
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Int. J. Production Economics

Int. J. Production Economics 120 (2009) 287–300
0925-52

doi:10.1

� Cor

E-m

erel@bi
1 Te
2 Te
3 Th

Univers
journal homepage: www.elsevier.com/locate/ijpe
Ant colony optimization for the single model U-type assembly line
balancing problem
Ihsan Sabuncuoglu a,�, Erdal Erel b,1, Arda Alp c,2,3

a Department of Industrial Engineering, Bilkent University, Bilkent 06800, Ankara, Turkey
b Faculty of Business Administration, Bilkent University, Bilkent 06800, Ankara, Turkey
c Artificial Intelligence Laboratory, School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland
a r t i c l e i n f o

Article history:

Received 10 April 2007

Accepted 14 November 2008
Available online 19 January 2009

Keywords:

General assignments problem

U-type assembly line balancing problem

Ant colony optimization

Metaheuristic
73/$ - see front matter & 2009 Elsevier B.V. A

016/j.ijpe.2008.11.017

responding author. Tel.: +90 312 290 1607; fax

ail addresses: sabun@bilkent.edu.tr (I. Sabunc

lkent.edu.tr (E. Erel), arda.alp@epfl.ch (A. Alp)

l.: +90 312 290 1597.

l.: +41 21693 6595.

is research was done when Arda Alp was a

ity.
a b s t r a c t

An assembly line is a production line in which units move continuously through a

sequence of stations. The assembly line balancing problem is defined as the allocation of

tasks to an ordered sequence of stations subject to precedence constraints with the

objective of optimizing a performance measure. In this paper, we propose ant colony

algorithms to solve the single-model U-type assembly line balancing problem. We conduct

an extensive experimental study in which the performance of the proposed algorithm is

compared against best known algorithms reported in the literature. The results indicate

that the proposed algorithms display very competitive performance against them.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

An assembly line is a production line in which units
move continuously through a sequence of stations at
which assembly operations (tasks) are performed. The
design of an assembly line requires assigning the tasks
into stations considering the precedence relations among
these tasks that have to be completed within the time
interval between two successive outputs. This time
interval is called as the cycle time. Such an assignment
is accomplished to optimize some line efficiency measure.
This is known as the simple assembly line balancing
problem (SALBP). In a straight-line configuration, stations
are located along a straight-line, whereas in a U-type
assembly line, the line is configured into a U-shape
ll rights reserved.

: +90 312 266 4054.

uoglu),

.

student at Bilkent
topology. The latter problem is defined as the U-type
assembly line balancing problem (UALBP).

In a straight line configuration, if task j is performed at
station k, then all its direct or indirect predecessors have
to be assigned to one of these stations 1,y,k. A task and its
indirect predecessors (or successors) can be allocated to
the same station if and only if all intermediary tasks are
also in the same station. For example, in the precedence
diagram given in Fig. 1, tasks 3 and 8 can only be allocated
to the same station if and only if tasks 5 and 6 are also
allocated to that station. In UALBP, each task and any of its
predecessors and/or successors can share the same station
but it must be satisfied that, all predecessors and/or
successors of task j, performed at station k, have to be
assigned to one of the stations 1,y,k. (Miltenburg and
Wijngaard, 1994). In these systems, tasks are to be
allocated into stations by moving forward and backward
through the precedence diagram in contrast to a typical
forward move in the traditional assembly systems (Erel
et al., 2001). Hence, tasks from the beginning and end of
the precedence diagram may be assigned to the same
station. In Fig. 2, a straight and a U-line configuration are
displayed for the example in Fig. 1. Note that the first and

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2008.11.017
mailto:sabun@bilkent.edu.tr
mailto:erel@bilkent.edu.tr
mailto:arda.alp@epfl.ch

ARTICLE IN PRESS

Fig. 1. Example of a precedence diagram (Scholl and Klein, 1999).

Entrance side

Exit side

Station 7 Task 12

Station 1 Station 2

Station 4

Station 5 Station 6

worker 1

worker 4

worker 5

worker 6

1 2 3 4 5 6 8 7 9 10 11 12

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6

1 2 3 4 5 6

7
81091211

Station 3

worker 2 worker 3

Fig. 2. Straight and U-line configurations for the example in Fig. 1. (a) Straight line configuration and (b) U-line configuration.

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300288
the last tasks in the precedence diagram are assigned to
the same stations.

In U-shape allocations, under unstable conditions, it is
more effective and easier to reallocate the workers to
balance the work load. For the cases in which demand
fluctuations are high (competitive markets), the flexibility
built in U-lines provides improvement in the performance
measures and adaptability to changing conditions. Thus,
U-lines are typically preferred over traditional straight
lines (Miltenburg and Wijngaard, 1994). On the other
hand, the U-line balancing problem is more challenging
than its counterpart, due to the larger solution space and
comparably more possibilities provided by the U-shape
allocation.

In this study, we modify ant colony algorithms to solve
the U-type assembly line balancing problem. The problem
considered in this study is a single model, deterministic
U-line balancing problem. Our objective is to find a design
with the minimum number of stations subject to the
cycle time and precedence relations constraints. This
problem has been extensively studied in the literature
and several solution approaches have been proposed
including simulated annealing (SA), genetic algorithms
(GA), branch and bound based algorithms, etc. The
purpose of this study is to see the feasibility and
effectiveness of ant colony approach which is one of the
most recent meta-heuristics to solve this well known
problem and compare it against others in terms of quality
of solution and solution time.

The rest of the paper is organized as follows. Relevant
literature is given in Section 2. This is followed by the
structure of the proposed algorithm in Section 3. The
experimental setting is given in Section 4. Computational
results are discussed in Section 5. Finally, concluding
remarks and future research directions are given
in Section 6.

2. Literature review

This section is divided into two parts: (1) the basic
studies on ant colony optimization (ACO) and (2) the
relevant studies on the U-line balancing problem.

2.1. ACO heuristic

The first ant algorithm, Ant System (AS), is proposed by
Colorni et al. (1991, 1992) and used to solve the well-
known travelling salesman problem (TSP). Although
the algorithm developed by Dorigo et al. (1996) cannot
compete with the state-of-the-art algorithms for large size
TSP instances, it stimulated further research in this area.

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300 289
Gambardella and Dorigo (1995), Dorigo and Gambar-
della (1996) analyse some properties of AS and its
sensitivity to various parameters for the TSP. After the
development of Elitist Ant System (ASelite), which is an
extended version of AS, Gambardella and Dorigo (1995)
proposed Ant Colony System (ACS) as an extension of AS
for the TSP. The computational studies by Dorigo and
Gambardella (1997a, b) indicate that ACS outperforms
other nature-inspired algorithms such as SA (Johnson
et al., 1989, 1991) and GA (Holland, 1975).

In another study, Stützle (1998) developed a fast local
search procedure, MAX–MIN ant system, derived from AS,
for the flow shop problem. In a different study, Stützle and
Dorigo (1999) provided further information about the
MAX–MIN ant system.

