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Abstract
Optimization of in vitro regeneration protocol using multiple input variables is highly significant, and can be achieved by 
validating the data using machine learning algorithms. Shoot tip and nodal segment explants of Alternanthera reineckii mini 
were inoculated on Murashige and Skoog (MS) medium enriched with different concentrations of benzylaminopurine (BAP), 
and cultured under five different monochromic light-emitting diodes (LEDs). The attained results were validated through 
the application of four different supervised machine learning models (RF, XGBoost, KNN, and GP). The prediction of the 
data were validated by using regression coefficient (R2), mean squared error (MSE), and mean absolute percentage error 
(MAPE) performance metrics. Results revealed R2 values of 0.61 and 0.59 for shoot counts and shoot length, respectively. 
The results of MSE were registered between 3.48–5.42 for shoot count and 0.40–0.74 for shoot length, whereas, 28.9–35.1% 
and 13.2–18.4% MAPE values were recorded for both shoot count and shoot length. Among the utilized models, the RF 
model validated and predicted the results more accurately, followed by the XGBoost model for both output variables. The 
results confirm that ML models can be used for data validation, and opens a new era of employing ML modeling in plant 
tissue culture of other economically important plants.
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Introduction

Aquatic plants are known as hydrophytes as they spend their 
whole life cycle or some part of their life cycle in water (Saini et 
al. 2010). These aquatic plants are the primary producers of the 
aquatic ecosystem by releasing oxygen into the water (Aasim et 
al. 2019). They provide shelter, an ideal environment to lay eggs 
for fish, and a good food source for aquatic animals due to their 
richness in vitamins, protein, carbohydrates, and minerals. These 
plants are highly nutritive and consequently are considered an 
alternative food source for humans (Aasim et al. 2018a). Some 
of the aquatic plants are also used as medicinal plants in folk 
medicines (Gonsalves 2010). In recent years, an increase in 
indoor aquariums and outdoor ponds also increased the demand 

for aquatic plants. Alternanthera reineckii mini is an important 
ornamental aquatic plant with variable leaf colors ranging from 
green to red, and pink. It is the dwarf version of Alternanthera 
reineckii and is ideal for nano-planting.

The commercial propagation of aquatic plants can be 
achieved either by classical methods or with the aid of a 
modern biotechnological approach of plant tissue culture. 
The optimization of in vitro regeneration protocol requires 
different approaches like the selection of proper explants, 
plant growth regulators, and culture conditions like light-
ing source, etc. (Al-Tanbouz and Abu-Qaoud 2016; Aasim 
et al. 2018a). The lighting system in plant tissue culture 
regulates the whole in vitro organogenesis process (Sotthi-
kul et al. 2015). In general, growth rooms or growth cabins 
are equipped with fluorescent lamps, and light-emitting 
diodes (LEDs) are also employed commercially for in vitro 
organogenesis (Bello-Bello et al. 2016). The most com-
monly used LEDs include the cool white, daylight, and 
red and blue LEDs used as single lighting sources or in 
different combinations (Karataş et al. 2016; Aasim et al. 
2018b). Likewise, the explant is another significant factor 
that regulates in vitro regeneration (Karataş et al. 2016).
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Machine learning modeling is a sub-branch of 
artificial intelligence that uses computer-based programs 
for learning and extracting the best possible knowledge 
from the given dataset for making predictions or 
intelligent decisions. The entire ML process is comprised 
of three major parts: (i) data input, (ii) modeling, 
and (iii) generalization. The major application of 
ML-based modeling is to solve complex problems, and 
its application in the field of precision agriculture has 
already been established (Sharma et al. 2020). The ML 
algorithms are generally categorized into three major 
sub-classes of (i) supervised learning, (ii) unsupervised 
learning, and (iii) reinforcement learning. Among these 
algorithms, supervised ML works with the labeled dataset 
by generating input–output relationships for predicting 
the outputs for unseen inputs (Hesami et al. 2021). The 
prediction can be done by using either classification 
algorithms for categorical values or regression-based 
algorithms for quantitative values (Sharma et al. 2020). 
Application of ML algorithms for precision agriculture 
and commercial farming is prevailing for better 
prediction, whereas ML algorithms in plant tissue culture 
studies are also gaining popularity among researchers 
to optimize their results or protocols more accurately. 
The use of different ML models for in vitro sterilization 
(Hesami et al. 2019), in vitro germination and phenotype 
analysis (Hesami et al. 2021; Aasim et al. 2022b), in 
vitro organogenesis (Aasim et al. 2022a; Kirtis et al. 
2022), embryogenesis (Hesami et al. 2020), cell culture 
(Farhadi et al. 2020), in vitro elicitation (Salehi et al. 
2020), and media formulation (Jamshidi et al. 2020) 
have already been documented, recently. In these studies, 
different ML algorithms and performance metrics were 
employed for the prediction of the output variables. In 
this study, four different supervised ML algorithms were 
used for optimizing the in vitro shoot regeneration of the 
aquatic ornamental plant A. reineckii mini. Two different 
explants, five different LED lightings, and three different 
levels of BAP were used as input variables to measure 
output variables (shoot count, shoot length).

