calculate γt,m,i according to (4.16)
12: end for
13: for m = 1 to M do
14: pt,m = γt,m,1/wt,1
15: end for
16: Select a random arm It according to the probability simplex pt =

(pt,1, ..., pt,M)
17: Set αt+1,m,i = αt,m,i for all m, i
18: Set wt+1,i = wt,i for all i
19: for the nodes vi, where st ∈ ri do
20: Calculate αt+1,It,i according to (4.2)
21: end for
22: for the nodes vi, where st ∈ ri do
23: Calculate wt+1,i using (4.3)
24: end for
25: end for

It. After we select our arm and suffer the loss according to the selected arm, we

first update αt,It,i parameters at the nodes containing st. Then, we update wt,i

variables at these affected nodes and go to the next round. The pseudo code of

the explained procedure is provided in Algorithm 1.

Next, we show the regret bound of our hierarchical structure algorithm.

Theorem 2. Algorithm 1 achieves the regret bound

R(T,GN) ≤ Ψ(AR + 1) ln((HS + 1)M)

η
+
MTη

2
, (4.23)

where Ψ is an upper bound on the cardinality of the child node groups φ, i.e.,

Ψ ≥ |φ| for all φ, HS is an upper bound on the cardinality of Φi, i.e., HS ≥ |Φi|
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for all i, and AR is an upper bound on the minimum number of splittings needed

in the hierarchical structure to model the optimal partition with R disjoint regions.

Proof of Theorem 2: If the optimal expert is defined over the root node,

i.e., AR = 0, its prior weight in the mixture is

β1,j =
1

(|Φi|+ 1)M
≥ 1

(HS + 1)M
. (4.24)

With each split in the hierarchical structure (i.e., with each move down the hier-

archy), the prior weights of the experts are divided by a factor which is at most

(HS + 1)ΨMΨ−1. Thus, in case we need AR splittings to model the partition

corresponding to the optimal expert, its prior weight is

β1,j ≥ (HS + 1)−ARΨ−1MAR−ARΨ−1. (4.25)

Since AR ≥ 1 and Ψ ≥ 1, we have

β1,j ≥ (HS + 1)−Ψ(AR+1)M−Ψ(AR+1). (4.26)

Hence,

ln(1/β1,j) ≤ −Ψ(AR + 1) ln((HS + 1)M). (4.27)

Putting (4.27) into (3.4) concludes the proof.

Corollary 1. By setting

η =

√
2Ψ(AR + 1) ln((HS + 1)M)

MT
, (4.28)

we get the regret bound of

R(T,GN) ≤
√

0.5ΨMT (AR + 1) ln ((HS + 1)M). (4.29)

We next present several examples of hierarchical structures which can be em-

ployed by our algorithm with the introduced mathematical guarantees. Each

structure has its own way of encoding the best arm selection policy, i.e., optimal

arbitrary mapping. Hence, the proper selection of the hierarchical structure ac-

cording to the target application leads to a smaller AR and a better performance,

i.e., a regret upper bound vanishing faster in the average loss per round sense,

together with the introduced weighting over the corresponding competition class

GN , cf. Section 6.1 as well as the examples below.
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4.2 Arbitrary Splitting

If the hierarchical structure is an arbitrary splitting of N leaf nodes into 2 groups,

then Ψ = 2, HS = 2N−1−1 and AR = M−1. Hence, the regret is upper bounded

as

R(T,GN) ≤ 2M ln(2N−1M)

η
+
MTη

2

≤ 2MN ln(M)

η
+
MTη

2
, (4.30)

where the last inequality uses 2 ≤M .

