
VISUALL: A QUICKLY CUSTOMIZABLE
LIBRARY FOR JUMPSTARTING VISUAL

GRAPH ANALYSIS COMPONENTS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Yusuf Sait Canbaz

September 2021

VISUALL: A QUICKLY CUSTOMIZABLE LIBRARY FOR JUMP­

STARTING VISUAL GRAPH ANALYSIS COMPONENTS

By Yusuf Sait Canbaz

September 2021

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Uğur Doğrusöz(Advisor)

Osman Abul

Approved for the Graduate School of Engineering and Science:

Director of the Graduate School

11

"({J ğur "ctttlü-id?a'y

Ö Ezha~ Ka-raşan

ABSTRACT

VISUALL: A QUICKLY CUSTOMIZABLE LIBRARY
FOR JUMPSTARTING VISUAL GRAPH ANALYSIS

COMPONENTS

Yusuf Sait Canbaz

M.S. in Computer Engineering

Advisor: Uğur Doğrusöz

September 2021

Graph visualization is an area of information visualization, where relational data

is depicted in the form of nodes (objects) and edges (links). Many people or

organizations utilize graph visualization for insightful analysis and interpretation

of relational data. In graph visualization, primary challenges include complexity

management, efficient database querying, and customization for specific domains.

Visuall aims to solve these problems by providing a generic, highly customizable,

and easily configurable software component for building web-based visual graph

analysis tools.

Essential functionalities needed by such visual analysis components include

manually or automatically setting the layout of graph elements, support for nested

or hierarchical drawings, efficient querying of the database or client-side data,

emphasizing or highlighting graph elements of interest, customization of visuals

and styles, clustering, calculating graph-theoretical properties, and time-based

filtering of graph elements. Although Visuall provides all these functionalities

out of the box for jumpstarting, customization of software for domain-specific

needs is still unavoidable. Such software changes might result in complications

due to unstructured code and code ignoring the invariants assumed by the orig-

inal development team. To prevent these and to facilitate easily maintainable

customization, Visuall provides a modular architecture. Furthermore, the devel-

opers straightforwardly upgrade the software so long as the Visuall developers

and the users developing visual analysis components based on Visuall maintain

the provided architecture.

We tested our database queries on a database that contains about half a million

graph elements. We also examined our client-side operations up to a thousand

iii

iv

graph elements. In both client-side and database operations, we observe that

operations take at most several seconds, making Visuall convenient for interactive

exploration and analysis of networks.

Keywords: information visualization, graph visualization, software system, com-

plexity management, visual analysis.

ÖZET

VISUALL: GÖRSEL ÇİZGE ANALİZİ BİLEŞENLERİNİ
HIZLICA BAŞLATMAK İÇİN ÇABUK

ÖZELLEŞTİRİLEBİLİR BİR KÜTÜPHANE

Yusuf Sait Canbaz

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Doğrusöz

Eylül 2021

Çizge görselleştirme, ilişkisel verilerin düğümler (nesneler) ve kenarlar

(bağlantılar) şeklinde gösterildiği bir bilgi görselleştirme alanıdır. Birçok

kişi veya kuruluş, ilişkisel verilerin detaylı analiz ve yorumlanması için

çizge görselleştirmeden faydalanır. Çizge görselleştirmede, birincil zorluklar

arasında karmaşıklık yönetimi, etkili veritabanı sorgulama ve belirli alanlar için

özelleştirme yer alır. Visuall, web tabanlı görsel çizge analiz araçları oluşturmak

için genel, son derece özelleştirilebilir ve kolayca yapılandırılabilir bir yazılım

bileşeni sağlayarak bu sorunları çözmeyi amaçlar.

Bu tür görsel analiz bileşenlerinin ihtiyaç duyduğu temel işlevler, çizge

öğelerinin düzenini manuel veya otomatik olarak ayarlama, iç içe veya hiyerarşik

çizimler için destek, veritabanı veya istemci tarafı verilerinin etkili sorgulanması,

ilgilenilen çizge öğelerinin vurgulanması veya ayırt edilmesi, görsellerin ve stil-

lerin özelleştirilmesi, kümeleme, çizge-teorik özelliklerin hesaplanması ve çizge

öğelerinin zamana dayalı filtrelenmesini içerir. Visuall, hızlı bir başlangıç için tüm

bu işlevleri zaten sağlasa da, yazılımın alana özgü ihtiyaçlar için özelleştirilmesi

hala kaçınılmazdır. Bu tür yazılım değişiklikleri, sistematik olmama ve kodun

orijinal geliştirme ekibi tarafından varsayılan değişmezlerinin yok sayılması ne-

deniyle ihtilaflara neden olabilir. Bunları önlemek, anlaşılır ve sürdürülebilir

özelleştirmeler yapmak için Visuall modüler bir mimari sağlar. Ayrıca, sağlanan

mimari korunduğu sürece, Visuall geliştiricileri ve Visuall tabanlı bileşenleri

geliştirenler yazılımlarını kolayca doğrudan günceller.

Veritabanı sorgularımızı yaklaşık yarım milyon çizge öğesi içeren bir verita-

banında test ettik. İstemci tarafındaki operasyonlarımızı da bin civarı çizge öğeye

v

vi

kadar inceledik. Hem istemci tarafında hem de veritabanı işlemlerinde, işlemlerin

en fazla birkaç saniye sürdüğünü gözlemliyoruz. Bu gözlemler Visuall ’un

çizge görselleştirmelerin etkileşimli keşfi ve analizi için kullanışlı halde olduğunu

gösteriyor.

Anahtar sözcükler : bilgi görselleştirme, çizge görselleştirme, yazılım sistemi,

karmaşıklık yönetimi, görsel analiz.

Acknowledgement

I would like to express my appreciation and sincere thankfulness to my supervisor

Prof. Uğur Doğrusöz for letting me work with him. His expertise, guidance, and

help are the backbone of this study. His patience, discipline, and meticulousness

in work will be an example for me.

I also would like to thank Prof. Uğur Güdükbay and Prof. Osman Abul for

accepting to be on the thesis committee. Their review and feedback are helpful

for me.

I would like to thank my family for their immense support and love. I also

would like to thank my supportive friends. I have to thank to alumni of i-

Vis Research Lab for their valuable works. Also, I would like to thank current

members of i-Vis Research Lab for their constructive ideas and efforts.

I would like to express my gratitude to the Scientific and Technological Re-

search Council of Turkey (TÜBİTAK) for their extensive support (TÜBİTAK-

Teydeb projects 5180088 and 5200049) during my studies.

vii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contribution . 5

2 Background and Related Work 8

2.1 Graphs . 8

2.2 Graph Visualization . 9

2.3 Graph Visualization Tools . 12

2.4 Cytoscape.js . 14

2.5 Neo4j . 15

2.5.1 Labeled Property Graph Data Model 16

2.5.2 Cypher . 17

2.5.3 User-Defined Procedures 18

3 Visuall Architecture 19

viii

CONTENTS ix

3.1 Overview . 19

3.2 Build and Maintenance . 20

3.3 Jump-Starting . 21

3.4 Application Description File . 22

3.4.1 General Information . 23

3.4.2 Objects . 23

3.4.3 Relations . 24

3.4.4 Timebar Data . 24

3.4.5 Enumeration Mapping . 25

3.4.6 App Preferences . 26

3.5 Customization . 26

3.5.1 Navigation bar and toolbar 27

3.5.2 Context menus . 28

3.5.3 Tabs . 28

3.5.4 Database Service . 30

4 Methodology and Use Cases 31

4.1 Basic Visual Analysis & Filtering 31

4.2 Persistency . 33

4.3 Automatic Layout . 34

CONTENTS x

4.4 Clustering . 37

4.4.1 Compound Nodes . 38

4.4.2 Compound Edges . 40

4.4.3 Clustering Algorithms . 42

4.5 Object Inspection . 43

4.6 Time-Based Filtering . 46

4.7 Querying Data . 49

4.7.1 Query By Rules . 49

4.7.2 Graph-Based Queries . 50

4.7.3 Table View . 58

5 Testing & Evaluation 61

5.1 Implementation and Testing . 61

5.2 Evaluation . 64

5.2.1 Graph-Theoretical Properties 65

5.2.2 Complexity Management Through Hide-Show 66

5.2.3 Clustering . 67

5.2.4 Database Querying . 68

6 Conclusion 72

CONTENTS xi

6.1 Limitations & Future Work . 72

List of Figures

1.1 A sample graph visualization with a rich style 2

1.2 Overview of Visuall User Interface 6

2.1 A graph containing a compound nodes. The compounds have rect-

angular shapes. 9

2.2 The left drawing shows an undirected edge between two nodes.

The right one shows a directed edge between two nodes 9

2.3 The left drawing shows a self-loop between two nodes. The right

one shows multi-edges between two nodes 10

2.4 Spring analogy figure from [1] . 10

2.5 The graph on the left and right are exactly the same graph but

their layouts are different . 11

2.6 Neural Muscle Signaling graph visualized with Cytospape.js and

another open source tool Newt [2] [3] 15

2.7 A sample labeled property graph model 16

2.8 A sample Cypher query bringing all the Person nodes satisfying

some conditions . 17

xii

LIST OF FIGURES xiii

2.9 A sample Cypher query bringing a Person node, his co-actors and

the movies they played together 17

3.1 Overview of software architecture of Visuall 19

3.2 A sample Visuall application user interface 22

3.3 Sample appInfo section from a description file 23

3.4 Sample Objects section from a description file 24

3.5 Sample timebar data mapping section from a description file. Here

production start and end dates of a title are taken as the two ends

of the lifetime of a title. 25

3.6 On the left is the content of a sample enums.json file. On the

right is the corresponding enumeration mapping section inside the

application description file. 25

3.7 Query uses enumeration mapping for drop-downs and also in query

generation. 26

3.8 Sample custom menu items . 27

3.9 Sample context menu items shown when clicked on an edge, a node,

and the core . 28

3.10 Code snippet for custom context menu items to add actions to use

the title’s poster as node UI and to open the corresponding IMDB

page in a new tab, respectively. 29

3.11 Sample custom queries in the sample movies graph. (left) Find

actors playing in at least given number of titles, (right) Find titles

of specified genre. 30

LIST OF FIGURES xiv

4.1 User interface to filter out certain elements (in this case node “Ti-

tle” and edges “KNOWN FOR” and “SELF”) based on type . . . 32

4.2 Sample graph with contains two selected nodes and one selected

edge. 32

4.3 Sample graph with highlighted elements. Highlighted elements

constitutes a path of length eight 33

4.4 A sample query history . 34

4.5 Sample graph with six clusters. Circles represent clusters. There

are no compound nodes in this graph. 35

4.6 (middle) A portion of the IMDB data showing a particular actor

playing in three different movies. (left) Effect of placing new nodes

using the mentioned extension before applying an incremental lay-

out when other actors/actresses of a movie are displayed. (right)

Resulting layout when newly added actors/actresses are assigned

default positions of (0,0), where the previous layout is drastically

changed potentially destroying the user’s mental map. 36

4.7 Effects of packing components with different aspect ratios 37

4.8 The drawing on top shows a graph with two compound nodes, both

expanded. The one below shows the same compound graph with

one of the compound nodes in collapsed state. 39

4.9 An example graph showing many nested groups 40

4.10 The drawing on the left shows multi-edges between two nodes. The

one on the right shows the same graph after these multi-edges are

collapsed and represented with a single compound edge 41

4.11 Clustering choices for grouping nodes in the sample application . 42

LIST OF FIGURES xv

4.12 Inspecting properties by selecting a node (left) or an edge (right) . 43

4.13 Inspecting properties by of multiple nodes (top) and multiple edges

(bottom) . 44

4.14 Statistics sub-tab inside Object tab 45

4.15 Whether or not a particular graph element passes the time filtering

and is shown is determined by one of these three options 46

4.16 An example view from the timebar 47

4.17 A timebar statistic counting the number of “People” who satisfy

defined conditions in Algorithm 1. 47

4.18 A timebar statistics condition for counting people who directed

more than three movies . 48

4.19 A statistic that gives the total sum of ratings of titles that satisfy

the specified conditions . 49

4.20 A sample screen for query by rule 50

4.21 A sample neighborhood query and its results 52

4.22 An example of manually selecting graph elements from the table

view and adding them to the graph view 59

4.23 Emphasize corresponding graph elements on graph 60

5.1 Cypress script to test whether the user is be able to run a nested

query by rule . 63

5.2 Cypress script to test whether the user is able to generate groupings

and then remove them . 63

LIST OF FIGURES xvi

5.3 After all 31 Visuall E2E tests are finished in Cypress 64

5.4 Execution times of calculating various graph theoretical properties

and then showing them on the graph 65

5.5 Execution times of showing and hiding elements from a certain type 67

5.6 Execution times of clustering algorithms with circular and com-

pound cluster representations . 68

5.7 “Complex rule 1” inside Table 5.1 69

5.8 “Complex rule 2” inside Table 5.1 70

5.9 “Complex rule 3” inside Table 5.1 70

List of Tables

2.1 Comparison of functionalities of Visuall and similar tools 13

5.1 Execution times of various database related operations in seconds 69

xvii

Chapter 1

Introduction

A graph is an abstract data type. It consists of a set of nodes (also called vertices,

points or objects) and a set of edges (relationships or links between nodes).

