A NEW APPROACH TO TIME-FREQUENCY
LOCALIZED SIGNAL DESIGN

A THESIS
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND
ELECTRONICS ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Zafer Aydin
July 2001



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Orhan Arikan(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Haldun Ozakta§

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Murat Alanyal

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

il



ABSTRACT

A NEW APPROACH TO TIME-FREQUENCY
LOCALIZED SIGNAL DESIGN

Zafer Aydin
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Orhan Arikan
July 2001

Design of signals in Wigner Domain has received considerable interest
throughout the study of time-frequency signal synthesis. In commonly used
design methods where the designer has to specify the desired Wigner distribu-
tion, the overall performance of the design is often adversely affected by the
difficulty of representing the cross terms in the desired model. In this thesis we
present a novel approach for the design of signals in Wigner Domain. In this
method, the desired signal features in the time-frequency domain are specified
in two stages. First the user is required to specify the spine which is the curve
around which the energy of the desired signal is distributed. Once the spine
of the desired signal is specified, the user is asked to specify the spread of the
desired signal energy around the spine. In addition to this fundamentally new
way of defining the time-frequency features of the desired signal, the actual
synthesis of the signal is performed in a novel approach which is robust to the

inadequately defined inner interference structure of the desired signal in the
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Wigner domain. Once the spine of the desired signal is specified, a generalized
warping function is obtained as a cascade of fractional Fourier transformation
and warping. Then the actual signal synthesis takes place in the transformed
signal domain where the inner interference terms of the signal are greatly re-
duced. After obtaining the designed signal in the transformed domain, it is
transformed back to the original time domain providing the final result of the

new signal synthesis technique.

Keywords: time-frequency, Wigner distribution, signal design, signal synthesis,

spine, transformed signal domain, warped fractional domain
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OZET

ZAMAN VE FREKANSTA LOKALIZE SINYAL
TASARIMINA YENI BIR YAKLASIM

Zafer Aydin
Elektrik ve Elektronik Miihendisligi Bolumii Yiiksek Lisans
Tez Yoneticisi: Do¢. Dr. Orhan Arikan
Temmuz 2001

Zaman-frekans sentez problemleri icerisinde en cok ilgi géren ugras alan-
larindan biri Wigner diizleminde sinyal tasarimidir. Yaygin olarak kullanilan
tasarim yontemlerinde tasarimcinin arzulanan Wigner dagilimimi bagtan be-
lirtmesi istenir. Arzulanan modelde kros terimlerin belirtilmesi zor oldugundan
bu yontemlerin genel performansi olumsuz yonde etkilenmektedir. Bu tezde
Wigner diizleminde sinyal tasarimi ile ilgili yeni bir yontem oOnermekteyiz.
Bu yontemde sinyalin zaman-frekans diizlemindeki arzulanan oOzellikleri iki
asamada belirlenir. Oncelikle kullanici omurgay1 girer. Omurga, sinyalin
enerjisinin etrafinda dagilacagr egridir. Omurga belirlendikten sonra, kul-
lanicidan sinyalin omurga etrafinda nasil yayilacagin1 girmesi istenir. Arzu-
lanan sinyalin zaman-frekans ozellikleri temelde yepyeni bir sekilde belirlen-
mektedir. Bunun yanisira asil sinyal sentezi, Wigner diizleminde arzulanan
sinyalin kros terimlerinin yeterince iyi girilememesinden kaynaklanan zorluk-

lara kargt dayanikli yeni bir yontemle yapilmaktadir. Arzulanan sinyalin

v



omurgasi belirlendikten sonra genellenmis biikme fonksiyonu, kesirli Fourier
doniisiimii ve biikme igleminin seri bilegsimi olarak elde edilir. Daha sonra asil
sinyal sentezi, sinyalin kros terimlerinin oldukca azalmig oldugu doniistiiriilmiig
sinyal bolgesinde yapilir. Dontistiiriilmiis sinyal bolgesinde tasarlanan sinyal,

orijinal zaman bolgesine tasinarak yeni sinyal sentez teknigi tamamlanir.

Anahtar Kelimeler: zaman-frekans, Wigner dagilimi, sinyal tasarimi, sinyal

sentezi, omurga, doniigtiiriilmiig sinyal bolgesi, biikiilmiig kesirli bolge
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Chapter 1

INTRODUCTION

Signal Synthesis is one of the essential problems of Digital Signal Processing. In
general, it refers to the design of signal samples that reflect the user specified
attributes. Each system has its own characteristics and restrictions. It is
the designer who should specify the desired qualities of the signal considering
the domain that he operates on. Then it remains to select the algorithm or
method that is acceptable in terms of accuracy and efficiency. In general there
is no optimum method therefore algorithms are still developed that further

compensate the need for better designs.

The common applications involve the synthesis of filter responses, synthesis
of speech signals, synthesis of signals that have desired time-frequency proper-
ties, etc. In filter design the user specifies the samples of the impulse response
which reflects the desired filter properties. Speech synthesis as another applica-
tion is widely encountered in telecommunications. In a communication channel

the speech signals are carried as encoded waveforms. This helps to decrease the



size of the information that has been transferred. The receiver then decodes the
incoming waveform and synthesizes the speech signal by generating the speech
waveform according to the received filter coefficients. In text-to speech syn-
thesis the system receiving the text, generates the corresponding speech signal
combining the syllables that exist in the library. In time-frequency synthesis

the user designs a signal that reflects the desired time-frequency properties.

Time-frequency analysis plays an important role in representing the fre-
quency content of the signal as well as its energy spread. The time-frequency
distributions that have been developed so far aim to show how the signal’s en-
ergy has been distributed at which frequencies and when [1]. Therefore these
distributions have an advantage over the Fourier analysis which only shows the
frequency components of the signal and their relative strength. Wigner distri-
bution is the first to be proposed and is the most widely used and studied. It
has high resolution and high auto-term concentration [1,2] but also contains
cross terms which can interfere with the auto-components and decrease the

interpretability of the Wigner distribution [3].

Time-frequency synthesis problem aims to design a signal that best reflects
the desired time-frequency properties. These properties are summarized on
a time-frequency model having a certain shape, and height on a two dimen-
sional time-frequency plane. In the most general case, any two dimensional
function may not correspond to the time-frequency distribution of any signal.
The mapping is such that each signal has its time-frequency distribution but
each model may not be the distribution of a signal, hence it is not invertible.
Therefore in a typical synthesis problem, the cost between the model and the

time-frequency distribution of the synthesized signal is aimed to be minimized.



Time-frequency signal synthesis is widely used for Ambiguity Function
in Radar Signal Processing. Ambiguity Function is not an energetic time-
frequency distribution but a correlative time-frequency representation. The
user specified model contains the desired Ambiguity properties and by using
Ambiguity based signal synthesis method, the signals with desired attributes

are obtained.

The various applications related to time-frequency synthesis involve signal
design [4], time frequency filtering [5], component extraction [4] and noise re-
duction [6]. In signal design the user constructs a model and aims to synthesize
the signal whose time-frequency distribution is closest to that model. In time
frequency filtering the user designs a filter that passes all the signals whose
support lie in a time-frequency region and suppresses all the signals outside
this region. First the time-frequency distribution such as Wigner distribution
is computed. This is the analysis step. Then the signal’s WD is multiplied
by a mask which is the masking step and finally the output signal is synthe-
sized from the masked WD which is the synthesis step. The mask is chosen
such that it is one inside the pass region and zero outside [5]. Component
Extraction is the time-frequency filtering for just single component. The user
has the time domain representation of a multi-component signal and aims to
separate one of its components. After computing the Wigner distribution of
that multi-component signal masking is performed such that only the Wigner
of the desired component is retained. This masked Wigner is then used as a
model for the synthesis of the desired component [4]. Noise reduction is an-
other application that is related to time-frequency synthesis. In general noise
is typically spread throughout the time-frequency plane. If the noise is liter-

ally erased by masking and the signal support is retained then the resulting



time-frequency distribution will consist of only the signal and noise around
that signal. The synthesized signal from that curtailed distribution will have

considerably reduced noise. [6].

If signals with localized supports are aimed, then it is wise to use a Wigner
distribution. Signal synthesis in Wigner domain concentrates on synthesizing a
signal whose Wigner distribution is closest to a model Wigner. Model Wigner
is a real-valued, square-integrable function of time and frequency. Various
closeness measures can be adapted and least squares is the most commonly

used.

The most primitive method is the Wigner distribution based synthesis algo-
rithm [7,8]. Second is the smoothed Wigner distribution-based synthesis algo-
rithm which uses smoothed Wigner distribution where a signal whose smoothed
Wigner is closest to the model is synthesized [4]. The third method is the
masked Wigner distribution-based synthesis algorithm where a signal whose

masked Wigner distribution is closest to the model is synthesized [9].

Various problems are encountered in signal synthesis in Wigner domain.
First of all a Wigner distribution by its quadratic nature possess cross terms
[10,11]. There are two types of cross terms. Cross-cross terms emerge from
the joint Wigner distribution [12] of two components whereas auto-cross terms
emerge within the auto-Wigner of a single component. These cross terms
are oscillatory and it is not easy to model them. In Wigner distribution-based
signal design if the synthesis result is expected to have cross terms, the synthesis
will not be satisfactory due to the difficulty in modeling these cross terms. In
Wigner distribution-based component extraction, sometimes the cross-cross

terms completely overlap a component that is to be extracted. In this case the



synthesis will not be successful because the component is buried under the cross
terms coming from the other two components. As a solution to that problem
it has been suggested to use smoothed Wigner distribution [4]. In this case the
synthesis method aims to find a signal whose smoothed Wigner is closest to the
time-frequency model. Smoothing corresponds to a two dimensional filtering of
the Wigner distribution. This approach greatly reduces the drawbacks caused
by cross terms but it is no more in Wigner domain. Another solution is the use
of masked Wigner distribution which removes the need for the exact shape of

the cross terms [9]. But here there is still need for the location of these terms.