4.3 Binary Tree

In binary trees we have Ψ = 2 and HS = 1. For a binary tree with N leaf

nodes, we need at most log2N splitting to create each new region. Hence, AR =

(R− 1) log2N . Therefore,

R(T,GN) ≤ 2((R− 1) log2N + 1) ln(2M)

η
+
MTη

2

≤ 2R log2N ln(2M)

η
+
MTη

2
. (4.31)

4.4 K-ary Tree

If the hierarchical structure is a K-ary tree (for K = 2 this becomes a binary

tree) with N leaf nodes and depth D = logK N , then Ψ = K, HS = 1 and

AR = (R− 1) logK N . Therefore, we have

R(T,GN) ≤ K(1 + (R− 1) logK N) ln(2M)

η
+
MTη

2

≤ KR logK N ln(2M)

η
+
MTη

2
. (4.32)
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4.5 Lexicographical Splitting Graph

In a lexicographal splitting graph with N leaf nodes, we have Ψ = 2, HS = N −1

and AR = R− 1. Hence,

R(T,GN) ≤ 2R ln(NM)

η
+
MTη

2
. (4.33)

4.6 K-group Lexicographical Splitting

If the hierarchical structure is a splitting of N sequentially ordered leaf nodes

into K groups (when K = 2 this structure becomes the lexicographical splitting

graph), then Ψ = K, HS =
(
N−1
K−1

)
and AR = dR−1

K−1
e. Therefore, the regret upper

bound is

R(T,GN) ≤
K(dR−1

K−1
e+ 1) ln((1 +

(
N−1
K−1

)
)M)

η
+
MTη

2

≤ K(R + 2K) ln(NM)

η
+
MTη

2
. (4.34)

4.7 Arbitrary Position Splitting

In this case, for a d-dimensional context space, we have Ψ = 2, HS = d and

AR = (R− 1) log2N . Therefore,

R(T,GN) ≤ 2((R− 1) log2N + 1) ln((d+ 1)M)

η
+
MTη

2

≤ 2R log2N ln((d+ 1)M)

η
+
MTη

2
. (4.35)

We have successfully achieved a regret bound of O(
√
MTR lnN lnM) with

proper selection of the learning rate. Note that typically, N >> R. Our regret

bounds are only logarithmically dependent on N , hence, in soft-O notation, we

achieve the minimax optimal regret bound Õ(
√
TR).
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Next and finally, we address the goal of achieving the performance of the best

arm selection policy, i.e., the performance of the optimal arbitrary mapping (in

the ultimate set U) from the context space to the bandit arms which is not

necessarily in the competition class GN but can be approximated arbitrarily well

and almost perfectly, if desired, by the class by increasing N . The quantization

process in our algorithm naturally produces an additive linear-in-time term in

our regret against the truly optimal mapping in U . In the following section, we

assume that the arm losses are Lipschitz continuous in the context vectors at each

specific round. With this assumption, we show that using a uniform quantization

of the context space, we can diminish the linear-in-time term in our regret against

the optimal mapping in U by increasing the number of quantization levels N .

Hence, we can achieve a performance as close as desired to the performance of

the optimal mapping in U .
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Chapter 5

An Efficient Quantization

Method to Asymptotically

Achieve the Optimal Context

Based Arm Selection

Suppose that the context space is the n-dimensional space S = [0, 1]n. Using

a hierarchical structure with N leaf nodes, our quantization scheme is as fol-

lows. We split the context space into 2b(log2N)/nc+1 equal subspaces along the first

log2N (mod n) dimensions (of the total n dimensions), and 2b(log2N)/nc equal

subspaces along the remaining dimensions.

Theorem 3. Using aforementioned quantization method for our algorithm, if

the arm loss functions are Lipschitz continuous with the Lipschitzness constant c,

then the difference between the loss corresponding to the best mapping in GN and

the loss corresponding to the truly optimal mapping (in the ultimate set1 U of all

possible arbitrary mappings from the context space to the set of bandit arms) is

upper bounded by
2c
√
n

n
√
N
. (5.1)

1This ultimate set can be non-rigorously considered as G∞.
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Proof of Theorem 3: Using this quantization method, the subspaces in the

finest partition of the context space are n-dimensional cubes with the longest

diagonal length equal to√
n− (log2N (mod n))