Materials and methods

In vitro regeneration of A. reineckii  The plants for in vitro 
regeneration study were obtained from stock material 
available at Sivas University of Science and Technology, 
Molecular Biology and Biotechnology Laboratory, Sivas, 
Türkiye. Two different explants named shoot tip and nodal 
segment (1st node below the shoot tip) were used for in 
vitro regeneration studies. Both explants were cultured 
on Murashige and Skoog (MS) medium (Murashige and 
Skoog 1962), enriched with 0.5, 1.0, and 1.5 mg/l BAP 

(6-benzylaminopurine). The culture medium containing 
both explants was placed in the growth room equipped 
with different LED lightings. The characteristics of LEDs 
used in this study are presented in Table  1. The light 
illuminance of each LED was measured by placing the Lux 
meter on top of the culture jar, with an estimated distance 
of 25 cm between LEDs and jars. The basal medium was 
prepared by adding MS (4.4 g/L) and sucrose (30.0 g/L), 
and gelled with agar (6.5 mg/L). The pH of the medium was 
automated to 5.8 by using 1.0 N HCl or NaOH, followed 
by autoclaving the basal medium for 15 min at 121 °C, and 
1.5 Pa atmospheric pressure. The output variables (shoot 
regeneration frequency, shoot counts, and shoot length) 
were analyzed by using one-way ANOVA (SPSS 20.0). 
The data was transformed into arcsine transformation, and 
the DMRT test was used to compare the difference among 
the treatments.

Modeling procedures  In this study, interaction via explant, 
LEDs, and BAP concentration were used as input variables. 
Furthermore, in vitro shoot count and shoot length were 
measured as output variables. Machine learning algorithms 
of KNN (Peter Hart 1967), GP (Hu et al. 2019), XGBoost 
(Chen and Guestrin 2016), and RF (Aggarwal 2018) were 
employed to determine the relationship between inputs 
and each output. The performance of the models was 
evaluated using the technique of leave-one-out cross-
validation (LOO-CV) (Webb et al. 2011). Grid search was 
used to find the optimized hyperparameters to determine 
the best ML model. The open-source Python programming 
language (Van Rossum and Drake 2009) was used to code 
all the supervised ML algorithms using the sklearn library 
(Pedregosa et al. 2011). The models’ performance was 
evaluated by calculating R2 (coefficient of determination) 
which measures the strength of the relationship between 
the model and the dependent variables; MSE which tells us 
how close a regression line is to the measured data points, 
and mean absolute percentage error (MAPE) that expresses 
accuracy as a percentage of the error. The mentioned 
performance metrics are mathematically represented below 
in Eqs. 1–3.