Though the earlier approaches improve the drawbacks of the Wigner
distribution-based signal synthesis, there still remain some problems. The
smoothed and masked Wigner based synthesis methods proposed by [4,9] are
first of all computationally expensive. In the smoothing case, there is no opti-
mum smoothing filter and no optimum smoothing parameters that will generate
satisfactory results. In masked Wigner distribution-based synthesis, the speci-
fication of the don’t-care mask, which is constructed according to the location
of the cross terms may not be that easy especially in the signal design problem.
Also if the the signal support is completely superimposed by the cross terms,
the masked Wigner distribution-based synthesis will not produce the desired

result.

The second common problem which is especially encountered in signal de-
sign is the specification of the model. When no time signal is available it is not
easy to perfectly specify the model, especially the bandwidth distribution that
will generate satisfactory results. Existing approaches did not directly propose

a solution to this problem. It is generally left to the experience of the designer



who is expected to be familiar with the possible model shapes and bandwidth
distributions. Actually the intuition about how the bandwidth distribution

would be chosen is not something quite developed.

In this thesis, we focus on the signal design problem and propose a method
that greatly facilitates the problems of earlier approaches. The main contri-
bution of this thesis is to remove the need for cross term modeling because
in transformed signal domain the cross terms are greatly reduced. Therefore
the user does not have to worry about their shape and location. Also it fa-
cilitates the specification of the bandwidth which has a simpler shape in the
transformed signal domain than in the original time domain. The proposed
method is practical: the model parameters are easily specified. Finally it has

a fast implementation.

The major steps of the novel design method are explained as follows: First
of all, the user does not enter the model in the ordinary time-frequency plane
but in the transformed signal domain. The parameters related to the model are
progressively specified. First the spine which is the instantaneous frequency
curve is determined in the ordinary time-frequency plane around which the
signal energy would be distributed. Then, based on the orientation of the
spine the rotation angle ¢ is computed such that the rotated spine is a single
valued function of time. This rotation angle is used to determine the order
of the fractional Fourier transformation [13,14], which will be required in the
last step of the design. Then the warping relations are computed which specify
the center frequency for the model in warped domain [15]. After specifying
the spine and the rotation angle in the original time domain, the bandwidth

and amplitude distributions are specified in transformed signal domain. Model



Wigner is constructed using the parameters: bandwidth, amplitude and center
frequency. After constructing the model a signal is synthesized in transformed
signal domain using Wigner distribution-based synthesis algorithm. This al-
gorithm is preferred because the interference terms are greatly reduced in the
transformed signal domain. Then the synthesized signal is unwarped by a gen-
eralized unwarping relation which completes the design. The unwarping rela-
tion is the cascade of unwarping operation [15] and fractional Fourier transfor-
mation [13,14]. Fractional Fourier transformation is used to rotate the signal’s

support in Wigner domain with respect to origin.

The organization of the thesis is as follows: First in Chapter 2 two of the ex-
isting design approaches are reviewed. They are the Wigner distribution based
and the masked Wigner distribution based synthesis methods. Their theoret-
ical formulation is presented and they are tested on simulation examples to
discuss their performance. Then in Chapter 3 the novel design method is in-
troduced. In this chapter, the fractional domain warping concept is explained,
the method is presented and is tested on the cases where earlier approaches
failed. Chapter 4 includes simulations for comparing the performances. It first
deals with the synthesis of available time signals where the error between the
original signal and designed signal is obtained for each method and compared.
Then the synthesis of real signals is considered. Real signals are the recordings
from nature such as birds, whales, etc. For real signals the performances are

compared in terms of the fit to the desired region. Then the thesis is concluded.



Chapter 2

REVIEW OF EXISTING
DESIGN APPROACHES

2.1 WIGNER DISTRIBUTION BASED SIGNAL SYN-

THESIS

Signal synthesis problem is the design of a signal which exhibits some desired
attributes. These attributes of the signal are usually specified in a convenient
transform domain. Then a signal is generated such that it carries the desired
attributes in the transform domain as much as possible. In time-frequency
domain based signal synthesis problem, the desired attributes of the signal are
specified in the time-frequency plane in the form of a model time-frequency
distribution. The model time frequency distribution designates how the en-
ergy of the signal should be distributed as a joint function of both time and

frequency.



In the classical approach, since the model may not be a valid time-frequency
distribution, the signal is synthesized such that its computed time-frequency
distribution is in some sense close to the model time-frequency distribution.
Since the time-frequency distribution of a signal is not uniquely defined and
the measure of closeness can be defined in a multitude of ways, the performance
of the signal synthesis algorithm varies based on which closeness measure and

time-frequency distribution definition are used.

One of the well known algorithms is the WD-based signal synthesis algo-
rithm. Wigner Distribution is widely used if signals with localized supports
are preferred. In this approach, the signal is designed such that its WD is the
closest to the model time-frequency distribution in the least squares sense. For
instance, when the model time-frequency distribution is denoted as W (¢, f),
the synthesized signal is generated as the solution to the following least squares

minimization problem:
zg(t) = argman (2.1)
= argm1n//|WM (t, f) — Wa(t, f)2dtdf (2.2)

where xg(t) is the synthesized signal, J(x) is the cost function and W, (¢, f) is

the WD of the signal z(¢), which can be computed as

W,(t, f) = / Bt 122"t — 1 )2)e 2t (2.3)

In digital implementation, the continuous domain WD given in (2.3) is approx-

imated by its discrete-time counter part W,[n, f) which is defined as
Wo(nTy, f) = W,ln, f) £ T, Zcm[n,m]e’ﬂ”fmn : (2.4)

where

cx(n,m) = z[n + mlz*[n — m] (2.5)



is a correlation between the samples of the sequence z[n] where z[n] = x(nT})
are the uniformly spaced samples of the continuous time signal z(¢) obtained
with a sampling interval of T. Similarly the discretized model WD WM [n, f) £

WM (nT,, f) can be expressed as:

WHMn, f) =T, ZCM[n, m]e 2 ImTs (2.6)
where ¢M[n, m] is the inverse Fourier Transform of the model Wigner distribu-
tion

1/2T, ‘
M) = [ W et ag 2.7
—1/2T,

and in general it cannot be expressed as the outer product of a signal as in
(2.5). Note that by discretizing the continuous time problem, we restrict the

set of allowable signals in the optimization problem to those signals whose

double-sided band-width B, satisfies B, < 1/(2T5).

After the discretization, the samples of the continuous time signal z¢(t) are

computed as a solution to the following minimization problem:

zg[n] = argmgnJD(x) (2.8a)
_ argmg}anZ/ WM (0T, f) — Wo(nTo, fI2Af (2.8D)

where zg[n] = xg(nTs) and Jp(x) denotes the discretized least squares cost
function. As shown in Appendix A, by using the Parseval’s relation the cost

function Jp(z) in (2.8) can be expressed as
To(@) = 1,3 Y lecdn,m] — Mo, m? (29)

where c,[n, m] and ¢M[n, m] are given in (2.5) and (2.7). This result is similar

to the one given in [9] where instead of ¢™[n, m], ¢P[n, m] is used corresponding

10



to the don’t-care version. Since z[n] is a half-band signal, its odd and even
indexed samples are dependent. Thus, as shown in Appendix A, the above
cost function can be expressed only in terms of the even indexed samples of
the signal x[n]:

Jp(z) =Ty ZZ|0M[n,m]|2+2(ajf$e)2—mfﬁaje , (2.10)

n m

where the vector @ . consists of even indexed samples of the signal z[n], and the
entries of the matrix D are given in (A.22). The solution to this minimization
problem is one of the stationary points of the cost function which is found by

setting its complex gradient with respect to &’ to zero [16]:

322:(33) =T, |4z 2z )z, — Dz, =0 , (2.11)

which yields an eigenvalue problem
Dz, =4z, ’x. , (2.12)

where D is an Hermitian matrix. Thus if ()\;,§;) are ordered eigenpairs of
the D matrix such that A1 > Ay > -+, then the stationary points of the cost

function are in the form of

ériqi . (2.13)

me,i:

By using Lemma 1, the even indexed samples of the synthesized signal are
obtained as

Ts=—q , (2.14)

where \; > \;, Vi #£ 1 and q; is the corresponding eigenvector.

Lemma 1. The global minimum of the cost function is obtained by choosing

(X\i, q;) as the eigenpair with the mazimum eigenvalue.

11



Proof. Appendix B. O

Then by using the relation given in Appendix C, the odd indexed samples

of the synthesized signal are recovered from the even indexed samples.

In the rest of this section, we investigate the performance of the WD based
synthesis algorithm on simulated examples. In the first simulation, a model
time-frequency distribution with a linear support is used. The model WD
WM(t, f) is chosen as the WD of a chirp signal as shown in Fig. 2.1. In
Fig. 2.2(a), the result of the WD-based synthesis algorithm is given. To assess
the performance of the algorithm, the WD of the synthesized signal is also
computed as shown in Fig. 2.2 (b). By comparing the model WD given in
Fig. 2.1(b) and the WD of the synthesized signal Fig. 2.2(b), we conclude that
the WD based synthesis algorithm has a good performance for this simulation

example.

Although the WD-based synthesis algorithm has produced very good results
in this simulation, its success is very much dependent on the shape of the model
WD. For instance, if the model WD has a linear time-frequency support as in
this simulation, then this algorithm provides satisfactory results. However, if
the model WD has a non-linear support in the time-frequency plane, then it
would be difficult for the designer to incorporate the inner-interference term
information into the model WD. Furthermore, if the model WD lacks the
inner-interference term information [10, 11], this algorithm can provide very

poor results.