A compound graph is an enriched form of a graph, where besides simple nodes

and edges, it can contain compound nodes that might, in turn, contain sub-

graphs.

Graph visualization depicts relational data in the form of nodes and edges.

People use graphs to analyze and interpret social networks, computer networks,

biological networks, and relational information in many other different areas.

Figure 1.1 shows a sample graph visualization. In the compound graph in this

figure, there are compound nodes used for grouping movies and people associated

with the movies. Compound nodes can contain nodes or other compound nodes.

With enriched visualizations, nodes might have background images and dynamic

sizes. There can be badges or annotations on the nodes. Colors or labels of the

nodes and edges can be custom. Also, the positions of the nodes can be arbitrary.

In short, the topology or style of a graph visualization can be vastly different.

Visualizing relational data as a graph is quite intuitive. It naturally depicts

the data [4]. Even a layperson could understand the data. An observer with

1

Figure 1.1: A sample graph visualization with a rich style

no domain knowledge can still make considerably better interpretations from fair

graph visualization.

People use graph visualization in many domains such as finance, telecom, bi-

ology, social networks, transportation, recommendation systems, healthcare, and

pharmaceutical domains. Visualization paves the way for interaction, interpreta-

tion, and analysis. It is used to extract knowledge from data. Mainly visualization

aims for distilling knowledge with human cognition. It helps human intelligence

using graph algorithms, user interaction, and varying drawings/layouts. Also, as

machine learning algorithms can extract insight in different ways, in a sense, such

algorithms can derive knowledge without human cognition.

Relational database management systems are used very frequently for data

storage. PostgreSQL, MySQL, and Microsoft SQL Server are popular systems

[5]. In these systems, a table represents a type of entity. A row of the table

corresponds to an actual entity. A column corresponds to an attribute of the

2

..
~

\ 1 /

. I~~ A:
M "'l ll!:!:ılil. ~--- ----

..... I ı \
/ i ..

e1• • a•

corresponding entity. If there is a connection between two different types of

entities, a column is used as a pointer. The column refers to a row in another

table. Usually, these columns are called foreign keys.

When we make complex queries that require utilizing connections, we should

use foreign keys to refer to other tables and join tables. Since a table might

contain too much data, joining tables is a costly operation. That is particularly

significant if the data is highly connected. There are numerous efforts to optimize

the performance of join operations [6]. Although it depends on the data model,

usually we represent a connection between two entities as an edge (relationship).

So if we need to make a query that involves many connections, a graph database

will make a traversal. That might give significantly higher performance compared

to a join-heavy SQL query [7]. In some domains such as fraud detection, taking

action in real-time is necessary. So usage of a graph database system might be

unavoidable. Since graph databases provide such conventions, the interest in

graph databases has increased [8].

1.1 Motivation

Complexity management is one of the primary challenges in graph visualization.

If the graph has medium-large size, it can easily turn into an hairball [9]. Layout

algorithms can help the user to mine information value. Layout algorithms place

the nodes such that visual patterns are more visible. Even if a layout algorithm

produces a decent layout, the visualization can be still too complex or too large

for human cognition. If there are too many edges between two nodes, the drawing

will be complex and costly. If a node has too many neighbors, it will seem too

crowded. To reduce complexity, the user might want to focus on a certain part.

The user might want to remove a certain part and then bring it back. The user

might want to mark certain elements. Grouping or clustering elements can also

help to reduce complexity [10]. Finding a suitable clustering algorithm is a serious

issue. To make visualization interactive, the execution time of all the operations

should be less than a few seconds. Depending on the size of the graph, reaching

3

low execution times can be hard. At the same time, the previous visualization

and the new one should resemble as much as possible. The user should be able

to follow the changes easily. Thus, the operations should work incrementally.

Especially the layout algorithm should be able to work incrementally. Using

animations in the visualization is also essential to grasp the changes.

Customization is another problem in graph visualization. Every company has

its own data schema and different concerns in visualization. There can be lots of

variety in the drawing. Nodes can have background images, background colors,

border colors. Edges can have different thicknesses, colors, arrow shapes. Nodes

and edges can have labels and the labels can be placed in different positions.

Apart from visualization, companies also want to customize the user interface

(UI). For graph visualization, the UI is important because interaction with the

visualization is provided through the UI. To serve multiple companies or users,

the software should stick to multi-tenant architecture. Since there are extensive

customizations in many places, there will be some customer-specific source codes.

Thus, maintenance of such projects can be cumbersome due to shared codes and

customer-specific codes.

Efficient database querying might be difficult. A query should respond in few

seconds. Queries should consider the resulting data size. If a query will result in

large amounts of data, it will take too much time. Also, visualization of big data

will be a problem. Since it is not useful to bring large chunks of data at once, all

database queries should have some kind of pagination strategy. Queries should

bring the data page by page. Bringing a graph in multiple parts is challenging

because the pagination strategy affects the connectivity of the graph. Often

applications might need data to fill tables. So queries should be able to bring

both tabular and graph data.

4

1.2 Contribution

We propose a software library that forms a base for developing domain-specific

graph visualization and analysis software. By using Visuall, developers will get a

jump-start, with many tools already in their pockets. These tools can be used to

address generic problems in graph visualization and analysis. At its core, Visuall

is a visualization software. It has a database-agnostic architecture. In theory, it

can visualize any kind of data source.

Since the user is going to define a graph model and might want to change

the styles of nodes, edges, or other visual components of visualization software,

Visuall provides a so-called application description file. By using this file, the

user will first define the topology of their graphs. Then, they might change the

styles of the nodes and edges as desired. Also, the user may change the font size

and style used throughout the entire user interface of the software. Making such

changes does not require any programming experience nor a change in the source

codes of the software.

No matter how generalized and flexible software is, changes in the source code

of software will still be unavoidable. Thus, a developer should be allowed to

change the source codes of the software. For this reason, we provide a modular

software architecture to make maintainable customizations as well as software

updates. The changes in the source code of Visuall should not affect such cus-

tomizations. There might be bug fixes or performance improvements in the base.

To prevent possible source code conflicts, we reserve some of the files solely for

the developer. We guarantee that improvements or new features in Visuall base

will not change anything in these files and the developer is free to change these

files as they like.

For complexity management in big graph visualizations, Visuall provides many

functionalities such as showing/hiding nodes or edges, highlighting, searching

labels, doing manual layout, using automatic layout algorithms, panning and

zooming to a region in the graph, compound nodes, compound edges, support

5

for graph-theoretical properties, clustering, and expanding/collapsing compound

elements. It also provides time-based filtering through an independent software

component. By using this component, the users can perform time-based filtering

and display the changes in their graph-based data over time through animation.

Often the data to be visualized is in a server-side database in an ample amount.

A typical user will be interested in only a small part of the data in the database.

Visuall provides a way for building complex database queries based on the prop-

erties of nodes and edges. The user can construct these queries just by using

the user interface. Visuall also provides some graph algorithms implementing

commonly required database queries.

As a result, Visuall provides a software library for quickly building domain-

specific visual analysis components for relational information.

Figure 1.2: Overview of Visuall User Interface

In summary the work done within the scope of this thesis can be listed as

follows:

6

• Design and implementation of a software library that can be easily/quickly

customized for domain-specific needs, and

• Adaptation of the pathway database query algorithms to be used in generic

graph database querying as well as performance improvements to some of

these queries.

7

Chapter 2

Background and Related Work

2.1 Graphs

A graph G can be defined with a set of vertices (or nodes) V , representing objects,

and a set of edges E, representing links or relations between the objects. An edge

e ε E is a pair of vertices {u, v} such that u ε V and v ε V .

An edge e = (u, v) with a direction has a dedicated source node u and a

dedicated target node v. If a graph consists of directed edges, it is called a directed

graph or a digraph. A graph with undirected edges is called an undirected graph

or simply a graph.

If there are multiple edges (two or more) between two vertices, these edges

are called multiple edges or multi-edges or parallel edges. If an edge connects a

vertex to itself, it is called a self-loop or simply a loop. A subgraph is a subset of

a graph’s vertices and edges defined between these vertices.

A node is called a compound node if it contains other nodes. The nodes inside

the compound are called the children of the compound. The compound node

is called the parent. Usually, the edges inside the compound do not count as

children. Compound nodes are useful to represent hierarchical relations, groups

8

Figure 2.1: A graph containing a compound nodes. The compounds have rect-
angular shapes.

Figure 2.2: The left drawing shows an undirected edge between two nodes. The
right one shows a directed edge between two nodes

and, clusters. Since a compound node can also contain other compound nodes,

graphs can visualize nested structures conventionally.

A node is incident to an edge if the node is one of the two nodes the edge

connects. The degree of a node is the number of edges incident to the node. The

in-degree of a node is the number of incoming edges to the node. Similarly, the

out-degree of a node is the number of outgoing edges from the node. A path

is defined with a sequence of nodes < n0, n1, ..., nk > and a sequence of edges

< n0n1, n1n2, ..., nk−1nk > such that ni are distinct and k ≥ 0. The length of a

path k is the number of edges it contains.

2.2 Graph Visualization

One main operation required in graph visualization is the automatic layout of

the graph. Typically, graphs are visualized in two-dimensional space. So layout

9

Figure 2.3: The left drawing shows a self-loop between two nodes. The right one
shows multi-edges between two nodes

algorithm sets positions (x and y coordinates) of the vertices. The layout is

critical because the same graph can be visualized in many different ways.

Figure 2.4: Spring analogy figure from [1]

Even though there are many metrics to measure the quality of layout such

as edge-edge crossing number and total area of the drawing [11], there are also

aesthetic concerns. In a drawing, sizes, the ratio of sizes, colors, shadows, trans-

parency, borders, border colors, border sizes and shapes of nodes as well as edge

arrow shapes, line styles, curve styles are critically important. Such design deci-

sions are important in terms of human perception, and also for the performance

of rendering. If the styles are heavy, it might be costly to render big graphs.

10

Figure 2.5: The graph on the left and right are exactly the same graph but their
layouts are different

There are several different types of layout algorithms in the literature. Force-

directed algorithms (aka spring embedders) are one of the most common [1].

The main idea is to represent nodes as electric charges and edges as physical

springs. Thus based on Coulomb’s electric force law and Hooke’s law about

spring force, nodes will apply repulsion and attraction forces. The algorithms

perform calculations until the system is stable or close to stable (Figure 2.4).

Briefly, the compound spring embedder (CoSE) layout algorithm is an ex-

tended force-directed layout algorithm that supports compound nodes with ar-

bitrary levels of nesting [12]. Fast compound spring embedder (fCoSE) builds

on CoSE and uses the spectral graph drawing technique for quickly producing a

draft layout, succeeded by phases in which user-defined constraints are enforced

while layout is polished. So, fCoSE can satisfy user-defined placement constraints

and it is faster than CoSE [13].

A layout algorithm can run in two different manners. It can run in an incre-

mental and non-incremental (randomized) manner. We call it incremental when

current node positions are taken into account and layout is calculated with the

aim to minimally distract the user’s mental map (current respective positions of

graph elements). The non-incremental (randomized) layout ignores the existing

positions of the nodes.

11

2.3 Graph Visualization Tools

Most open source and/or free graph visualization tools are end-user tools.

GraphViz [14], Gephi [15], and Neo4j Bloom [16] are some examples. There

are also some free tools that are designed for customization with a fair bit of

programming such as Cytoscape.js [17] and D3.js [18].