Table 1.   An overview of different LEDs used for in vitro regeneration 
of Alternanthera reineckii 

LED type Wavelength (λ 
max)

Illuminance 
(LUX)

Green LEDs (G-LEDs) 520 1110
Orange LEDs (O-LEDs) 595 1188
Blue LEDs (B-LEDs) 448 500
Red LEDs (R-LEDs) 633 165
White LEDs (W-LEDs) 525 2030
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where Yi represents the measured value, Ŷi denotes the pre-
dicted value, Y  corresponds to the mean of the measured 
values and n is the count of samples. Although MAPE can 
take any positive value, values greater than 50% are consid-
ered inaccurate predictions (Lewis 1982).

K-nearest neighbors (KNN) is a simple non-parametric 
supervised ML algorithm that can be used to handle both 
classification and regression problems. It attempts to 
approximate the association between input variables and the 
continuous output variable(s) by averaging the observations in 
the same neighborhood that minimizes their separation. The 
distance metrics of ‘euclidean,’ ‘manhattan,’ ‘minkowski,’ 
‘chebyshev,’ and ‘wminkowsk’ were used to find the best 
model fit during the hyperparameter optimization. Moreover, 
all quantitative inputs were normalized by using the below 
formula before training and testing the model.

where Xi is the measured data, Xn is the normalized data, and 
Xmax and Xmin are the maximum and minimum data points, 
respectively.

Gaussian process (GP) regression is another non-
parametric supervised learning model that is capable 
of learning nonlinear maps from inputs to continuous 
output(s) using a kernel function that builds the covariance 
matrix among all data pairs. It uses a Bayesian approach 
to regression and classification problems by applying 
multivariate Gaussian distribution with two parameters, 
namely, a mean function that corresponds to the mean 
vector and a positive definite covariance or kernel function 
corresponding to a positive definite covariance matrix. It 
is well suited to work proficiently with small datasets with 
accuracy, ease of calculation, and consistency (Hu et al. 
2019). The approach is presented in Eq. 5 for each input x 
and output y produced by this function.

The Extreme Gradient Boosting (XGBoost) is a very pop-
ular decision-tree-based ML algorithm that can be used for 
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supervised learning tasks such as regression, classification, 
and ranking (Chen and Guestrin 2016). It is an efficient and 
improved implementation of the stochastic gradient boost-
ing ensemble algorithm, which uses decision tree models 
and adds trees one after another to the previous models 
to decrease the prediction error. Equation 6 indicates the 
XGBoost objective function, and Eq. 7 shows the model of 
XGBoost at iteration j that we need to be minimized.

The random forest (RF) model is another widely used 
supervised ensemble learning method based on decision 
trees that can be used for regression, classification, and 
ranking problems (Breiman 2001). It differs from XGBoost 
in two key ways. Firstly, it builds each tree independently 
while XGBoost builds one tree at a time. Secondly, contrary 
to XGBoost, it combines results at the end of the process by 
using either the averaging or ‘majority rules’. It is among 
one of the most widely used ML models due to its simplicity 
in design, high efficiency, less susceptibility to overfitting, 
handling the noise, and ability to manage a large number of 
inputs. Although different distance metrics are supported by 
RF, the regression models mostly use MSE to measure the 
distance between the nodes to define which branch is better 
for the forest. The following Eq. 8 describes this concept 
(Pavlov 2019).

where y is the value of the data point and n is the number 
of samples.

In this work, four different supervised ML algorithms 
were used to predict shoot count and shoot length with the 
aid of different input features that were selected while con-
ducting the experimental work.

Results

In vitro regeneration of A. reineckii  This study presents the 
successful in vitro shoot regeneration of an important orna-
mental aquatic plant, A. reineckii mini, using three differ-
ent input variables named explant, LED source, and BAP 
concentration. To optimize the outputs, one-way ANOVA 
results were analyzed for individual input factors (explant, 
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LEDs, BAP) and their combination (explant × LEDs × BAP). 
Results illustrated a significant impact of all input factors 
and resulted in 100% in vitro shoot regeneration and cal-
lus induction, and, hence, not subjected to statistical analy-
sis. On the other hand, shoot counts and shoot length were 
affected by corresponding input factors (Fig. 1a, b).

