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A variational Monte Carlo method for bosonic lattice models is introduced. The method is based on the
Baeriswyl projected wave function. The Baeriswyl wave function consists of a kinetic energy based projection
applied to the wave function at infinite interaction, and is related to the shadow wave function already used in the
study of continuous models of bosons. The wave function at infinite interaction, and the projector, are represented
in coordinate space, leading to an expression for expectation values which can be evaluated via Monte Carlo
sampling. We calculate the phase diagram and other properties of the bosonic Hubbard model. The calculated
phase diagram is in excellent agreement with known quantum Monte Carlo results. We also analyze correlation
functions.
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I. INTRODUCTION

Variational Monte Carlo is a powerful tool to calculate
the properties of quantum systems. In general, expectation
values of physical quantities over conveniently chosen vari-
ational wave functions allow the application of Monte Carlo
sampling methods. For fermionic lattice models, commonly
used variational wave functions are the Gutzwiller [1,2] and
Baeriswyl [3–5] wave functions (GWF and BWF, respec-
tively). The GWF starts with a noninteracting wave function,
and projects out configurations according to the interaction.
For fermionic systems, evaluation of physical quantities can
be done approximately via a combinatorial approximation,
or exactly in the case of the one-dimensional [6,7] and the
infinite [7–9] dimensional case. In between those two cases
the state-of-the-art is the Monte Carlo method developed by
Yokoyama and Shiba [10,11]. For bosonic systems, the GWF
reduces to mean-field theory [12].

The BWF can be considered the counterpart of the GWF:
the starting point is the wave function with infinite interaction,
and the projection applied thereonto is a function of the
hopping energy. For fermionic systems this wave function
already has a history [3–5,13,14]. For a model of interacting
spinless fermions the BWF produces excellent results for the
ground state energy [14]. We note also, that a method known as
the momentum dependent local ansatz, in which momentum
dependent amplitudes of pairs are used as variational parame-
ters, was recently developed [15–17]. While there are a number
of schemes to solve the BWF for fermionic systems, it has, to
the best of our knowledge, not been applied to bosonic systems.

In this work we develop a variational Monte Carlo (VMC)
method for correlated bosonic models based on the BWF
and apply it to the bosonic Hubbard model (BHM) [18,19]
with on-site interaction. The BHM was originally proposed
to study actual materials (bosons in porous materials), but
they were recently also realized experimentally as ultracold
gases in optical lattices [20,21]. The BHM has been treated
by analytical and numerical means, including mean-field
theory [12,19], perturbative expansion [22], quantum Monte
Carlo (QMC) [23–28], density matrix renormalization group

(DMRG) [29–33], and exact diagonalization (ED) [34].
DMRG is limited to one dimension, QMC is limited to small
system sizes, and ED is limited to even smaller system sizes.
Our variational Monte Carlo approach is shown to give good
quantitative results, at the same time, it is not restricted to
one dimension, and is less computationally demanding than
QMC or ED. It can also be generalized to more complex
bosonic strongly correlated models with distance dependent
interaction, and/or disorder.

We calculate some of the properties of the BHM. As
expected, the ground state energy obtained using our VMC
method has a lower value than the one given by mean-field
theory. More importantly, for the phase diagram, our results are
in excellent quantitative agreement with the quantum Monte
Carlo results of Rousseau et al. [26,35,36]. We also obtain the
Kosterlitz-Thouless point at the tip of the Mott lobes, and find
that our calculations underestimate the values calculated by
others [27–31,34]. We also calculate the one-particle reduced
density matrix at integer and away from integer fillings.
For integer fillings we find decay to zero. The decay is
well approximated by an exponential function, implying the
absence of a condensate.

The rest of this paper is organized as follows. In the
following section we describe in detail the variational Monte
Carlo method and our implementation of it for the BHM.
In Sec. III we present our results for the phase diagram and
one-body density matrix. Subsequently, we conclude our work.

II. MODEL AND METHOD

A. Bosonic Hubbard model and the Baeriswyl
variational wave function

We study the BHM with nearest neighbor hopping in one
dimension at fixed particle number. The Hamiltonian is

H = −J

L∑
x=1

(ĉ†x+1ĉx + ĉ†x ĉx+1) + U

L∑
x=1

n̂x(n̂x − 1), (1)

where L denotes the number of sites, and J and U are the
hopping and interaction parameters, respectively. The BWF

2469-9950/2016/93(17)/174518(6) 174518-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.174518
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has the form

|�B〉 = exp(−αT̂ )|�∞〉, (2)

where α denotes the variational parameter, and |�∞〉 is the
wave function at U = ∞. T̂ denotes the hopping operator
[first term in Eq. (1)]. The idea of the Baeriswyl wave function
is to start with the infinitely interacting wave function, and act
on it with a projector which implements hoppings.