On the commercial side, some tools target specific domains. For instance,

Ravelin [19] is for fraud detection, IBM i2 is for threat intelligence [20], whereas

others are more generic such as yFiles [21], Tom Sawyer Perspectives [22], Key-

Lines [23], and Linkurious [24]. Most commercial tools allow many different ways

of customization, but all charge high licensing fees.

Visuall is a software library intended for developers for customization with

little effort. The customization step is necessary, because information visual-

ization is purely based on data. Visuall ’s architecture and design can reduce

customization time to be as short as a couple of days.

Visuall provides many built-in functionalities in addition to an advanced and

clear way for customization. It has support for compound nodes, complex and

custom queries. It uses some advanced layout algorithms for doing fast and

aesthetic layouts. It has a component called Timebar for time-based filtering. It

supports calculation and display of various graph-theoretical properties of graph

elements. Table 2.1 summarizes a comparison of functionalities of Visuall with

some other tools.

12

Customization Compound
Nodes

Complex
& Custom
Queries

Fast Layout Time-based
filtering

Graph Theoretical
Properties

Visuall X X X X X X
IBM i2 [20] X x x partial x partial
Ravelin [19] partial x x X x x
Tom Sawyer
[22]

X X partial X x X

yWorks [21] partial X partial X x X
Key Lines [23] partial partial partial partial X X
Linkurious
[24]

partial x partial partial x X

GraphViz [14] partial X x partial x x
Gephi [15] partial x x X x X
Cytoscape.js
[17]

X X x X x X

Table 2.1: Comparison of functionalities of Visuall and similar tools

13

2.4 Cytoscape.js

Cytoscape.js [17] is an open-source software library for visualizing graphs (net-

works) written in JavaScript. It provides a comprehensive API for interacting

with graphs and visualization styles. Cytoscape.js is widely used in biological

domains. Visualizing graphs in the biological domain is usually complex, requir-

ing drawings with lots of different shapes, varieties in topology, and models. To

provide such flexibility in graph visualization, Cytoscape.js expects to get some

styles similar to CSS styles [25]. For convention, we will call these styles sim-

ply Cytoscape.js styles. Figure 2.6 is a relatively complex sample drawing using

Cytscape.js.

Graphs with up to a thousand elements can be comfortably visualized, where

Cytoscape.js renders such graphs responsively. This depends on the hardware

and software of the client system because processing is done on the client-side

through a web browser. The performance also depends on the styles used in

visualization. When no heavy styling is used, we observe that tens of thousands

of elements can be visualized in an interactive manner responsively.

Visuall was explicitly built on Cytoscape.js with the aim of easy customization

and minimal coding.

Furthermore, Cytoscape.js provides an extension mechanism so that developers

can implement their functionalities. Extensions can be used to implement layout

algorithms, user interface components, and also for extending the Cytoscape.js

API. Visuall is powered with lots of such useful extensions.

There is also a desktop application of Cytoscape [26]. Cytoscape.js is a software

library for developers whereas Cytoscape is a desktop application for end-users.

14

Figure 2.6: Neural Muscle Signaling graph visualized with Cytospape.js and an-
other open source tool Newt [2] [3]

2.5 Neo4j

Neo4j is a graph database platform implemented in Java [27]. It is convenient for

quick starts because the setup is very easy. Both the data and database system

itself are inside a single folder. It can be imported and exported simply by mov-

ing that root folder. It is a database management system but it stores data as a

graph different from commonly used relational database systems. Because of this

significant difference at its core, it might be more suitable for highly connected

data. Since it is a database system, it enables users to perform standard database

operations like create, read, update, and delete. To perform these operations,

Neo4j has its query language called Cypher. Using Cypher, the users can easily

get answers to simple queries. Of course, the users will need advanced queries.

For advanced queries, Neo4j provides a mechanism to install User-defined proce-

dures. User-defined procedures are very similar to stored procedures in relational

database systems. In relational database systems, usually stored procedures and

queries are written in the same query language such as SQL. In Neo4j, queries

are written in Cypher but User-defined procedures are written in Java.

Visuall has a built-in support for Neo4j. A Neo4j database can be visualized

using Visuall simply by providing credentials such as username, password, and

URL of the Neo4j database.

15

2.5.1 Labeled Property Graph Data Model

In Neo4j’s graph/data model, there are four components: nodes, relationships,

properties and, labels. Nodes represent entities, objects, or vertices in the graph.

Relationships represent edges, connections, or links between nodes. So far, there

is no difference with the definition of Graph as an abstract data type. The

difference starts with properties. In Neo4j, nodes and relationships can have

properties. Properties are simply key-value pairs. They are like metadata. They

store some data about the node or the edge it belongs to. Also, in this model,

relationships must have a direction. When undirected edges/relations are needed,

the user can simply ignore direction information.

In Neo4j model, labels are used to tag nodes. Basically, a label corresponds

to a Class or an Interface in Object-Oriented Programming terminology. A label

can be used to express a type or a role. A node can have multiple labels but

typically it is recommended to have a single label. In Neo4j, relationships have

no labels but instead have types. A relationship can have a single type.

Figure 2.7: A sample labeled property graph model

In Figure 2.7, there are three types of nodes and two types of relation-

ships (edges). The nodes respectively from left to right have labels ‘Employee’,

‘Company’ and ‘Vehicle’. The edges respectively from left to right have types

‘WORKS IN’ and ‘OWNS’. As can be seen, the ‘Employee’ and ‘Company’ nodes

have some properties like ‘name’ and ‘id’. The ‘WORKS IN’ edge also has a

property named “start date”. Usually, edges are named using verbs or actions for

better readability.

16

In Visuall, we assume that a node has exactly one label and an edge has

exactly one type. Hence, the graph model provided in Visuall follows the labeled

property graph model of Neo4j.

2.5.2 Cypher

Cypher is the query language of Neo4j, specifically developed by Neo4j for this

purpose. It is a declarative language that can be used like SQL to create, read,

update or delete records. These kinds of queries are directly based on the proper-

ties of records. Figure 2.8 shows a query that brings some nodes that have label

Person and their primary name contains the string ‘Tom’ and birth year greater

than 1980.

Figure 2.8: A sample Cypher query bringing all the Person nodes satisfying some
conditions

At the same time, the users can make queries to describe paths or patterns

related to the topology of the graph. Figure 2.9 shows such a query. Parenthesis

are used to represent nodes. Square braces are used to represent edges. After

the MATCH statement, we are essentially describing a path. This path is used

to find co-actors and common movies they played in. Making such queries with

SQL might require costly join operations. Also, SQL code for the same query is

typically more complex/longer than that in Cypher.

Figure 2.9: A sample Cypher query bringing a Person node, his co-actors and
the movies they played together

17

2.5.3 User-Defined Procedures

User-defined procedures are very similar to stored procedures in relational

database management systems. They are used to extend the capabilities of

Cypher. They should be written in Java using Neo4j’s official Java driver. After

the codes are ready, a JAR file should be exported. And then the JAR file should

be placed inside the Plugins folder. After that, the procedures can be called from

Cypher codes.

18

Chapter 3

Visuall Architecture

3.1 Overview

Visuall has a web-based user interface, written in JavaScript. Angular [28] was

used as the web application framework of Visuall. This choice is mainly due to

Angular being typescript-based. Enforcing types makes applications more ro-

bust, making management of code more convenient during development. Visuall

was primarily designed to jump-start visual analysis software components up

and running. Mainly, it consists of three Angular modules named AppModule,

CustomizationModule, and SharedModule. You can see the basic architecture in

Figure 3.1, where the directed edges show the dependency (A → B: B imports /

depends on A) between the modules.

Figure 3.1: Overview of software architecture of Visuall

19

3.2 Build and Maintenance

As mentioned earlier, Visuall is a software library. First and foremost, it should be

configured and customized by developers. Firstly, a developer needs to make their

own copy (by forking on GitHub where sources are maintained) of Visuall. If the

developer creates a fork, it becomes easier to get new commits for improvements or

new features from the original Visuall repository. The original remote repository

should be added with a command similar to:

git remote add base https://github.com/...

In previous command, the original repository is named as base. The developers

could fetch the new commits from the base with command:

git fetch base

Then the developers could apply a new commit with a cherry-pick command such

as:

git cherry-pick -n 12ae

They could alternatively merge the remote branch to get the updates. A com-

mand such as

git merge base/master

will merge “master” branch from the remote repository with alias “base” to the

current branch.

Ideally, the developers should only need to change the files under the

/src/app/custom folder. Changing other files might result in conflicts during

20

updates if the original Visuall repository has also changed for improvements or

new features. All things under this custom folder and CustomizationModule are

reserved for the developers. The developers can generate and use their Angular

components by declaring them under the CustomizationModule. Since AppMod-

ule depends on CustomizationModule, the developers should be careful not to

break the existing dependencies.

3.3 Jump-Starting

Many things such as the type and style of nodes and edges, the name and logo

of your application, default values of many settings are defined in a so-called

application description file. We will explain this file in more detail in the upcoming

sections.

Once this file is ready, the developer should execute the style-generator.js

script. This will read the application description file and then modify the

index.html, styles.css, properties.json, and stylesheet.json files accord-

ing to the descriptions provided in this file. These files will basically constitute

the skeleton of the visual analysis component’s code base.

In the end, the user is expected to see a web application similar to the one

in Figure 3.2. Here, you can see that at the top, there are drop-down menus for

various actions. We call this part the navigation bar. Right below the navigation

bar is the toolbar. The toolbar is a shortcut for reaching commonly used menu

items rather than using the drop-down menus. At the center is the graph canvas

area. This is basically where the user is expected to focus most of the time. At

the bottom of the page is where you see two charts and some action buttons

between them for the timebar component. On the right, adjacent to the graph

canvas are various tabs with sub-tabs for inspection, queries and configuration of

the visual component.

21

Figure 3.2: A sample Visuall application user interface

3.4 Application Description File

If a user wants to start building their own specialized visualization component,

this file is where they start. Firstly, in this file, the user defines the data schema or

the graph model. Then comes the definition of the Cytoscape.js styles to be used

for each type of node and each type of edge. These styles will be used in rendering

the associated graph elements. They basically specify how the corresponding

objecs and relationships will look.

22

ı!J Visua/1 Sample App File • Edil • View • Highlight • Loyout • Help • Doto •

...
.A ·-.....L.

..a. ,
Q ,&

"" \ .,.. _. A

10

1920 1930 1940

May 241S07

,,,. , .. o ,.., , ...

:.(.. ;_-(.. 00 r'l 2000-01-01000000 - 2010-01-01000000

..&-
...ı,. • .,.a..Q. wıa.

..ıııı:.
ırı
~

...__ :O.' ----

...ıı..

-- ,4.

..
1 ...--.4

..Q.

1950 1960

1915-01-01

+ A +
Q.

.A ..&.,

-

1970 1930 1990

o oo < ~ >

..ııı..

Jl,,

1 .Q.

• A _._ ...
1

.Q

A

......
,4. - A

.....

--

2000 2010

2020-12-31

1900 1,. 1940 1960 1930 200/\ ,.,,1 , 40

Object Map Dat.ıbase Settings ...

Filler by Node/Edge Type

IPerson l~
ACTOR ACTRESS OIRECTOR

WRITER PROOUCER EDITOR

COMPOSER CINEMATOGRAPHER

PROOUCTION_DESIGNER

ARCHIVE_FOOTAGE ARCHIVE_SOUND

2020

2060

KNOWN_FOR SE:LF

Query by Rule

Group Nodes

caıcuıate Theoreuc Propeny

- lowty r ated comed~

- hi!ıhly rated eomedies

2030

Aug 092123

- 2100 2120

3.4.1 General Information

The first section in the application description file is appInfo. This section con-

tains metadata about the application such as its name, version, and logo. Fig-

ure 3.3 shows a sample.

Figure 3.3: Sample appInfo section from a description file

3.4.2 Objects

This section describes the objects in the data schema or the graph model. Here

for each node type, we expect to have properties and style. Figure 3.4 shows a

sample objects section. There are two types of nodes called Person and Title in

this example. Each type of node has data properties and Cytoscape.js styles to

be applied during rendering. In this example, a Person has properties such as

primary name and birth year. Each property has an associated data type. These

data types are defined inside Visuall. Available data types are string, int,

float, datetime, list, and enum. string, int, and float are primitive data

types as in most programming languages. datetime is actually the same as int

but it used to represent a date and time in Unix timestamp in milliseconds. Here,

the list data type simply corresponds to an array of values. enum is a special

type used to represent a predefined finite set of values. For example, a status

code can be represented as an enum type. In the database, status codes might

be stored with integers such as 0, 1, and 2 but these codes might be presented

to the users using strings like “Success”, “Error”, and “Pending”. Since this is

a mapping from integers, it should have type "enum,int". These finite sets of

values should be defined inside a designated file named enums.json.

