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August 2010



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ergin Atalar(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ayhan Altıntaş
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ABSTRACT

Modeling of Radio Frequency Induced Currents on Lead

Wires During MR Imaging Using a Modified Transmission

Line Method (MoTLiM)

Volkan Açıkel

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ergin Atalar

August 2010

Magnetic resonance imaging (MRI) is widely used diagnosis technique. During

MRI radio frequency (RF) fields are utilized to excite the spins. If these RF fields

incidence on metallic implants, currents will be induce on the metallic parts of

implants. Inside the body these induced currents on metallic implants cause

heating of tissue and sometimes cause severe burning of tissue. This phenomena

makes MRI hazardous for patients with metallic implants. Much work has been

done to understand this phenomena. However, most of these work based on

purely experimental or numerical methods. So to understand and to obtain a

good intuition on this problem a lot of cases must be solved computationally or

tested experimentally.

In this study lumped element model of the transmission line is modified in

order to model the conductive wires of implants inside the body. This model is

based on the similarity between the damped oscillatory behavior of transmission

line currents and induced currents on wires inside the body. A voltage source is

added to model the effect of the incident electric field. Voltages and currents on a
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infinitesimally small portion of wire are solved. Solving currents and voltages si-

multaneously on the modified lumped element model lead to a non-homogeneous

differential equation for the current. The solution of this differential equation

gives the analytical solution for the induced current on the implant lead. To

test the validity of this solution, wire under the uniform incident electric field is

solved with the Modified Transmission Line Method (MoTLiM) and compared to

Methods of Moment (MoM) solution. The results are also verified using phantom

experiments. For experimental verification, the distorted flip angle distribution

due to induced currents are measured using flip angle imaging techniques. In

addition to this, the flip angle distribution around the wire is calculated using

results obtained from MoTLiM. Finally these results are compared and an error

analysis is carried out.

Keywords: MRI, Implant safety, RF, Induced currents, RF Heating
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ÖZET

Modifiye İletim Hattı Methodu Kullanılarak Radyo Frekans

Dalgaları Kaynaklı Akımların Modellenmesi

Volkan Açıkel

Elektrik ve Elektronik Mühendisligi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ergin Atalar

Ağustos 2010

Manyetik Resonans Görüntüleme (MRG) tanı koymada sık kullanılan bir teknik-

tir. Fakat MRG vücudunda ekit bulunan hastalar için tehlikelidir. MRG

sırasında radyo frekans (RF) dalgaları spinlerin uyarılmasında kullanılmaktadır.

Eğer bu RF dalgalar metal bir cisim üzerine uygulanırsa, metal cisim üzerinde

akım oluşmasına neden olacaktır. Metal cisimlerde oluşan bu akımlar vücut

içerisinde ciddi ısınmalara hatta bazı durumlarda dokularda ciddi yanıklara ne-

den olabilmektedir. Bu durum MRGyi bazı hastalar için tehlikeli kılmaktadır.

Bu problemi çözmek için bir çok çalışma yapılmıştır. Fakat bu çalışmalar genel-

likle deneysel veya benzetim tabanlı metodlarla yapılmıştır.

Bu tez çalışmasında RF dalgalar nedeniyle metaller üzerinde oluşan akımlar

arasındaki ilişki analitik olarak formülize edilmiştir. Bu çözümü elde etmek

için vücut içerisinde bulunan teller iletim hatları ile benzer bir biçimde model-

lenmiştir. Teller iletim hatlarında olduğu gibi direnç, kondansatör ve endüktans

bobinleri ile modellenmişlerdir. Bu model oluşturulurken iletim hatlarında

oluşan akımlar ile vücut içerisindeki teller üzerinde oluşan akımların sönümlenen

salınan karakterlerinin benzerlikleri temel alınmıştır. Geleneksel iletim hattı

modeli RF dalgaların etkisini dahil etmek için değiştirilmiştir. Sunulan yöntemin
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geçerliliği ilk olarak benzetimlarla test edilmiş daha sonra da deneysel yollarla

doğrulanmıştır.

Anahtar Kelimeler: Manyetik Rezonans Görüntüleme, Ekit Güvenliği, Radyo

Frekans, RF Isınma
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Prof. Nevzat G. Gencer for showing interest and using their precious times to

read this thesis and gave their critical comments about it. The discussions and

cooperations with all of my colleagues have, also, contributed substantially to this

work. I am thankful to Burak Akın and Özay Hırlakoğlu because they helped me
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Chapter 1

INTRODUCTION

Magnetic resonance imaging (MRI) is an important diagnostic imaging tool.

Main advantage of MRI is its ability to obtain high soft tissue contrast and

resolution. MRI is known as a very safe imaging technique, except for patients

with metallic implants like peacemakers or deep brain stimulation (DBS) probes.

These implants contains metallic wires and electrodes, a pacemaker can be seen

in figure 1.1. These metallic wires inside the lead of implants can couple to

incident radio frequency (RF) field. This coupling can cause induced currents

and it can cause current flow inside the tissue. Because of this issues implants,

such as pacemakers, are prohibited inside the MRI scanner.

Due to this coupling there is a high risk of serious RF heating and tissue

damage due to the induced currents on leads of the implants. RF heating is

Figure 1.1: The pho-
tography of a cardiac
pacemaker. The lead
of the pacemaker
is between 50 and
60cm The photogra-
phy was taken from
http://en.wikipedia.org/wiki/Pacemaker
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Figure 1.2: Implants, such as
pacemakers, are prohibited in-
side the MRI scanner. Cou-
pling with radio frequency fields
makes implants, with metallic
parts, hazardous.

the result of altered electric field distribution where a conductive wire exists [1].

Much work has been done to understand the effect of induced currents on metallic

wires inside the human body [2, 3], most of which were based on experimental

studies[4] or numerical simulations[1, 5]. A solution that shows the relation

between the induced current on the wires and the position of the wire in the

body, the wire dimensions and insulation thickness, would help to understand

the design parameters of the problem.

