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Abstract

We consider Bayesian updating of demand in a lost sales newsvendor model with censored observations. In a lost sales
environment, where the arrival process is not recorded, the exact demand is not observed if it exceeds the beginning stock
level, resulting in censored observations. Adopting a Bayesian approach for updating the demand distribution, we develop
expressions for the exact posteriors starting with conjugate priors, for negative binomial, gamma, Poisson and normal dis-
tributions. Having shown that non-informative priors result in degenerate predictive densities except for negative binomial
demand, we propose an approximation within the conjugate family by matching the first two moments of the posterior
distribution. The conjugacy property of the priors also ensure analytical tractability and ease of computation in successive
updates. In our numerical study, we show that the posteriors and the predictive demand distributions obtained exactly and
with the approximation are very close to each other, and that the approximation works very well from both probabilistic
and operational perspectives in a sequential updating setting as well.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and literature review

Estimating the demand distribution for a product or service over some time interval is an issue of theoret-
ical interest with practical implications. The impact of demand forecast accuracy on profitability in fashion
goods retailing has been well documented by Fisher et al. (1994). Similarly, the success of Wal-Mart, the
US-based retail chain, is largely attributed to its superiority in demand and inventory management (e.g. Busi-
ness Week, 2003). Aside from being one of the pioneers in the usage of barcode technology in inventory man-
agement, Wal-Mart has also introduced an Internet-based, interactive retailer-manufacturer ‘collaborative
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forecasting replenishment’ software (CFAR) with the intention of providing more reliable medium-term fore-
casts and, thereby, improving its stock and sales management (Business Week, 1996). As product lifecycles
become shorter and profit margins tighten in the retail industry, the ability to better estimate demand becomes
truly a competitive weapon. In this paper, we propose and analyze the efficacy of a Bayesian updating method
to estimate demand in the presence of unobservable lost sales.

Depending on whether a seller is able to replenish her stock once or multiple times for a selling season, the
season can be viewed as consisting of either a single period or multiple periods, respectively. In a single-period
setting, the demand distribution is based only on the prior beliefs about the demand process that will reveal
itself within the period. Then, the seller’s forecasting ability depends solely on such prior beliefs. In a multiple
period setting, however, the seller may also observe the demands that are realized within each period and the
estimate for the following periods can be updated using this additional information. The seller’s forecasting
ability would now depend on how effectively such information is utilized. As long as there are no shortages
of goods, the actual sales observed will equal the demands and the seller will have complete data. However,
the lost sales environment presents a difficulty in estimation. Once a stockout occurs, if the demands that have
not been satisfied are not recorded, there is incomplete data, commonly referred to as censored data, about the
demand process. Formally, if the demand in a period is denoted by X and the period starts with s units on
hand, then at the end of the period, one observes sales as M = min(s, X), that is, rather than the demand data,
the sales data becomes available. The incomplete nature of observed demand introduces more difficulty into
the estimation process. The additional effort is worthwhile, however; as our results indicate, ignoring the pres-
ence of censoring may result in considerable errors in stock level determination and, thereby, suboptimal man-
agement of inventory.

There are two main approaches to demand estimation in the inventory theory literature: the frequentist and
the Bayesian approaches. In the frequentist approach, Nahmias (1994) is the first to analyze the censored
demand case with normally distributed demand. More recently Agrawal and Smith (1996) investigated the
type of the appropriate demand distribution for the sales data of a retailer chain over a number of periods
within a sales season, and considered the estimation of negative binomial demand, in the presence of censoring
induced by lost sales. Both of these studies consider the stocking levels as given in their respective settings and
do not address the optimization problem.

Methods for demand estimation with a Bayesian spirit have been suggested very early on by several authors
including Scarf (1959, 1960) and Iglehart (1964). Later, Azoury (1985), Lovejoy (1990), Bradford and Sugrue
(1990), Hill (1997, 1999) and Eppen and Iyer (1997) considered various aspects of inventory management with
Bayesian updating of demand distributions. However, all of these studies assume fully observed demand, and,
therefore, are not applicable in the lost sales environment. Lariviere and Porteus (1999) considered Bayesian
updating with partially observed sales but their analysis relies on a special demand distribution which limits its
applicability. Recently, Ding et al. (2002) considered the censored demand setting for a perishable product and
examined optimal stocking decisions. They showed that, with general continuous demand distributions, stock-
ing levels in the censored case are higher compared to the uncensored case.

When the stocking levels in each period are not given but are instead decision variables, the estimation of
demand and the optimization of costs need to be jointly performed over the planning horizon. To this end,
Azoury (1985), Eppen and Iyer (1997), and Lariviere and Porteus (1999) use dynamic programming (DP).
The DP approach provides the globally optimal solution, albeit at a cost of drastically increasing the scale
of the problem when considered with the Bayesian updating procedure. This renders it difficult to numerically
elaborate the sensitivity of the problem to the Bayesian aspects such as the choice of the prior and the quality
of certain approximations. To overcome this difficulty, Lovejoy (1990) proposed the use of a single-period
(newsvendor) approximation and myopic control policies. His findings indicate that such an approximation
performs reasonably well and that newsvendor models can be used to study inventory settings with demand
updating.

Hence, in this study, we revisit the newsvendor problem in Hill (1997) with the essential difference that lost
demands cannot be observed. In the presence of censored observations arising from lost sales, we develop the
exact posterior and predictive demand distributions. We consider four distributions commonly employed in
inventory theory and supported by empirical analyses (See Agrawal and Smith, 1996 and Nahmias, 1994):
Negative binomial, gamma, Poisson and normal. For all of the above, we assume conjugate priors. With
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the introduction of censoring, the posterior distributions cease to be in the conjugate family after the first cen-
sored updating. To ensure analytical tractability in successive estimations, we then propose a conjugacy retain-
ing two-moment approximation and obtain the approximate posterior and corresponding predictive demand
distributions. In an earlier work, Berk et al. (2001) suggested the use of such an approximation for posterior
generation for poisson and normal demands but did not examine, in detail, estimation of the predictive
demand distributions and the resulting costs in an inventory theoretic setting. This is the first work that con-
siders Bayesian updating of negative binomial and gamma demands in an inventory theoretic setting with lost
sales. Furthermore, we provide detailed proofs of some of the results and additional results on Poisson and
normal demand distributions. Our numerical results indicate that the approximation proposed herein is highly
satisfactory from both probabilistic and operational perspectives and that the approximation works well in a
sequential update environment as well.

The rest of the paper is organized as follows. In Section 2, we provide the preliminaries of the basic pro-
cedure for Bayesian updating of the demand distribution and the cost optimization in the newsvendor prob-
lem. In Section 3 we develop the exact and approximate posterior and corresponding predictive demand
distributions for the cases considered. We present our numerical study in Section 4 where we investigate
the efficacy of the proposed approximation technique and the impact of neglecting the presence of censoring
on the inventory control problem. In Section 5, we summarize our findings and discuss future work and in
Appendix we provide the proofs of some results.

2. Preliminaries

In this section, we outline the basic steps of Bayesian updating of the demand distribution and optimization
of the inventory control problem.