23

Figure 3.4: Sample Objects section from a description file

3.4.3 Relations

This section describes the data schema of edges (connections) in the graph. Just

like the Objects section, for each type, we expect to have properties and style.

Additionally, for an edge type, the user should also express its source and target

as well as whether or not it is bidirectional (isBidirectional). source expresses

the type of source node for this type of edge, while target expresses the type of

target node for this type of edge. isBidirectional states whether the edge type is

bidirectional or unidirectional.

3.4.4 Timebar Data

This section is only needed for the timebar. Ideally, each node and each edge

should have some properties that correspond to the lifetime of the element. For

each node type and each edge type, the names of these properties might be

different. So this section describes for each type which property should indicate

the beginning or end lifetime of that element type. When beginning (end) lifetime

is not provided, we assume an element exists from the beginning (until the end)

24

of the time range. Figure 3.5 shows a sample.

Figure 3.5: Sample timebar data mapping section from a description file. Here
production start and end dates of a title are taken as the two ends of the lifetime
of a title.

3.4.5 Enumeration Mapping

This section is used to map enumeration typed properties to their actual values.

For example, if we have an Object type named MoneyTransfer (could be an edge

type or node type) and it has an enumeration property named Status, we can

simply map status codes to string values by defining the enumeration mapping

in the description file. Figure 3.6 shows a defined enumeration and its mapping.

Figure 3.6: On the left is the content of a sample enums.json file. On the right is
the corresponding enumeration mapping section inside the application description
file.

These enumeration mappings are used to map values. At the same time,

Visuall uses these values to show drop-downs for example for query generation.

Figure 3.7 shows how enumeration mapping is used to form the user interface in

queries.

25

Figure 3.7: Query uses enumeration mapping for drop-downs and also in query
generation.

3.4.6 App Preferences

This section simply stores all optional behaviors throughout Visuall. For instance,

some users might prefer not to display the timebar but some other might want

to show it by default.

3.5 Customization

Modification of the application description file will provide the user with bare

minimum customization. This does not require any coding but mere formatting

(in JSON) of the description and configuration of the visual analysis component.

Advanced users however will like to change the source code to provide advanced

customization and implement domain specific functionality. As Visuall continues

to evolve, our changes and changes of the user may cause conflicts. To eliminate

the conflicts, we reserved files under /src/app/custom folder for the user. A

developer can add or change all the files under this folder by adding their com-

ponents and implementing their business logic. Specifically, the developer is able

to inject their components into many places such as the navigation bar, toolbar,

context menu, and tabs. Lastly, the developer can also write their own database

service. Visuall already has a database service for Neo4j databases but they

might want to use a different database provider.

26

status

Query by Rule

lnewOJ
New rule MoneyTransfer

Get MoneyTransfer wlıere:

....
T

~ Database

Success

Pending
Fail

....
T

....
T

3.5.1 Navigation bar and toolbar

The developers can inject their custom menu items into both the toolbar and nav-

igation bar. Figure 3.8 shows a new drop-down menu named “Custom DropDown

1”. The developer can also add menu items to existing drop-drowns. “Custom

Action 1” is such an operation in this example. Below the drop-down items, you

can see that there is a toolbar. The toolbar is simply a shortcut to trigger popular

actions conveniently. This example also contains custom items.

Figure 3.8: Sample custom menu items

To achieve this, the developer should provide an array in the source codes.

The array contains names and corresponding functions to call. Here the functions

should have no parameter. Below code snippet shows a sample array.

[{

dropdown: ’File’,

actions: [

{ txt: ’Custom Action 1’, id: ’’, fn: ’fn1’, isStd: false }

]

},

{

dropdown: ’Custom DropDown 1’,

actions: [

{ txt: ’Custom Action 2’, id: ’’, fn: ’fn2’, isStd: false }

]

}]

27

3.5.2 Context menus

The context menu shows up when the user right-clicks a graph element

or the background of the graph. To provide this functionality, Visuall

uses a Cytoscape.js extension named cytoscape.js-context-menus [29]. Inside

context-menu-customization.service.ts file, the developer should put their

context menu items. It might be preferred displaying varying menu items based

on the right-clicked element type. For example, right-clicking on a node and on

an edge could show different operations. Here, right-clicking on an empty place

on the graph canvas can also show a menu. We call this the core context menu.

Figure 3.9 shows three different context menus shown for an edge, a node, and

the core, respectively from left to right.

Figure 3.9: Sample context menu items shown when clicked on an edge, a node,
and the core

For custom context menu items, the developer should provide an array of

objects. Each object corresponds to an item. Figure 3.10 shows a sample array.

3.5.3 Tabs

Visuall contains the following tabs: “Object”, “Map”, “Database”, and “Set-

tings”. Each tab contains subsections. We call them sub-tabs (implemented us-

ing accordion GUI components). The developers can add their own tabs and/or

sub-tabs. For adding a tab or sub-tab, the developer should provide their Angu-

lar component. We simply inject the provided component into the application.

28

Figure 3.10: Code snippet for custom context menu items to add actions to use
the title’s poster as node UI and to open the corresponding IMDB page in a new
tab, respectively.

Here, the component should not have any input or output like a function with

no parameters. These components should be placed inside the /src/app/custom

folder as usual. The developer can import and use Angular components defined

in SharedModule (e.g., TableViewComponent) inside their own Angular compo-

nents.

Database tab contains a particularly specialized sub-tab called Custom

Queries. This is where the developer can implement their own custom database

queries. Visuall provides built-in rule based (SQL-like) queries to the database

through the user interface. This might be enough up to a level, but the user

might need more advanced custom queries based on advanced graph traversals.

Figure 3.11 shows two queries named “Get actors by title counts” and “Get titles

by genre” implemented in this manner.

29

[{

},

{

}]

id: 'getPoster' ,
content: 'Use Title Poster' ,
selector: 'node. Ti tle' ,
onClickFunction: ~ : : . getPoster . bind(~· : :)

id: 'go to H1DB' ,
content: 'Go to H1DB' ,
selector: 'node. Ti tle' ,
onClickFunction: ~ : : . golnfo.bind(~ : :)

Figure 3.11: Sample custom queries in the sample movies graph. (left) Find
actors playing in at least given number of titles, (right) Find titles of specified
genre.

3.5.4 Database Service

As we mentioned before, Visuall is database agnostic. Any database can be

integrated for visualization, provided that there is a database service that im-

plements our interface named DbService for communication with the database.

This interface defines a contract between the database and Visuall. The interface

requires implementation of certain functions. Visuall will call these functions

with some parameters. In the end, the functions should call the callback function

with the necessary data parameters. The callback function will simply parse the

data passed to itself and show the graph.

The built-in Neo4j database service needs a database URL, username, and

password. By default, Visuall uses the HTTP API of Neo4j to connect with the

database instance.

30

Object Map Database Settings

General Queries

Custom Queries

Gel actors by !itle counts ~

Get actors who played in at least 40

•!H+ii O Graph ~ Merge

titles

V

Object Map Database Settings

General Queries

Custom Queries

Gel titles by genre

Gel titles (and actors involved) with

genre

.... .
Action

•§i+ii O Graph ~ Merge

.... .

V

Chapter 4

Methodology and Use Cases

This chapter presents the methodology and modules within Visuall to make it a

full-fledged visual analysis tool that is highly customizable.

4.1 Basic Visual Analysis & Filtering

Visuall provides lots of instruments for visual analysis of your relational data. It

displays these relations based on your current focus. The user can additionally

filter or show/hide elements. Hidden elements can be later shown on demand,

whereas when the user deletes a graph element, it will be removed from the

graph model on the client side (unless a subsequent query brings them back

from the server). Hiding and showing can be done based on type or by manual

selection. Figure 4.1 shows all the node types (“Person” and “Title”) and edge

types (e.g., “Actor”) are listed in the sample application. Rounded rectangular

shapes represent node types in this dialog, whereas straight lines represent edge

types. That gives the user an intuition about whether the corresponding element

is a node or edge.

31

Figure 4.1: User interface to filter out certain elements (in this case node “Title”

and edges “KNOWN FOR” and “SELF”) based on type

The user can select nodes or edges simply by clicking on them. Selection of

multiple items can be achieved by additionally holding the shift key. To signify

selected items, we use an overlay whose color can be customized by the user.

Figure 4.2 shows the nodes “Rowan Atkinson” and “Keeping Mum” are selected

nodes. The edge “actor” is also selected. For selection, we can use different

Cytoscape.js styles instead of overlay. For example, we can change node and

edge colors. However, we do not recommend change of such basic functionality

for keeping things consistent.

Figure 4.2: Sample graph with contains two selected nodes and one selected edge.

The user can also highlight graph elements. We use overlays with custom colors

for this as well. The user can also search object labels with a keyword by using the

search bar on the toolbar. Visuall will highlight the founded elements. Figure 4.3

shows a path with length eight is highlighted among 120 graph elements.

32

Figure 4.3: Sample graph with highlighted elements. Highlighted elements con-

stitutes a path of length eight

4.2 Persistency

The user can save the current graph as a JSON file as well as as a PNG image

file. A previously saved JSON file can be loaded later. By saving the current

graph as JSON, the user can also persist the graph with layout, highlights, and

compound elements. Visuall also keeps a history of the graph. Whenever new

data is fetched from the database, it saves the current graph to the history. From

the history, the user can see snapshots of the graph’s previous states and go back

to a state.

33

• • •

• • • •

•
• . "''

•
•

e aeıress •
•

•
,,,, ... i"

• I \
t •

•

'
• •

• •
••

Figure 4.4: A sample query history

Visuall also persists various metadata using the browser’s local storage. It

stores data without an expiration date. Preferences related to Visuall, timebar

statistics, and ruled queries are saved to local storage. So even if the user restarts

the computer or browser, they can continue to work from where they left off.

4.3 Automatic Layout

For automatic layout, Visuall uses fCoSE [13, 12] and CiSE [30] layout algo-

rithms. Both of these algorithms can run incrementally. Visuall will apply an

incremental layout on changes to the topology of the graph being visualized (for

example, as things are filtered or new content is merged into the graph). It also

allows the user to re-calculate layout from scratch however (especially useful when

you are not happy with the current layout). Visuall uses CiSE only when there

are clusters represented using circles. Figure 4.5 is an example a graph using the

CiSE algorithm to lay out a clustered graph, where each cluster is laid out on a

separate circle. When cluster structure is instead shown as compounds (nested

drawings), then fCoSE is preferred as CiSE cannot handle compound structures.

34

Query History

Get sample data

2 Show Actors/Actresses of movie: Les femmes

3 Show Other Staff of movie: Shalako

4 Show AII Titıes of person: Edward Dmytryk

Figure 4.5: Sample graph with six clusters. Circles represent clusters. There are

no compound nodes in this graph.

To better position any new nodes on an incremental layout, Visuall uses an-

other Cytoscape.js extension called cytoscape.js-layout-utilities [29, 31]. When

Visuall adds a new node without a position to the graph, Visuall calls the

placeNewNodes method of this extension to position the newly added node. Af-

ter new nodes have a position, the incremental layout works more effectively.

Figure 4.6 shows the effect of placing new nodes in a smart manner using the ex-

tension. To mark the newly added graph elements, Visuall uses overlays (similar

to selection but using a different color).

35

\ \ i '
\ \ ; 5 ~

"· \ ıı i
.,. \ ;l ~=· lıı .,,""'

' : .,
,,.. .

,,,,,

-i'~,t ,,,,,,,

I

' ' i \ ' ~'.

'""" (21 '" "'""""'"

Figure 4.6: (middle) A portion of the IMDB data showing a particular actor

playing in three different movies. (left) Effect of placing new nodes using the

mentioned extension before applying an incremental layout when other actors/ac-

tresses of a movie are displayed. (right) Resulting layout when newly added ac-

tors/actresses are assigned default positions of (0,0), where the previous layout

is drastically changed potentially destroying the user’s mental map.