Bullnheimer et al. (1999) introduced a new rank-based
version of the AS (ASrank) for the TSP. Their results indicate
that AS compete well with two other metaheuristics, SA
and GA, and it outperforms the other methods (AS, ASelite)
for large problems in terms of average and especially the
worst case behavior.

Fenet and Hassas (2000) proposed a procedure that
work with mobile reactive agents and introduce
a successful, new problem-solving framework, A.N.T., a
distributed problem solving with local interactions of
ants.

In the following years several researches worked on
different features of ant algorithms. Montgomery and
Randall (2002) worked on alternative pheromone repre-
sentations for ACO and Middendorf et al. (2002) proposed
multi colony ant algorithms (MCAA). McMullen and
Tarasewich (2003) presented a heuristic for the assembly
line balancing problem using concepts derived from ACO
techniques.

Several other ACO heuristics are also proposed for
different problems including: single machine total
weighted tardiness problem (Besten et al., 2000a, b);
quadratic assignment and frequency assignment problem
(Maniezzo and Carbonaro, 2001; Middendorf et al., 2002);
an industrial scheduling problem (Gagné et al., 2001); first
order parallel shop scheduling problem (Blum and
Sampels, 2002); flowshop scheduling problem (T’kindt
et al., 2002; Stützle, 1998; Lin et al., 2008; Gajpal
and Rajendran, 2006); assembly line balancing problem
(Bautista and Pereira, 2002, 2007; McMullen and Tarasewich,
2003). All these studies demonstrate how ant algorithms
can be used to solve combinatorial optimization problems.
The reader can refer to the study of Krishnaiyer and
Cheraghi (2002) for applications of ant algorithms. A
general overview of ACO can be found in Dorigo and
Stützle (2004), Dorigo and Socha (2007), and Dorigo and
Blum (2005).

2.1.1. ACO to solve assembly line balancing problems

Bautista and Pereira (2002) propose an ACO heuristic
to solve the SALBP based on the AS heuristic of Dorigo et
al. (1991a, 1996). The proposed heuristic has a number of
versions based on the different policies (e.g., trail
information usage policies, trail accumulation policies,
use of local search policies). Experiments conducted on
the 267-instance problem set of Scholl (1993) show that
182 instances are solved optimally; the mean variation
between the optimal solution and the obtained solution
ranges from 0.379% to 0.475% among the different
versions of the heuristic.

Bautista and Pereira (2007) later develop another ant
algorithm again based on the AS heuristic of Dorigo et al.
(1996) to solve the time and space constrained assembly
line balancing problem (TSALBP). This version of the
problem considers spatial constraints around the lines;
the motivation stems from automotive assembly lines in
which several models are assembled simultaneously.
Their computational experiments indicate that solving
TSALBP is relatively more difficult than SALBP. In both of
their papers, Bautista and Pereira (2002, 2007) solve a
real-life problem taken from the bike assembly and
automotive industry, respectively.

McMullen and Tarasewich (2003) developed four
heuristic procedures based on ACO techniques to solve
the mixed-model, stochastic assembly line balancing
problems with task paralleling. They compare the proce-
dure against other heuristics for the objectives of prob-
ability of jobs being completed on time, cycle time ratio
(ratio of the desired cycle time to the actual cycle time),
and cost of workers and machines. The experiments show
mixed results depending on the objectives considered and
the problem parameters.
2.2. U-type line balancing

U-line is a relatively new and promising topic in the
assembly line balancing literature. The first study is due to
Miltenburg and Wijngaard (1994) who proposed a
dynamic programming formulation to solve 21 relatively
small problems (with up to 11 tasks). The authors also
develop a heuristic procedure based on the maximum
ranked positional weight (RPWT) for large size problems
(with up to 111 tasks). Later, Miltenburg and Sparling
(1995) developed three exact algorithms for the UALBP: a
reaching dynamic programming algorithm, breadth- and
depth-first branch-and-bound algorithms. The authors
solve 180 problem instances with up to 40 tasks. In
another study, Urban (1998) developed an integer pro-
gramming formulation for UALBP and solve problems
with up to 45 tasks.

To handle larger problems, Scholl and Klein (1999)
propose ULINO (U-line optimizer); a new branch-and-
bound procedure that performs a depth-first search by
considering bounds and some dominance rules. Computa-
tional experience is presented for 256 instances (complete
data set) with up to 297 tasks. The results indicate that the
proposed method yields very good results for type 1
problem (minimizing the number of stations given the
cycle time) and type 2 problem (minimizing the cycle
time given the number of stations) in limited computation
time.

Erel et al. (2001) developed an SA-based algorithm for
UALBP. The proposed algorithm employs an intelligent
mechanism to search the large solution space effectively.
Their computational results indicate that the proposed
method is quite effective in solving the problem and its

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300290
success can be attributed to the intelligent way of
searching a larger search space.

Sparling and Miltenburg (1998), Miltenburg (1998),
Sparling (1998), Kim et al. (2000), and Kara et al. (2007)
examined the mixed-model version of ULBP in which
various models are assembled one after another on the
same line. There are also studies which investigate various
properties of the U-shaped production lines. Nakade and
Ohno (1999) analyzed the optimal worker allocation
problem for a U-line. Miltenburg (2000) investigated the
effect of ‘U-shape of the line’ on the line’s effectiveness
considering the breakdowns. Miltenburg (2001) studied a
one-piece flow production system on U-lines and exam-
ines the related literature. Nakade and Ohno (2003)
considered a U-line with multiple workers and two types
of allocations of workers: a separate allocation and a
carousel allocation. Guerriero and Miltenburg (2003),
Urban and Chiang (2006), and Chiang and Urban (2006)
examined the stochastic ULBP’s in which the constant-
task-performance-time assumption is relaxed. Aase et al.
(2003) developed a family of branch-and-bound proce-
dures to solve the UALBP and determined the design
elements to include in the procedures to enhance their
performance. Later, the same authors (Aase et al., 2004)
studied the effect of adopting UALB on labor productivity
and report that switching to UALB’s does not improve
labor productivity in all cases.

Recently, Boysen and Fliedner (2008) proposed a
general solution procedure for assembly line balancing
problems (SALBP and UALBP) using ant colony approach.
This is the most relevant study to ours. Their procedure
consists of two stages: sequence generation and task
assignment. The authors use the ant colony approach to
construct feasible task sequences in the first stage. Then
the allocation of tasks to stations is carried out by well-
known mathematical modeling tools (IP, knapsack, etc.) in
the second stage. The proposed procedure is considerably
versatile in the sense that various line balancing features
can be incorporated into the model to solve various
assembly line balancing problems encountered in prac-
tice. Moreover, the resulting performance of their proce-
dure is quite comparable to the other effective algorithms
in the literature. In contrast, in our study, we focus only on
UALBP and develop a family of ant colony algorithms to
solve this version. Our solution procedures are entirely
based on ant colony approach in the sense that the
proposed algorithms make both sequencing and task
assignment decisions simultaneously, with no need for
any mathematical modeling tool. In many ways, these two
studies compliment each other in the sense that one
utilizes ant colony approach as a part of a general solution
procedure, whereas the other is more specific and is solely
based on ant colony approach.
3. Proposed approach

3.1. Overview

Ant algorithms are inspired from the collective beha-
vior of ants on the survival of their colonies. While these
ants are searching for food, they deposit on the ground a
substance called pheromone which helps the others to
follow the path leading to the food. This is a simple form
of indirect communication and interestingly these ants
usually find the shortest path between their nest and the
food source.