B. Variational Monte Carlo

The expectation value of an operator Ô can be written as

〈Ô〉 = 〈�B |Ô|�B〉 = 〈�∞|e−αT̂ Ôe−αT̂ |�∞〉
〈�∞|e−2αT̂ |�∞〉 . (3)

The following derivations will treat a one particle system, but
they are generally applicable. We also assume that the operator
Ô is diagonal in the coordinate representation. Inserting
coordinate identities

∑
x |x〉〈x| = 1 results in

〈Ô〉 =
∑
xL

∑
xC

∑
xR

P (xL,xC,xR)O(xC), (4)

where the probability distribution P (xL,xC,xR) is

P (xL,xC,xR) = 1

�
〈�∞|xL〉K(xL,xC)K(xC,xR)〈xR|�∞〉,

(5)
where

K(x,x ′) = 〈x| exp(−αT̂ )|x ′〉, (6)

with � the normalization determined by the requirement that∑
xL,xC,xR

P (xL,xC,xR) = 1. (7)

The quantum particle is represented by three coordinates which
we call the “left,” “center,” and “right” coordinates. Operators
diagonal in the coordinate representation can be evaluated
using the center coordinate. In quantum Monte Carlo based
methods, whether finite temperature [37,38] or ground state
[39–41], each particle is represented by a large number of
coordinates (Trotter slices) whose number must be increased
for accurate results as the temperature is lowered. Therefore,
while our method is not exact as the QMC is, it is significantly
less demanding of computational resources. Within our VMC
method we can reach larger system sizes. In this work we limit
ourselves to system sizes with L = 50,100, in order to have a
direct reliable comparison to the available QMC results.

The kinetic energy projection operator can be expressed as

K(x,x ′) = 1

L

∑
k

exp[−αεk + ik(x − x ′)], (8)

and is shown in Fig. 1. As α increases the propagator
also increases in value, allowing for delocalization through
increased quantum fluctuations. Given that P (xL,xC,xR) is
positive and normalized, MC techniques can be applied to
evaluate expectation values. In the continuum limit, the kinetic
energy propagator reads K(r) = Ir (2αJ ), where In(x) are the
modified Bessel functions of the first kind.

The kinetic energy can be evaluated by constructing an
estimator based on taking the logarithmic derivative of the

0 20 40 60 80 100
x-x’

0

0.2

0.4

0.6

0.8

<x
’|e

xp
(-

αΤ
)|x

>

α = 0.1
α=1.0
α=10.0
α=100.0

FIG. 1. Kinetic energy propagator as a function of distance for
different values of α.

quantity � with respect to the variational parameter α. We can
write the normalization as

� = 〈�∞| exp(−2αT̂ )|�∞〉, (9)

and the average kinetic energy as

〈T 〉 = − 1

2�

∂�

∂α
. (10)

Writing � in terms of the projected wave function one can
show that

〈T 〉 =
∑

xL,xC,xR

P (xL,xC,xR)T (xL,xC,xR), (11)

where

T (xL,xC,xR) = −1

2

[
∂ ln K(xL,xC)

∂α
+ ∂ ln K(xC,xR)

∂α

]
.