King has summarized an analytical formulation that was developed for center-

fed insulated antennas, which was motivated by the use of insulated antennas

in sea water [6]. In this approach, a dipole antenna in sea water was modeled

as a transmission line with an infinite outer conductor. King showed that cur-

rents on dipole or monopole antennas have the nature of a traveling wave[7]. He

states that the current on a finite dipole or monopole can be represented as a

superposition of traveling waves in both directions along the antenna[7]. This

traveling wave behavior is similar to transmission line currents[8]. In all these

works antennas were examined inside highly conducting mediums. This kind of

approach can be used to analyze induced currents on wires under an electromag-

netic field inside a lossy medium. Using the assumption that scattered fields from

wire will decay quickly, this approach can be used to analyze induced currents

on conductive implants inside low-conductive tissues.
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In this work, a novel method to analytically solve induced currents on the im-

plant leads under MRI is found by modifying lumped element model of transmis-

sion lines. In this thesis, the modified lumped element model and the derivation

of modified telegrapher’s equations are presented. First, required parameters are

derived to formulate the induced currents. Then for obtained analytical solution

under uniform electric field exposure was compared with computer simulations

for bare wire, insulated wire, lossy bare wire, and bare wire bisected with a resis-

tor cases. Also, specific absorbtion rate (SAR) amplification due to the existence

of a wire was calculated. After these applications a Thevenin equivalent circuit

of a wire with an electrode is derived. Finally, proposed method is verified by

experimentally.
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Chapter 2

Modeling

In this study, a phasor notation with a time dependence of eiωt, where ω repre-

sents the angular frequency and i =
√
−1, is used. The complex wavenumber is

defined as k = ω
√
µε− iσ/ω, and ε, µ, and σ are the permittivity, permeability,

and conductivity of the medium, respectively. The intrinsic impedance of the

medium is defined as η =
√
µ/(ε− iσ/ω).

2.1 Transmission Line Theory

Transmission Line theory is the step between circuit theory and electromagnetic

field analysis. Wave propagation along the transmission lines can be analyzed

by both circuit theory and Maxwell’s equations.

Transmission lines theory differs from circuit theory by electrical size of the

components. In circuit theory components are much smaller then wavelength.

However transmission lines are comparable with the wavelength. As the electrical

size of the components became comparable with the electrical length magnitude

and phase of the voltages and currents can be vary with the position on the

component.
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Figure 2.1: The transmission line model using lump circuit elements.

Transmission lines are usually composed of two conductors and it is modeled

using series and parallel lumped elements as in Figure 2.1. where Z is the series

impedance per unit length and Y is the parallel admittance per unit length as

shown in Figure 2.1.

Z = iwL+R

Y = iwC +G (2.1)

In this model, the current on the wire, I, and voltage between the conductors

of the wire are defined as a function of position l. Note that position is defined

along the length of the wire. When a small portion of transmission line with

length δl is considered voltage and current relations between points l and l + δl

can be written as:

v(l, t)−Rδli(l, t)− Lδldi(l, t)
dt

− v(l + δl, t) = 0

i(l, t)−Gδlv(l + δl, t)− Cδldv(l + δl, t)

dt
− i(l + δl, t) = 0 (2.2)

by doing some algebra and taking the limit δl→ 0 gives the differential equations:

dV

dl
= −ZI(l)

dI

dl
= −Y V (l) (2.3)
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then simultaneous solution of equation 2.3 yields to solution for current:

I(l) = I+e
−jktl + I−e

jktl (2.4)

where kt =
√
−ZY . Using the same theory, the characteristic impedance of the

transmission line, Zc, can be calculated as Zc =
√
Z/Y .

Transmission line parameters can be derived in terms of electric and magnetic

fields inside the transmission line. To make this derivation stored electromagnetic

energy per unit length and power loss per unit length relations can be used.

2.2 Modified Transmission Line Model

Transmission line theory does not use a current or voltage source in its model.

These sources may be used at the terminals of the transmission line in the form

of boundary conditions.

In case of a wire, in a lossy medium that is exposed to an electromagnetic

wave, there is only one conductor and there are no lumped source elements.

Therefore, without modification, the transmission line model cannot be applied.

This problem can be solved by introducing a series voltage source and defining

the shunt admittance in between the wire and the environment as shown in

Figure 2.2. Also the assumption that the scattered fields decay fast must be hold

so that this model can be used. The above model can be formulated using the

following equation:

I(z) +
1

k2
t

d2I(z)

dz2
=
Ei(z)

Z
(2.5)

where Ei represents the tangential component of the incident electric field, kt =
√
−ZY is the wavenumber along the wire, and Z is the distributed impedance.

In this model, the wire diameter is assumed to be significantly smaller than

the wavelength and therefore the electric field on the wire can be defined. The
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Figure 2.2: The modified transmission line model using lumped circuit elements
that includes a series voltage source. Ground is the body with an infinite extent.

voltage source in Figure 2.2 models the effect of the incident field. Current along

the wire can be defined and can be measured, however voltage along the wire can

not be defined. To define voltage there is a need for a specific path, but in this

case a path to define voltage is not exists. However defining a virtual voltage,

which can not be measured, is makes easier to define boundary conditions for

some cases. This virtual voltage,Vv(z) can be defined as:

Vv(z) = − 1

Y

dI(z)

dz
(2.6)

2.3 Solution of the Current Under Uniform

Electric Field

Birdcage coils have fairly uniform E-field distribution along their main axis[9],

so implants exposed to uniform E-field distribution is an important and likely

situation. In this section induced currents on wires under uniform E-field are

solved.