When more ants collectively follow a trail, this trail
becomes more attractive for being followed in the future.
As more ants are able to pass through shorter paths
compared to longer ones (within the same unit of time),
more pheromone is likely to accumulate on shorter paths.
Therefore, these paths are selected more frequently than
the longer ones. This pheromone accumulation mechan-
ism allocates higher priority to the better solutions and
this idea is used to direct the search process in ‘ant
algorithms’ and also in our proposed ant colony algorithm.
Our agents are the abstraction of real ants based on their
ability to communicate and cooperate using artificial
pheromone trails. These agents use local and global trail
information to find the best solution and have memory to
store their past actions. Unlike the real life in which
pheromone update is continuous, it is discrete in a
simulated environment. In most of the ant algorithms
the agents update the pheromone trails at each solution
generation.

In our proposed ant algorithm, agents cooperate with
each other to find good solutions for UALBP. These agents
try to allocate given tasks to stations considering the
precedence relations, U-shape topology, task times and
cycle time constraints. UALBP is represented as a graph in
which nodes and arcs represent tasks and precedence
constraints among the tasks, respectively, and the task
times are given as node weights. Arc (i,j) between nodes i

and j represents the precedence constraint between task i

and task j, implying that task i must be completed for task
j to get started.

3.2. Generation of a solution

3.2.1. Fundamental steps

Each agent starts with an empty station; a predefined
initial state at which a small amount of pheromone is
deposited as a default value for entry in trail accumulation
matrix. Based on the given precedence relations and cycle
time, assignable and available tasks are determined and a
search list is created. Available tasks are the ones with all
of their predecessors/successors already assigned to
stations, whereas the assignable tasks are the available
tasks that can fit into the current station. Starting with the
first task, these agents start construction of their own
solutions from scratch by allocating tasks to stations one
by one, step by step until all tasks are (n) are allocated.
This means n iterations for each agent. During the
allocation of tasks, if there are available tasks but none
of them are assignable, then a new station is opened.
Allocation of all tasks is completed in one tour when a full
solution is constructed. At the end of one tour, m agents
collectively create m solutions.

During the search process, a number of agents move
through the neighborhood of the solution space by
applying a stochastic local search policy to find alternative

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300 291
allocations, and hopefully the best one. As they move from
one task to another, the memory is updated instantly or
later depending on the solution quality. Agents gather
valuable information about the problem characteristics
and their own performance in order to modify the trail
values. Note that this is not a direct communication
between two or more agents; on the contrary, it is the
common usage of gathered information and naturally the
most important feature (cooperation). Trail values sustain
the experience gained from the agents and influence the
solution quality in the consequent tours. The trail value
represents the attractiveness of the assignment of a task
to a specific station. The probability of assigning a task to a
specific station increases with the number of agents that
previously assigned the same task to that station. Thus,
during the tours, if a task is assigned to a specific station
relatively more, then it is more attractive to assign the
same task to the same station in the subsequent tours.

Another component that may have a drastic effect on
the solution quality is the greedy force. This is defined as
the heuristic value (Zi) that gives a prior knowledge on the
attractiveness of a task. The higher the heuristic value, the
more desirable the task is. In fact, the heuristic value
represents a priori run-time local information provided by
a source which is different than trail accumulation
mechanism (Dorigo and Stützle, 2000). It is a local
information used during the task selection process.

Inspired by the work of Miltenburg and Wijngaard
(1994) we have chosen the task priority function to
represent the greedy force (this function is also called
‘U-line maximum RPWT’). The priority of each task is
represented by ‘forward’ and ‘backward’ positional
weights, (Wf(k), Wb(k)), which are defined as the sum of
the task time of the task and the task times of all the other
tasks that succeed or precede it, respectively. Thus, the
tasks with large value are prime candidates for assign-
ment.

Each of the agents has its own constraint satisfaction

list, a simple write-only memory, which stores the state of
each task (assigned or unassigned). During a tour,
assigned tasks are marked as assigned and will stay un-
assignable until the end of that tour. During the calcula-
tion of task selection probabilities, constraint satisfaction
list is used to determine assignable and available tasks.

The construction of solutions proceeds until a pre-
specified number of tours is completed. General prob-
ability function represents the probability of assignment
of task i to station j at iteration t for agent k. Here, Tij (trail
accumulation) represents the learned desirability of
assigning task i to station j; Zi represents the priority
value (also called as visibility) of task i; ti is task time of ith
task and allowedk represents the set of tasks that can be
assigned to the current station without violating any
precedence constraint and the cycle time constraint for
agent k. This search policy is directed by agents’ memory,
pheromone trail information and problem-specific local
information.

3.2.2. Illustrative example

The solution construction for an agent within a tour is
illustrated with an example. We consider the example
problem in Fig. 3 with a cycle time of 8. The numbers
above the nodes represent task times. For agent k, the
probability of assignment of task i to station j is defined
with a general formula (we shorten our formula for
simplicity) as follows:

pk
ijðtÞ ¼

½TijðtÞ�
a½Zi�

b

P
z2allowedk

½TzjðtÞ�
a½Zz�

b if i 2 allowedk

0 otherwise

8><
>:

(1)

Recall from Section 1 that in U-shaped lines a task can
be assigned to a station only if all its predecessors (or
successors) are already assigned. This reveals the feasi-
bility and priority of forward or backward assignment. If a
task is forward (backward) assignable, its heuristic value
is the forward (backward) positional weight of that task.
For example, in iteration 1 of Fig. 3a, tasks 1 and 5 are
forward and backward assignable, respectively. In other
words, tasks 1 and 5 can be assigned to the upper and
lower parts of station 1, respectively. In iteration 2, task 4
becomes forward assignable, since tasks 2 and 3 do not fit
into station 1. Note also that task 5 stays as backward
assignable in this iteration. This process continues until all
the tasks are assigned to the stations. The parameters a
and b allow a user to control the relative importance of
pheromone trail versus visibility intensity. These para-
meters affect the performance of the algorithm due to the
tradeoff between the trail intensity and the visibility. If
a ¼ 0, the selection probabilities are proportional to ½Zi�

b

and the tasks with high positional weight values are more
likely to be selected. If b ¼ 0, only the trail information
affects the selection probabilities. This tradeoff is reflected
by the transition probability. Selection of these para-
meters and their current values are given in Section 4.

Time counter t tracks the iteration number. The
example given in Fig. 3a illustrates a complete tour of
an agent. For simplicity, Tij, a, b are taken as 1; repre-
sents forward available and assignable tasks, repre-
sents backward available and assignable tasks; �
represents unavailable and unassigned tasks, and
represents assigned tasks. Final task allocation for this
example is given in Fig. 3b.