The comparison of two different explants tested in this 
study played a significant role on shoot counts (p > 0.01) 
of A. reineckii. It is apparent from the results that explant 
type is highly significant for yielding more shoots rather than 
shoot length. Nodal segment explants generated more shoots 
(7.19) compared to shoot tip explants and were recorded 
as 5.14 shoots per explant. Contrarily, almost similar shoot 
length was documented for both explants and was recorded 
as 3.77 cm for the nodal segment and 3.67 cm for the shoot 
tip explant (Fig. 2; Supplementary Table 1). The comparison 
of three different BAP doses significantly controlled the shoot 
counts (p > 0.01) and shoot length (p > 0.05). The maximum 
value for both output variables was documented on different 
BAP concentrations. Shoot counts increased gradually with 
elevated BAP concentration, and maximum shoot counts 
were observed on a medium augmented with 1.5  mg/L 
BAP. Instead, the variable impact of BAP concentration was 
observed and minimum shoot length was documented on MS 
medium enriched with 1.0 mg/L BAP. Supplementation of 
both 0.5 and 1.5 mg/L BAP induced statistically similar shoot 
lengths (Fig. 2; Supplementary Table 1). The response of 
five different LED types was statistically significant for shoot 
counts (p > 0.05) and shoot length (p > 0.01) of A. reineckii. 
The shoot counts were recorded in the descending order 

of  O-LEDs (7.59) > G-LEDs (6.51) > W-LEDs 
(6.41) > B-LEDs (5.99) > R-LEDs (4.32), whereas shoot 
length was significant at p > 0.01, and followed the order 
of B-LEDs (4.93  cm) > O-LEDs (3.72  cm) > G-LEDs 
(3.58 cm) > W-LEDs (3.31 cm) > R-LEDs (3.06 cm). The 
R-LEDs were less responsive than other LEDs (Fig.  2; 
Supplementary Table 1).

The results of the individual input variable significantly 
affected the shoot counts and shoot length of A. 
reineckii. A similar impact was also observed when their 
combinations were taken into account. The maximum 
shoot counts of the nodal segment (14.80) and shoot tip 
explant (10.40) were recorded from the combination of 
1.0 mg/L BAP × G-LEDs. Besides, minimum shoot counts 
were recorded as 4.20 (NS × B-LEDs × 0.5 mg/L BAP) and 
2.53 (ST × R-LEDs × 0.5 mg/L BAP). In general, more 
shoot counts were attributed to nodal segment explants 
compared to shoot tip explants for all LEDs × BAP 
combinations. The results on shoot length revealed 
2.62–6.47 cm for the nodal segment and 2.45–5.38 cm for 
shoot tip explant in combination with LEDs × BAP. The 
maximum shoot length for both explants was registered 
from B-LEDs × 0.5 mg/L BAP combination (Figure 3; 
Supplementary Table 2). Supplementation of all input 
variables resulted in spontaneous rooting (Fig. 1a, b) from 
all culture media, and plantlets were directly acclimatized 
in the water.

Application of supervised machine learning algorithms  In 
this work, data regarding shoot count and shoot length were 
subjected to four different ML models (RF, XGBoost, KNN, 
and GP) to predict the results. The validation of each model 
was carried out by using three different performance metrics, 
namely R2, MSE, and MAPE. The value of R2 ranged from 
0 to 1, and values closer to 1 reflect the better performance 
of the model. The values of R2 are generally closely linked 
with MSE values. A low value of MSE reflects better 
performance of the model, and therefore, high R2 with low 
MSE values exemplifies better performance of the model. 
Similarly, a low value of MAPE also corresponds to better 
performance of the model and vice versa.