Assume a wire with length l and radius a is located on the z-axis. To find

the current on the wire Eq. 2.5 must be solved. For the specific case where the
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incident E-field is uniform along the wire, the solution to the Eq. 2.5 current can

be found as:

I(z) = Ae−iktz +Beiktz +
E

Z
(2.7)

where kt and Z will be found in Section 2.4 and the unknowns A and B which

will be found by the following boundary conditions:

I(z = l/2) = 0

I(z = −l/2) = 0 (2.8)

applying Eq. 2.8 current on the wire can be found as:

I(z) =
Ez0
Z
− 2

Ez0
Z

sin(kt
l
2
)

sin(ktl)
cos(ktz) (2.9)

2.4 Determination of Z and kt Parameters

As seen in Eq. 2.9, induced current on a wire can be found if Z impedance per

unit length, kt wavenumber along the wire, and the incident E-field are known.

So, a wire can be characterized by Z and kt parameters that summarize the

electrical parameters of the body and physical features of the wire. However,

traditional ways of determining Z and kt in transmission line theory is not valid

for the presented case and a new approach must be used to find these parameters.

In this section, the determination of Z and kt will be shown first for a perfect

conductor bare wire, then for a lossy bare wire, and finally for an insulated wire.

2.4.1 Bare Wire

Assume that an infinitely long perfect electrical conductor wire with a radius of

”a” is placed on the z-axis and is exposed to an incident plane wave such that :
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Ei
z = Ez0e

−iβzz (2.10)

and this plane wave can be expressed as infinite sum of cylindrical waves as [10]:

Ei
z = Ez0

∞∑
n=−∞

i−nJn(kρρ)ejnφe−iβzz (2.11)

where ρ, φ and z are the cylindrical coordinate parameters and Jn(.) is nth order

Bessel function. We assume βz is a real parameter and k2
ρ = k2 − β2

z .

When the thin wire assumption holds, the term n = 0 is dominant in the

summation that seen in Eq. 2.11. Therefore, the incident field can be considered

as [10]:

Ei
z = Ez0J0(kρρ)e−iβzz (2.12)

H i
φ = Ez0

i

η
J1(kρ)e−iβzz

In this case, the induced current on the wire, I, will be uniform along the length

of the wire. To find the relation between the incident electric field, Ez0 and I,

we need to solve electromagnetic field in the medium.

The total fields should be in the form:

Et
z =

(
AJ0(kρρ) +BH

(2)
0 (kρρ)

)
e−iβzz

Et
ρ = iβz

kρ

(
AJ1(kρρ) +BH

(2)
1 (kρρ)

)
e−iβzz

H t
φ = i 1

η

(
AJ1(kρρ) +BH

(2)
1 (kρρ)

)
e−iβzz

(2.13)

z and ρ components of H-field and φ component of the E-field should be as;

H t
z = 0, H t

ρ = 0, Et
φ = 0

where A and B are the constants to be determined by boundary conditions and

H
(2)
n (.) is Hankel function of second kind.
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Since scattered fields from an infinite conducting cylinder must be represented

as cylindrical traveling wave functions, choosing scattered fields as a Hankel

function of second kind is convenient[10]. So scattered fields are expressed as:

Es
z = Ez0BH

(2)
0 (kρρ)e−iβzz (2.14)

Since the tangential electric field on a perfect conductor has to be zero [11]

and the effect of the incident field will be dominant at the far field, the total

fields can be rewritten as:

Et
z = Ez0

(
J0(kρρ)− J0(kρa)

H
(2)
0 (kρa)

H
(2)
0 (kρρ)

)
e−iβzz (2.15)

H t
φ = iEz0

1

η

(
J1(kρρ)− J0(kρa)

H
(2)
0 (kρa)

H
(2)
1 (kρρ)

)
e−iβzz (2.16)

On the surface of the conductor the total tangential magnetic field is:

H t
φ(ρ = a) = iEz0

1

η

(
J1(kρa)− J0(kρa)

H
(2)
0 (kρa)

H
(2)
1 (kρa)

)
e−iβzz

= iEz0
1

η

(
J1(kρa)Y0(kρa)− J0(kρa)Y1(kρa)

H
(2)
0 (kρa)

)
e−iβzz (2.17)

Applying the Wronskian of Bessel functions [12]:

Jn(x)Y
′

n(x)− J ′

n(x)Yn(x) =
2

πx
(2.18)

where ′ denotes the derivative with respect to the entire argument of the Bessel

function, Eq. 2.17 becomes:

H t
φ(ρ = a) = − 2Ez0

ηkρaπ

1

H
(2)
0 (kρa)

e−iβzz (2.19)

the induced current on the infinite wire can be found as:

I = 2πaH t
φ

= −4Ez0
ηkρ

1

H
(2)
0 (kρa)

e−iβzz (2.20)
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Returning back to MoTLiM described by Eq. 2.5, the incident electric field

with a linear phase variation along the length of an infinitely long wire generates

a current in the same form, i.e. I = I0 exp(−iβzz). Therefore our differential

equation turns into:

I0 +
β2
z

k2
t,bare

I0 =
Ez0
Zbare

(2.21)

To find Z and kt Eq. 2.20 is used in Eq. 2.21 and assumed that field variation

along the wire is small, βz < |k|, and then H
(2)
0 (kρa) ≈ H

(2)
0 (ka). The effect of

this assumption on the accuracy of the model will discussed later. Then with

some manipulations Z and kt can be obtained as:

Zbare =
ηk

4
H

(2)
0 (ka) (2.22)

kt,bare = k (2.23)

2.4.2 Lossy Bare Wire

In the previous section, analysis of a perfect electrical conductor wire was per-

formed. Now assume that the wire has a finite conductivity σc.