For disconnected graphs, both CiSE and fCoSE extensions use the cytoscape.js-

layout-utilities extension for packing components of the graph. Figure 4.7 shows

the effects of packing components in the fCoSE algorithm. The drawing on the

left shows the results when the layout packs the components to an aspect ratio of

width/height of the canvas. Here, you see that the components span the whole

drawing area nicely. The drawing on the right shows when it packs components

to an undesired aspect ratio (i.e., 5). Here, the effect of packing components to

aspect ratio is more evident since the aspect ratio is highly different from the

aspect ratio of the graph canvas. Components are horizontally lined up to satisfy

the aspect ratio requirement.

Lastly, Visuall also lets the user play with the layout by hand. The user can

simply drag and drop nodes to change their position.

36

\ ,,

. - a _.._

Figure 4.7: Effects of packing components with different aspect ratios

4.4 Clustering

When a graph is dense (high number of edges per node), visualization becomes too

complex for a human. These kinds of graph visualizations are called “hairball” [9].

To handle such visual complexity, clustering the nodes can be helpful. Clustering

or grouping aims to partition the nodes so that similar nodes will be in the same

group. Mainly, the similarity of two nodes can be defined using two different

approaches. Firstly, we can describe similarity based on data properties. For

example, if the graph contains Person nodes, we can describe similarity based

on names. We can say if the labels are similar, the nodes are also similar. This

approach is using properties defined in Property Graph Data Model.

Secondly, one can cluster without considering data properties. In this case,

the focus is on the topology of the graph. The connections between the nodes

will simply decide the clustering. There are many algorithms in the literature.

Louvain community detection [32] and Markov cluster algorithm [33] are such

algorithms.

37

,,

r

a
' ' ııı - Q

' ııı

ııı

"(i

f&
ııı ' g ___:- ııı
ır. ..- ''o:.

.. . : . . •," ~ : . . .
. . .

:. ,a, ; ...
' .

• - Q .
Q

4.4.1 Compound Nodes

Visuall represents compound nodes with barrel shapes. Visuall uses a Cy-

toscape.js extension called cytoscape.js-expand-collapse [29] for handling related

operations. To decrease the complexity of large graphs, the user might want

to remove certain elements temporarily. To achieve this, Visuall enables users

to collapse compound nodes. When the user collapses a compound node, the

expand-collapse extension will remove the children of the compound node. We

call this state collapsed. In this state, the children will not be in the graph but

will stay in the memory. Later, the user can bring back the children by expanding

the collapsed node. Figure 4.8 shows there are two compound nodes on the image

above. On the image below, again you see two compound nodes. But this time,

the compound node on the right does not have any children as that compound

node is collapsed. The user can expand this collapsed compound node and see its

children on demand. In this way, the user can interactively manage complexity.

38

Figure 4.8: The drawing on top shows a graph with two compound nodes, both

expanded. The one below shows the same compound graph with one of the

compound nodes in collapsed state.

As can be seen in the drawing on top, of Figure 4.8, the compound nodes

are not connected to any edges. But in the drawing at the bottom, you can see

that some so-called meta edges are pointing to the collapsed compound node.

When the user removes a node Cytoscape.js removes all the edges incident to

the removed node. That changes the topology of the graph and might harm the

mental map of the user. So to preserve the mental map of the user, the expand-

collapse extension removes the nodes, then it modifies the graph so that removed

edges point to the collapsed parent so that the user can understand there were

39

• ııW. • ,w.
•
"

• ,Y.

• M

• ,w..

•

•
•

• •

• • •

• • •
actress

•
• • • •

• •

some edges connected to collapsed children.

Visuall not only allows programmatically adding/removing compound nodes

with certain operations but also allows the user to add or remove compound nodes

manually. The user can do so by selecting the nodes from the map. Note that

the selected nodes can be compound as well. So, a compound node can contain

other compound nodes. In this way, Visuall can express arbitrarily deeply nested

groups. Figure 4.9 is a sample graph showing such nested groupings. After some

nodes are selected, the user can add a compound node that will be the parent of

selected nodes. Also, the user can select compound nodes and then remove them.

That will not remove the children of the compound node. They will still exist in

the graph, but Visuall will change their parents. Their parents will be the parent

of the removed compound node.

Figure 4.9: An example graph showing many nested groups

4.4.2 Compound Edges

Sometimes there could be multi-edges or parallel edges between two nodes. If

there are many edges between two nodes, displaying them can be computationally

40

expensive. So the user might like to represent all such multi-edges using a single,

compound or meta edge as exemplified in Figure 4.10. When the user right-

clicks to any of these edges, they will see a context menu. If the user chooses

“Collapse”, the expand-collapse extension will represent the parallel edges with

a single edge. When the user right-clicks to a compound edge and then chooses

“Expand”, we will remove the compound edge and then bring back the parallel

edges as before. Compound edge lines are styled as dotted for distinction. The

compound edge line width is thicker than normal edges. In fact, we define the

thickness with a simple logarithmic function 3+ log2(n), where n is the number of

edges it contains. The label of the compound edge is the number of multi-edges

it represents. This dynamic labeling signifies what to expect when the compound

edge is expanded. Also, the user could find out the count of parallel edges by

temporarily collapsing them.

Figure 4.10: The drawing on the left shows multi-edges between two nodes. The

one on the right shows the same graph after these multi-edges are collapsed and

represented with a single compound edge

The expand-collapse extension also allows us to run an incremental layout

after expand or collapse operations. Since expanding and collapsing changes the

topology of the graph, we do not want to disturb the mental map of the user

but we also want to position the new elements without cluttering the drawing.

This extension uses specialized layout algorithms [34, 29] inspired by fish eye

techniques to make room for new content before expanding.

41

4.4.3 Clustering Algorithms

Compound nodes and compound edges are tools for clustering and complexity

management, which can be done manually or computationally. Visuall provides

Louvain [32] and Markov Clustering [33] algorithms by default for topology based

clustering of graph objects. These algorithms ignore properties of graph elements.

For example, our movies data set contains movies with data properties like rating,

number of votes, and run-time minutes. Algorithms considering data properties

can be more effective and handy for a specific domain. So, Visuall lets developers

inject their clustering algorithms by implementing them under GroupCustomiza-

tionService. Figure 4.11 shows the options for grouping as: ‘None’, ‘Louvain’,

‘Markov clustering’ and ‘By director’. ‘None’ will remove all clusters. ‘Louvain’

and ‘Markov clustering’ will generate groups using the topology of the graph.

‘By director’ is an example of a custom clustering algorithm. It generates groups

using the director and the movies directed by the director. For different domains,

different properties can be meaningful. For effective grouping, domain-specific

algorithms might be necessary. These can be implemented by following the rec-

ommendations of domain experts.

Figure 4.11: Clustering choices for grouping nodes in the sample application

42

4.5 Object Inspection

When the user selects a graph element by tapping on it, we open the Object tab.

In this tab, the user can see the properties of the selected element. Properties are

like metadata for the element. Figure 4.12 shows an example, where, on the left,

a node with the label “The Matrix” is selected and under inspection. The type

of the node is “Title”. It has a number of properties such as “rating” which has

a value of 8.7. On the right is an edge with label “actor”, which has only four

properties. One property is named “characters” which has the value “Neo”.

Figure 4.12: Inspecting properties by selecting a node (left) or an edge (right)

When multiple graph objects are selected, Visuall shows a table instead. In the

drawing at the top of Figure 4.13, three nodes are selected. Hence, the inspector

shows a table with three rows. Each row corresponds to one of the selected graph

objecs (nodes in this case). In the drawing at the bottom, three edges are selected,

but the table contains four rows since one of the selected edges is a compound

edge representing two edges.

43

Figure 4.13: Inspecting properties by of multiple nodes (top) and multiple edges

(bottom)

Inside the Object tab, there is a sub-tab named Statistics. The Statistics sub-

tab shows the statistics about the currently loaded graph as a table. For example,

Figure 4.14 lists each type of node and edge in the graph. A graph element can

be selected or hidden. So it also shows the count for these states. At the bottom

of the table, the last two rows show total node and edge counts. Statistics table

provides the overall picture of the graph in terms of its size.

44

2

3

Q acuess

(2) ,,,
qCfr.

ess

Type

Tıtle

Tıtle

Object Map Database Settings

Title(2) Person(1)

Search!
primary title genres

~" ,n,

The Treasure of !he Adventure,Orama,Western

Sierra Madre

A II Through the Night Action,Comedy,Crime

Person

Object Map Oatabase Settings

ACTRESS(3) KNOWN_FOR(1) ,..

Search! ~" ,n,

Type characters job

ACTRESS Maria 1

2 KNOWN_FOR

3 ACTRESS Agnes

4 ACTRESS lrina Lazaar

Figure 4.14: Statistics sub-tab inside Object tab

Lastly, all the tables use the same Angular component with a common code

base. This component has many available operations. For example, the user can

search inside the table. They can import the table as a CSV (comma separated

values) file. In addition, the table can be detached from its position and can

be moved on the screen by dragging and dropping within the boundaries of the

associated browser tab. Also, when you hover over a graph element, Visuall

can emphasize the corresponding table row if such a row exists. This could also

function in reverse. When the user hovers over a table row, Visuall can highlight

corresponding graph elements if it exists.

45

Object Map Database Settings

Statistics A

Search! ~" "~
Type Count Selected Hidden

Person 6

2 Title 86 8 14

3 SELF 3 2

4 ACTOR 40 26

5 ARCHIVE FOOTAGE

6 Meta edge 8 3

7 KNOWN FOR 7 4

8 ACTRESS 33 4

9 Node 92 9 15

10 Edge 92 7 33

4.6 Time-Based Filtering

For time-based filtering, we built a Cytoscape.js extension called “cytoscape.js-

timebar”. The extension facilitates time-based filtering on the current graph. It

does not add or remove any data but it shows or hides graph elements, based

on their time properties. We assume that each node or edge should have some

properties representing its lifespan called object range. If they do not exist, we

use default values of −∞ and∞, respectively for the begin and end datetimes of

graph elements.

To make time-based filtering on the graph, the user should specify a time

range. Since this range decides what is shown on the graph, we call this range

graph range. The filtering uses the start and end datetimes of the graph range.

Filtering will be based on the relation between graph range and object range of

each graph element. Figure 4.15 shows three different possibilities in which these

two ranges are related. An object can pass from filtering if its lifetime overlaps

with or contained by or contains the filtering range. This is a user configurable

setting.

Figure 4.15: Whether or not a particular graph element passes the time filtering

and is shown is determined by one of these three options

Apart from showing or hiding graph elements based on graph range, the time-

bar also lets the user generate custom statistics. The statistics are calculated

for the current unit time such as decades, years, and months. The time unit

46

will automatically change based on the current graph range. For example, if the

graph range is 200 years, the time unit will be a decade. In Figure 4.16, there

is a bar chart and a line chart. On the line chart, you can see a slider with two

thumbs. The thumbs set the graph range. The bar chart shows statistics on the

graph range. The line chart shows the statistics on a wider range.

Figure 4.16: An example view from the timebar

Figure 4.16 shows two statistics. A statistic is a function that returns a number.

Visuall gives users the ability to write their own statistics. A statistic could be a

count of a certain type of element that satisfies specified conditions. Figure 4.17

shows the statistic counting the number of people who satisfy Algorithm 1.

Algorithm 1 A sample timebar statistic combining a number of conditions

1: procedure SampleStatistic(x)
2: return x.birth year > 1990 AND x.death year < 2020 AND
3: (’a’ in x.primary name OR ’b’ in x.primary name)
4: end procedure

Figure 4.17: A timebar statistic counting the number of “People” who satisfy

defined conditions in Algorithm 1.

47

As exemplified in Figure 4.17, a tree structure combining conditions with AND

and OR logical operators can be used to generate arbitrarily deeply nested statis-

tics. The user does not need to know any kind of programming knowledge for this,

and can use the provided simple user interface components such as drop-down

and input.

In the example of Figure 4.17, all the conditions are on data properties, which

is rather standard. Here, the user can also define conditions related to some graph

topological properties. For example, the user can write a condition based on the

degree of nodes. Figure 4.18 shows a condition for people who directed more than

three movies. Visuall counts the number of “DIRECTOR” edges connected to

a node. This is the degree of a node considering only a certain type of edge. So

a statistic can be a combination of both data properties and graph topological

properties.