In order to expose the importance of trail accumulation
and its effect on the solutions, we illustrate some of
different task allocations of agents in Fig. 4a for arbitrary
selected 3 tours. Since this is a random allocation (despite
the effect of trail matrix), not all the solutions need to
show up at every tour. Note that the solution in Fig. 3b is
obtained by agent 1 in tour 1, agents 1, 2, and 4 in tour 2,
and agents 2 and 3 in tour 3. Trail accumulation at the end
of 15th tour is given in the matrix on the right of Fig. 4b;
the initial values are given in the matrix on the left. Total
number of agents is taken equal to total number of jobs,
though these two quantities can be different. In Fig. 4b it
is clear that, even after a small number of tours, some
tasks are more likely to be assigned to some stations due
to the significantly larger accumulation values on some
elements of the matrix. For example, the trail accumula-
tion values, Tij(15), for (1,1), (2,3), (3,2), (4,1), (5,2)th
elements are relatively larger implying that the related

ARTICLE IN PRESS

Iteration 2:

Station time:0

P1,1(1) = 0.5, P5,1(1) = 0.5, Task 1 forward assigned to station 1

Iteration 1:

unassignable

unassignable

1

Station time: 6

P2,1(2) = 0 (Task time > 2), P3,1(2) = 0 (Task time > 2), P4,1(2) = 0.154,
P5,1(2) = 0 (Task time > 2), Task 4 forward assigned to station 1

1, 4

5

Station time: 7

Station time: 7

Iteration 4:

1, 4

Station time: 7

P2,2(4) = 0 (Task time > 5), P3,2(4) = 0.444

Task 3 forward assigned to station 2

P2,3(5) = 1.000

Task 2 forward assigned to station 3

1, 4

5

3

Iteration 5:

Iteration 3:

P2,2(3) = 0.250, P3,2(3) = 0.200, P5,2(3) = 0.550
Task 5 backward assigned to station 2

6
1 3

4
1

5

7
2

3
5

6
1 3

4
1

5

7
2

3
5

6
1 3

4
1

5

7
2

3

5

6
1

4

5 3
53

1

7
2

6
1

4

5 3
53

1

7

2

ENTRANCE

EXIT

Station 1

ENTRANCE

EXIT

ENTRANCE

EXIT

ENTRANCE

EXIT

Station 1

Station 1

Station 1

Station 2

Station 2

ENTRANCE

EXIT

Station 1 Station 2 Station 3

Station time: 3

Station time: 8 Station time: 0

Fig. 3. (a) Task allocations for the example problem and (b) final task allocation for the example problem.

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300292

ARTICLE IN PRESS

Fig. 4. (a) The task allocations during three tours and (b) trail accumulation at the end of 15th tour (first matrix gives the initial trail accumulation).

Station time: 7

ENTRANCE

EXIT

Station 1 Station 2 Station 3

231,4

5

Station time: 8 Station time: 7

Fig. 3. (Continued)

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300 293
tasks have higher probabilities of getting assigned to the
stations. Fig. 4b also depicts how fast the trail value
accumulation is; in only 15 tours, the values for some of
the elements are sufficiently large to get differentiated.
3.3. Proposed algorithms

In Section 3.3.1, we present the proposed ant algorithm
called ACS with random search (ACSm). Later, in
Section 3.2.2, this algorithm is extended to a version
called ACO to handle computational difficulties encoun-
tered in the original version.

3.3.1. ACS with random search (ACSm)

The proposed algorithm has all the standard features of
ant algorithms (i.e., tour construction, local and global
pheromone trial update, etc.) and some additional
characteristics that enhance the performance of the
algorithm. These additional characteristics are: (i) ACSm
uses a more greedy station selection rule than that of AS
and its variants, (ii) the global pheromone update rule is

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300294
only applied for the global-best solution (after a tour), and
(iii) a local pheromone updating rule is applied (during a
tour), while agents construct a solution. As briefly
illustrated in Fig. 5, the detailed description of the features
of the proposed algorithm is as follows:

Tour construction: In ACSm, an agent allocates task s

to station j by applying the state transition rule given in
Eq. (2) where q is a uniformly distributed random number
in [0,1], q0 is a parameter (0pq0p1), and S is a random
variable selected according to the random-proportional

rule given in Eq. (1).

s ¼
arg max

u2allowedu

f½TujðtÞ�½Zu�
bg if qpq0 ðexplorationÞ

S otherwise ðexploitationÞ

8<
:

(2)

This state transition rule is the combination of Eqs. (1)
and (2) and is called pseudo-random-proportional rule that
favors allocations with large pheromone. The parameter
q0 controls the relative importance of exploitation versus
exploration. For large q0, the selection favors the explora-
tion of the search space. In case of q0 ¼ 1, only the best
task is chosen. If q4q0, a task is chosen according to
random-proportional rule that favors the exploitation of
the search space using Eq. (1). Note that the possible
values of S are the remaining assignable and available
tasks. Eq. (1) provides the probability of assigning task i to
station j; when the probabilities are determined for all the
assignable and available tasks, the selection is done by
generating a U(0,1) random variable and selecting the
appropriate task whose pk

ijðtÞ value corresponds to the
value of the U(0,1) random variable.

Basics of pheromone trail update: During the partial
solution construction and after the completion of a full
solution at the end of a tour, some of the pheromone trails
are reduced by a constant factor ri (pheromone evapora-
tion rate, 0orio1) and some other pheromone trails are
reinforced by a value. Rate ri limits the uncontrolled
accumulation of the pheromone trails and enables the
algorithm to ignore previously made poor selections. The
amount of pheromone deposited by each agent is
proportional to the quality of this agent’s solution (i.e.,
number of stations).

Global pheromone trail update: In ACSm only the
globally best agent, which finds the best solution from
the beginning is allowed to deposit pheromone. The global
updating is performed after a tour is completed according
to Eq. (3):

TijðtÞ ¼ ð1� r1ÞTijðt � 1Þ þ r1 � DTðgbÞ
ij ðtÞ (3)

where

DT ðgbÞ
ij ðtÞ ¼

Q

f ðgbÞ
ðtÞ

if ði; jÞ is part of the global best solution

0 otherwise

8><
>:

(4)

0pr1p1 is pheromone evaporation parameter, Q is a
constant, and f(gb)(t) is the station number of the up-to-
now best solution. In traditional ant algorithms (the
variants of AS, not ACS), all trail values of task allocations
receive a reinforcement as long as they are part of a
solution. This reinforcement is directly proportional to (i)
how many agents use this allocation as a part of their
solution and (ii) the quality of this solution. A short-
coming of this procedure is pointed out by Bullnheimer
et al. (1999) as follows. During the search, if the overall
solution quality rises and the difference between the
solutions decreases, the distinctive mark (emphasis) on
better solutions diminishes. Consequently, the difference
in trail values and the selection probabilities will decrease.
Therefore, the exploitation of the solution space will not
be as high as originally desired. However, only those trail
values that belong to the up-to-now best solution receive
reinforcement. Trail update mechanism directs the search
towards better solutions by allowing the pheromone
accumulation to be affected by the quality of the best
solution (not all solutions).