In the second simulation, the synthesis of a non-linear chirp is considered.

The synthetic signal shown in Fig. 2.3 (a) is used to generate the model WD.

12



This is achieved by removing the inner-interference terms of the WD of the
chirp signal given in Fig. 2.3(b). The model WD obtained by this way contains
only the auto-term structure as shown in Fig. 2.3(c). The WD-based synthesis
algorithm on the model WD shown in Fig. 2.3(c) synthesized the signal shown
in Fig. 2.4(a). By a close examination the WD of the synthesized signal given
in Fig. 2.4 (b) and the model WD, it can be concluded that the synthesis
algorithm performs poorly when the inner-interference terms are not included

in the model WD.

13
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Figure 2.1: (a) The time domain representation of a chirp signal and (b) its
Wigner distribution having a linear support. Interference terms are negligible.

2.2 MASKED WIGNER DISTRIBUTION BASED SIG-

NAL SYNTHESIS ALGORITHM

To overcome the the difficulties associated with the WD-based synthesis al-
gorithm in the cases where an accurate description of the inner-interference
terms is not available, it has been suggested to use a masked Wigner distribu-
tion (MWD)-based signal synthesis algorithm [9]. In this approach, the design
is performed by finding a signal whose masked WD is closest to the model WD
in the least squares sense. In this approach the user creates a mask Mp(t, f)
by designating the regions of time-frequency plane which covers the supports

of the inner-interference terms. After specification of an appropriate don’t-care
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Figure 2.2: The simulation of the WD-based synthesis algorithm on the model
time-frequency distribution given in Fig. 2.1(b): (a) The signal synthesized by
using the WD-based synthesis algorithm and (b) the WD of the synthesized
signal. The result is successful since the model did not require inner interference
terms for a linear chirp signal.

mask as

1, if (¢, f) ¢ D i.e. the point (¢, f) is free-from cross term interference

MD(ta f) =

0, if (¢, f) € D i.e. the point (¢, f) is contaminated with cross term interferenc

(2.15)
where D denotes the don’t-care region which covers the supports of the in-
ner interference terms, the signal is synthesized as solution to the following

minimization problem:
rs(t) = argmin / (WM, f) = WP, PP dtdf (2.16)
where WP (t, f) is the masked Wigner distribution
WPt f) & Mp(t, [YWa(t, f) . (2.17)

It should be noted that, MWD-based signal synthesis reduces to conventional
WD-based signal synthesis method if the mask Mp(¢, f) is chosen as unity at

all points in the time-frequency plane.
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To find the solution to the minimization problem given in (2.16), the gra-
dient of the cost function is set to zero, and the obtained non-linear set of
equations are solved. In [9], the iterative quasi-power algorithm is used to
obtain a solution to these non-linear set of equations. The details of this al-
gorithm and its fast implementation are discussed in [4,9]. However it should
be noted that its convergence rate is dependent on the shape of the don’t-care
mask and the appropriate initialization of the parameters and no formal proof

of convergence of this algorithm is present so far.

Although, the MWD-based synthesis algorithm relieves the load of designer
by requiring only the knowledge of the support of the cross-term interference
but not its exact structure, its performance is very much sensitive to the shape
of the don’t-care mask. For instance if the designer is not an expert in this
field or if the structure of the inner interference terms is too complicated, then
he may not be able to accurately identify the support of the inner interference
terms. He might either allocate too much or too little space for the don’t care
region. However, in this case spurious signal terms may appear in the synthe-
sized signal, because in the cost function given in (2.16) the signal components
inside D are not penalized as long as they do not lead to an interference term
outside D [9]. For instance, if the model WD and the don’t care masks are as
shown in Fig. 2.5, then both of the signals given in Fig. 2.6 are solutions to the
cost function of the MWD-based synthesis algorithm. To avoid this drawback
of the algorithm, an energy penalty factor is incorporated into the definition
of the cost function [9] which leads to a slight modification in the quasi-power
algorithm. In general, the optimum choice of this parameter is not known,

therefore it must be experimentally chosen. Choosing it too large results in
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downscaling of the signal while choosing it too small results in incomplete

suppression of the spurious signal components. [9]

2.2.1 SIMULATION OF THE MWD-BASED SIGNAL SYNTHESIS

ALGORITHM

In this section, we investigate the performance of the MWD-based synthesis
algorithm on the model WD which is given in Fig. 2.3 (c). A possible choice
of the don’t care mask is shown in Fig. 2.7 (a), where the don’t care region
is the dark colored region of the time-frequency plane. In this example, the
energy penalty factor is chosen as zero. In all these simulation algorithms,
the quasi power algorithm is initialized with a half-band white noise sequence.
The synthesized signal and its Wigner distribution are shown in Fig. 2.7 (b)
and Fig. 2.7 (c) respectively. By comparing the auto-term of the WD of the
synthesized signal and the model WD given in Fig. 2.3(c), it can be concluded
that the MWD-based synthesis algorithm produced a very good result in this

simulation.

In the second simulation the synthesis of a signal with a saw-toothed sup-
port is considered. In this case no time signal is available. The user designs
the model Wigner and the don’t-care mask. It’s not easy to perfectly specify
such a non-linear model because at the corners of the model the bandwidth
is expected to become larger. But for the sake of simplicity a nearly constant
bandwidth is chosen for the model Wigner given in Fig. 2.8 (a). The idea be-
hind choosing this example is that the middle portion of the Wigner support

would be superimposed by the inner-interference terms caused by the tails.
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To speak more clearly, the first and third up-ramping parts would cluster the
second up-ramping portion, similarly the first and third down-ramping parts
would cluster the second down-ramping portion. Therefore the middle part
of the model support should be included inside the don’t-care region which
is shown in Fig. 2.8 (b). Black areas correspond to cross term interference.
The synthesis results are depicted in Fig. 2.9(a),(c),(e),(g) for energy penalty
factors of v =0, 0.05, 0.1, 0.15. From the Wigner distribution plots given in
Fig. 2.9(b),(d),(f),(h) it can be concluded that the MWD-based synthesis algo-
rithm cannot successfully recover the middle portion of the model. This is the
result of including this region in the definition of the don’t-care mask because

of the overlap between the cross-terms with the auto-term at that region.

In the third case, the model is obtained from a time signal given in
Fig. 2.10(a). The Wigner distribution is shown in Fig. 2.10(b). In this simula-
tion, the aim is to supply a model which is obtained from a Wigner distribution
and is free from interference terms. It should be noted that no smoothing is
performed. The model Wigner is obtained by multiplying the Wigner with the
don’t-care given in Fig. 2.10(d). The don’t-care mask is obtained using the in-
terference term information in Fig. 2.10(b). The synthesis results are depicted
in Fig. 2.11 (a),(c),(e),(g) for energy penalty factors of v = 0, 0.05, 0.1, 0.15.
From the Wigner distribution plots given in Fig. 2.11 (b),(d),(f),(h) it can be
concluded that the MWD-based synthesis algorithm cannot successfully re-
cover the middle portion of the model even if the model is obtained from a

Wigner distribution and a nearly perfect don’t-care mask is used.
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In the fourth simulation, the model is chosen as the Wigner of the sig-
nal shown in Fig. 2.12 (a). The don’t care mask is again obtained us-
ing the interference term information. The synthesis results are depicted in
Fig. 2.13 (a),(c),(e),(g) for energy penalty factors of v = 0, 0.05, 0.1, 0.15.
From the Wigner distribution plots given in Fig. 2.13 (b),(d),(f),(h) it can be
concluded that the MWD-based synthesis algorithm again cannot successfully
recover the middle portion of the model. This time all the input parameters
were ideal: the model exactly same as the Wigner, don’t-care perfectly localiz-
ing the inner-interference term support, etc. In the last two simulations there
existed spurious signal components in the synthesis results when low energy
penalty factors are used. This is because of the fact that there is auto-term
support inside don’t-care mask and there is no information outside the don’t-
care mask that will contribute for the synthesis of these auto-terms. Therefore
it becomes necessary to increment the energy penalty which results in down-

scaling of the auto-terms.

From all these simulations it can be concluded that the performance of the
MWD-based synthesis algorithm is directly affected by the interference term
support which determines the shape of the don’t care region. If the interference
terms superimpose any auto-term support, then that part of the signal may
not be recovered. Also it is not easy to correctly specify the model at the
beginning if no time signal is available and choosing a model far from the

possible synthesis result may lead to unacceptable designs.
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Figure 2.3: (a) The time domain representation of a non-linear chirp signal,
(b) its Wigner distribution and (¢) the model Wigner distribution which is
obtained by removing the inner-interference terms of the WD given in (b).
In the most general case the time domain representation will not be available
and the model will not contain interference terms due to apparent difficulty in
modeling such terms.
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Figure 2.4: The simulation of the WD-based synthesis algorithm on the model
time-frequency distribution given in Fig. 2.3(b): (a) The signal synthesized by
using the WD-based synthesis algorithm and (b) the Wigner distribution of
the synthesized signal. The resulting synthesized signal cannot fit completely
to the desired region because the model lacked inner interference terms. The
performance therefore, though not very poor, is not satisfactory even if the
inner interference terms are likely to occupy a small region.
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Figure 2.5: (a)The model time-frequency distribution, (b) the don’t-care region
used for the MWD-based synthesis algorithm. It is guessed so that it is compact
enough and safely covers the expected interference terms.
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Figure 2.6: (a) A Solution for the MWD-based synthesis algorithm consisting of
a quadratic chirp, and (b) another solution with the same cost as (a) consisting
of a quadratic chirp and a gaussian which is submerged in interference term