Figure 4.18: A timebar statistics condition for counting people who directed more

than three movies

In addition to counting elements, Visuall can also find an aggregated value

of a specific property. Figure 4.19 shows a statistic that gives the total sum of

ratings of titles that have more than 10 actors and have more than 100 votes. The

condition related to counting the number of actors is related to graph topology

but the condition related to votes is related to data properties. We combine two

conditions and then we aggregate the ratings of fulfilling objects.

48

Figure 4.19: A statistic that gives the total sum of ratings of titles that satisfy

the specified conditions

Additionally, Visuall gives the ability to export statistics as JSON files. So

the user can save statistics, reuse them later, and also share them with their

colleagues.

4.7 Querying Data

As relational data on a server side is typically too big, the user needs to initially

form a graph of interest by performing a query. The constructed graph as a result

of the query can be too complex or too big. The user might also need to query

the existing client-side graph to see the graph elements of interest. So Visuall

can query both the client-side data and database.

4.7.1 Query By Rules

This component is expected to be one of the most used components in Visuall.

Using this component, the user can query both the database and client-side.

Visuall uses the same Angular component to define timebar statistics and ruled

queries. Their logic is very similar. Timebar statistics works only on the client-

side but ruled queries can also work on the database. Timebar statistics generate

49

Get Title where:

V rating @ O
V[AND]O

.A T count_ votes > 100 @ O

.AT ACTOR > 1 O @) 0
o

o

JavaScript code that will run on the client-side. Ruled queries can generate

JavaScript code and also Cypher code that will run on the Neo4j database side.

Figure 4.20: A sample screen for query by rule

As shown in Figure 4.20, the user can see previously saved queries (e.g., “Pop-

ular Actors” and “New Movies”). By clicking on the name of the saved query, the

user can view, update or execute the query. If the “Database” option is checked,

Visuall will execute the query on the database side. In any case, we will show

the data as a table. If the “Graph” option is checked, we will also show the data

as a graph in the drawing canvas. So, the resulting relational data can be shown

as a table and as a graph simultaneously. If the “Merge” option is checked, we

will merge the new data into the existing graph. Otherwise, the existing graph is

replaced with the query result.

4.7.2 Graph-Based Queries

Visuall provides three types of graph or traversal based queries: neighborhood,

graph of interest (GoI), and common target/regulators (CTR) based on biologi-

cal pathway queries in [35]. We adapted them to be domain-independent, generic

50

graph queries and implemented them as Neo4j user-defined procedures. Funda-

mentally each query is a function defined in Java. Original algorithms are graph

traversal based, solely working on/with the topology of the graph. To give more

flexibility, we modified these traversals to use data properties. Hence, the traver-

sals will check the data properties of elements and proceed accordingly, leaving

out node/edge types that are not desired during traversals.

Figure 4.21 shows a sample neighborhood query and its results. Neighborhood

query will bring the limited neighborhood of a given node set. It is a breadth-first

search (BFS) with a length limit. The “length limit” parameter will determine

the number of hops we can go further. The “Directed” parameter is used to

decide whether to consider the direction of edges or not. From “Object Types to

Consider”, the user can indicate the graph object types to consider. By default,

all the types are included. To make the graph simpler, the user might want to

ignore certain types. At the bottom right, results are shown in a tabular manner.

We always show the query results as a table.

51

Figure 4.21: A sample neighborhood query and its results

GoI and CTR queries are more complex algorithms. These algorithms were

originally designed by Dogrusoz et al. [35] to query compound graph-based path-

way databases. The original algorithms are developed to work on compound

graphs. Neo4j does not store data as compound graphs. So the algorithms were

52

•

\ I

• • (2> o - •

i

-
•
~

i •••
H .,. ... g--~

' ~

116

2

Object Map Database Settings

General Queries

Get neighborhood

Nodes of lnterest

..... ...

Person:Brigitte Bardot O Person:John Belushi O

Object Types to Consider

[Person j ~
ACTOR ACTRESS DIRECTOR WRITER

PRODUCER EDITOR COMPOSER

CINEMATOGRAPHER PRODUCTION_DESIGNER

ARCH IVE_FOOTAGE ARCHIVE_SOUND

KNOWN_FOR SELF

Options

Length limit O Directed

•5\Jii'ii ~ Graph ~ Merge

Search! ~" ,o,

runtime_minutes production_end_date original_ title

133 Dec 31, 1979, 3:00:00 The Blues

AM Brothers

105 Oct 31, 1977, 2:00:00 Goin' South

AM

adapted to work with simple graphs where compound relations are represented

with special inclusion edges/relations. In addition, we made some optimizations

in the CTR algorithm. These optimizations make CTR query significantly faster

on some practical examples.

Fundamentally, the GoI query will take a set of nodes and a length limit as

parameters. The nodes will be used as sources to initiate the traversal. The

algorithm will find a minimal sub-graph that contains the source nodes and the

paths between. The length of a path between two source nodes should be less

than or equal to the length limit parameter. Similar to the neighborhood query,

this query also takes “Directed” and “Object Types to Consider” as parameters.

To find the minimal sub-graph, GoI makes breadth-first searches from the

source nodes. One BFS is executed for incoming direction, another BFS is exe-

cuted for outgoing direction. BFS calls store distances for each direction. In the

end, GoI will check if the sum of two distances passes the length limit.

Algorithm 2 Graph of Interest (GoI) algorithm

1: procedure GoI(ids, ignoredTypes, lengthLimit, dir)
2: Initialize all nodeLabels and edgeLabels as 0
3: params← nodeLabels, edgeLabels, ids, ignoredTypes, lengthLimit, dir
4: C=GoI BFS(params, OUTGOING) ∪ GoI BFS(params, INCOMING)
5: for q ∈ C do
6: if q.labelForward+ q.labelReverse ≤ lengthLimit then
7: R← R ∪ q
8: end if
9: end for

10: removeOrphanEdges(R)
11: purify(R)
12: removeOrphanEdges(R)
13: return R
14: end procedure

Algorithm 2 summarizes the GoI algorithm. It takes the union of two GoI_BFS

calls and then filters based on length limit, similar to the way it is done in [35].

Algorithm 3 summarizes the GoI_BFS algorithm. The algorithm is a special

BFS that keeps forward and reverse labels for each node and edge. A label

53

Algorithm 3 Graph of Interest breadth-first search (GoI BFS) algorithm

1: procedure GoI BFS(nodeLabels, edgeLabels, ids, ignoredTypes,
lengthLimit, direction, isDirected, isFollowLabeled, unignorable)

2: nodeSet← edgeSet← visitedEdges← ∅
3: Add all node ids in ids to queue Q
4: while Q 6= ∅ do
5: n1← Q.remove()
6: for e ∈ n1.UnignoredEdges(direction, isDirected, ignoredTypes) do
7: n2← e.getOtherNode(n1)
8: b1← isIgnoreNode(n2, unignorable, ids, ignoredTypes)
9: b2← isIgnoreEdge(e, visitedEdges, isFollowLabeled)

10: if b1 OR b2 then
11: continue

12: end if
13: visitedEdges.add(e)
14: if edgeLabels.get(e) does not exist then
15: labelEdge← (lengthLimit+ 1, lengthLimit+ 1)
16: end if
17: if nodeLabels.get(n1) does not exist then
18: labelN1← (lengthLimit+ 1, lengthLimit+ 1)
19: end if
20: if direction is OUTGOING then
21: labelEdge.fwd← labelN1.fwd+ 1)
22: else if direction is INCOMING then
23: labelEdge.rev ← labelN1.rev)
24: end if
25: edgeLabels.put(labelEdge), nodeLabels.put(labelN1)
26: nodeSet.add(n2), edgeSet.add(e)
27: if nodeLabels.get(n2) does not exist then
28: labelN2← (lengthLimit+ 1, lengthLimit+ 1)
29: end if
30: if labelN2 > labelN1 + 1 on direction then
31: set labelN2 to labelN1 + 1 on direction
32: if labelN2 < lengthLimit on direction AND ids 6⊂ n2 then
33: Q.add(n2)
34: end if
35: end if
36: nodeLabels.put(labelN2)
37: end for
38: end while
39: return nodeSet, edgeSet
40: end procedure

54

represents the minimum length to any of the source nodes (given as ids in the

pseudo-code) in forward direction or reverse direction.

Similar to GoI, CTR aims to find common downstream or common upstream

of a set of source nodes (i.e., whether the traversals follow the direction of edges

or go in reserve order, respectively). CTR also uses the same parameters such

as “Directed” and “Object Types to Consider”. CTR additionally takes another

parameter to denote whether it should work downstream or upstream. If it works

downstream (upstream), it will find common targets (regulators). In CTR, the

length limit parameter represents the maximum length between a source node

and a target/regulator. So in CTR, the length of a path between two source

nodes should be less than or equal to two times the length limit parameter.

In the original CTR algorithm, the traversal starts from the source nodes.

First, target/regulator nodes are found. Then the paths between the target/reg-

ulators and the source nodes are found with two other BFS. Two other breadth-

first searches keep some metadata for visited nodes and edges. In each BFS, the

nodes and edges are marked as they are visited. In the first BFS, the traversal

starts from the source nodes. In the second BFS, on the other hand, the traversal

starts from the target/regulator nodes. Each BFS forms a sub-graph of reached

graph elements followed by calculation of their intersection.

As an optimization in the original CTR algorithm, we basically base the second

BFS on the previously marked sub-graph, rather than the entire original graph.

In the end, we need to find the intersection of these two sub-graphs. So we can

limit our scope to the firstly constructed sub-graph on the second BFS. This

may potentially significantly reduce the search space, drastically decreasing the

execution time.

Here we also observed that the size of the first sub-graph is critical. We find a

sub-graph by making a BFS that starts from some nodes. The size of a sub-graph

depends on the number of starting nodes. So the number of start nodes affects the

size of a founded sub-graph. In the original algorithm, the first BFS was starting

from the source nodes, the second BFS was starting from the target/regulator

55

nodes. We know that changing the order does not change the results. So we

think we can start the first BFS with the node set with fewer nodes. The number

of source nodes is a parameter given by the user. Typically it could be as low

as two but it could be a much bigger set. In the end, to keep the size of the

first sub-graph minimum, we check the number of target/regulator nodes and the

number of source nodes. If the number of source nodes is smaller, we construct

the first sub-graph from the source nodes, else we use the target/regulator for the

first BFS.

Algorithm 4 summarizes the CTR algorithm (options related parameters are

left out for brevity). It starts traversals from ids (the source nodes). It finds

a candidate set C and result set R. R is a set of nodes that are common

targets/regulators. Then it should find the paths to R from ids. To find the

paths, it performs two GoI_BFS calls. The last parameter in these calls repre-

sents isFollowLabeled. In the first call, it is false, whereas in the second call

it is true. The second GoI_BFS call will follow the elements labeled in the first

call. In the last part, it applies filtering based on labels and returns the founded

paths.

The time complexity of all three queries depends on the number of neighbors

a node has. The worst-case time complexity of the algorithms is exponential in

the number of source nodes. Because of this exponential nature, these algorithms

should be carefully used with a few number of source nodes and a low limit in

practice. In some practical examples, we observed that our optimization in the

CTR algorithm provides nearly a tenfold faster execution times.

Note that the implementation of these three general queries (neighborhood,

CTR, and GoI) were done in Java specifically for Neo4j. If the user wants to use

some other database provider, they should be able to quickly adapt these code

for the specific provider.

Although the users can build complex and custom queries using “Query By

Rule”, this will not be sufficient for most domain experts (such as fraud detection

and cybersecurity operators) and will require dynamic traversal-based queries

56

Algorithm 4 Common Target Regulator (CTR) algorithm

1: procedure CTR(ids, ignoredTypes, lengthLimit, direction)
2: R← C ← ∅ . R is result set, C is candidate set
3: for id ∈ ids do
4: C ← C ∪ CS BFS(id, ignoredTypes, lengthLimit, direction)
5: end for
6: for q ∈ C do
7: if q.labelReached = |ids| then
8: R← R ∪ q
9: end if
10: end for
11: set all edgeLabels to (0,0)
12: if direction is OUTGOING then
13: set nodeLabels to (0, lengthLimit+ 1) for ids
14: set nodeLabels to (lengthLimit+ 1, 0) for R
15: if |ids| < |R| then
16: o1← GoI BFS(..., ids, OUTGOING, false)
17: o2← GoI BFS(..., R, INCOMING, true)
18: else
19: o1← GoI BFS(..., R, INCOMING, false)
20: o2← GoI BFS(..., ids, OUTGOING, true)
21: end if
22: else if direction is INCOMING then
23: set nodeLabels to (lengthLimit+ 1, 0) for ids
24: set nodeLabels to (0, lengthLimit+ 1) for R
25: if |ids| < |R| then
26: o1← GoI BFS(..., ids, INCOMING, false)
27: o2← GoI BFS(..., R, OUTGOING, true)
28: else
29: o1← GoI BFS(..., R, OUTGOING, false)
30: o2← GoI BFS(..., ids, INCOMING, true)
31: end if
32: end if . Else part handled similar to INCOMING with undirected
33: for q ∈ o1 ∪ o2 do
34: if q.labelForward+ q.labelReverse ≤ lengthLimit then
35: R2← R2 ∪ q
36: end if
37: end for
38: R2 = R2 ∪ ids ∪R
39: purify(R2)
40: removeOrphanEdges(R2)
41: return R2
42: end procedure

57

with user specified parameters. Hence, we let the users write their own custom

queries. We expect the developer to provide a separate Angular component for

each new query. They can, however, import and use some shared components

such as tables for such custom queries.