Figure 4 provides plots illustrating the performance of 
the four different supervised ML algorithms that were used 
to predict the shoot count and shoot length for different 
experimental input parameters during the study. The scatter 
plots use circles to represent the shoot tip, whereas a 
triangle is used to identify the nodal segment of the explant. 
The colors (green, orange, blue, red, and white) show the 
predicted values due to different LEDs, and the size of the 
dots identifies three concentration levels of BAP (0.5, 1.0, 
and 1.5 mg/L). The 1:1 line (dashed line) also called the 
identity line is a 45° line representing perfect predictions 
under ideal conditions.

Figure  1.   Multiple shoot induction of A. reineckii mini under 
B-LEDs from (a) nodal segment, (b) shoot tip explant
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Figure 2.   Impact of explant 
type, LEDs, and BAP concen-
tration on shoot count and shoot 
length of A. reineckii 

Figure 3.   Impact of explant 
type × BAP × LEDs on shoot 
count and shoot length of A. 
reineckii 
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Table 2 depicts values of R2, MSE, and MAPE of four dif-
ferent models for shoot counts and shoot length. The results 
of performance metrics for all models exhibited a similar 
response for the shoot counts. The results on the R2 perfor-
mance metric revealed the order of RF (R2 = 0.61) > XGBoost 
(R2 = 0.48) > KNN (R2 = 0.40) = GP (R2 = 0.40). Con-
sidering the values of MSE performance metrics, the 

results were in order of RF (MSE = 3.48) < XGBoost 
(MSE = 4.67) < GP (MSE = 5.42) < KNN (MSE = 5.45). 
Instead, MAPE exhibited the variable order of RF 
(MAPE = 29.70%) < XGBoost (MAPE = 33.9%) < KNN 
(MAPE = 35.1%) < GP (MAPE = 35.9%). Comparing the 
results of all models and performance metrics, RF mod-
els predicted the results more accurately followed by 

Figure 4.   The relationship 
between the predicted and 
measured values for shoot count 
(A) and shoot length (B) for dif-
ferent ML models

Table 2.   Performance metrics 
for different ML models

Shoot count Shoot length (cm)

R2 MSE MAPE R2 MSE MAPE

RF 0.61 3.48 29.7% 0.59 0.40 13.2%
XGBoost 0.48 4.67 33.9% 0.51 0.48 16.0%
KNN 0.40 5.45 35.1% 0.44 0.55 16.1%
GP 0.40 5.42 35.9% 0.25 0.74 18.9%
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the XGBoost model. The results on shoot length exhib-
ited a similar pattern in all performance metrics for the 
tested ML models. The results on the R2 performance 
metric exhibited the order of RF (R2 = 0.59) > XGBoost 
(R2 = 0.51) > KNN (R2 = 0.44) > GP (R2 = 0.25). Simi-
larly, the MSE and MAPE values for all models were 
found as RF (MSE = 0.40; MAPE = 13.20%) < XGBoost 
(MSE = 0.48; MAPE = 16.0%) < KNN (MSE = 0.55; 
MAPE = 16.10%) < (MSE = 0.74; MAPE = 18.9%). The 
results on shoot length again depicted that the RF model 
is the best model when compared to other models due to 
its relatively high R2 and low MSE and MAPE values. Vice 
versa, the GP model provided the lowest performance due 
to low R2 along with relatively high MSE and MAPE values.

Discussion

In vitro plant regeneration is the manipulation of a series 
of input factors (plant, explant, culture medium, and cul-
ture conditions). All these factors either individually or 
in combination lead to in vitro regeneration. The type of 
explant is based on the presence or absence of meristem 
in the explants. Meristem-containing explants are gener-
ally regarded as more efficient for yielding axillary shoot 
regeneration. In this study, both explants used contained 
meristematic regions, and already reported for successful 
in vitro regeneration of other aquatic plants (Karatas et al. 
2014; Dogan 2018; Doğan 2019). Both explants induced 
shoots efficiently; the nodal segment explant exhibited better 
performance compared to the shoot tip explant. An inves-
tigation on aquatic plants revealed the variable response of 
both explants possibly due to different genotypes, explant 
age, and culture conditions (Karatas et al. 2014; Dogan et 
al. 2016). Similarly, variable response on shoot length also 
recorded from both explants confirmed the previous findings 
in Ceratophyllum demersum (Karatas et al. 2014).