2.1. Bayesian updating of the predictive demand distribution

Consider an inventory system facing random demand in a periodic review setting. Suppose that the demands
in successive periods are independent and identically distributed (i.i.d.) random variables denoted by X; for
i=1,2,... The distribution of X;’s is characterized by a parameter A (possibly vector valued), and when the
value of 1 is given, the common probability density (or probability mass function) of X;’s is given by f{x|4).
In accordance with the Bayesian perspective, we treat the unknown parameter 4 as a random variable and
the initial ‘beliefs’ about the parameter are expressed by a prior distribution for this random variable.

Suppose the unsatisfied demand in a period is not backlogged and the demand information during a stock-
out period is lost. In this setting, both the inventory problem under consideration and the Bayesian updating
scheme becomes more complicated. The observed sales within a period correspond to the exact demand if
there has been enough stock on hand; but, the exact demand of the period is not observed if it exceeds the
starting inventory level in the period.

Let us first show how we obtain the posterior for 4 at the end of the first period. Suppose at the end of
period 1, the observable data is denoted by the random variable M; = min(s;, X7) where s; is the starting stock
level of the first period. Note that M is a truncated random variable and if X; is continuous, then M, is a
mixture variable with both continuous and discrete parts, with a positive probability at M| = s;. If X is dis-
crete, then M, is again discrete, taking on only the values 0,1,...,s;. Since the exact demand may not be
observed, the generation of the posterior distribution for / is based on M. First, we obtain the conditional
distribution of the observed data, fy, (v | 4) of M;:

o SO1A) if y < s,
fMl(ylA):{P(M1=S1)=fslf(u|/1)du if y=s. (1)

The first part above corresponds to the case where exact demand is observed, so that M; = X7, and the second
part to the censored case where M| = s;. For convenience, we assumed above that the demand is continuous;
if it is discrete, the integrals must be replaced by summations. Both the marginal distribution of M, and the
posterior distribution of / given below are based on the above distribution and due to the complexity induced
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by lost sales, different expressions are obtained depending on whether the observed data is censored or not.
This issue will become more explicit in the next section when we consider specific demand distributions.
The marginal distribution of the observable random variable M, is found as

i) = / S &) (2) d2. )

Suppose, at the end of the period, M = y; units of sale are observed. The posterior distribution 75(4|y;) of 1 is
then based on the distribution of the observed random variable M, evaluated at y; as follows:

_ Sun[Am(2)
B fMl (y]) ‘ (3)

The demand distribution that the inventory system will face in the second period, that is the predictive distri-
bution is obtained as

flaly) = / Fal)ma(ily,) di ()

This procedure then continues in the same manner in the successive periods, so that, after observing the data
M; =min(X,,s;) = y; at the end of period i that starts with inventory level s;, we obtain the predictive density
for the next period as follows: for i =2,3,...

S Gelyy) = / £l () i, (5)

where the ;1 is obtained in a similar way to (3) via (1) and (2) by simply replacing the index 1 with i. Note
here that, when finding the predictive distributions we assume that the underlying demand distribution given A4
is unchanged and is given by f{x|1), but the prior distribution of 4 is replaced by the posterior distributions
modified in the successive periods as new demand information for the periods becomes available.

(A1)

2.2. Two-moment approximation of the posterior distribution

In Bayesian analysis, the prior distribution represents the beliefs of the decision maker about the unknown
parameter expressed in a probabilistic statement. This statement may be about an individual’s own belief or a
consensus statement for a panel of experts. Since the performance of successive updates depends on the prior,
its choice is important. If there are no sources of prior information, then, a so-called non-informative prior
must be used. A non-informative prior implies that the random variable representing the unknown parameter
may take on any value in its domain equally likely. For example, for 4 in a Poisson distribution, the non-infor-
mative prior would distribute equal chance to the entire interval (0, c0). Although non-informative priors are
intuitively appealing, we establish in the following result that non-informative priors may result in improper
demand distributions in certain cases.

Preposition 2.1. Let X denote the demand in a period with p(x|') (or, f(x|")) as its probability mass (or, density)
function.

(a) Suppose p(x|2) is Poisson with mean A. A non-informative prior for J results in an improper predictive den-
sity for demand.

(b) Suppose f(x|p) is gamma with scale parameter f and known shape parameter o. A non-informative prior for
p results in an improper predictive density for demand.

(c) Suppose f(x|w) is normal with mean u and known variance 6*. A non-informative prior for u results in an
improper predictive density for demand.

Proof. For the selection and construction of non-informative priors in the proof, we refer to Berger (1985).
(a) The non-informative prior is the uniform density on R* (Berger, 1985, p. 82). Hence, when the prior

g(4)=11s used for 4> 0, it turns out that fi(x) =1 for x > 0, which is not a proper density function
since it does not integrate to unity.
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(b) Similarly, the non-informative prior for the gamma density is g(8) = 1/8. When it is used, the predictive
density is obtained as:

)= [

which does not integrate to unity; hence it is improper.
(c) The non-informative prior for mean u for the normal density is g(u) = 1 with ¢ € R. Then, the predictive
density is given by:

felw) = [~ exp{—zlazoc— u)z}du —1 W,

which is improper. [

¥ lexp{—px}df=1/x Vx,

It is worth noting that the non-informative prior for p in a negative binomial distribution would be a uni-
form distribution over [0, 1] which results in a proper predictive density for demand. Furthermore, this specific
distribution can be represented as a Beta distribution with parameters « = 1 and § = 1, which is the so-called
conjugate prior. In Bayesian analysis, it is common to work with conjugate priors. A conjugate prior for a
parameter is a distribution, for which the posterior is also of the same family — e.g. a gamma distributed prior
resulting in a gamma distributed posterior albeit with different parameters. This conjugacy property is essen-
tial for analytical tractability and extremely useful in computation.

With full backordering, the conjugacy property holds since all demands can be observed even though they
may not materialize into sales. Furthermore, it has been shown by Azoury (1985) that, with fully observable
demands, for commonly encountered demand distributions and conjugate initial prior distributions, the pos-
terior distributions can be expressed through a simple sufficient statistic. Thus, a Bayesian updating procedure
is relatively straightforward and computationally easy in the presence of fully observable demand (i.e. fully
backlogged demand). Systems with lost sales present no difficulty so long as no stockout are experienced.
If stockout does not occur in a period and if conjugate priors are used for the unknown parameters, then
the conjugacy property holds. However, if a stockout occurs, i.e. if the demand observation is censored, then
the conjugacy property no longer holds — except for a special distribution (see Lariviere and Porteus, 1999).
The resulting posterior distributions are typically too complicated, rendering the updating procedure in suc-
cessive periods analytically intractable. Although it is possible to use these exact posterior distributions for the
optimization of the inventory problem via numerical methods at the expense of computational effort, we pro-
pose a simpler method. We propose to use an approximate posterior distribution in the same conjugate family,
the parameters of which are selected so as to match the first two moments of the exact posterior. In the numer-
ical results we show that this approximation works quite well for the cases considered.