4.7.3 Table View

In data visualization, one of the most commonly used methods to display infor-

mation is via tables. Visuall uses an Angular component to provide table views in

many places such as the “Query By Rule”, “Object” tab, and “General Queries”.

Visualizing data as a graph and also showing the same data as a table can give

users a more comprehensive viewpoint.

If done with some type of pagination, table views are especially useful as a

way to first show query results to the user without having to automatically lay

out and render large graphs. Visuall provides support for pagination for both

server-side and client-side. In server-side pagination, we only bring one page of

data from the server. The user is allowed to set a maximum page size. With

server-side pagination, we also bring the total count of available records so that

the user will know how many pages exist in the database. When the user wants

to bring the next page, Visuall will query the database again and bring the next

set of records to fill the next page.

In situations where querying the database too frequently takes a long time, the

user might set the page size to a higher value such as a 100. Then, the user will

not need to make frequent database queries but suddenly showing 100 records as

a table or graph might be overwhelming. To give users an alternative, Visuall also

provides a client-side pagination strategy. In client-side pagination, in addition

to page size, there is another parameter called page limit. This time, the number

of records Visuall brings from the database is up to the multiplication of page

size and page limit. Visuall will only bring all the data from the database at once

but shows it one page at a time. If the user wants to bring the next page, Visuall

will not query the database again but instead it will just bring the next slice from

58

the previously saved data in the memory. This strategy is faster at the cost of

increased memory utilization. To give the user utmost flexibility, Visuall allows

the user to dynamically switch between client-side and server-side pagination.

Searching and sorting tables are common features in many applications. The

tables in Visuall let the user search by typing a text and sort by a column of the

table. Search and sort operations might result in database actions. If server-side

pagination is used, search and sort operations in “Query By Rule” and “General

Queries” need data from the database. In this case, the operations are handled

on the database side. On the other hand, the table inside the “Object” tab uses

client-side data. Since it does not need data from the database, the operations

are completely handled on the client-side.

The user can also manage the complexity of graphs manually with tables. For

example, the user might be already working with a complex graph. In this case,

the user might want to bring new graph elements manually by selecting. The

user can select certain rows by checking the check-boxes, and then clicking on the

“Merge selected to graph” icon. You can see this use case in Figure 4.22.

Figure 4.22: An example of manually selecting graph elements from the table

view and adding them to the graph view

When the same data is being shown both as a graph and a table at the same

time, the user might like to observe the mapping between table rows and graph

elements dynamically. Visuall will emphasize this mapping by highlighting graph

59

elements or table rows, should the setting named “Emphasize on hover” is en-

abled. If it is enabled, hovering on a table row will emphasize the corresponding

graph element, and also hovering a graph element will emphasize the correspond-

ing table row. Additionally, this also works for the “Statistics” table. For in-

stance, as shown in Figure 4.23 if you hover on the “Person” type which is a node

type in the sample graph, you will see all the “Person” nodes highlighted.

Figure 4.23: Emphasize corresponding graph elements on graph

60

Chapter 5

Testing & Evaluation

In order to make Visuall more robust and useful, its functionality has been tested

and performance was evaluated. To test functionality, end-to-end (E2E) tests

were written. For performance, we measure the execution times of certain use

cases with graphs of varying sizes.

5.1 Implementation and Testing

Visuall is a web-based project. It consists of codes written in HTML, JavaScript,

Typescript, and CSS. Since it uses Angular, the majority of the codes are written

in Typescript. To handle code complexity, we embraced a modular architecture.

We did not exceed 1100 lines in a code file. We aim to minimize code duplication

as much as possible. We give great importance to the readability of code so that

the codes are formatted and variables have explanatory names.

The need to make changes in software is unavoidable due to bug fixes and new

features. As the software gets complicated, fixing a bug might cause another new

bug or addition of new features might introduce new problems [36]. Sometimes,

a change might cause a bug in a seemingly irrelevant place. Hence, to ensure

functionality and robustness, the software should be tested thoroughly. There

61

are various types of tests such as unit tests, integration tests, and end-to-end

tests [37]. We implemented E2E tests to ensure the functionality of the software

as the whole focus is on the end user’s point of view [38]. Although they are useful

and valuable, writing E2E tests can be time-consuming and cumbersome [39]. To

make implementation of E2E tests easier, we used an E2E testing framework

called Cypress [40]. Cypress enables us to programmatically control the browser.

By this means, we test Visuall as if an end-user clicks on buttons and keyboard.

For Visuall, we implemented 31 E2E tests. Some tests are simple scenarios

such as checking if a graph can be saved as an image, whereas others are more

complex such as checking if a nested query rule can be created.

An example test case is checking whether the user can create and run a nested

rule inside the “Query By Rule” screen. Figure 5.1 shows Cypress script for this

test. The script creates a rule which can be summarized with expression

x.primary_name contains ‘Jo’ AND (x.ACTRESS > 3 OR x.ACTOR > 3)

It means the elements whose “primary name” contains the string ‘Jo’ and who

have more than three “ACTOR” incident edges or more than three “ACTRESS”

incident edges. In the end, the script checks whether the results comply with the

executed rule.

Another example test case is checking whether the user can make a grouping

with Louvain community detection and Markov clustering algorithms. Figure 5.2

shows Cypress script for this test. The script fetches some sample data. Then

it calculates groups using the Louvain clustering algorithm. After that it deletes

the groups. It then calculates groups using the Markov clustering algorithm. It

finally deletes the groups again.

62

Figure 5.1: Cypress script to test whether the user is be able to run a nested
query by rule

Figure 5.2: Cypress script to test whether the user is able to generate groupings

and then remove them

63

Figure 5.3: After all 31 Visuall E2E tests are finished in Cypress

5.2 Evaluation

Visuall is meant to be used in an interactive manner by the end-users. To achieve

that, operations should take at most a few seconds to avoid the user giving up on

the application. Depending on the operation, Visuall might take up some time

on the database side and/or on the client-side. Database operations typically

take more time, also subject to the particular database management system as

well as the operation itself.

For the client-side operations, we measured execution times on graphs with 50,

100, 200, 400, and 800 nodes. For larger graphs, we assume the complexity will be

managed by either tabulating results in text first or by applying other complexity

64

rG) ~-· .
~ ~ C <D localhost:4200/_J#/tests/_arı

Chrome is being controlled by automated test software.

< Tests '-"' 31 X -- 0-- 182.68 • t

AII Specs

... Globol propert ies about Visua ll

~ TC1: Can show object properties by selecting

~ TC2: Should maintain settings when "Store user profile" is checked

(true by default)

Filter By Node/Edge Type

~ TC1: Filter by node/edge type should show or hide based on type

General Queries implemented in the backend side

~ TC1: "Get Neigborhood" query should bring some nodes and
edges

~ TC2: "Get graph of interest" query should bring some nodes ond

edges

~ TC3: "Get common targets/regulators" query should bring some

nodes and edges

Calculate Theoretic Property

~ TC1: Can calculate degree centrality and set widths

... Group Nodes

management operations such as clustering and collapsing [29]. In each graph, the

number of edges is approximately the same as the number of nodes as expected

with most real-life graphs. To make time measurements error-prone, we take the

average of three measurements.

Below are the details of specific performance evaluation for varying operations.

5.2.1 Graph-Theoretical Properties

Calculating graph-theoretical properties might be one of the most time-consuming

operations. It depends on graph size and the theoretical property. Firstly, cal-

culations and then showing the results of calculations on the graph takes time.

We evaluated four different theoretic properties: degree centrality, closeness cen-

trality, betweenness centrality, and page rank. Figure 5.4 shows execution times

for various graphs. Except for closeness centrality, all the execution times are

approximately less than ten seconds.

Figure 5.4: Execution times of calculating various graph theoretical properties

and then showing them on the graph

65

For calculations of theoretical properties, we use Cytoscape.js [17] library func-

tions. For degree centrality, Cytoscape.js uses the algorithm of Opsahl et al. [41].

For betweenness centrality, it uses the algorithm of Brandes et al. [42]. The time

complexity of the degree centrality algorithm is O(|V | + |E|). Here |V | and |E|
denotes the number of vertices and number of edges, respectively. The time com-

plexity of betweenness centrality and closeness centrality are O(|V | · |E|). The

time complexity of the implementation of page rank inside the Cytoscape.js is

O(k · |V | · |V |), where k is the number of iterations.

Figure 5.4 shows the test results mostly comply with theoretic estimation ex-

cept for page rank. Even tough the page rank algorithm has quadratic theoretical

run-time complexity, experiments show a linear behavior. Since our focus is on

small to medium graphs, we do not consider large graphs. Due to the overhead

of the algorithm and not considering large graphs, quadratic behaviour is not

observed. In addition, we executed page rank with default parameter values. So

default values might cause faster executions.

5.2.2 Complexity Management Through Hide-Show

Showing or hiding elements based on type might be useful to make fast filtering.

After elements from a specific type are shown or hidden, Visuall will make an

automatic layout by default. Showing or hiding elements and then doing layout

takes time. We measured four different use cases: hiding a node type, showing

a previously hidden node type, hiding an edge type, and showing a previously

hidden edge type. We used the ‘Person’ node type and ‘ACTOR’ edge type inside

the sample movies graph. Figure 5.5 shows the executions times. Even on the

largest graphs, the operations take less than four seconds.

66

Figure 5.5: Execution times of showing and hiding elements from a certain type

Except for the layout, all the operations will be linear in the number of ele-

ments. The execution of the layout depends on the number of nodes and edges

available. But as a result, it is satisfactory in terms of performance that the

hide/show operations of the graphs finish in less than four seconds in these sizes.

5.2.3 Clustering

Clustering graph elements can be very costly in terms of time. It depends on

the size of the graph and the clustering algorithm. It also depends on how the

clusters are represented. In Visuall, clusters can be represented with compound

nodes or circles. After the clustering algorithm is executed and the clusters are

expressed, Visuall will run an automatic layout algorithm by default. We mea-

sured the sum of execution times of these operations. We make experiments using

Louvain clustering and Markov clustering with both circular cluster representa-

tion and compound node representation. Figure 5.6 shows the execution times.

For circular representations, the CiSE layout algorithm is used. For compound

representations, the fCoSE layout algorithm is used. The fCoSE performs slightly

faster than CiSE. Markov clustering takes at most 16 seconds. Louvain clustering

67

_3.5
vı
"C
C

8 3.0
QJ
vı

E 2.5

i=
§ 2.0
.µ
:::ı
u
~ 1.5
UJ

- Hide 'Person' Node Type

-•- Show 'Person' Node Type
.,. Hide 'ACTOR' Edge Type

··•·· Show 'ACTOR' Edge Type

./.

,,,,.,..,-

,,,,./ --------· / ------.--:.-::-:.-::-:.-:.-::-::-:.-:• ,,,,. ·•·············
.. ------ ... ~----.,,,. -;,;:.f"' ··· ... --:-,· ··· .

r:·'1~·········1· ..
100 200 300 400 500

of Nodes
600 700 800

takes at most 6 seconds.

Figure 5.6: Execution times of clustering algorithms with circular and compound

cluster representations

For Markov clustering algorithm [33], we used the available Cytoscape.js func-

tion. Its time complexity is O(|V |3). By utilizing sparse matrices, the original

algorithm [33] can run faster. The implementation we used does not utilize sparse

matrices. In the implementation, naive matrix multiplications cause cubic time

complexity. We implemented Louvain clustering algorithm [32] ourselves. Its

time complexity is O(|V | · log(|V |)). Figure 5.6 shows theoretical time complex-

ity estimations are consistent with practical experiments.