Culture conditions like temperature, light, etc. are the 
physical factors that regulate the in vitro organogenesis. 
Among these factors, lighting source, intensity, and pho-
toperiod are highly significant. Application of LEDs in 
the plant tissue culture is prevailing due to certain advan-
tages like specific light illumination, which controls the 
organogenesis in some aquatic plants like Bacopa mon-
nieri (Karataş et al. 2016, 2018; Aasim et al. 2018a, b), 
Limnophila aromatica (Dogan 2018, 2020), and Rotala 
rotundifolia (Dogan 2020). However, specific light color 
and illumination are some of the factors which regulate the 
whole in vitro organogenesis (Aasim et al. 2018b; Karataş 
et al. 2018; Dogan 2020). The results achieved in this 
study illustrated the better impact of O-LEDs and G-LEDs 
on shoot counts as compared to W-LEDs, B-LEDs, or 

R-LEDs. The better performance of both O-LEDs and 
G-LEDs might be the light illumination that falls between 
440 and 670 nm used by plants for photosynthesis. On the 
other hand, supplementation of B-LEDs yielded longer 
shoots than other LED lights. The results are contrary to 
the findings on B. monnieri (Karataş et al. 2016, 2018), 
possibly due to different explant and culture conditions. 
The type and concentration of PGRs in the culture medium 
are one of the most significant factors for in vitro organo-
genesis. The results revealed a gradual increase in shoot 
count with the respective increase in BAP concentration.

Supplementation of light (type, illumination, photo-
period) along with cytokinins (type and concentration) 
regulated the in vitro organogenesis of A. reineckii. Results 
exhibited the specific LEDs × BAP combination for both 
explants and for both output variables. Investigating the 
results of each input factor exhibited a significant impact 
on shoot counts and shoot length, and maximum perfor-
mance was associated with O-LEDs or G-LEDs, in com-
bination of 1.5 mg/L BAP. Investigating the combination 
of all input variables confirmed the similar response, and 
the combination of O-LEDs × 1.5 mg/L yielded more shoot 
counts for both explants. On the other hand, supplementa-
tion of B-LEDs × 0.5 mg/L BAP and W-LEDs × 1.0 mg/L 
BAP yielded longer and shorter shoots, respectively, for 
both explants. The better shoot counts under O-LEDs 
(Rocha et al. 2010), might be due to more endogenous 
production of cytokinin in response to provided light 
wavelength (Stirk et al. 2011). On the other hand, B-LEDs 
in combination with low BAP concentrations generated 
longer shoots. These results revealed the significance 
of LEDs × BAP combination on shoot counts and shoot 
length. The studies carried out on aquatic plants using 
LED lighting systems demonstrated the significance of 
cytokinin type and concentration on shoot length (Karataş 
et al. 2016; Aasim et al 2018a, b; Dogan 2020). The appli-
cation of specific light wavelengths by LEDs (Chang et al. 
2003; Li et al. 2010) triggered the photosynthetic pigments 
(Lian et al. 2002), which in turn promotes plant growth. It 
is also documented in some reports that supplementation 
of B-LEDs either alone or in combination with R-LEDs 
leads to more shoot length compared to other LED lights 
(Karataş et al. 2016).