(12)
The generalization to the many-body case is straightfor-

ward, but it is in order to make some comments. A typical
configuration is represented in Fig. 2. In that figure a lattice
of six sites is shown. The left, center, and right replicas of
the lattice are all represented. A single quantum particle is
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FIG. 2. Representation of our variational algorithm. In our
method there are three replicas of the system, labeled left, center,
and right. The black squares represent the lattice sites of the
one-dimensional system for each such replica. The blue filled circles
represent particles. Each particle is represented by one replica on
the left, center, and right lattices. The dashed red line represents the
kinetic energy projection operator [Eq. (8)]. The left and right replicas
correspond to the infinitely interacting system. Since in the case there
would be an infinite energy cost, there are no sites with more than
one particle among the left and right replicas. In the center replica of
the lattice, two or more particles can be on the same lattice.
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represented by three classical particles, one on each lattice
replica. The dashed lines in the figure connecting the three
particles refer to the kinetic energy projector K(x,x ′) [Eq. (8)].
Since the left and right coordinates refer to the infinite
interaction wave function (�∞) no configuration occurs in
which more than one particle is on a particular lattice site.
This will be the case for fillings less than one. In general for
a filling of n the left and right replicas will only have lattice
sites with int(n) or int(n) + 1 particles. However, in the center
replica, the lattice sites with any number of particles can occur,
since the projector does not place any restrictions there. Since
the casting of our method above is in terms of first quantization,
exchange is implemented by explicit exchange moves of pairs
of particles on the left or right lattices. One randomly chooses
a pair and then propose the exchange as a Monte Carlo move.
This is similar to how it is done in the continuous quantum
Monte Carlo methods, such as path-integral Monte Carlo [38].

C. One-particle reduced density matrix

A quantity of general interest is the one-particle reduced
density matrix (RDM). The RDM gives information about
Bose-Einstein condensation [42]: if it tends to a finite value at
long distance, a condensate is present in the system. The RDM
(in our case for the BWF) is given by

ρ(y,x) = 〈�B |ĉ†y ĉx |�B〉. (13)

The difficulty with calculating this quantity stems from the fact
that it is not diagonal in the coordinate representation. While
this is also true for the kinetic energy, there only nearest-
neighbor hoppings contribute, moreover, one can simply take
the derivative with respect to the variational parameter.

In the context of our variational method, the operator ĉ
†
x ĉy

corresponds to a virtual hopping from y to x, and has the
effect of giving rise to virtual configurations in which a given
particle has two central coordinates. One of these is located
at x, the other at y. One of these (x) is connected to the left
coordinate of the given particle via a Baeriswyl projector, the
other (y) to the right coordinate. To calculate ρ(x,y) one starts
with a regular configuration, obtained from the Monte Carlo
sampling outlined above. One chooses a particle (say, with
coordinates xL, x, xR , with x denoting the central coordinate)
and calculates the ratio

γ = K(xL,y)

K(xL,x)
. (14)

Part of ρ(x,y) is the average of contributions of this type.
The scenario for calculating such contributions to the RDM is
visually represented in Fig. 3. The two Baeriswyl projectors
in the expression in Eq. (14) are shown in the figure by
the solid straight lines. For integer fillings, averaging over
configurations of this type is all that is needed.

In general, there is another class of virtual configurations
which needs to be considered. Away from integer filling,
there are holes among the left and right coordinates. As such,
the virtual hopping to which ĉ

†
x ĉy corresponds can also move

either the left or the right coordinate. In Fig. 4 this state of
affairs is represented. In this case the quantity which must be
considered is

γ = K(yL,y)

K(xL,x)
, (15)
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FIG. 3. Representation of a configuration with virtual hop-
ping which contributes to the one-particle reduced density matrix
[Eq. (13)]. The virtual hopping takes place from site y to site x,
indicated by the black semicircular arrow. The contribution to the
average reduced density matrix is the proportion of the Baeriswyl
propagators denoted by the straight solid red lines [see also Eq. (14)].
The propagators connect the left coordinate of the particle considered
(in this case site 4) to the central coordinate after virtual hopping
(in this case site 1, particle represented by green circle), and the
propagator between the left coordinate to the unmoved central
coordinate of the particle (site 4, particle represented by blue circle).

where yL represents the site to which xL is moved. In the
original configuration, from which this virtual configuration
is sampled, this site is an empty site [or for fillings n > 1, they
are sites with int(n) number of particles, rather than int(n)+1].

D. Relation to shadow wave function

The BWF is the lattice analog of the shadow wave function
(SWF) [43,44], used often in continuous systems in the study
of supersolidity. To show this we consider a one-dimensional
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FIG. 4. Representation of a configuration with virtual hop-
ping which contributes to the one-particle reduced density matrix
[Eq. (13)]. The virtual hopping takes place from site y to site x,
indicated by the black semicircular arrow. At the same time, a virtual
hopping takes place among the left coordinates, also indicated by
a black semicircular arrow. The contribution to the average reduced
density matrix is the proportion of the Baeriswyl propagators denoted
by the straight solid red lines [see also Eq. (15)]. The propagators
connect the left coordinate of the particle (site 1, particle represented
by green circle) to the central coordinate of the particle (site 1, particle
represented by green circle), both after the virtual hopping, and the
propagator left coordinate (site 4, represented by a blue circle) and
the central coordinate of the particle (site 4, represented by a blue
circle) both before the virtual hopping.
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system with Hamiltonian