(2b
log2 N
n
c)2

+
log2N (mod n)

(2b
log2 N
n

+1c)2
. (5.2)

Since log2N (mod n) ≥ 0, this upper bound is at most equal to√
n

22b log2 N
n
c
≤ 2
√
n

2
log2 N
n

=
2
√
n

n
√
N
. (5.3)

Since the loss functions are Lipschitz continuous, the difference between the loss

corresponding to the truly optimal mapping in U and the best mapping in GN

cannot exceed the Lipschitzness constant times the quantized cubes diagonal

length, which concludes the proof.

Note that the Lipschitzness assumption does not intervene with the adversarial

setting. The loss functions can be quite different in different rounds and as long

as they are Lipschitz continuous at each specific round, the assumption holds

and our algorithm is competitive against the ultimate set of all possible arbitrary

mappings U . In this case, combining (5.1) with the regret bound in (4.29) directly

concludes the following theorem.

Theorem 4. Consider a contextual M-armed bandit problem with the context

space S = [0, 1]n, where the loss functions of the arms are Lipschitz continuous

with the constant c at all rounds. If we use a hierarchical structure with N leaf

nodes following the quantization scheme described in Chapter 5, the regret of

Algorithm 1 against the truly optimal strategy in a T round trial is upper bounded

as follows

R(T,U) ≤
√

ΨMT (AR + 1) ln ((HS + 1)M)

2
+

2Tc
√
n

n
√
N

. (5.4)

We emphasize that we can make the linear-in-time term of the upper bound

in (5.4) as small as desired by growing the hierarchical structure and increasing

the number of leaf nodes N , which is equal to the number of quantization levels.
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Chapter 6

Experiments and Conclusion

6.1 Experiments

In this section, we demonstrate the performance of our algorithm in different

scenarios involving both real and synthetic data. We demonstrate the perfor-

mance of our main algorithm HSB with various hierarchical structures including

binary tree (HSB-BT ), lexicograph (HSB-LG) and arbitrary position splitting

(HSB-APS ) [33]. We compare the performance of our algorithms against the

state-of-the-art adversarial bandit algorithms EXP3 and S-EXP3 [16]. In all of

the experiments, the parameters of EXP3 and S-EXP3 algorithms are set to

their optimal values according to their publication [16].

6.1.1 Stationary Environment

We first construct a game with 3-armed bandit, where the context space is the 1-

dimensional space S = [0, 1]. Each arm i generates its loss according to a Bernoulli

distribution with parameter pi, i.e., the loss is equal to 1 with probability equal
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Figure 6.1: The averaged accumulated loss of HSB-BT, S-EXP3, and EXP3 on the datasets
defined using (6.1).

to pi. These parameters, i.e., p1, p2, p3, depend on the context variable st as

p1(st) = 0.5 + 0.5 sin(2πst),

p2(st) = sin(πst),

p3(st) = st. (6.1)

Here, the optimal strategy is defined as follows

g(st) =


3, st < 0.5

1, 0.5 ≤ st < 0.9182

2, 0.9182 ≤ st.

(6.2)

In this experiment, we generate the context variable st randomly with uni-

form distribution over the context space, i.e., [0, 1], and compare the averaged

cumulated loss performance, i.e., (
∑t

τ=1 lτ,Iτ )/t, for our algorithm HSB-BT with
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various depth parameters equal to 2, 5, and 10, S-EXP3 [16] with the same depth

parameters, and EXP3 [16].