Local pheromone trail update: In ACSm, ants use a local
update rule in addition to the global updating rule. In
other words, following the allocation of task i to station j,
the pheromone level is updated using Eq. (5):

TijðtÞ ¼ ð1� r2ÞTijðt � 1Þ þ r2 � t0 (5)

where r2, 0pr2p1, is pheromone evaporation parameter,
and t0 is a very small amount of pheromone level that
controls the amount of pheromone reinforcement of the
related trail values. The effect of the local update is to
change the desirability of tasks dynamically. The local
updating rule makes already chosen tasks less desirable
for the forthcoming selections. By this way, the explora-
tion of unallocated tasks is increased and the agents make
a better use of pheromone information.

During our experimental studies with ACS, we inves-
tigated the task allocations and trail accumulation matrix
entries in detail. Computational experiments indicate that
after a short period, most trail matrix entries approach to
zero. Since the selection probabilities are directly related
to trail values, the information gained by pheromone
accumulation is lost due to relative difference between
high and low trail values. We suggest the following
modifications to magnify the effect of trail values.

Modification step 1: We use a secondary pheromone trail

accumulation mechanism (SPTAM2) to better analyze the
trail accumulations. Following each tour, SPTAM2 updates
the related entry of a secondary trail matrix (T2) by adding
the value 1 as follows:

T2ij0 ðtÞ T2ij0 ðtÞ þ
Xm

k¼1

DT2k
ij0 ðtÞ 8ði; jÞ (6)

DT2k
ij0 ðtÞ ¼

1 if task i is allocated to location

j0 by globally best ant k

0 otherwise

8><
>:

(7)

where m is the total number of agents used. During the
experimental studies, with this modification, ACSm find
the optimal station number in more test problems
compared to our trials with ant algorithms. This supports
our claim that, the information collected in T2 matrix is
useful. However, we also note that this modification may
lead to a T2 matrix with very small and large entry values.

ARTICLE IN PRESS

Fig. 5. Flowchart of Ant Colony System.

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300 295

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300296
As stated above, this is not a desirable situation.
Eventually, this causes the algorithm to consider only
very large values (not any small values) and hence all the
information accumulated in the matrix is not fully
utilized. We overcome this problem using the following
modification.

Modification step 2: In order to avoid over-accumulation,
we update T2 only once in a tour for the same solutions
which are generated by different agents (instead of
updating the matrix for each agent). Hence, the adverse
effects of over-emphasis or under-emphasis of some
matrix entries are avoided. This modification requires
keeping the best solutions in the memory. For that
purpose we develop an efficient solution labeling me-
chanism. (See Nourie and Venta, 1991 for other possible
solution labeling mechanisms.)

3.3.2. ACO method

We develop ACO to alleviate the computational
difficulties encountered during the construction of T2
matrix especially for large size problems. Two versions are
developed.

Version 1: We modify the local pheromone update
mechanism of ACS not to lose the valuable information
gained by the pheromone accumulation. The new local
pheromone update mechanism is defined as follows:

TijðtÞ ¼ ðr2ÞTijðt � 1Þ þ 1 (8)

where r2, 0pr2p1. Instead of adding a small value r2 � to

(Eq. (5)), we reinforce the trail matrix by adding up 1 as
done previously to update the T2 matrix. Thus, the related
trail values are emphasized and their effects are magni-
fied. For the pheromone evaporation, we use only r2 as a
multiplier instead of (1�r2). We also modify the global
pheromone update mechanism of ACSm to reinforce the
solutions with less number of stations. This is similar to
the elitist strategy and the idea of discrimination of the
solutions discussed in Hertz and Widmer (2003):

TijðtÞ ¼ ð1� r1ÞTijðt � 1Þ þ DT ðgbÞ
ij ðtÞ (9)

where

DT ðgbÞ
ij ðtÞ ¼

Q � Optimal

f ðgbÞ
ðtÞ

if ði; jÞ is part of the

global best solution

0 otherwise

8>>><
>>>:

(10)

0pr1p1 is pheromone evaporation parameter, Optimal is
the optimal number of stations of the considered problem,
f(gb)(t) is the station number of the up-to-now best
solution and Q � Optimal=f ðgbÞ

ðtÞ is a reward function that
satisfies more reinforcement for solutions with less
number of stations. One can say that, Eq. (10) can be
expressed by Eq. (4) by changing the parameter Q without
any need for the multiplier ‘Optimal’. In Eq. (10) the
influence of DT ðgbÞ

ij ðtÞ on the pheromone accumulation is
more dynamic compared to Eq. (4). The value of ‘Optimal’
changes among the tour as the search proceeds, whereas
the value Q is set up once at the very beginning. Moreover,
Eq. (9) differs from Eq. (3) in terms of the magnitude of
DT ðgbÞ

ij ðtÞ. Note that after the regular global pheromone
update (as defined in Eqs. (9) and (10)), a secondary
pheromone update is done for the globally best agent.

When we examine the optimal task allocations of the
experiments conducted by Scholl and Klein (1999), we
note that most stations have zero idle times. We call these
stations as full-loaded stations. Using this characteristic,
we modify the state transition rule to obtain full-loaded
stations. Specifically, we modify the state transition rule
given in Eq. (2) to emphasize the tasks with large
processing times. This increases the likelihood of assign-
ment of these tasks and it becomes possible to allocate
these tasks at the preliminary stages. Later, it is much
easier to allocate the remaining tasks with small proces-
sing times to the remaining slots in the stations. The new
random-proportional rule is defined as follows:

pk
ijðtÞ ¼

½TijðtÞ�
a½Zi�

b½ti�
b

P
z2allowedk

ð½TzjðtÞ�
a½Zz�

b½ti�
bÞ

if i 2 allowedk

0 otherwise

8><
>:

(11)

where allowedk is the set of available and assignable tasks
for agent k. An agent allocates task s to station j by
applying the new pseudo-random-proportional rule given
by Eq. (12):

s ¼
arg max

u2allowedu

f½TujðtÞ�½Zu�
b½tu�

bg if qpq0

S otherwise

8<
: (12)

where q is a random variable in [0,1], q0 is a parameter
(0pq0p1), and S is a random variable selected according
to the rule given in Eq. (11).

Version 2 is the extension of Version 1 with a secondary

global pheromone trail update mechanism. This modified
version is proposed based on our observations on the
insufficiency of the local update mechanism in two
large size problems. During the solution of these
large problems, most of the entries in the trail matrix
become almost equal to each other that prevent the
selection mechanism distinguish better tasks. We modify
the local pheromone update mechanism of Version 1 as
follows:

T 0ijðtÞ ¼ ðr2ÞT
0
ijðt � 1Þ (13)

We also modify the global pheromone update mechan-
ism to emphasize allocations which yield full-loaded
stations. The trail values of the tasks belonging to full-
loaded stations are reinforced with a high number using
Eq. (15). Thus, the trail values of these tasks will be
distinguished easily after a few tours.