Optimization of plant tissue culture is the manipulation 
of input factors (triggers), transcriptional cellular responses 
to the triggers, epigenetic, and molecules stem cell niche 
(Sugimoto et al. 2019), which led to non-deterministic and 
non-linear developmental patterns in plant cells and tissues 
(Prasad and Gupta 2008). At the end of the experiment, the 
output variables tabulated in response to input variables are 
tested by computer-based statistical software programs. The 
analysis of variance (ANOVA) and linear regression models 
are the most commonly employed techniques for checking 
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the correlation between independent (input) and depend-
ent (output) factors. The outcome of the results is gener-
ally interpreted by using different performance tests, and 
the most commonly used are the least significant difference 
(LSD), Duncan’s multiple range test (DMRT), Tukey’s HSD, 
etc. (Ayuso et al. 2019). Plant tissue culture techniques are 
case-sensitive and, hence, need more efficient approaches to 
optimize or predict the results. The major concerns related 
to classical computer-based software are due to their inef-
ficiency for rather complex and non-linear inputs, and rela-
tively high probability (Jafari and Shahsavar 2020; Hesami 
and Jones 2021; Yoosefzadeh-Najafabadi et al. 2021a, b).

The latest developments in the field of data science 
(Ramazan et al. 2015; Kul et al. 2020) have opened ways 
for new possibilities to test the output variables with the 
aid of modern high throughput technologies like ML algo-
rithms and ANN models to optimize, predict, or validation 
of the results (Katirci et al. 2021). In plant tissue culture, the 
application of these data science technologies (ML, ANN) 
is relatively new and challenging due to low data set, and 
expertise. Still, a reasonable number of researchers covering 
the different aspects of plant tissue culture techniques have 
been documented in the last few years. In these studies, the 
selection of algorithms, hyperparameters, cross-validation 
methods, and performance metrics is highly significant 
(Kirtis et al. 2022). In this study, four different supervised 
ML models were employed for the prediction of output vari-
ables. Results revealed a similar trend in all models, and the 
RF model predicted more precisely followed by XGBoost, 
KNN, and GP, respectively. A recent study also revealed the 
better performance of the MLP model over RF and other 
ML models for predicting in vitro regeneration of chickpea 
(Kirtis et al. 2022). An investigation of ML models exhibited 
the hypothesis that the prediction of ML models is case sen-
sitive and may vary with a close relationship between input 
and output variables (Salehi et al. 2021; Kirtis et al. 2022).

The selection of performance metrics is another impor-
tant factor in supervised ML models. Previous studies 
revealed the use of variable performance metrics like R2, 
MSE, RMSE, MAE, etc. In this study, three different perfor-
mance metrics namely R2, MSE, and MAPE were employed. 
The values of R2 ranged from 0 to 1, and high R2 values 
reflect better coherence and association between input and 
output variables. Vice versa, low R2 values present the low 
compatibility between input and output variables, but it does 
not mean that the outcome of output is either non-significant 
or less significant. The results attained revealed the signifi-
cant R2 values for both output variables by using the RF 
model. Previous reports also highlighted the variable R2 
values for different output variables in plant tissue culture 
studies. The results of these studies revealed the R2 values 
of 0.94 (Hesami et al. 2019), 0.56–0.85 (Salehi et al. 2020), 
0.70 (Hesami et al. 2021), and 0.98–1.0 (Kirtis et al. 2022).

The advantage of using multiple performance metrics is 
to validate results more accurately. The MSE is one of the 
most powerful metrics used in ML modeling along with R2. 
The low MSE values exhibited a better prediction of the 
models and vice versa. The results depicted the relatively 
low MSE values for shoot length compared to shoot count, 
but still recorded low enough, and showed a better predic-
tion of all tested models due to low error between actual and 
predicted values (Kirtis et al. 2022). The MAPE is another 
metric used to assert the production of the models. The value 
of MAPE below 50.0% is considered as good, but values 
near zero are more preferred. Results revealed MAPE val-
ues below 50.0%, which showed that all models predicted 
the outputs reasonably. Considering all three performance 
metrics, the RF model predicted more precisely shoot count 
due to relatively low MSE and MAPE values as compared 
to shoot length.

The optimization of plant tissue culture is relatively difficult 
due to the complex nature of input and output variables. The 
results revealed that supervised ML algorithm-based models 
are a powerful tool and can be employed in plant tissue 
culture studies. It is also recommended to use more models 
and performance metrics to predict the results more precisely.
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