As known from transmission line theory, Z, impedance per unit length, in-

cludes loss of the conductor. So Z and kt =
√
−ZY must be redefined. For

a lossy wire impedance per unit length in the lumped element model could be

defined as:

Zlossy = Zbare + Zwire (2.24)

where Zlossy is impedance per unit length for lossy wire, Zbare is impedance per

unit length for a perfect conductor and Zwire is impedance due to the loss of the
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conductor and can be expressed as:

Zwire =
1

2πaδcσc
(2.25)

where δc is the skin depth and defined as [8]:

δc =
1√

πfµσc
(2.26)

As Zlossy is known, kt,lossy can be defined as:

kt,lossy = kt,bare

√
1 +

Zwire
Zbare

(2.27)

2.4.3 Insulated Wire

To analyze insulated wires, Z and kt must be recalculated as in the previous

section. To do this fields and boundary conditions, which were stated in the

previous section, must be redefined. As a dielectric material on the conductor

exists, there must be two boundaries; one between the tissue and the dielectric

material, at ρ = b, and one between the dielectric and the conductor ρ = a.

Parameters with superscript d are parameters of the insulator. Total fields inside

the dielectric are:

Et
zd = AdJ0(k

d
ρρ) +BdH

(2)
0 (kdρρ) (2.28)

H t
φd =

i

ηd

(
AdJ1(k

d
ρρ) +BdH

(2)
1 (kdρρ)

)
and total fields inside the tissue are:

Et
z = AJ0(kρρ) +BH

(2)
0 (kρρ) (2.29)

H t
φ =

i

η

(
AJ1(kρρ) +BH

(2)
1 (kρρ)

)
boundary conditions can be defined as:

Et
zd(ρ = a) = 0 (2.30)

Et
zd(ρ = b) = Et

z(ρ = b)

H t
φd(ρ = b) = H t

φ(ρ = b)

H t
φd(ρ = a) = Js (2.31)

12



where Js is surface current density and can be expressed as: Js = I/2πa

applying boundary conditions current on infinitely long insulated wire can be

found as:

I = −Ez0
4

ηkρ

1

H
(2)
0 (kρb) + kdρb log( b

a
)H

(2)
1 (kρb)

(2.32)

When an infinitesimally small portion of wire is considered, insulation can be

thought as a capacitor series to the Y in the lumped element model. Thus when

insulating a wire only Y will change. Z will remain as in Eq. 2.22, for a wire

with radius b.

Zbare =
ηk

4
H

(2)
0 (kb) (2.33)

Then using Eq. 2.32 in Eq. 2.21 the propagation constant along the wire can be

written as:

kt,insulated =

√√√√− ηkρβ2
zH

(2)
0 (kρb)

kdρb log( b
a
)H

(2)
1 (kρb)

(2.34)
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Chapter 3

Applications and Results

In this chapter validity of MoTLiM tested. Several cases are solved with MoTLiM

and compared to FEKO simulations. In this Chapter all simulations done inside

a homogeneous medium with conductivity 0.42 S/m, relative permittivity 81

under uniform E-field exposure for 1.5 and 3 Tesla MRI scanners. During all

analysis a wire, with length l and radius a, assumed to be located on the z-axis

3.1 Bare Wire, Lossy Bare Wire Insulated Wire

To find the current on the wire Equation 2.5 must be solved and by solving

Equation 2.5 current can be found as:

I(z) = Ae−jkz +Bejkz +
E

Z
(3.1)

where A and B the unknowns which will be found by applying boundary condi-

tions:

I(z = l/2) = 0

I(z = −l/2) = 0 (3.2)

14



applying Equation 3.2 A and B can be found as:

A = B = −Ez0
Z

sin(k l
2
)

sin(kl)
(3.3)

finally current on the wire is:

I(z) = −2
Ez0
Z

sin(k l
2
)

sin(kl)
cos(kz) +

Ez0
Z

(3.4)

For the case under uniform electric field exposure, induced currents are solved

using MoTLiM for bare, coated, and lossy wire cases. These solutions are com-

pared with electromagnetic field simulations carried out using FEKO simula-

tions. During simulations a homogeneous body with an infinite extent was

used. Relative permittivity and conductivity of the body was 81 and 0.42S/m

,respectively. A bare perfect conductor wire with radius 0.57mm and length

0.25m was located on the z-axis inside the uniform body with infinite extent.

Both ends of the wire were floating inside the body. A plane wave excita-

tion, with the E-field component in z-direction, was applied so that the wire

was exposed to an uniform electric field. Impedance of the bare wire was

Zbare = 193 + i670Ω/m and wavenumber of wire was kt,bare = 24.7− i8.3m−1 for

3T scanner. At 1.5T impedance was Zbare = 87.3 + i386Ω/m and wavenum-

ber of wire was kt,bare = 14.2 − i7.5m−1. Mean-square errors were 8% and

6% for 3T (Fig. 3.1(a)) and 1.5T (Fig. 3.1(b)) scanners, respectively. When

a coated wire with 5µm coating thickness and the coating of a 4 relative per-

mittivity was replaced, impedance of wire was Zinsulated = 193 + i687Ω/m

and wavenumber of wire was kt,insulated = 26.2 − i9.6m−1 for 3T scanner and

impedance was Zinsulated = 87.3 + i386Ω/m and wavenumber of wire was

kt,insulated = 15.4 − i9.5m−1 for 1.5T scanner. Mean square errors for this case

was 4% and 7% for 3T (Fig. 3.1(c)) and 1.5T (Fig. 3.1(d)) scanners, respectively.