5.2.4 Database Querying

Effective database querying is a critical part of visual analysis. For this reason,

we tested some common use cases that involve database operations. We used

a Neo4j database (version 3.5) consisting of 188 920 nodes and 406 316 edges.

To prevent the effect of caching, we restarted the database for each experiment.

Table 5.1 shows six use cases involving database operations. Three use cases are

68

fairly complex rules the other three are graph-based queries: neighborhood, GoI,

and CTR.

Operation Client-side
Time (seconds)

Database-side
Time (seconds)

Total Time
(seconds)

Complex rule 1 1.58 0.85 2.43
Complex rule 2 1.08 1.34 2.42
Complex rule 3 1.68 2.54 4.42
Neighborhood 6.69 0.33 7.02
GoI 2.71 2.67 5.38
CTR 4.20 0.82 5.02

Table 5.1: Execution times of various database related operations in seconds

“Complex rule 1” is brings all people who acted at least once and have a name

containing strings either ‘Jo’ or ‘Tom’. Figure 5.7 shows the executed rule.

Figure 5.7: “Complex rule 1” inside Table 5.1

“Complex rule 2” brings all titles who have at least five actors or five actresses

and genre is either comedy or action and type of title is either ‘movie’ or ‘TV

movie’ and have more than 100 votes and rating greater than six. Figure 5.8

shows the executed rule.

69

Figure 5.8: “Complex rule 2” inside Table 5.1

“Complex rule 3” is brings edges with type ‘Actor’ that have character ‘Tom’

or ‘James’ or ‘Alex’. Since an edge cannot be drawn without source and target

nodes, edge type queries also bring source and targets of edges. Figure 5.9 shows

the executed rule.

Figure 5.9: “Complex rule 3” inside Table 5.1

The last three rows in Table 5.1 are graph-based queries. We did not examine

the performance of graph-based queries extensively as they were adapted from

an original work [35]. Hence, we relied on analysis and experiments of that work.

Experiments however confirm reasonable execution times on large databases as

presented below.

70

The neighborhood query in this table brings degree-2 neighborhood of three

people (‘Federico Fellini’, ‘Richard Burton’, and ‘Bette Davis’). It brings 1 046

nodes and 216 edges. The GoI query finds a sub-graph involving two people

(‘Frank V. Phillips’ and ‘Bill Stewart’) with a length limit of six. It brings 219

nodes and 343 edges. The CTR query finds a sub-graph with a length limit

of three involving three people (‘Georges Delerue’, ‘Richard Burton’, and ‘Bette

Davis’). It brings 581 nodes and 537 edges. All the graph-based queries are

undirected and apply a date filter which brings only the elements between the

years 1970 and 2000.

In Table 5.1, total execution time is at most around seven seconds. To see

the whole sub-graph at once, we set the page size to a large value in graph-based

queries. So we bring more elements in graph-based queries compared to complex

rules. For this reason, graph-based queries spend more time on the client side.

71

Chapter 6

Conclusion

In this study, we propose a software library that forms a basis for developing

domain-specific graph visualization and analysis software. Visuall was designed

to be modular and quickly customizable. It is equipped with various instruments

for complexity management and visual analysis. For efficient database querying,

we implemented some generic graph traversal algorithms and built appropriate

UI components for constructing generic (SQL-like) queries.

For performance evaluation, we conducted experiments on common use cases

and validated timely response for interactive use. On small to medium graphs,

it not only works responsively but layout is done incrementally, respecting the

mental map of the user. To ensure the robustness of the software, we also imple-

mented many E2E tests.

6.1 Limitations & Future Work

Visuall is a software library but it is not packaged like a software library of

a package-management system (e.g., NPM [43], Yarn [44]). Packaging Visuall

might be useful to separate customizable parts from the base. Graph visualization

requires deep customizations in many places. So providing customizations and

72

preparing Visuall to be used with a package-management system is challenging.

On the other hand, packing Visuall might make it unnecessarily complex, hence

over-engineering.

Visuall is a full-fledged software. It has its own UI components. People or

organizations might want to integrate a graph canvas/visualization into existing

software. In this case, Visuall can not be used directly. Packaging only the graph

canvas part of Visuall can also still be useful, perhaps reducing the UI complexity.

Visuall uses Cytoscape.js to render graphs. Cytoscape.js works on the client-

side without the need for any external computational power. Cytoscape.js how-

ever can not handle very large graphs though we think complexity management

can be applied with such large graphs.

Our graph-based queries such as GoI and CTR are implemented on the

database level. So if the user is using some other database provider, they should

be implemented for the specific database provider. Since every database provider

has its own query language and special mechanisms to inject algorithms, imple-

menting queries can be tedious and compelling.

In the “Query By Rule” section, we build a hierarchy of conditionals. We might

also let the user define graph patterns like in the Graph Studio of TigerGraph [45].

Visual patterns might be more explanatory way of querying a graph database. In

this case, the user can build more graph-like queries instead of SQL-like queries.

Users could be allowed to generate graph-based queries in this fashion.

fCoSE layout algorithm supports defining constraints. So we can let the user

specify some layout constraints. In some sense, we can provide the user a way for

customizing/defining their own layout algorithm. The user can define multiple

constraints and choose which ones to apply on demand.

73

Bibliography

[1] U. Brandes, “Drawing on physical analogies,” in Drawing graphs, pp. 71–86,

Springer, 2001.

[2] H. Balci, M. C. Siper, N. Saleh, I. Safarli, L. Roy, M. Kilicarslan, R. Ozaydin,

A. Mazein, C. Auffray, Ö. Babur, et al., “Newt: a comprehensive web-based

tool for viewing, constructing, and analyzing biological maps,” Bioinformat-

ics (Oxford, England), p. btaa850, 2020.

[3] M. Sari, I. Bahceci, U. Dogrusoz, S. O. Sumer, B. A. Aksoy, Ö. Babur, and

E. Demir, “SBGNViz: a tool for visualization and complexity management

of sbgn process description maps,” PloS one, vol. 10, no. 6, p. e0128985,

2015.

[4] M. Decuypere, “Visual network analysis: a qualitative method for research-

ing sociomaterial practice,” Qualitative research, vol. 20, no. 1, pp. 73–90,

2020.

[5] “Stackoverflow developer survey 2020.” https://insights.

stackoverflow.com/survey/2020#technology-databases. (Accessed

on 08/16/2021).

[6] T. Kim, H. Chung, W. Choi, J. Choi, and J. Kim, “Cost-based join pro-

cessing scheme in a hybrid rdbms and hive system,” in 2014 International

Conference on Big Data and Smart Computing (BIGCOMP), pp. 160–164,

IEEE, 2014.

74

[7] J. Pokornỳ, “Graph databases: their power and limitations,” in IFIP Inter-

national Conference on Computer Information Systems and Industrial Man-

agement, pp. 58–69, Springer, 2015.

[8] I. Robinson, J. Webber, and E. Eifrem, Graph databases: new opportunities

for connected data. ” O’Reilly Media, Inc.”, 2015.

[9] H.-J. Schulz and C. Hurter, “Grooming the hairball-how to tidy up net-

work visualizations?,” in INFOVIS 2013, IEEE Information Visualization

Conference, 2013.

[10] S. Noel and S. Jajodia, “Managing attack graph complexity through visual

hierarchical aggregation,” in Proceedings of the 2004 ACM workshop on Vi-

sualization and data mining for computer security, pp. 109–118, 2004.

[11] H. C. Purchase, “Metrics for graph drawing aesthetics,” Journal of Visual

Languages & Computing, vol. 13, no. 5, pp. 501–516, 2002.

[12] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, “A layout

algorithm for undirected compound graphs,” Information Sciences, vol. 179,

no. 7, pp. 980–994, 2009.

[13] H. Balci and U. Dogrusoz, “fCoSE: a fast compound graph layout algorithm

with constraint support,” IEEE Transactions on Visualization and Com-

puter Graphics, 2021.

[14] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,

“Graphviz—open source graph drawing tools,” in International Symposium

on Graph Drawing, pp. 483–484, Springer, 2001.

[15] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source software

for exploring and manipulating networks,” in Third international AAAI con-

ference on weblogs and social media, 2009.

[16] “Neo4j bloom.” https://neo4j.com/product/bloom/. (Accessed on

08/05/2021).

75

[17] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader,

“Cytoscape. js: a graph theory library for visualisation and analysis,” Bioin-

formatics, vol. 32, no. 2, pp. 309–311, 2016.

[18] “D3.js.” https://d3js.org/. (Accessed on 08/05/2021).

[19] “Ravelin.” https://www.ravelin.com/. (Accessed on 08/05/2021).

[20] “IBM security i2 threat intelligence analysis platform.” https://www.ibm.

com/security/intelligence-analysis/i2. (Accessed on 08/05/2021).

[21] “yFiles.” https://www.yworks.com/products/yfiles. (Accessed on

08/05/2021).

[22] “Tom Sawyer Perspectives.” https://www.tomsawyer.com/perspectives.

(Accessed on 08/05/2021).

[23] “The KeyLines Toolkit.” https://cambridge-intelligence.com/

keylines/. (Accessed on 08/05/2021).

[24] “Linkurious enterprise.” https://linkurio.us/. (Accessed on

08/05/2021).

[25] “CSS: Cascading Style Sheets.” https://developer.mozilla.org/en-US/

docs/Web/CSS. (Accessed on 06/09/2021).

[26] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,

N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks,” Genome

research, vol. 13, no. 11, pp. 2498–2504, 2003.

[27] “Neo4j graph data platform.” https://neo4j.com/. (Accessed on

08/05/2021).

[28] “Angular.” https://angular.io/. (Accessed on 08/16/2021).

[29] U. Dogrusoz, A. Karacelik, I. Safarli, H. Balci, L. Dervishi, and M. C. Siper,

“Efficient methods and readily customizable libraries for managing complex-

ity of large networks,” Plos one, vol. 13, no. 5, p. e0197238, 2018.

76

[30] U. Dogrusoz, M. E. Belviranli, and A. Dilek, “CiSE: A circular spring em-

bedder layout algorithm,” IEEE transactions on visualization and computer

graphics, vol. 19, no. 6, pp. 953–966, 2012.

[31] K. Freivalds, U. Dogrusoz, and P. Kikusts, “Disconnected graph layout and

the polyomino packing approach,” in International Symposium on Graph

Drawing, pp. 378–391, Springer, 2001.

[32] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast un-

folding of communities in large networks,” Journal of statistical mechanics:

theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[33] S. M. Van Dongen, Graph clustering by flow simulation. PhD thesis, Utrecht

University, 2000.

[34] M. Sarkar and M. H. Brown, “Graphical fisheye views,” Communications of

the ACM, vol. 37, no. 12, pp. 73–83, 1994.

[35] U. Dogrusoz, A. Cetintas, E. Demir, and O. Babur, “Algorithms for effective

querying of compound graph-based pathway databases,” BMC bioinformat-

ics, vol. 10, no. 1, pp. 1–16, 2009.

[36] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “How changes af-

fect software entropy: an empirical study,” Empirical Software Engineering,

vol. 19, no. 1, pp. 1–38, 2014.

[37] D. Spinellis, “State-of-the-art software testing,” IEEE Software, vol. 34,

no. 5, pp. 4–6, 2017.

[38] R. Paul, “End-to-end integration testing,” in Proceedings Second Asia-

Pacific Conference on Quality Software, pp. 211–220, 2001.

[39] W. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-to-end integra-

tion testing design,” in 25th Annual International Computer Software and

Applications Conference. COMPSAC 2001, pp. 166–171, 2001.

[40] “Cypress.” https://www.cypress.io/. (Accessed on 08/16/2021).

77

[41] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted

networks: Generalizing degree and shortest paths,” Social networks, vol. 32,

no. 3, pp. 245–251, 2010.

[42] U. Brandes, “On variants of shortest-path betweenness centrality and their

generic computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008.

[43] “Npm.js.” https://www.npmjs.com/. (Accessed on 08/27/2021).

[44] “Yarn.” https://yarnpkg.com/. (Accessed on 08/27/2021).

[45] “TigerGraph.” https://docs.tigergraph.com/ui/graphstudio/

build-graph-patterns/visual-query-builder-overview. (Accessed on

08/30/2021).

78