2.3. Optimization of the inventory control problem

We first introduce the newsvendor problem. There is a single selling period of finite duration. The demand
during the period is random with a known probability distribution and there is a single replenishment oppor-
tunity at the beginning of the period. All of the unsatisfied demand is lost at a unit underage cost of c¢,. Like-
wise, the excess stock at the end of the period, if any, is disposed of at a certain salvage value resulting in a unit
overage cost of ¢;. All initial ordering costs are ignored. The optimization problem consists of determining the
optimal stocking level at the beginning of the period so that expected overage and underage costs are mini-
mized. As such, the newsvendor problem captures the essential trade-off in inventory theory between inven-
tory holding and shortage costs. The setting presented above is the so-called classical newsvendor problem.
The classical problem was first introduced by Arrow et al. (1951) and a variety of its extensions have been
formulated and investigated since then. (We refer the reader to Khouja (1999) for a comprehensive review
of these variants.) The newsvendor problem with Bayesian updating can be formally constructed as follows.
Let the demand distribution in period i be given by a known conditional density f{x|2) with an unknown
parameter A, with the posterior found at the end of (i — 1)th period given by m{4|y;_1). Then the predictive
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demand density f{x|y;_;) is as given in (5) with cumulative distribution function Fyx|y, ;). The optimization
problem is then stated as

min [ feube— ]+ els — 31 Loy ©)
From standard optimization results, the optimal order quantity s* that solves (6) is the value of s that satisfies
C,
Fi i - “ . 7
(1) = —— ™

In the above, we assumed, for convenience, continuous demand which guarantees that there is a unique s that
satisfies the above relation. For discrete demands, s7 is the smallest integer s such that F{s|y;_1) exceeds the
RHS of (7). Lowe et al. (1988) showed that the above critical ratio result still holds when the unit underage
and overage costs are replaced by their expectations if there is uncertainty about their values. Eq. (7) implies
that the demand distribution is the main factor in determining the optimal stocking level and the ensuing costs.
Hence, estimation of the distribution of demand during the selling season is critical.

The demand estimation procedure through Bayesian updating described above implicitly assumes multiple
periods over which observations are made; therefore, an inventory control problem utilizing this technique
makes most sense in a multi-period setting. The solution of multi-period optimization problems suffers from
the so-called "curse of dimensionality’. Fortunately, we know that a periodic review inventory control problem
with a planning horizon longer than one period can be reduced to the newsvendor problem under ‘myopic’
control policies with the appropriate choice of excess and shortage costs incurred at the end of a single period.
For certain inventory systems, the myopic policy has already been established to be the optimal policy. That is,
it may be sufficient in some cases to analyze the single-period problem to understand the dynamics in a multi-
ple period planning horizon. For instance, the multi-period inventory control problem of perishable goods
with a shelflife of one period reduces to a series of independent newsvendor problems. (We refer the interested
reader to Zipkin (2000), pp. 378-385 for other applicable cases and a more detailed discussion on myopic pol-
icies for inventory systems with linear costs.) Additionally, Lovejoy (1990) showed that myopic policies per-
form reasonably well vis a vis optimal policies when demand is updated in a Bayesian fashion with fully
observed demands. (Also see Geunes et al. (2001) for adapting the newsvendor model for infinite-horizon
inventory systems.) Therefore, the newsvendor problem provides a versatile inventory theoretic setting to test
the efficacy of novel approaches in modeling and analyses. Hence, in this work, we consider the newsvendor
setting for the inventory control problem and Bayesian updating for demand estimation over multiple periods.
Next, we develop the Bayesian updates for a lost sales newsvendor setting with specific demand distributions.

3. Updating with specific demand distributions

The underlying distribution for demand may vary according to several factors such as product types, mar-
keting strategies, and customer profiles. However from a modeling perspective, negative binomial and Poisson
distributions provide families which are sufficiently rich to cover the cases most encountered in practice when
demand is considered as a discrete random variable. Furthermore, empirical studies suggest very good fits of
these distributions to actual data — Poisson in the case of low coefficient of variation (<1) and negative bino-
mial in the case of high coefficient of variation (>1). We refer the reader to Nahmias and Smith (1994), and
Agrawal and Smith (1996) for a discussion of demand distributions of real retail data. Similarly, the normal
and gamma families are frequently adopted to describe continuous demand data. (See Nahmias, 1994 for a
discussion of empirical issues.) Therefore, in this section, we illustrate the Bayesian demand updating scheme
proposed in the previous sections for these commonly encountered demand distributions.

Gamma and negative binomial distributions are characterized by two parameters, one for the shape and the
other for the scale. Both of these distributions are right skewed and become more symmetric as the shape param-
eter increases. Therefore, from a practical point of view, it may not be very unrealistic to assume that a reliable
information about the shape of the distribution is available from independent past data. Furthermore, for integer
values of the shape parameter, these distributions represent a sum of independent geometrically and exponen-
tially distributed demands, resp. This may correspond to a practically realistic situation. Consider, for instance,
awarehouse serving a given number of independently ordering retailers of relatively equal sizes for each of which
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the demand can be represented by geometric (or exponential) distributions. Then, the total demand that the
warehouse faces would be negative binomial (Erlang) with known shape parameters. Similarly, independent
daily demand can be aggregated to a negative binomial or gamma weekly demand with known shape parameters.
Then, the question of interest becomes estimating the size of demand for each of these retailers or each day.
Hence, in the sequel, we make the assumption that the shape parameters of these distributions are known and
the Bayesian method is used for dynamically estimating the distribution of the scale variable. We should also
mention that, from a technical point, working with only the scale parameter, greatly reduces the analytical
tedium and allows for exploiting the conjugacy properties since no bi-variate conjugate prior is known which
can be used for estimating both scale and shape parameters. Incidentally, in all of the Bayesian literature with
which we are familiar, known shape parameter is the standard assumption. Similarly, for normal demand, we
make the standard Bayesian assumption that the variance is known but the mean is uncertain. Such an assump-
tion would again be valid if the variability could be assessed in a fairly precise way from other sources of infor-
mation. To avoid a cumbersome notation, we drop the index identifying the periods in the following discussions.

3.1. Negative binomial demand

Suppose the demand in a period X has a negative binomial distribution with parameters r and p. Then the
probability mass function of M = min(s, X) given r and p is

+r—1\ | .
<yr_1 )P’(l—l’)y if y <s,

= 8
Sulr.p) = (xdro1Y o (8)
pPrl—-p) ify=s.
= r—1
Theorem 3.1. Assume that r is known and p has a beta distribution with parameters o and f. Then
(a) The posterior distribution of p is given by
I'(c 7)) odr— —1 .
it pr = (1= p)™ if y<s,
L (x+r—1 i
fp(.pkxv ﬁv ryM = y) = P (1 p)f! Z-*:S r—1 (1=p) . .
T(otr) x+r—1 ify=s.
Zs@ ( ) r+p)
X=5 r— 1 TI'(B+otr+x)
(b) First two moments of the posterior distribution under censoring are given by
D X+ 7 =1\ raprosrn
xX=s r—1 I(f+otr+x+1)
m :E(p|a,ﬁ,r,M:s): ) (9)
% x+r—1\ rup
Zx:s (a + r) r—1 I'(p+otr+x)
y x+7 =1\ riprro)
X=S r—1 I'(f+o+r+x+2)
my = E(p’|e, B,r, M = 5) = (10)

o x+r—=1\ rep
> (a+ r)( o1 > F([i+;+r+x)

Proof. The joint distribution of p and M is written as

raep (YEr=1Y L pol .
F(;;F(ﬁ)( F—1 )p* (1-p) if y<s,

pr(PJ’Mﬁa”):
1 o otr— & (x+r—1 x .
st (T sy ity

X=s

from which the marginal distribution of M is obtained as
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(y +r—1 ) [(octf) Lotr)L(y+p)
1

r— I(a)L(B) TI'(a+p+y+r)

if y <s,

fM(y|oc,,B,r) =

zx+ﬁ I'(a4r)T(x+p) x+r—1 : _

Z I'(o+p+k+r) ( r—1 if y=s.
Part (a) follows from taking the ratio of the last two expressions. Part (b) is obtained from standard calcula-
tions regarding beta functions, the details of which are omitted. [

We observe that if the demand is not censored (i.e. y <s), the posterior distribution of p is beta with param-
eters o = o+ rand " = B + y. This follows from the conjugacy property of the beta distribution. However, if
the demand is censored, the resulting posterior distribution is outside the conjugate beta family and it is almost
impossible to use it for subsequent analytical calculations of predictive distributions. Therefore, we propose a
conjugacy retaining approximation below as explained in the previous sections.