To this end, we generate 10 synthetic datasets of length 105. To produce each

dataset, first, 105 context variables st are drawn according to a uniform proba-

bility distribution over the interval [0, 1]. Then, the arm losses corresponding to

different rounds are drawn from the Bernoulli distributions, parameters of which

are determined according to (6.1). Each dataset is presented to the algorithms

10 times and the results are averaged. This process is repeated for all 10 datasets

and the ensemble averages are plotted in Fig. 6.1. Two important results can be

derived from the result of this experiment. First, our algorithm HSB-BT outper-

forms both of the S-EXP3 and EXP3 algorithms. Second, while increasing the

depth uniformly improves the performance of our algorithm, it can degrade the

performance of S-EXP3 due to the overtraining. The superior performance of

our algorithm in this experiment is because of its fast convergence to the optimal

mapping. Here, EXP3 has a fast convergence but it converges to a suboptimal

mapping because it does not use the context information. On the other hand,

S-EXP3 converges to the optimal mapping, but needs a huge amount of data

to get trained. Our algorithm uses an efficient adaptive combination of the ex-

perts with intelligent initial weights to obtain the advantages of both EXP3 and

S-EXP3 algorithms, while mitigating their disadvantages.

6.1.2 Nonstationary Environment

In this part, we illustrate the averaged cumulated loss performance of the algo-

rithms in a nonstationary environment. To this end, we construct 10 different

datasets of length 105 as in Section 6.1.1. However, here the arm losses follow a

model as in (6.1) in the first quarter of the rounds, and the following model in

the rest of the rounds:
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Figure 6.2: The averaged accumulated loss of HSB-BT, S-EXP3, and EXP3 on the datasets
as described in Section 6.1.2, involving a rapid change in the behavior of the arms after 25% of
the rounds.

p1(st) = sin(πst),

p2(st) = st,

p3(st) = 0.5 + 0.5 sin(2πst). (6.3)

Hence, we have an abrupt change in the model of the arms within the rounds.

Each dataset is presented to the algorithms 10 times and the results are averaged.

This process is repeated for all 10 datasets and the ensemble averages are plotted

in Fig. 6.2. As shown in the figure, our algorithm HSB-BT not only outperforms

its competitor before the rapid change in the model of the bandit arms but also

adopts better to this rapid change in comparison to the competitors.

6.1.3 Real Life Online Advertisement Dataset

In this section, we demonstrate the superior performance of our algorithms HSB-

BT and HSB-LG against their natural competitors EXP3 and S-EXP3 over
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Algorithm 2 The offline evaluation method used to test the competitor algo-
rithms over the Yahoo! Today Module dataset

1: Input: Bandit algorithm A, logged data for T rounds
2: Initialize: L = 0 and R = 0
3: for t = 1 to T do
4: Get st ∈ {1, 2, ..., N} from the log
5: Run the algorithm A.
6: if the arm, selected by A is the arm which is shown to the user then
7: Use the user feedback to update A.
8: Set R = R + 1.
9: If the user has not clicked set L = L+ 1.

10: else
11: Ignore this round.
12: end if
13: end for
14: L and R show the total loss and the total rounds respectively.

the well known real life dataset provided by Yahoo! Research. This dataset

contains a user click log for news articles displayed in the featured tab of the

Today Module on Yahoo!’s front page, within October 2 to 16, 2011. The dataset

contains 28041015 user visits. For each visit, the user is associated with a binary

feature vector of dimension 136 that contains information about the user like age,

gender, behavior targeting features, etc. We used an unbiased offline evaluation

method as in [47], to test the competitors over this dataset. A brief pseudo-code

of this evaluation method is shown in Algorithm 2. In this experiment, we ran a

PCA algorithm [48] over the first 5% of the data to get the principal components

of the feature vectors. We mapped the feature vectors over the first principal

component to form a set of 1−dimensional context variables. We used these

context variables for S-EXP3, HSB-BT and HSB-LG algorithms. We tested

the EXP3 and S-EXP3 algorithms with several depth parameters, while their

parameters were set to their optimum values [16]. However, since we do not have

any information about the number of disjoint regions in the optimal mapping,

i.e., R, the η parameter for the HSB-BT and HSB-LG algorithms cannot be

tuned to the optimum value analytically. In this experiment, in order to have a

fair comparison, we set the η parameter of the HSB-BT and HSB-LG algorithm

with a specific depth equal to the η parameter of the S-EXP3 algorithm with
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Figure 6.3: Percentage of click in the Yahoo! Today Module dataset

the same depth. We emphasize that no numerical optimization is done for the η

parameter of our algorithms. The percentage of user clicks for different algorithms

are shown in Fig. 6.3. As shown in this table, our algorithms outperform both of

the S-EXP3 and EXP3 algorithms, even though the learning rate parameters of

our algorithms are not tuned to the optimum values due to the lack of knowledge

on the parameter R.