Finally for the lossy bare wire case impedance was Zlossy = 293 + i670Ω/m

and wavenumber of wire was kt,lossy = 24.6 − i10.1m−1 for 3T scanner. At

1.5T impedance was Zlossy = 187.3 + i386Ω/m and wavenumber of wire was

15



(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Induced current on a wire with length 0.25m and radius 0.57mm.
(a) at 64MHz and (b) at 128MHz for a bare wire, (c) at 64MHz and (d)
at 128MHz for a coated wire with coating thickness 5µm, (e) at 64MHz and
(f) at 128MHz for a lossy bare wire. A wire under uniform E-field exposure
solved using both FEKO(EM Software & Systems Germany, Böblingen, GmbH)
and MoTLiM. During simulations, wire was located inside a lossy medium with
an infinite extent. The medium has 0.42S/m and 81 conductivity and relative
permittivity, respectively. Black solid lines are MoTLiM results and red dashed
lines are FEKO results.
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kt,lossy = 13.8−i9.4m−1. Mean-square errors were 8% and 6% for 3T (Fig. 3.1(e))

and 1.5T (Fig. 3.1(f)) scanners, respectively.

Then experimental verification of MoTLiM was done using flip angle images

which were obtained both experimentally and theoretically. During experiments,

a cylindrical phantom 28cm in diameter and 6.5cm high was used. Experiments

were made for a bare wire to prove the validity of MoTLiM. Conductivity and

relative permittivity of the phantom was 0.42S/m and 81, respectively. Electrical

parameters of the phantom were measured using a custom-made transmission line

probe[20] with an Agilent E5061A ENA series network analyzer. Experiments

were done with a 3T Siemens TimTRIO system. A SE with TR 1000 ms TE

15 ms FOV 300 × 65 mm2 was used. A bare copper wire with radius 0.57mm

was used. Wire was circulated to form a full circle and located on a circle with

12cm radius. The wire was located 2.5cm from the bottom of the phantom. This

configuration ensures that the wire was exposed to a uniform electric field. Flip

angle distributions were measured and calculated. Error analysis was done along

the circles, with different radii( 4 to 16cm ) around the wire. Mean-square errors

are between 16% and 20%.

3.2 Wire Bisected with a Resistor

To solve the induced currents on wire bisected with a resistor Equation 3.1 still

holds for the both sections of wire. However A and B must be determined for

both sections. Boundary conditions stated in Equation 3.2 still holds but new

boundary condition must be defined at the location of the resistor, z = 0, as;

I(z = 0−) = I(z = 0+)

V (z = 0−)− V (z = 0+) = I(z = 0)R (3.5)

17



Under uniform e-field voltage along the wire can be found, by using Equation 2.6,

as:

V (z) =
−ikt
−Y

Ae−iktz +
ikt
−Y

Beiktz (3.6)

3.3 Wire with Electrode

Equation 3.1 is also valid for the wire terminated with an electrode. However,

boundary conditions for both end of the wire must be determined and using these

boundary conditions coefficients A and B must be redefined. At the open end of

the wire current will still be zero and can be written as;

I(z = 0) = 0 (3.7)

At the other end, terminated with electrode, of the wire current will not be zero

and can be defined as;

V (z = l)

I(z = l)
= Ze (3.8)

where Ze is the electrode impedance and defines the properties of the electrode.

Halise Irak in her thesis work defines electrode impedance[13] for a spherical

electrode as;

Ze =
1

2πσ̃D
(3.9)

where σ̃ is the complex conductivity of the medium and D is the diameter of the

electrode. mean square error was 9% and 12% for 1.5T and 3T MRI scanners

respectively.

3.4 Thevenin Equivalent of a Wire

As electrodes can be represented with a impedance, wires can be represented with

a Thevenin equivalent circuit. By this way current through the electrode can be

18



(a)

(b)

Figure 3.2: Induced current on a wire, bisected with a 1kΩ resistor in the middle,
with length 0.5 m and radius 0.57mm. (a) for 1.5 tesla (b) for 3 tesla MRI
scanner. A wire under uniform E field exposure solved using both FEKO and
MoTLiM. During simulations wire located inside a lossy medium with infinite
extent. Medium has 0.42S/m and 81 conductivity and relative permittivity re-
spectively. Black solid lines are MoTLiM results and red dashed lines are FEKO
results.
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(a)

(b)

Figure 3.3: Induced current on a wire with length 0.25 m and radius 0.57mm
terminated with an electrode at one end. A spherical electrode with diameter
4mm was used. (a) for 1.5 tesla (b) for 3 tesla MRI scanner. A wire under
uniform E field exposure solved using both FEKO and MoTLiM. During sim-
ulations wire located inside a lossy medium with infinite extent. Medium has
0.42S/m and 81 conductivity and relative permittivity respectively. Black solid
lines are MoTLiM results and red dashed lines are FEKO results.
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Figure 3.4: Thevenin Equivalent of a wire with an electrode. Wire can be rep-
resented with a Thevenin voltage source and a Thevenin impedance. Also as
mentioned above electrodes can be represented with an impedance. So a wire
with an electrode can be represented with this circuit.

found easily. In this section Thevenin equivalent of a wire will be obtained. One

end of the wire will considered to be not connected to anywhere. to find the Vth

open circuit voltage, Vopen at the end of the wire must be calculated. Unknown

coefficients must be determined using boundary conditions. For the case of open

circuit current will be zero at both ends and boundary conditions can be defined

as:

I(z = 0) = 0

I(z = l) = 0 (3.10)

Then to find Zth short circuit current, Ishort, must be found. Also for the short

circuit current case unknown coefficients must be found again via boundary con-

ditions. For this case boundary conditions can be determined as;

I(z = 0) = 0

V (z = l) = 0 (3.11)

As open circuit voltage and short circuit current is known Thevenin impedance

can be written as;

Zth =
Vopen
Ishort

(3.12)

As Zth, Vth and Ze is known current thorough the electrode can be written as;

Ie =
Vth

Zth + Ze
(3.13)
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(a)

(b)

Figure 3.5: Current through the electrode connected to a bare wire with 0.1 mm
thickness and 0.5 m length. Spherical electrodes with 1, 2, 3 and 4 mm radii was
used. (a) is for 3T MRI scanner (b) is for 1.5T MRI scanner
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3.5 SAR Distribution Along a Wire

During an MRI scan metallic implants cause severe heating around its tip [1].