3.1.1. Two-moment approximation

If the demand information is censored, we propose to use an approximate conjugate beta distribution for
the posterior distribution, with modified parameters. The modification is done so that the first two moments of
the approximate distribution matches those of the exact posterior. Recall that for a beta random variable X
with parameters «* and %, the first two moments are given as

o* (o 4+ 1)

(@ +f) o+ B+ 1)
Setting E(X) and E(X?) equal to (9) and (10) respectively and solving for «* and f* we obtain

EX)=o/(«" + ) and EX?) =

ml(m1 *mz)
my—m

(1 —ml)(ml —mz)
my — m?

*

p=

3.1.2. Predictive distribution
Having obtained the posterior distribution either exactly or approximately, the predictive density of
demand is found as below according to (5). For x=0,1,...,

*ro:(x+r‘1>FW”+E)FW“+ﬂFu+ﬁﬂ
’ r—1 ) L)) T(or +p +x+7r)

Now, the optimal stocking level s* for the inventory problem is found so as to satisfy (7).

S(xlo”, B (11)
3.2. Gamma demand

As in the previous section we observe M = min(s, X) and now assume that X has a gamma distribution with
shape parameter o and scale parameter . Then the density of the observed M is written as

— Ba =By =15
fM(y|O(nB)_F( )e y lfy<S
/ e Py tdy if y =s. (12)

To simplify the notation we present the result below without proof which follows from standard calculations.

Lemma 1. Let

00 xcc—l,E",'
[(067“/71',6') :/ 7( H,},dx

T+ x)
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Then

(o)l (y) (o)l (y)
I'(o+7) I'(a+7)
where B is a beta random variable with parameters o, y with the tail probability given by Fp ) (s/(s + 1)).

1(2,7,7,) = P(B>s/(s+71)) = Fay(s/(s + 1)), (13)

Theorem 3.2. Suppose demand has a gamma distribution with known shape parameter o and random scale param-
eter f3, where the prior distribution for [ is also gamma, with shape and scale parameters y and t respectively. Then

(a) The posterior distribution of f is given as:
o+y—1

M = y LV T) = =~

S(BIM =y, 0,7,7) e

ﬁwryfl ef‘r[f

= = " e My du if y=s. (14)
F()) (o) Fppop(s/(s + 1)) [
(b) The first two moments of the posterior distribution of § under censoring are given by
z Ff(i,y+l)<s/(s + T)) (15)
* Faun /(s +7))
7+ 1) Faeyia(s/(s + 1)
2 Fauy(5/(s+ 7))

e T4 )" ify<s

m EE(ﬁ|M=S,O€,y7‘C) =

my = E(B'|M = s,0,7,7) =

Proof. Following the lines of proof for negative binomial demand, we obtain the joint distribution of M and f
is given by

[))og_E«/ _ 1 py—1 .
f y7ﬁa7%‘[ ==~ ﬂ(r+y)yo< B' 1fy<S
b Ble7:%) = Foy )

R Py
= —————— ¢ P"TIT dy i y=3 17

| e 7
and the marginal distribution of M as

Faty) yo'v

Sulosy,t) = T@I0) (c 1) if y<s
~ T(a+7) xe g T
S T(@)I(y )/s (r+x)“+"dx ify=s (18)

Part (a) again follows by taking the ratio of the preceding two functions. For Part (b) note that

oc+ —1 e—r/} 0 P
m = | G R S

— o—1 o4y A —(t4u) B u
‘rmr(a)FB RO / / pie i dpd
N Js

B F(V)F(OC)FBWJ/)(S/(S +7 T4+ u)“‘*’”/‘*'] du = F(V)F<O() S/(S I ‘E)) I(OC Y+ 1 T S)

The result follows by reference to Lemma 1. The second moment m, is obtained similarly, for which we omit
the proof. O

3.2.1. Two-moment approximation
From part (a) of the above theorem we observe that when there is no censoring, the posterior distribution
of B is gamma with shape and scale parameters y* = o +y and t* = © + y respectively. If however a stockout
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occurred within the period, the gamma distribution can not be retained and we make the similar approxima-
tion to match the first two moments of the posterior density. Recall that for a gamma random variable with
parameters y and 7, the first moment is given by #7, = y/7 and the second one by m, = y(y + 1)/%. Then for the
stockout periods, we again use the gamma family with the following modified parameters:

2

nmy m

T = 5, Y =Tm = : 2"
my — my my — my

(19)

3.2.2. Predictive distribution
From the above findings the predictive density of demand for the next period is given below. For x > 0

o= () ()

3.3. Poisson demand

Poisson and normal distributions are also commonly used for modeling the demand uncertainty. In a pre-
liminary work we suggested (see Berk et al., 2001) the two-moment approximation herein for Poisson and nor-
mal demands and presented the expressions for the posteriors starting with respective conjugate priors. The
predictive demand distribution and the related proofs however were not given. For the purpose of complete-
ness, we first present below the posterior distributions with their first two moments and then provide the
approximate predictive distributions. We also present in the Appendix the detailed proofs not appearing in
the earlier work.

Assume now that the demand during a period has Poisson distribution with parameter A and we consider
the gamma distribution as the prior for 4. For ease of presentation of the following results, let p = 1/(f + 1)
and

A(p,S,OC) = i MPZ

We also denote by 4’(-) and A4”(-) the first two derivatives of A(-) with respect to p.
Theorem 3.3. Suppose demand has a Poisson distribution with parameter A and 1 has a gamma prior with

parameters o and 5. Then

(a) The posterior distribution of A is given by

%e—i(ﬂﬂ)io&k—l i k<s,
‘ B+1)* —J qo—1 Y
;[(;si)a)e SLRVEEDY <,—.) if k=s.

i=s

(b) If the demand is censored, the first two moments of the posterior distribution are

1 A (p,s,a)
T ) 2l

my = EGZM =) = (B + 1) [o«(a+ D)+ plx+3)

m =E(AM =s) =

A/(p,S, OC) 4 ZAN(:D’S’OC)
A(p)sﬂa) A(p7s3a) .

Proof. See Appendix. [

For the evaluation of the above quantities, we use the following computationally handy result, where
B(x,a,b) is the cumulative distribution function of a beta random variable with parameters ¢ and b, which
is readily available in commercial software and also is well tabulated since it is proportional to incomplete beta
function.
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Lemma 2

Me=DF+1)

= B(p,s,o0 —1).