support of the quadratic chirp.
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Figure 2.7: The simulation of the MWD-based synthesis algorithm on the
model time-frequency distribution given in Fig. 2.3 (b): (a) The don’t care
mask M(t, f), (b) the signal synthesized by using the MWD-based synthesis
algorithm and (c) the Wigner distribution of the synthesized signal. The syn-
thesis result is quite satisfactory. Therefore MWD-based synthesis algorithm
does not require the modeling of the inner interference terms but guessing their
location.
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Figure 2.8: (a) The model Wigner, (b) Don’t-care Mask M (¢, f). In model, the
first and third up-ramping parts would cluster the second up-ramping portion,
similarly the first and third down-ramping parts would cluster the second down-
ramping portion. Also the first and second up-ramping parts would cluster the
first down-ramping component, similarly the second and third down-ramping
portions would cluster the third up-ramping portion. Therefore the don’t-care
mask is chosen as shown in (b).
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Figure 2.9: The simulation of the MWD-based synthesis algorithm on the
model time-frequency distribution given in Fig. 2.8 (a): On the left the signals
synthesized by using the MWD-based synthesis algorithm with penalty factors
of (a) 0, (c) 0.05, (e) 0.1 and (g) 0.15 are shown. In (b), (d), (f) and (h)
the WD of each synthesized signal is given next to the corresponding signal.
The results are not satisfactory for different values of energy penalty factors
because of the fact that don’t-care mask covered the middle portion of the
component and the algorithm perceived the situation as the synthesis of two
separate components.
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Figure 2.10: (a) The time domain representation, (b) its Wigner distribution,
(¢) Model WD obtained by multiplying the Wigner in (b) with don’t-care in
(d), (d) Don’t-care Mask M (¢, f). The cross term free model is obtained from
a Wigner distribution of a signal. Wigner is multiplied with don’t-care mask
which is obtained using the interference term support of the available time
domain representation.
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Figure 2.11: The simulation of the MWD-based synthesis algorithm on the
model time-frequency distribution given in Fig. 2.10(c): On the left the signals
synthesized by using the MWD-based synthesis algorithm with penalty factors
of (a) 0, (c) 0.05, (e) 0.1 and (g) 0.15 are shown. In (b), (d), (f) and (h) the
WD of each synthesized signal is given next to the corresponding signal. The
synthesis results for various penalty factors are unsuccessful even if the correct
don’t-care mask is entered. The middle portion could not be synthesized due
to clustering of inner interference terms.
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Figure 2.12: (a) The time domain representation, (b) its Wigner distribution,
(¢) Model WD same as the Wigner in (b), (d) Don’t-care Mask M(t, f). In
this case, the model is chosen as the Wigner of the time signal which includes
all the necessary information about the signal. The don’t-care mask is chosen
again using the inner interference term spread of the time signal.
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Figure 2.13: The simulation of the MWD-based synthesis algorithm on the
model time-frequency distribution given in Fig. 2.12(c): On the left the signals
synthesized by using the MWD-based synthesis algorithm with penalty factors
of (a) 0, (c) 0.05, (e) 0.1 and (g) 0.15 are shown. In (b), (d), (f) and (h) the
WD of each synthesized signal is given next to the corresponding signal. The
results for various energy penalty factors are unsuccessful because of the same
reason: The middle portion is completely clustered by inner interference terms.
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Chapter 3

A NoVEL WIGNER DISTRIBUTION
BASED DESIGN METHOD USING

FRACTIONAL DOMAIN WARPING

In this section, we present a novel signal design approach which avoids the
drawbacks of the algorithms discussed in the previous sections and at the same
time simplifies the solution of the design problem. The basic problems with
the existing approaches are caused by the inner interference terms and model

specification.

The difficulty inner interference terms create deeply affects the performance
of the synthesis results. Such terms are not easy to model. It is difficult to
predict their exact location and shape if no time signal is available. Therefore
supplying a cross term free model to WD-based synthesis algorithm, the result

will be poor. MWD-based algorithm avoids the necessity for the exact shape
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of interference terms. The exact location is still not known but can be guessed
in determining the don’t-care mask. But even in this case if the cross terms
are likely to overlap some of the auto-term support such parts can be lost in

the design.

On the other hand the inaccuracy in determining a reasonable model affects
the overall performance. The most significant parameter in model selection is
the bandwidth. There is no common agreement on how the bandwidth should
be selected. It is not constant throughout the signal’s support. Observations
show that it enlarges at the corners and end points. How much should this

enlargement be is a matter of obscurity.

We facilitate the two problems addressed so far. The model is easily spec-
ified and with the aid of transformed signal domains, the need for auto-cross
terms is greatly reduced. The design is complete when the synthesized signal

in transformed signal domain is unwarped back to the ordinary time domain.

3.1 SPECIFICATION OF THE MODEL

In the new method, instead of directly constructing a 3-D model time-frequency
distribution and synthesizing a signal based on this model, the user specifies
the parameters of the model progressively. The user first specifies the spine
of the signal. We use the term spine interchangeably with the instantaneous
frequency information. It is the curve in time-frequency plane around which the
signal energy is spread. Spine can be any shape as long as a Wigner distribution
can be built onto it. For the specification of the spine, the user either describes

it by an analytical expression, or marks a finite number of points which reside
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on the spine and then connects these points by using interpolation such as the
spline interpolation algorithm. As an example a Wigner Distribution overlayed
with the spine is shown in Fig. 3.6 (c). Here a representative number of points

on the spine are highlighted.

The second parameter is the bandwidth distribution around the spine. In-
stead of determining the bandwidth in the ordinary time-frequency plane, we
propose to specify it in the transformed signal domain where it is much more
simple. Possible choices for the bandwidth can be a constant, a shifted gaus-

sian, inverted and shifted gaussian and similar curves. These are illustrated in

Fig. 3.2(d).

The relation between the transformed signal domain and the ordinary time

domain is explained in the next section.

3.2 FRACTIONAL DOMAIN WARPING

The new algorithm is based on the fractional domain warping concept, which
was first introduced in [15]. In this approach, the design problem is trans-
formed into a new domain where no interference terms exist. Thus, the most
important advantage of the new approach is that, it is not necessary to know
the structure and location of the inner interference terms. Therefore, there is
no need to construct a don’t-care mask which can be burdensome for compli-
cated interference term structures. Furthermore, it is very practical since the
user can easily choose the appropriate design parameters. And finally it offers

a very efficient implementation. Before presenting the full details of the new
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algorithm, we briefly discuss one of its key components: the fractional domain

warping.

Time domain warping corresponds replacing the time dependence of a signal
with a warping function. If z(¢) is the signal to be warped, and ((t) is the
warping function then the warped signal is given as z((t) = z({(t)). For the
invertibility of the warping operation, (t) should be chosen as a one-to-one and
differentiable function. Typically, time domain warping is used in processing of
the frequency modulated (FM) signals. As an example let z(t) be A(t)e/?m¢(®),
where A(t) is the non-negative amplitude and ¢(t¢) is the phase. In this case
when the warping function is chosen as ((t) = ¢~'(fst) where f; > 0 is an

arbitrary scaling constant, the warped signal becomes
wc(t) = A(C(1)er It (3.1)

which is a sinusoidal function at f; with envelope A({(t)). In general it would
be easier to operate on this function and if the warping relation is one-to-one,

then the original signal can be recovered by the following unwarping operation

x(t) = 2c(¢C (1) - (3-2)

In our application, the warping function will be computed from the spine,
(t), of the signal around which the signal energy is localized. When the spine
is single valued it is also called the instantaneous frequency. The spine of
the signal can be obtained either automatically by using a slightly modified
instantaneous frequency estimation algorithm or manually by marking several
points (¢;,1(t;)) of the spine on the time-frequency plane and then connecting
them by using an interpolation algorithm such as the spline interpolator [17].

After estimating the spine of the signal, for a signal with time domain support
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t; <t <ty, the warping function and its inverse are computed as

r) = [y h<r<i (33)
) = F(lt)/fw—f-tl , b <t<tn (3.4)
C(t) = T"Yfyt—t)) , L <t<ty , (3.5)

where f,, is the mean of the spine

fo=T(0n)/(ty —11) . (3.6)

For the invertibility of the warping operation, the I'(#) function given in (3.3)
should be one-to-one which is ensured only when the () is a strictly positive
function of time. If this condition is not satisfied, then warping operation can
be performed on the frequency modulated version of the signal. In this case,

the new spine would be a frequency shifted version of the former one.

This warping operation has the effect of transforming a signal with a curved
time-frequency support to a signal with a linear time-frequency support which
is concentrated around the center frequency, f,. Thus, after the warping op-
eration the inner interference terms of the signal are considerably reduced.
Therefore the designer does not have to worry about the structure or location
of the inner interference terms which was a hurdle in the conventional signal
design process. After unwarping the signal designed in the warped domain,
complicated signals with non-linear supports can be designed. However the
time domain warping technique fails if the spine is not a single valued function
of time as in Fig. 3.1(b). To utilize the warping concept for this type of spines
which can be converted into a single valued function of time after a rotation
in time-frequency plane, the time domain warping is extended to fractional

Fourier domains [18].
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In fractional domain warping, instead of the time signal z(¢) its fractional

Fourier transform (FrFT) which is defined as [13,14,19] is warped.