This heating is a result of amplification of E-field along the conductive lead of

implant. Heating of the tissue can be calculated using SAR gain distribution

and Bioheat Transfer [1]. SAR gain can be calculated as:

GainSAR =
SARt

SARi

(3.14)

where SARt is the SAR distribution in the presence of a wire and SARi is the

SAR distribution due to incident RF field. To find the SAR distribution E-field

must be known as it is known SAR can be calculated as:

SAR =
σE2

ρt
(3.15)

where E is the magnitude of the electric field σ is the conductivity of the medium,

ρt is the mass density of the tissue.

Finding current distribution along the wire is easy with MoTLiM. As cur-

rent distribution is known charge distribution along the wire can be found with

continuity equation:

∇ · J = −∂ρ
∂t

(3.16)

Then using quasi-static assumption e-field can be found along the wire so the

SAR distribution can be calculated. To find the e-field point charges can be

assumed on the segments along the wire. Then summing up the e-field due to

these point charges e-field can be calculated.

E(R) =
∑
i

qi
4πεcR2

(3.17)

SAR distribution for different lengths of wire can be seen in Figure 3.6 for a

bare wire inside a phantom with infinite extent. Wire has radius of 0.65mm and

calculations done for lengths of 4, 8, 12, and16cm. SAR values in Figure 3.6 was

calculated just near the charges.
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Figure 3.6: Theoretically calculated SAR gain values near the charge, under 3T
static field, for different lengths of leads in a medium with conductivity 0.4S/m
and relative permeability of 80.
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Chapter 4

Experimental Verification and

Experimental Results

During MRI RF fields cause induced currents on metallic implants. These cur-

rents change the RF field pattern, which leads to distortion of the flip angle

distribution around the metallic implants [14]. In this study, flip angle distortion

due to RF-induced currents were used for verification of MoTLiM. Flip angle

distribution around a copper wire was calculated theoretically and measured us-

ing flip angle imaging techniques experimentally. Then these two solutions were

compared and error analysis was done.

In order to calculate the flip angle distortion caused by RF-induced currents

first incident magnetic field found. During experiments a body birdcage coil were

used and assumed to be ideal. So incident magnetic field can be calculated using

flip angle imaging techniques[15, 16, 17]. As incident magnetic field is known

incident electric field can be calculated using maxwell’s equations. Then incident

electric field was used in MoTLiM to calculate the induced currents on the wire.

Using the results obtained from MoTLiM Bw,the magnetic field due to induced

currents, was calculated. Then, the incident field and the forward polarized part
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Figure 4.1: Wire location inside phantom. Conductivity and relative permittiv-
ity of the phantom was 0.42S/m and 81, respectively. Phantom was 28cm in
diameter and 6.5cm high. Phantom was solution of %0.2 copper sulfate %0.1
sodium chloride %1.5 hydroxyethyl cellulose. A circulated bare copper wire with
radius 0.57mm was used. The wire was located on a circle with a 12cm radius
and 3.2cm above the bottom of the phantom. The phantom was located such
that the center of the phantom coincided with the center of the transmit coil.

of Bw was summed by vector summation. The obtained B1, the total forward

polarized field was used for calculating flip angle, and thus a theoretical flip angle

distribution was obtained. Flip angle distribution was also obtained using flip

angle imaging with distorted images. Then the flip angle image around the wire

was compared with the theoretically calculated flip angle distribution around the

wire and an error analysis was carried out.

For simplicity, a cylindrical phantom was placed inside the MR scanner, as

seen in Figure 4.1. This geometry ensures that the incident E-field along the

wire will be uniform.

A body birdcage coil was used as the transmit coil. The incident magnetic

field could be approximated as:

Bc
1f ≈ B1(cos(ωt)x̂− sin(ωt)ŷ) (4.1)

Note that until this point phasor notation has been used. However, to find the

total magnetic field in the rotating frame, fields will be written in time domain,

and then in rotating frame to find the magnitude of the field that will excite the

spins.
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For this specific configuration only the y component of the incident magnetic

field causes flux on the surface encircled by the wire. Therefore, the relation

between the incident electric field and the magnetic field can be determined via

Faraday’s Law of Electromagnetic Induction, Eq. 4.2.∮
c

Eφ · dl = −
∫
s

dBy

dt
· ds (4.2)

Assuming the incident magnetic field is uniform, and carrying out some simple

algebra and using the y component of the incident magnetic field, the incident

electric field along the wire can be approximated as in Eq. 4.3.

Ei ≈ ωρ
By

2
cos(ωt) (4.3)

where ρ is the radius of the circle where the wire was located. As the incident

E-field is known, induced currents can be calculated using MoTLiM. Then, using

quasi-static assumption, the magnetic field caused by induced currents can be

found as:

Bw ≈ µI(z)cos(ωt− θw)

2πr
(4.4)

where θw is the phase of the current. The magnetic field due to the induced

current is a linearly polarized field, which can be written as the summation

of forward polarized and backward polarized fields, as in Eq. 4.5 in cartesian

coordinates. The vector summation of B1 and the forward polarized part of Bw

will determine the flip angle around the wire.