A(p,s,o) =

Proof. Since A(p,s,a) appears in the denominator of the conditional density i(u|M = s), it is the scaling con-
stant for the density. Therefore,

95—t

[eS) 1
A(p,s,0) = +1“/ A e G PR / e’)*ﬁ/l“_l/ € sl drda
(pr5,2) = (B+ 1" | Z B+ | T

Sy [ (Jﬁ) (753)

ne pyvesy p -1

= (B i__l) / Is+a-1) >u°"1(1 —u)" 2 du.
p 0 I'(s)

The first equality in the above proof follows from recognizing that the tail sum of a Poisson probability is the

c.d.f. of a gamma random variable. The last equality is obtained by making the change of variable u =t/
(t+p). O

3.3.1. Two-moment approximation

From Theorem 3.3, we observe that if demand is not censored, the posterior distribution of 4 is gamma
with parameters o* = o + k and 8" = B + 1 as expected from the conjugate property. If however there is cen-
soring, then we approximate the posterior with a gamma distribution with modified parameters
o =mi/(my —m?) and B* = m(my —m3) as in (19).

3.3.2. Predictive distribution
The predictive distribution of demand corresponding to the distributions found above is given as

p(x) =F(;(;‘;;;fl) (ﬂ*il)x@*ﬁ;l)f x=0,1,... (23)

The optimal stocking level s* for the newsvendor problem can now be found using (7) via the predictive de-
mand distribution (23).

3.4. Normal demand

Suppose, given the mean u and variance ¢, the demand during a period (X) has a normal distribution with
parameters u and ¢”. We denote this as X|u, 6> ~ N(u,6%). The mean y is presumed unknown with prior dis-
tribution ply, 7% ~ N(7,7%) where ¢® and 7% are assumed known as well as the prior mean y. Assume as before
we observe only M = min(X,s). When the demand is completely observed in that M = y <s (no lost sales), the
posterior distribution of u is easily found from Bayesian calculations with normal priors as

1y, y, 0,7~ N, &), (24)
where
2 2
. Y0 T+t
g )
2. 2
) o
Ceaia (26)

If however, stockout occurs in a period, then we have the following result regarding the posterior distribution
and the respective moments.
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Theorem 3.4. Suppose demand has a normal distribution with mean p and variance o* and also that u has a
normal prior with parameters y and t>. Then if the observed demand is censored

(a) The posterior density of u is given by

— 2
¢(“;:“) . exp { u=7) }
g \/2 272
Su(ulM =) = —— .
()

(a) The first two moments of the density given in part (a) above are

fw=m=Eu|M=s)=y+7s),
m = E(? | M = s) = (1/1) (7’0" + n?a® + 2026°L*) + oy + %) + [297°0° + ¥ (s + 9))As) /n,

where ¢(s) and d(s) are respectively the density and the cumulative distribution function for standard normal var-
iate and (s) = ¢(s)/®(s) is the corresponding hazard rate.

Proof. See Appendix. [

3.4.1. Two-moment approximation

We observe that the density above corresponds to a weighted normal distribution. The posterior mean is
shifted from the prior mean by a constant proportional to the hazard rate and the second moment is also a lin-
ear function of the hazard rate where the constant terms are functions of the variance components and the prior
mean. Due to the complexity of this exact posterior distribution, we again propose to use a normal distribution
for the posterior with the first two moments given by the above theorem. In particular, the mean and the var-
iance of the approximate posterior normal distribution are given by x* and 2 = m, — m} respectively.

3.4.2. Predictive distribution

The predictive density of demand is obtained as described in Section 2, by integrating the product of the
demand and the posterior densities with respect to u. After some straightforward but somewhat tedious alge-
bra that we skip here, we find the predictive density as normal, with mean p* and variance ¢ + &%, where
& = my — m? if there is censoring and otherwise given by the expression (26).

4. Impact of ignoring censoring

We present some theoretical results on the impact of ignoring censoring in the newsvendor setting.

Preposition 4.1

(a) The stocking level obtained via the predictive distribution computed with censoring ignored is always lower
than the optimal for the true distribution for any desired service level.
(b) Let X,, denote the true demand identically distributed with X, and X, denote the predictive demand in period
n = 1. Also let s be the fixed stocking level for all n and define u; = E[ min(s, X,,)].
(i) Suppose X ~ NB(r,p) where r is known and p has a Beta prior with parameters o and p. Then, X, con-
verges in distribution to NB(r,p) with p = r/(r + p,) as n — co.
(i) Suppose X ~ Gamma(a, ) where o is known and  has a gamma prior with parameters y and t. Then,
X, converges in distribution to Gamma(oc B) with p = a/u, as n — oo.
(iii) Suppose X ~ Poisson(1) where A has a gamma prior with parameters o. and p. Then, X, converges in
distribution to Pozsson(/l) with . = p, as n — oo .
(iv) Suppose X ~ Normal(u,6%) where o is known and ,u has a normal prior with parameters y and ©>. Then,
X, converges in distribution to Normal (fit, > + =5 ) with it = u, as n — oo.

Z+
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Proof

(a) Since we have M, = min(s, X,,) as the observation in period n, it follows from Egs. (1) and (3) that the
posterior obtained with censoring ignored is stochastically smaller than the exact posterior for any given
prior for that period. From Eq. (5), we also have that the predictive demand is also stochastically smaller
when computed with censoring ignored. Hence, the result.

(b) Below let m,, = min(s, x,,) be the observed value of M, = min(s,X,,) in period n. (i) Note that, when cen-
soring is ignored, the posterior distribution of p at nth period is Beta with parameters o + nr and
B+ >7 ,m;. The mean of the posterior given by (W) converges to r/(r + p) and the variance

=1
converges to zero as n — oo. Hence, the posterior distribution converges to a point mass at p =r/
(r + u,), which results in the predictive distribution stated above. The other parts follow similarly, since
in all cases the variance of the posterior distribution converges to zero; and in (ii), the mean of the pos-

terior distribution in the nth period given by (T Lt > converges to o/, in (iii), the expected value of

7+ "
mj

D
n

o¢+g L m;
i=1

Y ) converges to y, and finally in (iv), the posterior mean

the posterior in the nth period given by (

n

in period n given by [6?/(c> + )|"y + [¢2/(a* + )31, [62 /(6% + 1)]" 'm; converges to p,. O

The above result shows that if there is a true distribution of demand and censoring is ignored in obtaining
the posterior distributions, then the predictive distributions would not converge to the true one as the number
of observations tends to infinity, resulting in biased estimation of demand.

Next, we proceed to our numerical analysis.

5. Numerical analysis

In our numerical study, we investigate a number of issues: First, we consider goodness of the proposed two-
moment approximation purely from a probabilistic perspective. We compare the approximate posterior den-
sity obtained after an observation with the exact posterior and that obtained by ignoring any censoring. We
will refer to the last as the naive posterior since it does not use the information about censoring. We illustrate
the impact of the approximations on Poisson and negative binomial demand distributions. Second, we look at
the impact of using the information about censoring in Bayesian updating from an operational/inventory the-
oretic perspective. Here, we examine the performance of the approximation in terms of desired and achieved
service levels. Third, we address the question of whether or not the performance of the approximation dete-
riorates in a sequential updating setting. To this end, we conduct a simulation study and investigate the behav-
ior of the predictive demand densities over a number of observation periods. With this simulation study, we
report overall performances of the exact, approximate and naive posteriors and an illustrative example of
ensuing operational costs.