Tq(t) = {F 2} (1) é/Ka(t,t’)x(t’) dt' (3.7)

where @ € R is the order of the transformation and K,(t,t') is the kernel of
the transformation given in [14]. A number of interesting properties of FrFT
can be found in [14]. In this paper, we make use of the rotation property of
the FrFT, which states that the WD of the a' order FrFT of a signal is the
same as the WD of the original signal rotated by an angle of ar/2 radians in
the clock—wise direction [14]. For instance in Fig. 3.1 (b) and Fig. 3.1 (d), the
WDs and spines of the signal z(¢) and its FrF'T z,(¢), a = —0.909, are shown.
The importance of these figures in terms of warping is the following: Although
time—domain warping is not useful for the processing of x(¢), since this signal
does not have a singled-valued instantaneous frequency, it is perfectly well
suited to its a' order FrFT. Therefore the fractional domain warping extends

the class of signals for which warping concept is applicable.

When the time domain signal is available, the algorithm given in Algo-
rithm 1 can be used for warping and unwarping of the signal. The warping
part of this algorithm is illustrated in Fig. 3.1. The use of the fractional domain
warping concept in the signal design problem where the time domain signal is

not available, will be discussed in the next section.
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Algorithm 1 The Fractional Domain Warping Algorithm

Steps of the Warping Part of the Algorithm:

1. Identify the support of the signal component in the time-frequency plane.

2. Based on the orientation of the signal component, determine the fractional
Fourier transform order a.

3. Compute the a'® order FrFT z,(t) of the signal.

4. Estimate the spine ¢ (t) of the signal z,(¢) by using the spline interpolation.

5. If the spine takes negative values, frequency modulate the input signal by
Ay so that the shifted spine 1 () £ (t) + Ay is strictly positive.

6. Compute the warped signal wqa, (%) £ Tan,(¢(t)) by warping the fre-
quency modulated signal zqa,(t) = 24(t)e’*™" using the spine ¥, (t) ac-
cording to the warping relation given in (3.3).

Steps of the Unwarping Part of the Algorithm:

7. After processing the warped signal x4, (t) by some operator R(.), its

output yoa,c(t) £ R(zqa,(t)) is unwarped and demodulated: y,(t) =
ity ()

8. Finally the time domain representation of the output signal is computed by
using the inverse fractional Fourier transform: y(t) = {F vy, }(¢) .

3.3 SIGNAL DESIGN USING FRACTIONAL DOMAIN

WARPING

As discussed in the previous sections, the difficulty in modeling the inner inter-
ference terms complicates the signal design problem. Since in the new method,
the signal will be synthesized in warped domain, the signal model will be free
from cross-term interference. Therefore, the WD-based synthesis algorithm
can be used to obtain the designed signal in the warped domain. Then, by
unwarping this signal, the time domain representation of the designed signal is
obtained. For the sake of clarity, the steps of the algorithm will be illustrated

on an example.

In the new method, the user specifies the parameters of the model progres-

sively. For instance, in this example the user first specifies the spine of the
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signal as shown in Fig. 3.2(a). Then, based on the orientation of the spine the
rotation angle ¢ is computed. The rotation angle is chosen such that, after
rotation of the spine by ¢ radians in the clockwise direction, the rotated spine
Y(t) becomes a single valued function of time as shown in Fig. 3.2 (b). The
significance of rotation is that, it corresponds to the design of the signal in
(2¢/7)™ fractional Fourier transform domain. Therefore in the last step, the
(—2¢ /7)™ order fractional Fourier transform of the designed signal based on
the rotated spine should be computed to obtain the time domain representation

of the synthesized signal.
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Figure 3.1: (a) The time domain representation of the signal z(t), (b) its
Wigner distribution W, (¢, f) overlaid with the spine, (c¢) the a = —0.909"
order FrFT z,(t) of the signal z(t), (d) the WD W, (¢, f) of x,(t) overlaid
with the spine (e) the time domain representation of the warped signal and (f)
its Wigner distribution. Note that warped signal has a horizontal support free
from cross terms.
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Figure 3.2: The parameters specified by the designer: (a) spine, (b) its rotated
form ¢ (¢, f), (c) the envelope m(t) and (d) the instantaneous bandwidth B;(t).
(a) and (b) is specified in original time domain, (¢) and (d) are specified in
transformed signal domain.

After the rotation of the spine, the warping function ((¢), inverse of the
warping function (7'(¢) and the center frequency fy of the rotated spine are
computed by using (3.3)-(3.6). Note that for the invertibility of the warping
function, in the rotated time-frequency plane, the spine curve should be a

strictly positive function of time as discussed in Section 3.2. If this condition is
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not satisfied, then the spine is translated along the frequency direction by an
appropriate amount to make it strictly positive. Then, the signal designed in
the fractional Fourier transform domain should be demodulated by the same

amount to remove the effect of frequency-translation of the spine.

After specification of some of the signal parameters related to the warping
function in the usual time-frequency domain, the other parameters are spec-
ified in the warped time-frequency domain. One of these parameters is the
envelope m(t) of the warped time-frequency representation which is chosen
only as a function of time for simplicity. The envelope can be chosen from a
large variety of selections. In this example, it is chosen as a raised cosine pulse
as shown Fig. 3.2(c). Finally, the designer specifies the double-sided instanta-
neous bandwidth B;(t) of the model in the warped time-frequency domain. In
this example, the instantaneous bandwidth is chosen as a raised and inverted
Gaussian pulse as shown in Fig. 3.2(d). Based on these 1-D parameters, the

3-D model time-frequency distribution W (%, f) is constructed as

W(t, f) = exp {%} m(t) | (3.8)

where o(t) = B(t)/4. In other words, at each time instant the model time
frequency representation is a Gaussian signal with a double-sided bandwidth
40(t) as a function of frequency. The model time-frequency distribution con-

structed by this equation is shown in Fig. 3.3.

Since, in the warped domain, the constructed signal model has a linear
support in the time-frequency domain, the designer can choose any of the
synthesis algorithms which produces good results for this class of signals. In
this method, we propose to use the WD-based synthesis algorithm for this

purpose, because this algorithm has a good performance for this type of model
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time-frequency distributions. Furthermore this algorithm is not iterative like
the MWD-based algorithms as discussed in Section 2.2. Therefore it is faster
and it does not have a convergence problem. In this simulation by using the
WD-based synthesis algorithm on the model WD given in Fig. 3.3 the signal
shown in Fig. 3.4 (a) is synthesized in the warped fractional Fourier domain.
The WD of this signal is plotted in Fig. 3.4(b). Then by unwarping this signal
the (—0.909)™ order FrFT of the synthesized signal is obtained as shown in
Fig. 3.5(a). The WD of this signal is given in Fig. 3.5(b). Finally by computing
the 0.909 ordered FrF'T, the time domain representation of the synthesized
signal and its Wigner distribution are obtained as shown in Fig. 3.6 (a) and
Fig. 3.6 (b), respectively. As shown Fig. 3.6(c), the spine of the designed signal

is the same as the user specified spine shown in Fig. 3.2 (a).

For the sake of comparison, the proposed synthesis method is used to design
the signals which are tough cases for the WD and MWD-based synthesis algo-
rithms. The case where WD-based algorithm failed is already examined, the
result of which is given in Fig. 3.6. The result of the proposed synthesis method
in the case where MWD-based synthesis algorithm failed is given in Fig. 3.7 and
Fig. 3.8. Thus by comparing the obtained results of all the algorithms, the

superior performance of the novel algorithm can easily be appreciated.
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Figure 3.3: The model time-frequency distribution in the rotated and warped
time-frequency plane, which is computed by using the parameters given in
Fig. 3.2.
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o
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Figure 3.4: (a) The signal synthesized in the warped fractional Fourier trans-
form domain by using the WD-based synthesis algorithm on the model time-
frequency distribution given in Fig. 3.3 and (b) its Wigner distribution.
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Figure 3.5: (a) The fractional Fourier transform representation of the synthe-
sized signal, which is obtained by unwarping the signal in Fig. 3.4 (a) and (b)
its Wigner distribution.

Algorithm 2 Proposed Synthesis Method

1.
2.

3.

Mark some points on the spine.

Find the rotation angle ¢, which gives a single valued instantaneous fre-
quency.

Rotate the points on the spine by ¢ radians in the clock-wise direction.
These rotated points (¢;,1(¢;)) specify the shape of the rotated spine. The
other points on the rotated spine (¢, (t)) are computed by using the spline
interpolator.

. Compute the warping function ((t), its inverse (~'(¢) and the center fre-

quency fy, by using the relations given in (3.3)-(3.6).

. Get the amplitude modulator and instantaneous bandwidth parameters

from the user, and construct a model time-frequency distribution around
the center frequency f, in the warped domain.

. By using the WD-based synthesis algorithm synthesize the signal in the

warped fractional Fourier transform domain.

. Then by using the unwarping relations and the inverse fractional Fourier

transformation compute the time domain representation of the designed sig-
nal.
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Figure 3.6: (a) The time domain representation of the synthesized signal, which
is obtained by computing 0.909"" order FrFT of the signal in Fig. 3.5 (a), (b)
its Wigner distribution (¢) Wigner distribution overlaid with the spine.