H = − �
2

2m

∂2

∂x2
+ V (x). (16)

In one dimension the SWF is given by

�(x) = φ1(x)
∫

dx ′f (|x − x ′|)φ2(x ′). (17)

The function φ1(x) is a real-space projection operator (for
now we will take it to be one). The term f (|x − x ′|) is chosen
[43,44] to be a Gaussian therefore we can write

�(x) = A

∫
dx ′ exp[−C(x − x ′)2]φ2(x ′), (18)

where A is the normalization and C is the variational constant.
Let us now start with a wave function of the form

exp(−αT̂ )|φ2〉 =
∫

dx ′ exp(αT̂ )|x ′〉〈x ′|φ2〉, (19)

in which the kinetic energy propagator is applied to the state
φ2. Inserting a momentum identity, and casting the function in
the coordinate representation, results in

〈x| exp(−αT̂ )|φ2〉 =
√

m

2απ

×
∫

dx ′ exp

(
− m

2α
(x − x ′)2

)
φ2(x ′).

(20)

The constant C is identified as C = m
2α

. The other real-space
projection φ1(x) can be implemented also in the case of a
lattice, this would be an example of a Gutzwiller-Baeriswyl
projected wave function [4].

E. Implementation

Before MC sampling the kinetic energy propagator, as
well as the estimator, is calculated (Fig. 1) and stored. We
apply two types of MC moves. We move the left, central, and
right coordinates by standard Metropolis sampling from the
distribution P (xL,xC,xR). We also use exchange moves: two
left (or right) particles are randomly chosen and exchanged.
These moves are essential for simulating a bosonic system.
The calculations below show results from runs on the order of
106 MC steps. The number of independent data points are on
the order of 105. In our energy calculations error bars typically
occurred in the fourth digit of the kinetic or potential energies.

III. RESULTS

For a system of L = 100 sites we calculated the hopping
and the potential term. The energy was minimized for different
values of J/U . The total energy as a function of J/U for 100
and 50 particles based on our variational calculations is shown
in Fig. 5. Also shown are results for the same quantity from
mean-field theory. As is well known, the mean-field theory of
the Bose-Hubbard model [19] gives equations in which the
chemical potential is held fixed and the particles fluctuate.
We solve the usual mean-field equations for a given J/U

adjusting the chemical potential to correspond to an average
filling of one and one-half. The figure shows results for the
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FIG. 5. Energy per lattice site for fillings of one and one-half
calculated by our variational Monte Carlo method, and mean-
field theory. Lines with symbols represent variational Monte Carlo
calculations, lines without symbols are the results of mean-field
theory.

total energy without the term proportional to the chemical
potential (in order to compare the corresponding quantities
from both calculations). The mean-field energies are quite
close to the variational Monte Carlo results, but the variational
Monte Carlo results are always below the mean-field theory.
For small J/U the energy of the system with filling one is
larger than the energy for half-filling, but this changes between
J/U = 0.4 and J/U = 0.5.

The mean-field results indicate a phase transition at fixed
filling. At a filling of one the phase transition occurs at
J/U ≈ 0.172, and it can be seen in a discontinuous change
in the slope of the energy and the order parameter [19].
In our variational calculations no discontinuity in the slope
of the energy is found, although gap closure does occur
(discussed below). This result is qualitatively similar to what
happens when the BWF is applied to fermions: there also,
no metal-insulator transition is found [5] at fixed filling. The
curves of the calculated phase diagram (Fig. 6) arise purely as
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FIG. 6. Phase diagram of the bosonic Hubbard model according
to the Baeriswyl wave function (full circles connected by solid line)
compared to quantum Monte Carlo results of Rousseau et al. [26]
(open diamonds) recalculated via QMC [35,36]. n denotes the filling
factor. The error bars in the calculations are smaller than the thickness
of the symbols.
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a result of a phase transition which occurs when the particle
number is changed; away from integer fillings the phase is
superfluid.