In our numerical analysis, we used a sample test bed generated from the published statistics of Agrawal and
Smith (1996) who analyzed retail sales data at retail outlet level for a particular type of men’s slacks at a major
retail chain. They investigated goodness of fit of negative binomial and Poisson distributions on the entire
sales data, and illustrated, through a simulation study, the impact of censoring on updating with a point-esti-
mate (frequentist) approach. Hence, their numerical study can be viewed as a frequentist version of ours. For
illustration, we consider the scenarios that correspond to high-peak and low-off-peak demand patterns in their
study (see Table 2 in Agrawal and Smith, 1996). We take the reported distributions as the benchmark, termed
’true’, and compare the efficacy of the approximations against this benchmark.

For the negative binomial demand (X|p ~ NB(r,p)), the case when r = ry and p = p,y corresponds to the
’true’ (benchmark) distribution. From the reported data, we have ry = 3,4 and pg = 0.4124, 0.5556 as the true
parameter values. Supposing that p is the parameter unknown to us, we consider a beta prior for p with
parameters o and f5. These prior parameters are chosen so that the prior is substantially different from the
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Table 1

Negative binomial demand

EP() (X) ro Do o ﬁ Hp Eup (X)
5.7 4 0.4124 0.8 7.2 0.1 36

5.7 4 0.4124 24 0.6 0.8 1

5.7 4 0.4124 1.0 1.0 0.5 4

2.4 3 0.5556 0.8 7.2 0.1 27

2.4 3 0.5556 1.0 1.0 0.5 3

X|p ~ NB(r,p), p ~ Beta(a, f). E(X|p) = r(1 — p)/p. Assumed true value of p = py = {0.4124,0.5556}, w, = E(p), E,(X) = E(X|r,p).

assumed ‘truth’, providing worst case scenarios for the approximations, as well as the uniform prior. (We
found that alternative prior parameter specifications result in approximations no worse than those presented
here; in most cases the approximations are excellent.) The set of parameters used for negative binomial
demand is presented in Table 1. Table 1, u, denotes the expected value of the unknown parameter p with
the given prior, and E, (X) and £, (X) denote the expected demand in a period with the true value of p
and mean of its given prior distribution, respectively.

For the Poisson demand (X|A ~ Poisson(2)), we tried to match the mean of the prior distribution and the
expected demands given the true mean with those of the negative binomial case. This choice allows us to assess
the impact of the change in distributions while the means are kept constant. In particular, for the Poisson dis-
tribution, the true values of process parameter, 4y are set to 5.7 and 2.4. For the prior distribution of 4, we
consider gamma distributions for which the means match the expected demand in the negative binomial
demand scenario with success probability set to y, in Table 1. The set of parameters used in Poisson demand
is given Table 2. Note that in Table 2, E(1) denotes the expected demand in a period with the given prior dis-
tribution. As in the negative binomial case, the prior parameters were chosen to reflect the impact of large
deviations from the ’truth’. The prior parameters in the first three cases are extreme in that the prior is sub-
stantially different from the assumed ’truth’, providing worst case scenarios for the approximations. The
fourth case demonstrates the performance of the approximation when a reasonable prior distribution is used.
We begin the discussion of our findings with the goodness of the posterior approximation. In our numerical
study, we test this issue in two ways: (i) comparison of posteriors for specific realization instances, and (ii)
comparison of posteriors in an overall sense. We first focus on specific censored observations. Recall that
the posterior obtained with our proposed approximation differs from the exact posterior only in cases of cen-
soring; therefore, we construct our experiments as follows. We choose the initial stocking level s at 5, 15, and
30 units and assume that the demand realization during the initial period was such that a stockout has
occurred resulting in a censored observation. This construction enables us to observe the effects of our approx-
imation for likely, less likely and highly unlikely cases of demand realizations corresponding to the events that
demand in the period exceeds 5, 15 and 30 units, resp.

Figs. 1-4 compare the exact and approximate posterior distributions obtained for negative binomial
demand for different priors and initial stocking levels. We also provide in all figures the posterior distributions
(dashed lines) that would be obtained, had we ignored the censored nature of the data, i.e., if the censored data
were treated as uncensored. As seen from the figures, total ignorance of censoring results in gross errors in the
estimation of the posterior distributions. We observe that the approximations are overall quite good. The
cases in Figs. 1 and 2 corresponding to high-peak demand exhibit similar poor behavior in the left tail

Table 2

Poisson demand

}.() o /} E())
5.7 3.24 0.09 36
5.7 0.36 0.36 1
2.4 3.24 1.20 27
2.4 4.14 1.72 2.4

X)A ~ Poisson(2), i ~ Gamma(o., f). E(X|A) = 1/A. Assumed true value of A = 1o = {5.7,2.4}.
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Fig. 1. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions. X ~ NB(4,p), p ~ Beta(0.8,7.2) ;
s =15, 15, 30 from top to bottom.

6F ]
41 i
2} — = T T~ -
0 —— e T " .

0 0.2 0.4 0.6 0.8 1
6 4
4t TN |
2} e S -
obler ==

0 0.2 0.4 0.6 0.8 1
6f N~ ]
4l / o i
2 / R

oLz —

0 0.2 0.4 0.6 0.8 1

p

Fig. 2. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions. X ~ NB(4,p), p ~ Beta(2.4,0.6) ;
s =75, 15, 30 from top to bottom.
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Fig. 3. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions. X ~ NB(3,p), p ~ Beta(0.8,7.2) ;
s =15, 15, 30 from top to bottom.

indicating that the approximation slightly overestimates the likelihood of the smaller values of the parameter p
as s increases. The third and fourth cases corresponding to low-off-peak demand show excellent approxima-
tions, although the performance around the mode declines as the skewness of the posterior increases.

Figs. 5-8 compare the exact and approximate posterior distributions for Poisson demand under the same
stocking and demand occurrence scenarios. Note that the last parameter set considered for Poisson demand
corresponds to the case where the prior information captures the mean of the demand process on average but
has some uncertainty about it; that is, we are hitting the true mean of the underlying demand distribution right
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Fig. 4. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions. X ~ NB(3,p), p ~ Beta(1.0,1.0) ;

s=75, 15, 30 from top to bottom.
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Fig. 5. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions. X ~ Poisson(1),
A~ Gamma(3.24,0.09); s =5, 15, 30 from top to bottom.
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Fig. 6. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions. X ~ Poisson(7),
A~ Gamma(3.24,0.12); s =5, 15, 30 from top to bottom.

on the mark. The prior with the true mean generates approximations that are indistinguishable from the exact;

hence, the impact of the uncertainty around the true mean appears to be minimal.

A general observation in these results is that as the initial stocking level s increases, the approximation
worsens. This follows from the design of our experiment since we assume a censored observation to compute
the posteriors. In reality, a censored observation at large values of demand would be less likely because, as the
initial stocking levels increase, the service levels also increase, which in turn implies that a stockout is getting
less and less likely. But, in our experiment for illustration purposes, we deliberately impose the unlikely event
that a stockout (censoring) sas occurred. To alleviate this problem arising from the artificial construction of
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Fig. 7. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions.
A~ Gamma(0.36,0.36); s =5, 15, 30 from top to bottom.

X ~ Poisson(1),
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Fig. 8. Exact (solid), approximate (dotted), and exact ignoring censoring (dashed) posterior distributions.
A~ Gamma(4.14,1.72); s =5, 15, 30 from top to bottom.