Bw =
−|Bw|sin(θ)

2
(cos(ωt− θw)x̂− sin(ωt− θw)ŷ)

−|B
w|sin(θ)

2
(cos(ωt− θw)x̂+ sin(ωt− θw)ŷ)

+
|Bw|cos(θ)

2
(cos(ωt− θw)ŷ + sin(ωt− θw)x̂)

+
|Bw|cos(θ)

2
(cos(ωt− θw)ŷ − sin(ωt− θw)x̂) (4.5)
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The forward polarized field due to induced currents on the wire can be written

as:

Bw
f =

−|Bw|sin(θ)

2
(cos(ωt− θw)x̂− sin(ωt− θw)ŷ)

+
|Bw|cos(θ)

2
(cos(ωt− θw)ŷ + sin(ωt− θw)x̂) (4.6)

where θ is the azimuthal angle. So, the total forward polarized field will be the

vectorial summation of two forward polarized fields:

Btotal = Bw
f +Bc

1f (4.7)

Summing these fields in rotating frame yields a field with magnitude:

|Btotal| =
√
|B1|2 +

|Bw|2
4
− |B1||Bw|sin(θw + θ) (4.8)

Finally, to calculate the total forward polarized magnetic field in the presence of

a wire, the incident magnetic field B1 must be known.

4.1 B1 mapping

Incident magnetic field can be measured by using flip angle imaging methods[15,

16, 17]. In this study flip angle imaging done with Spin Echo (SE) images. In

order to calculate the incident magnetic field Spin Echo (se) images with several

nominal voltages applied to coil, was acquired.Image intensity of SE images can

be expressed as [18]:

S = M(x, y, z)sin3(α(x, y, z)) (4.9)

where α(x, y, z) is the flip angle distribution and M(x, y, z) is the magnetization

moment inside the phantom. Flip angle distribution calculated using Double

Angle Method[17]. Flip angle distributions first calculated for phantom without

placing the wire. This results are used for calculation of incident fields. Then
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flip angle distributions calculated for the case which wire is located inside the

phantom.

SE images which are acquired with several nominal voltages fitted to Equa-

tionr̃efeqn:spinechoImage. Also it is known that relation between flip angle and

B1 field is [19]:

α = 2π

∫
γB1dt (4.10)

where γ is the gyromagnetic ratio of proton. So, using fitted α to Equation 4.9

and using in Equation 4.10 B1 field distribution can be obtained. Also flip angle

distribution in the presence of a wire can be found using curve fitting method.

4.2 Experimental Results

To verify the proposed method as mentioned MoTLiM also tested experimentally

by measuring and calculating flip angle distribution due to induced currents.

During experiments, a cylindrical phantom 28cm in diameter and 6.5cm high was

used. Experiments were done for a bare wire to prove the validity of MoTLiM.

Conductivity and relative permittivity of the phantom was 0.42S/m and 81, re-

spectively. Electrical parameters of the phantom were measured using a custom-

made transmission line probe[20] with an Agilent E5061A ENA series network

analyzer. Experiments were done with a 3T Siemens TimTRIO system. A SE

with TR 1000 ms TE 15 ms FOV 300× 65 mm2 was used. A bare copper wire

with radius 0.57mm was used. Wire was circulated to form a full circle and lo-

cated on a circle with 12cm radius. The wire was located 2.5cm from the bottom

of the phantom. This configuration ensures that the wire exposed to a uniform

electric field. Flip angle distributions were measured and calculated.
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(a)

(b)

Figure 4.2: Flip angle images. (a) is the flip angle distribution obtained using
DAM. (b) is the flip angle distribution calculated theoretically as explained in
Sec. 4. 60 × 100 mm2 portion of 300 × 65 mm2 images are presented in same
color scale. Flip angle values are degree.
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(a) (b)

(c) (d)

Figure 4.3: Flip Angle distribution on a circle, centered on wire, with radius (a)
4 cm, (b) 6 cm, (c) 8 cm, (d) 16 cm. Flip angle values are degree.
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Error analysis was done along the circles, with different radii(4, 6, 8 and 16cm)

around the wire. Mean-square errors are 16%, 20%, 19%, and 18% for figures

4.3(a), 4.3(b), 4.3(c), and 4.3(d), respectively.
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Chapter 5

Discussion and Conclusion

In this study a new method was proposed to solve induced currents inside a

lossy medium. To show the validity of this method some simple cases (straight

bare, lossy, and insulated) were solved and compared with computer simulations

that uses method of moments. The analysis revealed less than 10% mean-squared

error. As analyzed in Sec. 2.4, to find the required parameters wires were assumed

to be infinite and induced currents were reached to a steady state. During the

simulations, however, wires had a finite length. As a result, the wires were not

long enough to reach steady state and thus most of the error was coming from

these transition regions.

As seen from Figure 4.3, experimental and theoretical flip angle results are

in good agreement. Mean-square error is less than 20%. However, there are

problems with comparing measured flip angles and theoretically calculated flip

angles. In vicinity of the wire, the magnetic field rapidly changes inside a pixel;

while theoretically calculated flip angle for a pixel, a fixed distance inside the

pixel was used. The effect of the change of magnetic field inside the pixel can

not be taken into account.
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Although in this study only straight bare, lossy, and insulated wires were

solved, this method can be expanded to more complicated cases. As long as the

tangential component of the incident electric field is known, induced currents

along the wires which are located in an arbitrary pattern can be found by solving

Eq. 2.5. However, scattered fields from the wire must decay fast enough so that

they will not induce current on other parts of the wire. To handle this case,

the modified lumped element model in Figure 2.2 must be further modified.

Additionally in all solved cases in this study, wires are inside the uniform lossy

medium; it is however possible to encounter a case where the wire is located

inside more than one medium. This problem can be handled by considering the

wires as connected transmission lines and defining boundary conditions between

the transmission lines appropriately. Furthermore, using solutions obtained from

the proposed theory, SAR Gain and implant tip heating can be calculated.

Using this method cases, that will cause maximum induced current, can be

found so lead designs can be tested for worst cases. The newly defined kt param-

eter enable to find length of the lead in terms of wavelength so resonant length

of lead after modifications like coating or pitching can be found. Beside these

eases of testing implant leads this method also useful for designing new leads.

Effects of modifications on leads such as coiling, or adding lumped elements

can be easily seen using this method. Also adjusting the Z and kt parameters

amount of induced current and pattern of the current on a lead can be adjusted.