44



(b)

0.15
0.1
0.05

Real Part
o

-0.05
-0.1
-0.15

I I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4 5

frequency

!
N

0.15
0.1
0.05

Imaginary Part
o

-0.05
-0.1

-0.15 5

Figure 3.7: The simulation of the proposed synthesis method for the model
Wigner given in Fig. 2.8(a): (a) The signal synthesized by using the proposed
synthesis method and (b) the Wigner distribution of the synthesized signal.
The result is quite satisfactory in terms of fit to the desired region.
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Figure 3.8: The simulation of the proposed synthesis method for the Wigner
distribution given in Fig. 2.12 (b): (a) The signal synthesized by using the
proposed synthesis method and (b) the Wigner distribution of the synthesized
signal. The result is quite satisfactory in terms of fit to the desired region.
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Chapter 4

SIMULATIONS

In this section we provide results of computer simulations using synthetic and
real signals. In these simulation examples, the purpose is to compare the
performance of the synthesis algorithms discussed in this paper on designing
signals from time-frequency distributions. For synthetic signal a quadratic
chirp is used. By real signals we refer to the signals which are found in nature
such as the sounds of birds and whales or the sound of a police siren. The
comparison method for the first type of simulations is chosen as the difference
between the synthesized and actual signals, since the noise-free actual signal
is available. For the real signals, the visual comparison of the designed and
actual time-frequency distributions is preferred, since in this case the noise-free

time domain representations of the actual signals are not available.
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4.1 SYNTHETIC SIGNALS

In this section we compare the performance of WD-based, MWD-based and
the proposed synthesis methods on a synthetic test signal. In this simulation

the synthetic signal is chosen as
z(t) = W (t) , —2<t<2 (4.1)
where the non-linear phase of the signal is given by
o(t) = ct’ + 27t (4.2)

and the envelope w(t) of the non-linear phase term is chosen as shown in
Fig. 4.1. The time-frequency representation of x(t) changes significantly based
on the value of the coefficient ¢. When ¢ = 0, x(¢) has a linear time-frequency
representation, and for ¢ > 0 it has a parabolic time-frequency representa-
tion. As the value of ¢ increases the curvature of the parabola increases.
In Fig. 4.2 (a), Fig. 4.2 (¢) the time domain signals and in Fig. 4.2 (b) and
Fig. 4.2(d) the WD of () are given for ¢ = 0.27 and ¢ = 5.07 respectively. As
it can be seen from these figures, as the value of the parameter ¢ increases the

inner interference terms occupy a larger portion of the time frequency plane.

In the simulation N = 512 uniformly spaced samples of the actual signal
given in (4.1) are used to compute the discrete model WD. In the first part of
the experiment the normalized errors of the algorithms are computed for vari-
ous values of the parameter ¢ in the interval 0.27 < ¢ < 5.0m. The normalized

synthesis error for all of the four algorithms is computed as

Jla(t) — zs (@) dt
[le@dt

(4.3)

e =
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where z(t) is the actual signal and zg(¢) is the synthesized signal. In the
WD-based and MWD-based synthesis approaches, the model time-frequency
distribution is chosen by removing the inner interference terms from the WD
of the synthetic signal. For instance for ¢ = 2.67, the synthetic signal z(¢),
its WD and the model WD are shown in Fig. 4.3 (a)-(c), respectively. In
the simulations conducted for different values of the parameter ¢, the don’t
care region for the MWD-based synthesis algorithm is chosen similar to the
one given in Fig. 4.3 (d) for the specific value of ¢ = 2.6w. In the proposed
synthesis method, the spine () of the signal is extracted from the model-
WD given in Fig. 4.3 (c). Note that, in this simulation the spine is a single
valued function of time which is strictly positive therefore there is no need for
fractional Fourier transformation and frequency translation. In this simulation
the model time-frequency distribution for the proposed synthesis method which
should be given in the warped domain, is chosen as the WD of the warped signal
z¢(t) £ 2(((t)), where the warping function is computed from the spine (%)
by using the relations given in (3.3)-(3.6) and z(¢) is the actual signal which
is modeled as in (4.1). This selection of the model WD is necessary to make a
fair comparison between the algorithms, since the other algorithms make use

of the auto-term of the WD of the actual signal.

All of the algorithms are simulated for 13 different test signals which are
obtained by changing the parameter ¢ of the signal model given in (4.1) in
the interval [0.27, 57]. The normalized errors of the algorithms computed by
using (4.3) are given in Fig. 4.4. As shown in Fig. 4.4 (a), the WD-based
synthesis algorithm has a poor performance which worsens as the curvature of

the auto-term increases.
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The normalized errors for MWD-based FWD-based algorithms given in
Fig. 4.4 (b) and Fig. 4.4 (c), respectively, confirms the better performance of
these algorithms. However FWD-based algorithm produces much better re-
sults, since the normalized errors are on the order of 1078 for this algorithm

and on the order of 1073 for the MWD-based synthesis algorithm.

To give more insight about the performance of the algorithms, the synthesis
results for the value of ¢ = 2.67 are also documented. In Fig. 4.5 the synthesized
signals overlaid with the actual signal, in Fig. 4.6 the Wigner distributions of
the synthesized signals and in Fig. 4.7 the absolute synthesis error are given
respectively. As it can be seen in Fig. 4.6, visually the auto-terms of the WDs of
the synthesized signals are close to the model WD. However, the performance of
the algorithms greatly vary when the synthesized signals are compared with the
actual signal which is available in this simulation. For instance, in Fig. 4.7 (a)
it is apparent that the synthesized signal cannot completely fit to the model for
the WD-based synthesis algorithm, since the model WD given in Fig. 4.3 (c)
lacks the inner interference terms. The modeling error increases considerably
at the tails, where the auto-term in the model WD becomes curved. Therefore
as the curvature of the model WD increases, the performance of the WD-based

synthesis algorithm deteriorates.

As it can be seen in Fig. 4.7(b) and Fig. 4.7 (c) both the MWD-based and
proposed synthesis method produced more accurate signal designs than the
WD-based synthesis algorithm. However the performance of the proposed syn-

thesis method is much better than the MWD-based algorithm for this example.
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Figure 4.1: Simulation 1: The envelope w(t) of the synthetic signal given by
(4.1).

4.2 RESULTS FOR SECTION 4.1

In Section 4.1, simulations were conducted on a quadratic chirp. The chirp had
a parabolic support the curvature of which can be controlled by parameter ¢. To
reflect the scenario of a typical signal design, the inner interference terms were
removed manually while constructing the model from the Wigner distribution
of the available time signal. The purpose of this set of simulations was to
compare the synthesized signal with the original time signal and comment on

the error.

First the normalized errors were obtained with respect to the change in
parameter ¢ in the interval [0.27, 57], the results of which are given in Fig. 4.4.
As ¢ gets larger, the support of the inner interference terms occupy a larger

space in time-frequency plane.
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In WD-based synthesis the normalized error increased steadily with respect
to ¢ up to the order of %25 which is considerably high. This is because of the
fact that as the support of the inner interference terms occupy a larger space,
the lack of such terms in the model Wigner degrades the performance in fitting
to the desired region. At a single point it showed a slight decrease which is
not an exception but a result caused by errors coming from manually removing
the inner interference terms. For the WD-based algorithm it can be concluded
that it requires the modeling of interference terms for a successful synthesis

result.

In MWD-based synthesis the normalized errors did not steadily increase and
they were on the order of %0.1 which is an acceptable result. Again for some of
the ¢ values it became larger and for others it turned out to be considerably less.
Such deviations arose from the errors coming from manually removing the inner
interference terms in constructing the model and from manually constructing
the don’t-care mask. In other words at some ¢ values, models and masks can
be constructed unintentionally so that they are more likely to produce results
closer to the original signal. For this algorithm it can be concluded that the lack
of the inner interference terms in the model do not affect the performance but it
is necessary to guess for the spread of such terms in constructing the don’t-care
mask. The need for the size of the interference terms is removed whereas there
is still a requirement for their location. For this simulation example since the
support of the model was simple, constructing a reliable don’t-care mask was
not a big problem but in more complicated scenarios definitely it will be more
difficult and burdensome to determine the location of the inner interference

terms and construct the don’t-care mask and this will affect the performance.
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In proposed synthesis method the warping is performed using the available
time signal and the Wigner distribution of the warped signal is used as a model
in the transformed signal domain. The reason for that is the other methods
make use of the auto-term of Wigner distribution of the original signal which
is not an expected case in signal design. Therefore to make a fair comparison
between the algorithms, this model is specifically chosen as the Wigner of the
warped signal which can still be constructed using (3.8). For this method, the
normalized errors were on the order of %10~* which is considerably less. The
increase of error with respect to ¢ is not related to the increase in interference
term support but has to do with errors coming from the WD-based synthesis
algorithm used in transformed signal domain and interpolation used in unwarp-
ing the synthesized signal. If the correct expression for the spine and correct
warping relation is used, which are available from the analytical expression of
the original signal and the sequence of warping-synthesis-unwarping operations
are repeated, a similar increase in normalized error is observed as ¢ increases.
This behavior is shown in Fig. 4.2 When the correct values are used, the error
coming from the warping part is considerably removed but there is still error
coming from the synthesis and unwarping operations. Actually the misleading
increase in the normalized error for the last three ¢ values is directly caused by
the tails of the quadratic chirp approaching to the aliasing boundary. For the
proposed synthesis method it can be concluded that the requirement for the
shape and location of the inner interference terms is removed. Furthermore,

the performance is quite satisfactory and better than the existing approaches.

In the second set of simulations the synthesis error is obtained for a single
value of ¢ = 2.6m and plotted with respect to time as shown in Fig. 4.7. In

WD-based and MWD-based synthesis methods, the absolute error increased at
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the end-points of the quadratic chirp. This is because of the fact that the orig-
inal signal is not bandlimited. It is an exponential which extends throughout
the time-frequency plane, multiplied with an amplitude modulator which cor-
responds to convolution by a sinc function in the frequency variable. Therefore
the error is concentrated at the falling edges of the amplitude modulator which
accounts for the convolution by sinc. But in the proposed synthesis method,
no such behavior is observed because the synthesis is performed in transformed
signal domain where the model represents a bandlimited signal. The absolute

error is also considerably less than the other methods.