X ~ Poisson(7.),

the experiment, and to obtain an overall goodness measure that takes into account the likelihood of rare
events which result in poor posterior calculation, we introduce and define a likelihood-weighted error measure
defined as

=32 6p) [ Irlpk) — malph) /o) o8)

where f{x|p) is the demand likelihood computed under the true parameter p, and n(p|x) and 7 4(p|x) are
the exact and approximate posterior distributions, respectively. Table 3 tabulates e¢ of the posteriors

Table 3
Weighted error, averaged over starting inventory levels s(€), for comparing the approximate and exact posterior inference
r o p € e when s =5 € when s = 30
X~ NB

4 2.4 0.6 0.0055 0.0059 0.0064

4 0.8 7.2 0.0057 0.0041 0.030

3 0.8 7.2 0.0016 0.0044 0.020

4 1.0 1.0 0.021 0.023 0.031

3 1.0 1.0 0.0079 0.014 0.019
X ~ Poisson

1 0.36 0.36 0.0026 0.00098 0.000062
36 3.24 0.09 0.00094 0.000011 0.00088
27 3.24 0.12 0.00093 0.000037 0.00098

The weights are the corresponding negative binomial and poisson demand likelihood values for each s.
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Table 4
Impact of ignoring censoring of data
s r a B o B S Shs S x B 590 595 So9  SLoo SLos  SLgo
5 4 24 0.6 335 4.71 17 24 47 6.4 5.6 9 12 19 73 82 92
10 4 24 0.6 3.51 8.85 29 40 76 64 106 15 21 33 70 82 92
15 4 24 0.6 358 13.01 40 56 103 64 156 23 29 46 73 77 88
20 4 24 0.6 362 17.17 52 71 131 64 206 29 37 60 71 80 92
25 4 24 0.6 365 21.33 64 87 160 6.4 256 36 46 74 72 81 93
5 4 1.0 1.0 140 4.20 69 121 409 5.0 6.0 13 17 29 51 60 75
10 4 1.0 1.0 1.50 7.50 105 180 565 50 11.0 22 29 49 51 60 76
15 4 1.0 1.0 1.55 10.82 143 240 725 50 16.0 31 41 70 51 60 77
20 4 1.0 10 157 14.14 180 300 898 5.0 21.0 41 53 90 51 60 77
25 4 1.0 1.0 1.58 1747 218 360 1067 5.0 26.0 51 66 110 51 60 77
X ~ NB(r,p) and p ~ Beta(a, f).
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Fig. 9. Comparison of predictive demand p.m.f.s with different initial priors. s=6; n=1, X~ NB(r,p) and p ~ Beta(a,f) with
(o, ) € {(0.8,7.2),(1,1),(2.4,0.6)}.
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corresponding to the parameter values used in our test bed. For negative binomial demand, we see that the
approximation is much better overall than the best case shown in Fig. 1 (that is, € is smaller than that when
s =5 and 30). For the other case, it is slightly worse overall than the worst case shown. For the unreported
case of Poisson demand, the same observations hold. Therefore, we can conclude that the two-moment
approximation procedure for obtaining the posterior parameters in the presence of censoring provides very
good estimates of the underlying distributions when used in single updates.

The next issue we examine is whether or not ignoring the occurrence of censoring impacts the operational
decisions of the inventory system, and if so, to what extent? To test this, we first compute the posterior param-
eters with and without considering the presence of censoring; then, based on the computed posterior param-
eters, we determine the corresponding optimal stocking levels in the next period under 90%, 95% and 99%
service levels.

In Table 4 we report results for the negative binomial demand with different priors under two initial stock-
ing level/demand scenarios in Table 4. The first four columns show the initial stocking levels (s), the known
parameter of the demand distribution (r), and the parameters («, §) of the prior on p; the next four columns
show the posterior parameters computed under the consideration of censoring («*, ) and the corresponding
optimal stocking levels (sj oo, S 05,55 99); and, the last five columns show the posterior parameters (&, 8) and
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Fig. 10. Comparison of predictive demand p.m.f.s with different initial priors. s=6; n=38; X~ NB(r,p) and p ~ Beta(a, ) with
(o, f) € {(0.8,7.2),(1,1),(2.4,0.6)} from top to bottom.
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corresponding stocking levels (so.99, 095, 5099) computed as if the observation was not censored. We note that
stocking levels determined for the next period are significantly lower when ignoring censoring as compared to
the values computed by taking censoring into account. The operational impact of such underestimations is
shown in the last three columns which tabulate the corresponding service levels attained (SL) if we set the stock
quantity at the values specified in the preceding three columns. Observe that these levels are considerably
lower than the desired service levels. Therefore, we conclude that ignoring the presence of censoring may result
in highly suboptimal control policy parameters.

So far, we have the goodness of the approximation and the impact of information about censoring in single
updates only. Next, we address the same issues in a setting of sequential updates. The practical setting we envi-
sion is as follows. A firm has collected a set of past sales data (observations over a number of periods) with
stocking levels over this time horizon. The stocking levels are identical and have been determined on the basis
of initial beliefs, as would be the case for new products and/or markets. Now, Bayesian updating is to be used
to obtain the predictive demand for the next period of interest (or the rest of the horizon). To study the behav-
ior of the proposed approximation and its benefits in this sequential setting, we performed a simulation study.
We used a test horizon consisting of 16 periods, in each of which, demand has a true negative binomial dis-
tribution with parameters ro =4 and py,=0.4124. The initial prior on p is taken to be Beta with
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(o, p) € {(0.8,7.2),(1,1),(2.4,0.6)} from top to bottom.



276 E. Berk et al. | European Journal of Operational Research 182 (2007) 256-281

(a,B) € {(0.8,7.2),(1.0,1.0),(2.4,0.6)}. The case (1.0,1.0) corresponds to the non-informative uniform prior.
The stocking levels were fixed for all periods at s =2, 6, 10, co. To simulate random observation series,
100 random demand streams were generated over 16 periods from the stationary true demand distribution.
Noting that the true demand has a mean of 5.7 and a standard deviation of 3.7, the imposed stocking levels
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Fig. 12. Comparison of predictive demand c.d.f.s after different n (=1,4,8,16) from top to bottom. s = 6; X ~ NB(r,p) and p ~ Beta(o., )
with non-informative prior.
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correspond to the true demand mean (with a resulting stockout probability of 35%), one standard deviation
above and below the true demand mean (with stockout probabilities of 80% and 21%), and the case of no cen-
soring (0% stockout probability). Incidentally, the mean effective demands resulting from the assumed beta-
distributed initial priors are 51.4, 11.6 and 1.8. In computing the reported demand densities of this experiment,
we did the following. After each period, we calculated the three posteriors — exact, approximate as proposed
herein and that computed with any censoring ignored. With these posteriors, we also computed the predictive
demand densities. Observe that we end up with 100 predictive densities for each period corresponding to each
one of the streams. As the predictive demand density fy(x) to report in the sequel, we used the arithmetic aver-
age of the p.m.f. values at x obtained from the 100 streams for each period. The exact posterior density was
obtained numerically as a probability mass function due to its analytical complexity, where we used incre-
ments of 0.01 on the unknown parameter p. We address two main issues: (i) the predictive power of the
proposed approximation as 7, the number of observations in a series of updates increases; and (ii) the impact
of ignoring censoring effects in a series of updates.