T 0ijðtÞ ¼ T 0ijðtÞ þ DTðgb�full loadÞ
ij ðtÞ (14)

where

DT ðgb�full loadÞ
ij ðtÞ ¼

Q2 if ði; jÞ is part of the global best

solution and j is a full-loaded station

0 otherwise

8><
>:

(15)

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300 297
4. Experimental setting

The performance of the proposed algorithms are tested
using the benchmark problems in the literature (Talbot
et al., 1986; Hoffmann, 1990, 1992; Scholl, 1993). These
data sets are available at www.assembly-line-balancing.
de. In our study, two data sets are used: Talbot et al.
(1986) data set with 64 instances of problem sizes ranging
from 8 to 111 tasks and the data set of Scholl (1993) with
168 instances ranging from 25 to 297 tasks.

Number of tasks (n), task processing times, precedence
relations, cycle time (C), number of ants (m), a, b, r1, r2, Q,
Q2, q0, t0 are the input parameters of the algorithms.
Number of tasks (n), task processing times, and prece-
dence relations for each problem are given at the above
website. The other parameters are discussed below.

Number of ants (m): Dorigo and Stützle (2000) suggest
that ACO algorithms perform better when the number of
ants is set to a value m41. Dorigo et al. (1991a, b, 1996),
Colorni et al. (1991, 1992) also suggest that the optimal
number of ants should be taken close to the number of
cities (mEn) for the TSP. In our implementation, we run
pilot studies to test the effect of the number of ants on the
system performance. A small size (Jackson’s problem with
11 tasks and cycle time of 10), a medium size (Gunther’s
problem with 35 tasks and cycle time of 54) and a large
size problem (Barthold’s problem with 148 tasks and cycle
time of 805) are chosen for this purpose. We evaluate the
performance of proposed methods by changing the
number of ants from 1 to 2n, given (100 replications�100
ant tours) for Jackson and Gunther problems and
(1 replication�100 ant tours) for the Barthold’s problem.
The results indicate that the proposed algorithms perform
well when mEn. Usually for large problem instances, the
number of ants are suggested to be less than 10 due to the
excessive computation time. We also observe that our
algorithm does not yield satisfactory results for mo10.
Our pilot studies on Version 2 suggest to restrict ant
number as m� (1/4)Ene

We have also conducted a second set of experiments
to see the performance of the proposed algorithms
with respect to various values of a, b, r1, r2, Q, Q2, q0

and t0 using the test problems; specifically, aA{0,1,2,5},
bA{0,1,2,5}, r1 (also r2)A{0.1,0.4,0.7,0.9,0.99}, Q (also Q2)A
{1,10,100,1000}, q0A{0,0.2,0.4,0.6,0.8,1} and t0A{0.01,0.
001,0.0028,0.003}. The value of t0 is suggested to be very
small that depends on the problem size. Usually it is
determined as t0 ¼ 1/(f(sh�n), where sh is a heuristic
Table 1
Best set of parameters for each proposed method.

Method Parameters

a b r1 r2

ACSm 1 1 0.4 0.4

ACO method—Version 1 1 1 0.9 and 0.99a 0.9 and

ACO method—Version 2 1 1 0.99 0.99

a Problems are solved at each level and the best is taken.
solution and t0 varies as 0.0001ot0o0.0313. As reported
in Alp (2004), the results of the parameter optimization
indicate that the number of stations is not sensitive
to parameter values whereas the number of replications
to reach the best solution is affected by different
combinations even though these differences are small.
Moreover, there is no best combination of these parameter
values for all these algorithms (Alp, 2004). As a result the
parameter values in Table 1 are suggested for each
algorithm.
5. Computational results

In our pilot runs, we note that the traditional (or
standard) ant algorithms are not successful to solve UALB
due to the flat topology of the objective function. Hertz
and Widmer (2003) has made similar observations that
their search mechanism cannot escape from the large
plateaus to find the valleys if the function is too flat. The
objective function of UALBP unfortunately consists of vast
plateaus (solutions with equal number of stations) and a
few valleys (solutions with one less number of stations)
cannot be reached during the update.

The computational results are presented in Table 2 for
the benchmark problems. We first compare the proposed
ant algorithms against the two best known algorithms
in the literature: ULINO of Scholl and Klein (1999) and
SA-based algorithm of Erel et al. (2001). The results of the
experiments on 190 problem instances indicate that
ULINO finds the optimal solution for 169 out of 190
instances. In six instances, the optimum is given in
intervals (i.e., the best lower and upper bounds reported).
In the remaining instances, the optimum could not be
identified by ULINO. SA finds the optimal solution for 127
out of 187 instances. Among the proposed ant algorithms,
the best performer is the ACO-Version 2 that finds the
optimal solution for 144 instances (better than SA). In six
instances, this new proposed algorithm finds upper and
lower bounds that ULINO could not. An analysis of the
results also indicates that ULINO performs better that
ACO-Version 2 for only the largest size problem with 297
tasks. This suggests that efficient labeling and matrix
update procedures may be needed to solve large size
problems with ACO. Recall that ULINO is the best known
constructive algorithm and SA is the best known iterative
meta-heuristic developed for these problems. As a result,
we conclude that ACO has the potential to be considered
Q Q2 q0 t0

1 – 0.2 0.0028

0.99a 1 – 0.2 and 0.3a –

1 100 and 1000a 0.8 and 0.3a –

http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de

ARTICLE IN PRESS

Table 2
Computational results.

Optimal

unknown

Optimal is

found

Optimal is not

found

Comparison (each row includes detailed comparison of performances of the

proposed ant algorithm with SA and ULINO)

Number of

instances

Explanation

ULINO 15 169 6

SA-based heuristic 15 127 45

ACSm 15 81 90a 9 ACSm is better than SA

4b 58 SA is better than ACS

2 None of them find optimal; SA finds one station more

1 None of them find optimal; SA finds two stations more

6 ULINO performs poor; ACSm finds upper bound for five

instances

88 ULINO performs better

ACO

approach—Version 1

15 108 67a 25 Ver 1 finds optimal; SA finds one station more

47 SA is better than Ver 1

1 None of them find optimal; SA finds three stations more

1 None of them find optimal; SA finds two stations more

6 ULINO perfoms poor; Ver 1 finds upper bound

61 ULINO performs better

ACO

approach—Version 2

15 144 31a 39 Ver 2 finds optimal; SA finds one station more

1 Ver 2 finds optimal; SA finds four stations more

1 Ver 2 finds optimal; SA finds three stations more

1 Ver 2 finds optimal; SA finds two stations more

25 SA is better than Ver 2

3 ULINO perfoms poor; Ver 2 finds lower bound

3 ULINO perfoms poor; Ver 2 finds upper bound

28 ULINO performs better

a The solution requires one additional station more than the optimal solution.
b The solution requires two additional stations more than the optimal solution.