4.3 REAL SIGNAL

The real data used in this section is conducted on the recorded sound of a
Jamaican White-eyed Vireo bird [20]. In Fig. 4.9 (a) 13472 samples of the
whole recording obtained at a rate of 16000 Hz is given. In this simulation, the
analysis is conducted by using the 901 samples segment of the whole recording
shown in Fig. 4.9 (b). The WD of this signal segment is computed as shown
in Fig. 4.10 (a). In this plot, only the upper half part of the time-frequency
plane is shown since the WD of a real signal is symmetric with respect to the
time axis. In this simulation the model time-frequency distribution shown in
Fig. 4.10(b) is obtained by removing the inner interference terms in Fig. 4.10(a)
considerably. For the MWD-based synthesis algorithm, the don’t care mask is
chosen as shown in Fig. 4.11(a). The model time-frequency distribution for the
proposed synthesis method is chosen as shown in Fig. 4.11 (b) in the warped
time-frequency domain. Using these models, the synthesis algorithms discussed

in this paper are simulated. The synthesized signals and their WDs are shown
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in Fig. 4.12 and Fig. 4.13 respectively. In Fig. 4.12(a) and Fig. 4.13(a), it can
be seen that the WD-based synthesis algorithm cannot model middle section
of the model time-frequency distribution. The results for the MWD-based syn-
thesis algorithm after 50 iterations are given in Fig. 4.12 (b) and Fig. 4.13 (b)
respectively. In this simulation no energy penalty is used by setting v = 0.
By comparing the WD of the designed signal given in Fig. 4.13 (b) with the
result of WD-based synthesis algorithm, it is clear that MWD-based synthe-
sis algorithm produced more plausible results in this simulation. However the
problems with this approach are its high computational complexity and the
lack of research results on the optimum selection of the energy penalty factor.
Finally, the results of the proposed synthesis method are given in Fig. 4.12(c)
and Fig. 4.13 (¢) respectively. Not only the proposed synthesis method pro-
duced its results faster than the MWD-based algorithm, but it also produced

a higher quality synthesis result.

4.4 RESULTS FOR SECTION 4.3

In this simulation example, the performance of the algorithms were tested on
a real signal that exists in nature. It was a song by Jamaican White-eyed
Vireo bird. The comparison in this case is made through the Wigner plots
of the resulting signals because the noise free time domain signal is not avail-
able. But time domain representations of the synthesized signals also provide
valuable information about the quality of the designs. The main purpose of
this simulation was to show that such type of signals with non-linear supports
exist in nature. The WD-based synthesis algorithm failed to model the middle

portion of the signal. Therefore it can be argued that the WD-based synthesis
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algorithm is not a suitable method for such non-linear supports. MWD-based
synthesis algorithm performed well but it requires the construction of don’t-
care mask which is troublesome. Actually here the don’t-care mask is roughly
chosen. Of course there are interference terms that will overlap some of the
signal parts. But they are not easy to determine considering that we start from
the cross term free model. In this case the performance of the MWD-basaed
synthesis algorithm might be different if the user is more cautious in compactly
determining the interference term structure. Therefore the performance is de-
pendent to the don’t-care mask. In proposed synthesis method, the model is
again chosen as the Wigner distribution of the warped signal with the same
reason as in Section 4.1. The synthesis result of proposed synthesis method
was as satisfactory as the result of the MWD-based synthesis algorithm but it
was obtained much more faster. Therefore this algorithm is more efficient than

the MWD-based synthesis algorithm.
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Figure 4.2: Simulation 1: (a) The time domain representation and (b) the
WD of the signal whose model is given in (4.1) for ¢ = 0.27 and (c), (d) the
corresponding plots for ¢ = 5m. As the parameter ¢ is increased from 0.27 to
57 the curvature of the parabolic support increases which increases the spread
of the inner interference terms. This set up would be used in normalized error
experiment.
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Figure 4.3: Simulation 1: (a) The time domain representation of the signal
whose model is given in (4.1) for ¢ = 2.6r and (b) its Wigner distribution,
(c) the model time-frequency distribution obtained by removing the interfer-
ence terms of the WD given in (b) and (d) the don’t-care region used for the
MWD-based synthesis algorithm. This set up would be used in absolute error
experiment which is conducted for a single value of c.

a7

-150

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1



Figure 4.4: Simulation 1: Normalized error energies with respect to parameter
c of (4.2) of the (a) WD-based (b) MWD-based (c) proposed synthesis methods
computed by using the equation given in (4.3). The WD-based synthesis algo-
rithm performed poorly which is on the order of %20 and the error increased
with respect to the increase in the support of the inner interference terms. This
is expected since model lacks interference term information. The MWD-based
synthesis performed well which is on the order of %0.1 and is not affected from
the spread of the inner interference terms. The proposed synthesis method
performed very well which is on the order of %10~%. The misleading increase
in the error as ¢ gets larger has nothing to do with the increase in inner in-
terference terms but related to the synthesis and interpolation errors which is
also discussed in Section 4.2
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Figure 4.5: Simulation 1: The overlaid plots of the synthesized and the original
signals for (a) WD-based, (b) MWD-based and (c¢) proposed synthesis methods.
Designed signals for ¢ = 2.6m. The WD-based synthesis algorithm performed
poorly especially at the tails. MWD-based algorithm gave better results but
at the tails the error again increased. The resulting signals are distinguishable
from the original signal. FDW based-synthesis performed quite satisfactory
results such that it is not distinguishable from the original signal.
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Figure 4.6: Simulation 1: The Wigner distribution of the signals synthesized
for ¢ = 2.6m by using the (a) WD-based, (b) MWD-based and (c) Proposed

Synthesis Method.

60



Figure 4.7: Simulation 1: The magnitude of the difference of the actual signal
and the synthesis signals for ¢ = 2.67 obtained by using the (a) WD-based, (b)
MWD-based and (c) proposed synthesis methods. WD-based and MWD-based
methods suffered from the increase in error at the end-points of the chirp. This
is related to the fact that these algorithms try to synthesize a signal which is
not bandlimited. But proposed synthesis method performed very well because
it used the model in the warped model which is bandlimited. This is discussed
in Section 4.2 in detail.

61



0.8

0.6

0.4

0.2

X107 Normalized Error Norm FDW-based synthesis, 0.2n<=c<=5.01t
14 T T T T T

121 q

0.8 T

0.6 4

04r q

0.2 b
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Figure 4.9: Simulation 2: (a) The whole recording of a Jamaican White-eyed
Vireo bird sound and (b) the segment of this recording which is used in this
simulation.
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Figure 4.10: Simulation 2: (a) The Wigner distribution of jwev sound recording
given in Fig. 4.9 and (b) the model time-frequency representation obtained by
removing the interference terms of the WD given in (a). The symmetric part
corresponding to negative frequencies is discarded and just the upper part is
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Figure 4.11: Simulation 2: (a) The don’t care masked used in simulation of the
MWD-based synthesis algorithm and (b) the model time-frequency distribution
used by the proposed synthesis method in the warped time-frequency domain.
The don’t-care mask is chosen for obvious interference term locations which are
inside the concavities of curved parts. Definitely there are more interference
terms from different combinations of ramping portions going up and down.
But they are not easy to specify therefore the most practical way is chosen.
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Figure 4.12: Simulation 2: The synthesized signals by using (a) the WD-based
algorithm, (b) the MWD-based algorithm with no energy penalty and (e) the
FDW based algorithm. The WD-based synthesis algorithm could not receive
the middle portion due to lack of interference terms in the model Wigner.
The MWD-based and proposed synthesis methods performed quite well. The
proposed synthesis method produced its results faster.
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Figure 4.13: Simulation 2: The Wigner distributions of the synthesized signals
designed by using (a) the WD-based algorithm, (b) the MWD-based algorithm
with no energy penalty and (e) the FDW based algorithm.
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Chapter 5

CONCLUSIONS

In this thesis, signal design in Wigner domain is investigated. First the two
existing approaches are reviewed. They are the Wigner distribution based sig-
nal synthesis and the masked Wigner distribution MWD based signal synthesis
algorithms. Their theoretical formulation is presented and their performance is
tested on simulated examples. The weak and strong parts of these algorithms
are discussed. In conclusion it is found that, WD-based synthesis method is
preferable when the auto-term of the desired signal has linear support in time-
frequency plane which corresponds to no or negligible inner interference terms.
If the desired signal is expected to have significant levels of inner interference in
Wigner domain, this algorithm is not suitable unless these interference terms
are captured in the desired Wigner model. MWD-based synthesis is preferable
when the inner interference terms do not overlap with the time-frequency sup-
port of the desired signal. By choosing the don’t-care region to include most of
the inner interference terms, the MWD-based synthesis can provide acceptable

results. For complicated inner interference structure, determining the shape
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of the don’t-care mask can be very difficult and tedious. In addition to the
difficulty in choosing the right mask, the complexity of the MWD-based syn-
thesis algorithm is considerably higher because of its iterative computational

procedure.

After discussing the existing approaches a novel signal design method is
introduced. In this new method, the synthesis is performed in a transformed
signal domain where the Wigner distribution of the desired signal has consid-
erably less inner interference terms. Furthermore, the desired signal model is
not directly specified in the original time domain. Instead, the desired signal
model is specified in two stages. First the spine is entered in original time do-
main. Then a rotation angle which will enable a single valued spine is chosen.
Using the samples of the rotated spine, the warping and unwarping relations
as well as the center frequency where the warped signal would be concentrated
is determined. After specifying these parameters in the original time domain,
the spread of the desired signal energy is specified in the transformed signal
domain. This is achieved by specifying the support and the amplitude of the
signal energy around the spine. Using these parameters and the center fre-
quency, the desired model Wigner is constructed in the transformed signal
domain. Then the signal is synthesized using WD-based synthesis algorithm
which is suitable since the desired signal has negligible inner interference terms
in the transformed signal domain. After synthesizing a signal, it is transformed
back to the original time domain using a generalized unwarping relation which
is obtained as a cascade of unwarping operation and fractional Fourier transfor-
mation. The proposed method is quite practical and easy to use. Furthermore,
because there is no iterations involved, it is considerably more efficient than

any of the known techniques.
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After presentation the new method, it has been tested and compared with
the earlier approaches on simulated examples. The new method provided quite
satisfactory results both in synthetic and real cases. The first set of simulations
dealt with the synthetic signals. The analytic expression for such signals are
available therefore the designed signals are compared with the original signals
providing a precise design error. The normalized error is investigated with
respect to the increase in the interference term support. It can be concluded
that WD-based synthesis performed worse as the interference term support
increases while MWD-based and proposed synthesis methods did not show
such behavior. MWD-based synthesis requires a complicated don’t-care mask.
However, the proposed synthesis method does not require such a mask. It has
been observed that the proposed method provided considerably better results
than the MWD-based synthesis technique.