In Figs. 9-11, we plot the predictive demand densities for different initial priors after one period (n = 1),
eight periods (n = 8) and sixteen periods (n = 16) with the stocking level fixed at s = 6. We observe that the
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Fig. 13. Comparison of predictive demand c.d.f.s with different initial priors. s =6; n=16; X ~ NB(r,p) and p ~ Beta(a, ) with
(o, p) € {(0.8,7.2),(1,1),(2.4,0.6)} from top to bottom.
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proposed approximation yields predictive densities that are very close to those obtained exactly. Noting that
each period corresponds to an observation in a series of updates, we conclude that the approximation per-
forms well regardless of the number of consecutive updates. These figures also illustrate that the posterior den-
sities computed when censoring effects are ignored perform badly and always result in underestimation of the
true demand, as expected.

To supplement the above findings, we present the c.d.f.s. of the predictive demand for the non-informative
prior aftern = 1,4, 8 and 16 with s = 6 in Fig. 12. Here, we also plot the true demand distribution for comparison.
We again conclude that the approximation yields estimates that are very close to those obtained with the exact
posteriors. As n increases, the estimated densities approach the true density, as expected. It is important to also
observe that the predictive demand obtained by ignoring censoring effects is significantly stochastically smaller
than the true density for all n. In Fig. 13, we present the true demand and the three estimated c.d.f.s of the predic-
tive demand after n = 16 for all three priors with s = 6. We see that the performance of the proposed approxima-
tion w.r.t. the exact computation of posteriors does not depend on the choice of the initial prior.

In Fig. 14, we address the impact of stoking level on the estimates. We present the true demand distribution
and the three estimated c.d.f.s of the predictive demand after n = 16 with the uninformative initial prior for s.
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Table 5

Illustrative example for impact of estimation on computed stocking levels

SL sfrue S:xact S;pprox S;kgnore SLEXHC‘ SLaPPmX SLig“O"e A%)
80 8 9 9 7 85.3 85.3 73.2 5.8
90 11 11 11 9 92.4 92.4 85.3 6.7
95 13 14 14 11 97.4 97.4 924 33
98 15 17 17 13 99.2 99.2 96.3 5.0
99.5 19 22 22 16 99.9 99.9 98.8 3.7

X ~ NB(4,0.4124); non-informative prior; s = 6; n = 16.

We see that stocking level has very little impact on the performance of the proposed approximation w.r.t. the
exact computation of the predictive demand. However, as expected, ignoring censoring results in highly inac-
curate estimation for low s (high ratio of stockout cases).

We should mention that the observations above hold for all of the other cases considered but not reported
herein for brevity.

Finally, in order to illustrate the impact of estimation errors on costs, we provide an illustrative example in
Table 5 based on Fig. 13 with the non-informative prior and s = 6. In this table, we report the stocking levels
corresponding to 80, 90, 95, 98 and 99.5 per cent desired service levels with the true demand and the three
predictive demand distributions estimated after n = 16. (The desired service levels correspond to C,/
C;,=4,9,19,49 and 199.) One may view this experiment as demand estimation for future periods for a fashion
good with past /6 days’ sales data. Observe that the stocking levels obtained with censoring ignored are lower
than those obtained with the exact (and approximate) determination of posteriors as expected from Proposi-
tion 4.1. Taking the unit excess cost as unity, we also report the percentage increase (A%) in per period costs as
one uses the stocking level computed by ignoring the censoring effects versus the proposed approximation.
Due to the discrete nature of demand, A% is not monotonic in the desired service level. This small illustrative
example shows that the cost impact can be quite high for newly launched products such as textiles where the
profit margins are notoriously low (2-3%).

6. Conclusion

In this study, we considered Bayesian updating of demand in the presence of censored observations for the
newsvendor problem. Having shown that non-informative priors are improper for some of the demand distri-
butions considered, we developed exact posterior distributions for negative binomial, gamma, Poisson and
normal demands starting with conjugate priors. When censoring is introduced, the posterior distributions turn
out to be more complicated, usually in the format of a weighted sum of distributions, and no longer retain the
conjugacy property for successive updating. Therefore, we proposed a two-moment approximation which
retains the conjugate property for the posteriors. This approximation allows for analytical tractability in suc-
cessive updating. Numerical studies on a test bed designed with actual sales data indicate that the approxima-
tion performs extremely well even for sequential updates, and that the adverse impact of neglecting the
presence of censoring in updating is significant on the operational performance of the inventory system. A sim-
ulation study of showed that the approximation performance does not deteriorate with successive updates.
The proposed approximation can also be applied to continuous random variables and settings other than
inventory control.

Appendix
Proof of Theorem 3.3. We have the probability mass function of the observed sales given by
e () k! ifk<s,

p(M = k|2) = Se () /it if k=s
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and the joint distribution of 4 and M is

o — i o1 —J( )k .
L -e—g) if k <,

hi(’LM:k) = 1 /f/ o 00
i M 2 if k=s.

From the above, we find the marginal distribution of M as

00 fra—Bijo— —2( )k .
Js M-%di if k<,

I'(a)

pM(k): o —fhqa—1 X A/
Jo el S W) if k=,

I'(x)

i=s

which, after some algebra, can be written as
['(ak) B .
T@I%) (/m) (/m) if k <s,

He (1Y (5) itk=s.

The first moment of the posterior is given by

m = EGIM =) = [ e ’”Z g, - ﬁ'i'l))zr(ot—&-i—i—l)pi

pulk) =

A(p,s,a) (p,s,0) == A(f+ 1)*"

= [(B+ DA(p,s, )] lzo_c;(ac +1) F(oci!—i— £ p = (ﬂj— 0 o+ Z;S;:?:;pl} (29)
Similarly, the second moment is

=B+ 1) ale+ 1)+ (a+ 2)[2}5”5:5)) + Z;l(“pi;;ﬂ ] . (30)

Result follows from noting that

= T ) = r j
S o D S ) i T s o) 4 (psw). O

i=s

Proof of Theorem 3.4. Let us again denote by ¢ and @ the standard normal density and cumulative distribu-
tion functions respectively, with @ =1 — @. We first provide the following results, obtained after applying
integration by parts

[ Xﬁexp{—%( ;“)Z}dzza[mzs)w(zs)u+u/a] (1)
xz\/Zl_no eXp{_%( ;M)z}dz (32)

= L \/12—7'5 [0 + 2uoz + (1)*] exp {—%zz} dz = [0 + (0)’]D(z,) + o)z, + 21 (z,), (33)
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where z;, = (s — p)/o. If in a given period lost sales has occurred the posterior distribution function of u is given
by
Plu<u,X >s)

Flu)=P(u<ul|X >s)= PX>s)

Yu € R,

where the joint probability is given by

U 1 — 2+ 2_2,\ _ 2+ 2_2
P(Mgu’XN):/ /2nazfzexp{ ety = 2m) | Z 'ux)}dxd,u

212 202

" sk 1 —(1 +7* = 2uy)
7/,30(15( - ) 5 exp{ o du.

The posterior density is obtained from taking the derivative of the above expression with respect to u and
dividing by one minus the marginal distribution function of X, which has a normal distribution with mean y
and variance . The moments of the resulting posterior density is obtained referring to the expressions given
by (31)—(33).
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