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300298
as a serious alternative to solve UALBP. Besides, computa-
tional burden of the ant algorithm is reasonably small. The
algorithm is written in Borland Delphi 6.0 and the average
computational time is about a few seconds on an AMD
Athlon XP 2000+, 266 Mhz machine with 256 MB RAM
(333MHZ). Only 7 seconds are necessary to complete 250
agent tours with 90 agents for the largest problem. Scholl
and Klein (1999) report that the average CPU time
reported for ULINO to solve the 168 instances considered
in their data set is 73.01 seconds (a time limit of 500 CPU
seconds are given for each instance).
6. Conclusions and further research directions

In this study, we propose an ACO approach to solve the
single-model U-type assembly line balancing problem
(UALBP). In general, the proposed ACO algorithm outper-
forms the SA and displays very competitive performance
against the state-of-the-art ULINO algorithm. For instance,
we find upper and lower bounds of six instances that
ULINO could not. These results are quite encouraging in
the sense that researchers can further refine the proposed
approach to solve the U-line assembly balancing problem.
Other future research topics can be as follows:
(i)
 It would be interesting to augment the proposed ACO
with meta-heuristics. But this augmentation must be
done in such a way that the hybrid system can
provide a fast search in the solution space.
(ii)
 A metaheuristic can also be used to fine-tune
parameters. When there are many parameters, it is
quite tedious to fine-tune these parameters using
an experimental design. For example, Botee and
Bonabeau (1998) use a GA to select some of the
parameters of the ACO algorithm. This can be also be
used for the proposed ant algorithms.
(iii)
 The ACO can also be used to solve type 2 problems
(minimizing the cycle time given the number of
stations). In this case, one would have to re-balance
an existing design iteratively for a particular number
of stations.
(iv)
 Finally, the proposed methods can be applied to
different UALBP versions such as, stochastic assembly
line balancing problems in which task times are

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300 299
assumed to be random variables, mixed-model
assembly systems, etc. It is possible to extend
the proposed methods for more complex U-lines
such as, multi-lines in a single U-line, double-
dependent U-lines, embedded U-lines, and multi-
U-line facilities.
References

Aase, G.R., Schniederjahn, M.J., Olson, J.R., 2003. U-OPT: an analysis of
exact U-shaped line balancing procedures. International Journal of
Production Research 41, 4185–4210.

Aase, G.R., Olson, J.R., Schniederjahn, M.J., 2004. U-shaped assembly
line layouts and their impact on labor productivity: an experi-
mental study. European Journal of Operational Research 156,
698–711.

Alp, A., 2004. Ant colony optimization for the single model U-type
assembly line balancing problem. Unpublished MS Thesis, Depart-
ment of Industrial Engineering, Bilkent University.

Bautista, J., Pereira, J., 2002. Ant algorithms for assembly line balancing.
In: Lecture Notes in Computer Science, vol. 2463, pp. 65–75.

Bautista, J., Pereira, J., 2007. Ant algorithms for a time and space
constrained assembly line balancing problem. European Journal of
Operational Research 177, 2016–2032.

Besten, M., Stützle, T., Dorigo, M., 2000. Ant colony optimization for the
total weighted tardiness problem. In: Schoenauer, M., Deb, K.,
Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (Eds.),
Parallel Problem Solving from Nature: Sixth International Confer-
ence. Lecture Notes in Computer Science, vol. 1917. Springer, Berlin,
pp. 611–620 (also available as Technical Report IRIDIA/99-16.
Université Libre de Bruxelles, Belgium).

Besten, M.L., Stützle, T., Dorigo, M., 2000. An ant colony optimization
application to the single machine total weighted tardiness problem.
In: Dorigo, M., Middendorf, M., Stützle, T. (Eds.), Abstract Proceedings
of ANTS’2000: From Ant Colonies to Artificial Ants: Second
International Workshop on Ant Algorithms, Brussels, Belgium,
pp. 39–42.

Blum, C., Sampels, M., 2002. Ant colony optimization for fop shop
scheduling: a case study on different pheromone representations. In:
Proceedings of 2002 Congress on Evolutionary Computation (CEC
‘02), vol. 2. IEEE Computer Society Press, pp. 1558–1563.

Botee, H.M., Bonabeau, E., 1998. Evolving ant colony optimization.
Advance Complex Systems 1, 149–159.

Boysen, N., Fliedner, M., 2008. A versatile algorithm for assembly line
balancing. European Journal of Operational Research 184, 39–56.

Bullnheimer, B., Hartl, R.F., Strauss, C., 1999. A new rank-based version of
the ant system: a computational study. Central European Journal for
Operations Research and Economics 7 (1), 25–38.

Chiang, W.C., Urban, T.L., 2006. The stochastic U-line balancing problem:
a heuristic procedure. European Journal of Operational Research 175,
1767–1781.

Colorni, A., Dorigo, M., Maniezzo, V., 1992. An investigation of some
properties of an ant algorithm. In: Manner, R., Manderick, B. (Eds.),
Proceedings of the Parallel Problem Solving from Nature Conference
(PPSN 92), Brussels, Belgium. Elsevier, Amsterdam, pp. 509–520.

Colorni, A., Dorigo, M., Maniezzo, V., 1991. Distributed optimization
by ant colonies. In: Proceedings of ECAL91-European Conference on
Artificial Life, Paris, France. Elsevier, Amsterdam, pp. 134–142.

Dorigo, M., Blum, C., 2005. Ant colony optimization theory: a survey.
Theoretical Computer Science 344 (2–3), 243–278.

Dorigo, M., Gambardella, L.M., 1996. A study of some properties of Ant-Q.
In: Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.S. (Eds.),
Proceedings of PPSN IV—Fourth International Conference on Parallel
Problem Solving From Nature. Springer, Berlin, pp. 656–665.

Dorigo, M., Gambardella, L.M., 1997. Ant colony system: a cooperative
learning approach to the travelling salesman problem. IEEE Transac-
tions on Evolutionary Computation 1 (1), 53–66.

Dorigo, M., Gambardella, L.M., 1997. Ant colonies for the traveling
salesman problem. BioSystems 43, 73–81.

Dorigo, M., Maniezzo, V., Colorni, A., 1991a. Ant system: an autocatalytic
optimizing process. Technical Report 91-016 Revised, Dipartmentio
di Eletronica e Informazione, Politecnico di Mileno, Italy.

Dorigo, M., Maniezzo, V., Colorni, A., 1991b. Positive feedback as a search
strategy. Technical Report 91-016, Dipartmentio di Eletronica,
Politecnico di Mileno, Italy.
Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system: optimization
by a colony of cooperating agents. IEEE Transactions on Systems,
Man, and Cybernetics—Part B 26 (1), 1–13.

Dorigo, M., Socha, K., 2007. An introduction to ant colony optimization.
In: Gonzalez, T.F. (Ed.), Handbook Approximation Algorithms and
Metaheuristics. Chapman and Hall/CRC Press.

Dorigo, M., Stützle, T., 2000. The ant colony optimization metaheuristic:
algorithms, applications, and advances. Technical Report, IRIDIA/
2000-32, IRIDIA, University Libre de Bruxelles, Belgium.

Dorigo, M., Stützle, T., 2004. Ant Colony Optimization. MIT Press,
Cambridge, MA.

Erel, E., Sabuncuoglu, I., Aksu, B.A., 2001. Balancing of U-type assembly
systems using simulated annealing. International Journal of Produc-
tion Research 39, 3003–3015.

Fenet, S., Hassas, S., 2000. A.N.T.: a distributed problem-solving frame-
work based on mobile agents. In: Lasker, G.E., Dospisil, J., Kendall, E.,
Kendall, (Eds.), Advances in Mobile Agents Systems Research, vol. 1.
Theory and Practice, MAA’2000, International Institute for Advanced
Studies in Systems Research and Cybernetics, pp. 39–44.