In the second set of simulations a real signal which has sinusoidal time-
frequency domain is utilized in the comparison of MWD-based and the pro-
posed synthesis techniques. The inner interference terms are removed by mask-
ing and the model is chosen as cross term free. The WD-based synthesis could
not design the middle portion whereas the MWD-based and proposed synthesis
methods performed quite satisfactory results. The don’t-care mask is chosen so
that the support of the outmost interference term is covered. In this case auto-
term support is not interfered considerably with the don’t-care region. But in
general, it might not be the case. It could be necessary to enter a larger don’t-
care region if the clustering interference terms are not negligible. This will

completely change the performance of the MWD-based synthesis algorithm.
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In conclusion, the proposed signal design approach is applicable to all type
of signals with localized time-frequency supports. Although it is in the class
of the most efficient signal design techniques, the performance of the proposed
design technique is superior to any of the known Wigner distribution based

signal design techniques.
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APPENDIX A

PROOF OF (2.10)

By inserting (2.6) and (2.4) into (2.8) and expanding the obtained expression,

the cost function Jp(x) can be written as

1/2T;
ol = zn: /1/2Ts |%:(CM[H’ m] = exln, m])em PR (A)
1/2T;
" zn: /—1/2Ts zm: ;(CM i m] = exfn. m) (A.2)
(] — ol m)e ST (A3

Then, by changing the order of integration and summation this expression can

be simplified as

1/2Ts

=173 3 S ) — el (M) = el [ sy
n m m —1/2Ts

= 1,33 S (M m] = ealn, m]) (M n, '] — eafnm]) o[m —m'] |
=T, ZZ \Mn, m] — cu[n,m]|* ,

(A.4)
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where §[m —m/] is the unit sample function. By substituting (2.5) into (A.4),

the cost function can be written as
Ip(r) = T, [Mnml”+> ) |afn + mla*[n — m]|”> — (A.5)
2%6{2 Z z[n + m]*z[n — m)cMn,m]}) . (A.6)

Since z[n] is an half-band signal, by using Lemma 1 and Lemma 2 which are
given below, it can be shown that the cost function in (A.5) can be written

merely in terms of the even indexed samples of x[n].

Lemma 2.
SN a4 mlatn - m]]? = 2(x Fx.)? (A.7)

where & . is the vector that contains the even indexed samples of x[n].

Proof. To prove this lemma first some simple manipulations on the indices of

the summations are done: O

E;E;Mﬁ+mMWwwMF=2;§;MM+%MﬂMW
= zn: zm: |2[2(n + m)]a*[2n]| >+
Z; |z[2(n +m) + 1]z*[2n + 1]]?
= En: Emj |z[2m]z*[2n]|* + En: Emj |z[2m + 1a*[2n + 1]]?
:=§;ummm?+§;umn+um2

=(z/zo)" + (z;'20)"

(A.8)
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where x , is the vector that contains the odd indexed samples of z[n]. To prove

H
4

H

this lemma, it is left to show that (z 7z ,)? = (z”x.)?. This result can be

obtained be using the results given in Appendix C:
(xlz,)? = Z|a:o[2n+ 1][? (A.9)
= D lz[n] * B[] (A.10)

where h[n] is the all-pass filter given in (C.3). Then by using the Parsaval’s

relation, this expression can be written as

1/2 ‘ ‘
@le, = [ HETX(ERAS (A1)
~1/2
in the discrete-time Fourier transform domain. Since H((¢/?"/) is an all-pass

filter, this expression simplifies as

1/2
(@lz,)? = / X (2 2df (A12)

1/2

Thus by using the Parseval’s relation once more, the derivation is completed:

(@g'o)? = ) leeln]? (A.13)
= (zfz,)? . (A.14)

Lemma 3.
%e{ZZx*[n+m]x[n —m)cM[n,m]} = 22D z, (A.15)

where D is a matriz with entries dim’,n'] as given in (A.22) and x . is the

vector which contains the even indexed samples of x[n].

Proof. To prove this lemma, first we change the indices of summations:

%e{z Z z* [n4+m)z[n—m]c™n, m]} = 2%6{2 Z z*[n+2m)z[n]M [n+m, m]}
T o (A.16)
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Then, we divide the summation over n by separating the odd and even indexed

terms

%e{z Z z*[n 4+ mlz[n — m]cMn,m]} = %e{z Z 2*[2n + 2m]z[2n)eM[2n 4 m, m)

+ZZx*[2n + 14 2m)z[2n + 1]cM[2n + 14+ m,m]}  (A.17)

n m

and rearrange the indice of summations

%e{z Zx*[n +mz[n — m]jcMn,m]} = %e{z Zx*[Qm]x[Qn]cM[n +m,m — nj

m

+D 03w 2m+ 1a2n + 1M +m+1,m —n]} . (A18)

By using (C.2), the odd indexed samples in the above expression are written

in terms of the even indexed samples:
éne{zn: zm: z*[n 4+ mlz[n — m]eMn, m]} = me{zn: zm: z*[2m]z[2n]cM[n + m, m — n)
+ Xn: Zm:(z h*[m — m']x*[Qm'])(Z h[n — n'z20'])eMn +m + 1, m — n]}
= me{z; Z z*[2mz[20') (M0 + m!,m! — n']
+ zn!:%:h*[m — m/]h[n —n'leMn4+m+1,m —n))}

=Re{D_ Do 2Jaf2nldm’ )}

= Z Z z*[2m)d[m/, n')z[2n/]
§ (A.19)
where d[m/, '] and d[m/, n'] are defined as
dm',n'] = Mn'+m/;m' — /] (A.20)

+ ZZ h*[m — m/lh[n —n'leM[n +m 4+ 1,m — n](A.21)

dim',n'] = dm',n'|+d*[n',m'] . (A.22)
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Note that, in matrix notation (A.19) can be written as
%e{ZZx*[n—l—m]x[n— mlcMn,ml} =z Dx, | (A.23)

where D is a matrix with entries d[m/,n'] as given in (A.22) and x, is the

vector which contains the even indexed samples of z[n]. O

Thus based on these lemmas, (A.5) can be written as

Ip(@) =T, > Y |Mnm]’ +2zz.)’ —2/Da.| . (A.24)
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APPENDIX B

PROOF OF LEMMA 1

In this section, first show that y/\;/2q is a local minimum of the cost function
(2.1). This can be proved by showing that the Hessian H(z.) of the cost

function

H(xze) =4I ||| + 4z 2] - D | (B.1)

evaluated at the stationary point \/\;/2q, of the cost function is a positive

definite matrix, where the matrix I in (B.1) is the identity matrix.

By using the spectral expansion D = Y. \;q,;q /" in (B.1), it can be shown
that the Hessian matrix at the stationary point \/\;/2q, takes the following

form:

H(VM/2q,) =M = Ngaql . (B.2)
i#1
Then by using the spectral expansion I = Y. q;q} for the identity matrix

(B.2) can be simplified as

H(VA/24.) = Mqigi — Z()\l - Mg . (B.3)

i#1
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Thus, the eigenvalues of H(v/\1/2q ) are A1, A\; — Aa, Ay — A3, ... which are all
positive, since \; > \; , ¢ # 1. Therefore the Hessian is a positive definite

matrix when evaluated at \/\;/2q,.

To show that v/A;/2q, is actually the global minimizer of the cost function
in (2.1), it is enough to compute the cost function at the stationary points
VA1/2q ; and show that J(v/A1/2q,) < J(v/A1/2q,), Vi # 1. But this follows
easily from (2.10), since J(v/Ai/2q,;) Y., >, [cM[n, m]|? — A?/8.

1Since Jp(z) is a differentiable function its global minimum will be either at one its
stationary points or when its argument approaches to cc. However, by analyzing the form of
the cost function, it becomes apparent that when its argument approaches to oo, the value
of the cost function also approaches to co.

76



APPENDIX C

THE RECOVERY OF ODD SAMPLES

USING EVEN SAMPLES

Since the samples z[n] of the continuous time signal z(¢) are obtained by sam-
pling z(t) at twice the Nyquist rate, the odd indexed samples of z[n] can be
exactly obtained from its even indexed samples. To show this result, we use
the Shannon’s sampling theorem which states that a halfband signal can be
exactly and uniquely reconstructed from its even indexed samples as illustrated

in Fig. C.1:

zln] = 'g(n_m) z[2m] . (C.1)

Thus, the odd indexed samples of x[n] can be written in terms of the even-

indexed samples as

Toln] £ z[2n+ 1] = x[2m)]

m (C.2)
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SE]

n)

x[2n] — | o

Figure C.1: Tllustration of bandlimited interpolation by using the Shannon’s
sampling theorem.

INIE]
3

where h[n] is an all-pass filter given by

sin(m(n +1/2))
m(n+1/2)

hln] = , (C.3)

with Fourier transform H(eﬂ”f) — eIl
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