Also, presented method makes it easy to understand how newly designs, like

billabong [21], works. Besides all experimental results that shows these leads are

safe, presented work can show why these leads are safe.

MoTLiM can also be used for solving similar problems, such as interaction

between implants and cell phones. There are works that analyze SAR gain in

the presence of orthopedical and dentistry implants during the use of the cell
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phones[22]. MoTLiM may also be used to calculate induced currents on these

implants when they interact with the cell phones.

To sum up, a new method to calculate the induced currents on wires un-

der MRI was demonstrated. A lumped element model of transmission lines are

modified in order to find an analytical solution for induced currents on implant

leads. Z and kt parameters, which can characterize wires, are derived. Proposed

method compared with MoM simulations and results are agreed within 10%

mean-square error in current. A thevenin model was derived in order to find the

current through the electrodes easily. Finally proposed method was verified by

using image distortion due to the existence of the wire. Flip angle distribution

is compared on the azimuthal paths with four different distances from the wire.

The highest mean square error is 20% among compared cases.

35



Bibliography

[1] C.J.Yeung , R.C.Susil, E.Atalar ”RF Safety of Wires in Interventional

MRI:Using a Safety Index”, Mag. Reson. Med. 47, 187–193 (2002).

[2] M.K.Konings, L.W.Bartels, H.F.M.Smits, C.J.G. Bakker ”Heating around

intravascular guidewires by resonating RF waves”, J. Magn. Reson. Imaging

12, 79–85 (2000).

[3] F.G.Shellock ”Radiofrequency Energy-Induced Heating During MR Proce-

dures: A Review” J. Magn. Reson. Imaging 12, 30–36 (2000).

[4] P.A.Bottomley, W.A.Edelstein, A.Kumar, M.J.Allen, P.Karmarkar ”Resis-

tance and Inductance Based MRI-Safe Implantable Lead Strategies”. 17th

Annual ISMRM Meeting, Honolulu, Hawaii, April 18-24, (2009).

[5] C.J.Yeung , P.Karmarkar, R.M.Elliot, ”Minimizing RF Heating of Conduct-

ing Wires in MRI”, Mag. Reson. Med.58, 1028-1034 (2007)

[6] R.W.P.King ”The Many Faces of the Insulated Antenna” Proceedings of

IEEE 64-2, 228-238 (1976).

[7] L.C.Shen, T.T.Wu, R.W.P.King ”A Simple Formula of Current in Dipole

Antennas” IEEE Trans. Antennas and Propagation 16-5, 542-547 (1968)

[8] D.M.Pozar, ”Microwave Engineering”, 3rd Edition, John Wiley & Sons,

(2005)

36



[9] J.Jianming, ”Electromagnetic Analysis and Design in Magnetic Resonance

Imaging” CRC Press, (1998)

[10] C.A.Balanis. ”Advanced Electromagnetics” John Wiley & Sons 1989

[11] D.K.Cheng ”Fundamentals of Engineering Electromagnetics” Pearson Ad-

dison Wesley, (1993).

[12] G.N.Watson, ”A Treatise on the Theory of Bessel Functions” Cambridge

University Press

[13] H.Irak, ”Modeling RF Heating of Active Implantable Medical Devices Dur-

ing MRI Using Safety Index ”, August (2007)

[14] H. Graf, U.A. Lauer, A. Berger, and F. Schick, “RF artifacts caused by

metallic implants or structures which get more prominent at 3 T: an in

vitro study,” Magn. Reson. Imaging 23, 493-499 (2005).

[15] V.L.Yarnykh ”Actual Flip-Angle Imaging in the Pulsed Steady: A Method

for Rapid Three-Dimensional Mapping of the Transmitted Radiofrequency

Field”, Mag. Reson. Med. 57, 192-200 (2007)

[16] E.K.Insko, L.Bolinger ”Mapping of the Radiofrequency Field” J. Magn. Re-

son. 103, 82-85 (1993)

[17] J.P.Hornak, J.Szumowski, R.G.Bryant ”Magnetic Field Mapping” Mag. Re-

son. Med 6, 158-163 (1988)

[18] G. H. Glover, C.E. Hayes, N.J.Pelc, W.A.Edelstein, O.M.Mueller, H.R.

Hart, C.J. Hardy, M.O’Donnell and W.D.Barber, ”Comparison of Linear

and Circular Polarization for Magnetic Resonance Imaging” J. Magn. Re-

son. 64, 255-270 (1985)

[19] J.L. Prince, J.M. Links, ”Medical Imaging Signals and Systems”, Pearson

Prentice Hall, (2006)

37



[20] B.Akin, Y.Eryaman, E.Atalar ”A method for phantom conductivity and per-

mittivity measurements”, 26th Annual ESMRMB Meeting, Antalya, Turkey

October 1-3, (2009).

[21] P. A. Bottomley, A. Kumar, W. A. Edelstein, J. M. Allen, and P. V. Kar-

markar, ”Designing passive MRI-safe implantable conducting leads with

electrodes” Med. Phys. 37, 3828 (2010)

[22] H.Virtanen, J.Huttunen , A.Toropainen and R.Lappalainen ”Interaction of

mobile phones with superficial passive metallic implants” Phys. Med. Biol.

50, 2689-2700 (2005)

38


	INTRODUCTION
	Modeling
	Transmission Line Theory
	Modified Transmission Line Model
	Solution of the Current Under Uniform Electric Field
	Determination of Z and kt Parameters
	 Bare Wire
	 Lossy Bare Wire
	Insulated Wire


	Applications and Results
	Bare Wire, Lossy Bare Wire Insulated Wire
	Wire Bisected with a Resistor
	Wire with Electrode
	Thevenin Equivalent of a Wire
	SAR Distribution Along a Wire

	Experimental Verification and Experimental Results
	B1 mapping
	Experimental Results

	Discussion and Conclusion