Gagné, C., Gravel, M., Price, W.L., 2001. A look-ahead addition to the ant
colony optimization algorithm and its application to an industrial
scheduling problem. In: Proceedings of 4th Metaheuristics Interna-
tional Conference (MIC’2001), Porto, Portugal, pp. 79–84.

Gajpal, Y., Rajendran, C., 2006. An ant-colony optimization algorithm for
minimizing the completion-time variance of jobs in flowshops.
International Journal of Production Economics 101, 259–272.

Gambardella, L.M., Dorigo, M., 1995. Ant-Q: a reinforcement learning
approach to the travelling salesman problem. In: Prieditis, A., Russell,
S. (Eds.), Proceedings of 12th International Conference on Machine
Learning (ML-95). Morgan Kaufmann, Palo Alto, CA, pp. 252–260.

Guerriero, F., Miltenburg, J., 2003. The stochastic U-line balancing
problem. Naval Research Logistics 50, 31–57.

Hertz, A., Widmer, M., 2003. Guidelines for the use of meta-heuristics in
combinatorial optimization. European Journal of Operational Re-
search 151, 247–252.

Hoffmann, T.R., 1990. Assembly line balancing—a set of challenging
problems. International Journal of Production Research 28,
1807–1815.

Hoffmann, T.R., 1992. EUREKA: a hybrid system for assembly line
balancing. Management Science 38, 39–42.

Holland, J.F., 1975. Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C., 1989. Optimiza-
tion by simulated annealing: an experimental evaluation; Part I,
graph partitioning. Operations Research 37, 865–892.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C., 1991. Optimization
by simulated annealing: an experimental evaluation. Part II:
graph coloring and number partitioning. Operations Research 39,
378–406.

Kara, Y., Ozcan, U., Peker, A., 2007. Balancing and sequencing mixed-
model just-in-time U-lines with multiple objectives. Applied
Mathematics and Computation 184, 566–588.

Kim, Y.K., Kim, S.J., Kim, J.Y., 2000. Balancing and sequencing mixed-
model U-lines with a co-evolutionary algorithm. Production Plan-
ning & Control 11 (8), 754–764.

Krishnaiyer, K., Cheraghi, S.H., 2002. Ant algorithms: review and future
applications. In: Proceedings of IERC’02, Industrial Engineering
Research Conference, Orlando, FL, USA.

Lin, B.M.T., Lu, C.Y., Shyu, S.J., Tsai, C.Y., 2008. Development of new
features of ant colony optimization for flowshop scheduling.
International Journal of Production Economics 112, 742–755.

Maniezzo, V., Carbonaro, A., 2001. Ant colony optimization: an overview.
In: Ribeiro, C. (Ed.), Essays and Surveys in Metaheuristics. Kluwer
Academic Press, Dordrecht, pp. 21–44.

McMullen, P.R., Tarasewich, P., 2003. Using ant techniques to solve the
assembly line balancing problem. IIE Transactions 35, 605–617.

Middendorf, M., Reischle, F., Schmeck, H., 2002. Multi colony ant
algorithms. Journal of Heuristics, 305–320.

Miltenburg, G.J., Sparling, D., 1995. Optimal solution algorithms for the
U-line balancing problem. Working Paper, McMaster University,
Hamilton, Ontario, Canada.

Miltenburg, G.J., Wijngaard, J., 1994. The U-line line balancing problem.
Management Science 40 (10), 1378–1388.

Miltenburg, J., 1998. Balancing U-lines in a multiple U-line facility.
European Journal of Operational Research 109, 1–23.

Miltenburg, J., 2001. One-piece flow manufacturing on U-shaped
production lines: a tutorial. IIE Transactions 33, 303–321.

Miltenburg, J., 2000. The effect of breakdowns on U-shaped production
lines. International Journal of Production Research 38, 353–364.

ARTICLE IN PRESS

I. Sabuncuoglu et al. / Int. J. Production Economics 120 (2009) 287–300300
Montgomery, J., Randall, M., 2002. Alternative pheromone applications
for ant colony optimization, Technical Report TR02-07, School of
Information Technology, Bond University, Australia.

Nakade, K., Ohno, K., 1999. An optimal worker allocation problem for a
U-shaped production line. International Journal of Production
Economics 60 (1), 353–358.

Nakade, K., Ohno, K., 2003. Separate and carousel type allocations of
workers in a U-shaped production line. European Journal of
Operational Research 145, 403–424.

Nourie, F.J., Venta, E.R., 1991. Finding optimal line balances with OptPack.
Operations Research Letter 10, 165–171.

Scholl, A., 1993. Data of assembly line balancing problems. Schriften zur
Quantitativen Betriebswirtschaftslehre 16/93, TU Darmstadt.

Scholl, A., Klein, R., 1999. ULINO: optimally balancing U-shaped JIT
assembly lines. International Journal of Production Research 37 (4),
721–736.

Sparling, D., 1998. Balancing just-in-time production units: the N U-line
balancing problem. Information Systems and Operational Research
36 (4), 215–237.

Sparling, D., Miltenburg, J., 1998. The mixed-model U-line balancing
problem. International Journal of Production Research 36 (2),
485–501.
Stützle, T., 1998. An ant approach to the flow shop problem. In:
Proceedings of the Sixth European Congress on Intelligent Techni-
ques and Soft Computing (EU-FIT’98), Verlag Mainz, Aachen, 3,
pp. 1560–1564.

Stützle, T., Dorigo, M., 1999. ACO algorithms for the travelling salesman
problem. In: Miettinen, K., Makela, M., Neittaanmaki, P., Periaux, J.
(Eds.), Evolutionary Algorithms in Engineering and Computer
Science: Recent Advances in Genetic Algorithms, Evolution Strate-
gies, Evolutionary Programming, Genetic Programming and Indus-
trial Applications. Wiley, New York, pp. 163–183.

T’kindt, V., Monmarché, N., Tercinet, F., Laügt, D., 2002. An ant colony
optimization algorithm to solve a 2-machine bicriteria flowshop
scheduling problem. European Journal of Operational Research 142,
250–257.

Talbot, F.B., Patterson, J.H., Gehrlein, W.V., 1986. A comparative evalua-
tion of heuristic line balancing techniques. Management Science 32,
430–454.

Urban, T.L., 1998. Optimal balancing of U-shaped assembly lines.
Management Science 44, 738–741.

Urban, T.L., Chiang, W.C., 2006. An optimal piecewise-linear program for
the U-line balancing problem with stochastic task times. European
Journal of Operational Research 168, 771–782.

	Ant colony optimization for the single model U-type assembly line balancing problem
	Introduction
	Literature review
	ACO heuristic
	ACO to solve assembly line balancing problems

	U-type line balancing

	Proposed approach
	Overview
	Generation of a solution
	Fundamental steps
	Illustrative example

	Proposed algorithms
	ACS with random search (ACSm)
	ACO method

	Experimental setting
	Computational results
	Conclusions and further research directions
	References