6.1.4 Real Life Classification Dataset

In this experiment, we use well-known LandSat dataset [49] to show how our

algorithm can be employed for online multi-class classification in the Error Cor-

recting Output Codes (ECOC) framework [50]. This dataset consists of 6435

samples from 6 classes. The feature vectors are 36-dimensional integer vectors.

In the ECOC framework, given a set of C classes, we assign a binary codeword
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of length NC to each one of the classes. We arrange these codewords as rows of

a coding matrix MC ∈ {+1,−1}C×NC . We consider each one of the NC columns

of MC as a binary classification problem and run a binary classifier over each

column. The ith classifier is to learn whether the ith bit of the codeword is +1

or −1. In order to label a new sample, the feature vector is fed to the binary

classifiers to obtain a codeword based on their outputs. We then decide on the

label of the sample based on its codeword.

In this experiment, we use the one-versus-all coding [50] to form our coding

matrix as shown in table 2 and run 6 Online Perceptrons in parallel as our binary

classifiers. We use the codewords obtained from the Perceptrons as our context

vectors and the classes as our bandit arms. We provide our algorithm HSB with

the context vectors and label the sample based on the arm suggested by the

algorithm. Then, we observe the true label and suffer a loss equal to 1 in case of

incorrect label. The competitors in this experiment are our algorithm HSB with

two different hierarchical structures of ”Arbitrary Position Splitting” (HSB-APS )

and ”Binary Tree” (HSB-BT ), alongside EXP3, S-EXP3 and Hamming Decoding

[50]. The learning parameters of the algorithms are set to their optimal value.

We emphasize that while the Hamming Decoder knows the codewords corre-

sponding the classes a priori, other competitors do not use this information and

try to learn the best mapping from the context space, i.e., codewords space, to

the classes. For presentation simplicity, we have splitted the samples into 9 con-

secutive epochs and averaged the number of errors over each epoch. As shown

in Figure 6.4, the algorithms S-EXP3, HSB-BT and HSB-APS compensate their

lack of information on the coding matrix (compared to the Hamming Decoder)

as time goes on. Among them, HSB-APS outperforms the others and even Ham-

ming Decoder in the last 3 epochs as expected.
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Figure 6.4: The percentage of misclassification of the competitors over 9 consecutive epochs
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6.2 Concluding Remarks

We studied the contextual multi-armed bandit problem in an adversarial setting

and introduced truly online and low complexity algorithms that asymptotically

achieve the performance of the best context dependent bandit arm selection pol-

icy. Our core algorithm quantizes the space of the context vectors into a large

number of disjoint regions using an efficient quantization method and forms the

class of all mappings from these regions to the bandit arms. Then, it adaptively

combines these mappings in a mixture-of-experts setting and achieves the perfor-

mance of the best mapping in the class. We prove performance upper bounds for

the introduced algorithms. These upper bounds show that we achieve the perfor-

mance of the truly optimal mapping (which might be out of our class of mappings)

by increasing the number of quantization levels. We use hierarchical structures to

implement our algorithms in an efficient way such that the computational com-

plexity is log-linear in the number of quantization levels. We have no statistical

assumptions on the behavior of the context vectors and the bandit arms, hence
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our results are guaranteed to hold in an individual sequence manner. Through ex-

tensive set of experiments involving synthetic and real data, we demonstrate the

significant performance gains achieved by the proposed algorithms in comparison

to the state-of-the-art techniques.
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