To calculate the phase diagram we follow the same
procedure, as well as the same parametrization, as Scalettar
et al. [25] and Rousseau et al. [26]. Using the definition of the
chemical potential μ = E(N + 1) − E(N ) we obtain a density
vs chemical potential curve. The curve exhibits plateaus at
integer fillings (similar to Fig. 2 of Ref. [25]). From the edges
of the plateaus the phase diagram can be constructed. The
results are shown in Fig. 6. In spite of being a variational
method, the results are in good quantitative agreement with the
quantum Monte Carlo simulations (cf. Fig. 11 in Ref. [26]).
Also, for larger values of J than shown in the figure the gap
closes indicating a superfluid phase.

At the tip of the Mott lobe, at integer filling when J/U is
varied, a transition is known to occur. From scaling theory it is
known to belong to the Kosterlitz-Thouless universality class
[19]. The point at which this phase transition occurs can be
estimated from inspecting the gap (it closes at the transition
point), but since small errors make a big difference at the tip,
it can also be obtained [29] from the expression for the gap

�(J ) = A exp

(
− B√

JKT − J

)
. (21)

Our results also indicate gap closure. For a system with L =
200 lattice sites we obtain JKT = 0.4604(2) from fitting this
function to our data for J > 2, and JKT ≈ 0.46 by calculating
the point where the gap closes.

The estimates given by our method significantly un-
derestimate the Kosterlitz-Thouless point JKT compared to
other results in the literature [45]. DMRG calculations of
Kühner et al. [29] find JKT = 0.594(2), those of Ejima et al.
[30] find JKT = 0.610(2), Zakrzewski and Delande [31] find
JKT = 0.5950 ± 0.020 for the first Mott lobe, and JKT =
0.350 ± 0.004 for the second one. An exact diagonaliza-
tion study of Kashurnikov and Svistunov [34] gives JKT =
0.608(4), QMC studies find JKT = 0.600 ± 0.010 [27], and
JKT = 0.610(8) [28]. We attribute the discrepancy between
the above results and ours to the limitation of the BWF in
describing the behavior of the system as J increases. By
construction, the BWF is expected [3,4] to produce reliable
results for small hoppings.

We also calculated the RDM for several cases. Figure 7
shows the results of our calculations for a system of L = 100
at filling one for different values of J/U . The functions show
decay, although there is some deviation from the expected
exponential decay (exponential decay implies the absence of
a condensate). Our estimates for the correlation lengths ξ for
the different cases are: ξ = 0.605(5),0.95(3),1.31(5),1.66(8),
for J/U = 0.1,0.2,0.3,0.4, respectively. These results were
obtained from fitting a simple exponential function to the cal-
culated RDMs. We emphasize that the exponential functions
fit our correlation functions significantly better than power-law
decay, as expected.

We have also calculated the RDM for systems away from
integer fillings. We used a system of size L = 50, with particle
numbers N = 49 and N = 48. In this case, the decay does not
reach zero, in other words, a finite condensate fraction is found,
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FIG. 7. One-particle reduced density matrix for systems at filling
one with J/U = 0.1,0.2,0.3,0.4. The bottom panel is a semilog plot.
The bottom panel is a semilog plot, the y axis is labeled according to
powers of ten. The decay of the one-body reduced density matrices
is nearly exponential, implying the absence of a condensate.

which is unexpected in one dimension. We emphasize that our
variational approach has certain limitations which are likely
the cause of this behavior. On one hand, our U = ∞ function
is represented in a purely combinatorial manner, neglecting
correlations between holes or extra particles when near integer
filling. This approximation is correct in infinite dimensions.
Apart from this, as in the original shadow wave function,
a spatially dependent (Gutzwiller) projector could be added
to act on the central coordinate, an approach which would
improve how correlations are captured. This would correspond
to the so-called Baeriswyl-Gutzwiller wave function.

IV. CONCLUSION

We developed a variational Monte Carlo method for
strongly correlated bosonic systems based on the Baeriswyl
wave function. Our method was applied to the simple bosonic
Hubbard model in one dimension, but it can be generalized to
more complex models (e.g., long-range interaction, disorder),
and can be applied in any number of dimensions. We calculated
the phase diagram of the Bose-Hubbard model, and found
excellent agreement with results from quantum Monte Carlo
simulations. Our calculations recover the shape of the Mott
lobes well. The tip of the Mott lobes is underestimated. We
also calculated the one-particle reduced density matrix. At a
filling of one we see decay which is nearly exponential.
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