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ABSTRACT

ESSAYS ON NONLINEAR DYNAMICS IN OPTIMAL GROWTH MODELS

YÜKSEL, Mustafa Kerem

Ph.D., Department of Economics

Supervisor: Assist. Prof. Dr. Hüseyin Ça¼gr¬Sa¼glam

January 2014

Economic models with time delay have long been considered in economic theory.

It is considered that delay forces the economic system into persistent cycles which can

be interpreted as intrinsic crises of the capitalist economy. The e¤ect of delay on eco-

nomic dynamics is analyzed by Hopf bifurcation according to the recent developments

in economics and mathematics. Hopf bifurcation depends on the existence of a pair

of pure imaginary eigenvalues of the Jacobian matrix evaluated at the steady state.

However, recent studies are inconsistent in a determinate way to decide whether the

optimal growth model with investment lags admits persistent cycles or not.

In the second chapter of this thesis, the author tries to sharpen the analysis of one

sector optimal growth model with one control and one state variables and time delay.
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We �rstly give a brief outline of the mathematical history and �know-how�of delays

in economic models, as well as its interpretation, and then, we further the analysis set

of the model of Asea and Zak (1999) and try to introduce of a new technique for the

exposition of the eigenvalues of the characteristic equation of these type of models in

a generalized framework.

In the third chapter we introduce a new technique (see Louisell, 2001) to the study

of economic models with delays and incorporate this technique to evaluate the cycle-

inducing e¤ects of capital dependent population growth in economic models with time

delay. We employ the Solow-Kalecki framework and show that the presence of capital

dependent population growth induces cycles. Other than the introduction of a new

technique into the area of economics, one particular contribution of this chapter is

that the results clearly shows that delay is not su¢ cient in inducing cycles even in

the most simple economic models.

In the forth chapter, we show that Hopf bifurcation may emerge in an overlapping

generations resource economy through a feedback mechanism between population and

resource availability. In overlapping generations resource economy models, the cycle

inducing factor is mainly the nonlinearity of the regeneration of the resources. On the

contrary, we assume linear regeneration and yet, endogenize the population growth

rate. We show that the interaction between instantenous population growth and

regeneration rate triggers persistent cycles in the economy.

In the �fth chapter, we employ a continuous delay structure in the process of

recruitment in the population growth in an optimal growth model and hence obtain

cyclic solutions. We exploit Erlangian process in the population growth mechanism.

As far as we know, the incorporation of Erlangian process in optimal growth models

is handled in this chapter for the �rst time in economic literature. Through this

mechanism, not only the population is considered as a function of per capita capital,
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or in other words, population growth is endogenized, but also the current level of

population growth is linked with those of older generations. We �nd out that the

interaction between the e¤ect of older generations�fertility choices and the accumu-

lation of capital induces cyclic behaviour in the economy.

The sixth and the last chapter concludes with future research agenda.

Overall, the thesis considers the e¤ects of delay and endogenized population on

the economies of interest (Solow, overlapping generations, optimal growth model)

economically and tries to introduce the existing methods and develop new ones to

investigate the e¤ects of delay and endogenized population on the eigenvalues of the

Jacobians that the drive the economies of interest at their steady states.

Keywords: Hopf Bifurcation, Overlapping Generations Models, Endogenous Pop-

ulation Growth, Nonlinear Dynamics, Bifurcations
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ÖZET

OPT·IMAL BÜYÜME MODELLER·INDE

DO¼GRUSAL OLMAYAN D·INAM·IKLER ÜZER·INE MAKALELER

YÜKSEL, Mustafa Kerem

Doktora, Ekonomi Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Hüseyin Ça¼gr¬Sa¼glam

Ocak 2014

Zaman gecikmeli iktisat modelleri, iktisat kuram¬n¬n uzun süredir gündemindedir.

Bu modellerde yer alan zaman gecikmesinin iktisadi sistemi, kapitalist ekonominin

içsel krizleri olarak yorumlanabilecek sürekli çevrimlere zorlad¬¼g¬düşünülmektedir.

·Iktisat kuram¬ndaki ve matematikteki geli̧smelerle, zaman gecikmesinin iktisadi di-

namiklere etkisinin çözümlenmesinde Hopf çatallaşmas¬kullan¬lmaya başlam¬̧st¬r. Bu

çatallaşma dura¼gan durumda hesaplanan Jacobi matrisinin yal¬n sanal özde¼ger çif-

tine sahip olmas¬na ba¼gl¬d¬r. Bununla beraber, yap¬lan çal¬̧smalar yat¬r¬m gecikmeli
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optimal büyüme modellerinin çözümlerinde sürekli çevrimlerin bulunup bulunmad¬¼g¬

konusunda kesin bir yarg¬da bulunamamaktad¬r.

Bu tezin ikinci bölümünde, bir kontrol ve bir durum de¼gi̧skeni olan zaman gecik-

meli bir sektörlü optimal büyüme modelinin çözümlemesi geli̧stirilmeye çal¬̧s¬lm¬̧st¬r.

·Ilk olarak matematiksel bir tarihçe ve zaman gecikmeli iktisadi modellerin teknik bil-

gisi, ve bunun yan¬nda da yorumu serimlenmi̧stir. Daha sonra ise, Asea Zak (1999)�da

ortaya konan çözümleme kümesi geni̧sletilmi̧s ve genelleştirilmi̧s bir çerçevede bu tip

modellerin karakteristik denklemlerinin özde¼gerlerinin ortaya ç¬kar¬lmas¬için yeni bir

teknik önerilmi̧stir.

Tezin üçüncü bölümünde, zaman gecikmeli iktisadi modellerin incelenmesi için

yeni bir teknik (bkz. Louisell, 2001) önerilmi̧s ve bu teknik zaman gecikmeli ikti-

sadi modellerde sermayeye ba¼g¬ml¬nüfûs büyümesinin çevrim-yarat¬c¬etkilerini ird-

elemekte kullan¬lm¬̧st¬r. Solow-Kalecki çerçevesi kullan¬larak sermaye ba¼g¬ml¬nüfûs

büyümesinin çevrimleri tetikledi¼gi gösterilmi̧stir. Bu bölümde, yeni tekni¼gin iktisat

alan¬na tan¬t¬lmas¬n¬n d¬̧s¬nda, zaman gecikmesinin en basit iktisadi modellerde bile

çevrimleri tetiklemeyebilece¼gi ortaya konmuştur.

Tezin dördüncü bölümünde ard¬̧s¬k nesiller kaynak ekonomisinde nüfûs ve kaynak

bulunabilirli¼gi aras¬ndaki geribesleme mekanizmas¬n¬n Hopf çatallaşmas¬n¬ do¼gura-

bilece¼gi gösterilmi̧stir. Ard¬̧s¬k nesiller kaynak ekonomilerinde çevrimleri yaratan

temel etken kaynaklar¬n yenilenmesinin do¼grusal olmamas¬d¬r. Buna kaŗs¬n, burada

do¼grusal yenilenme kullan¬lm¬̧s ama nüfûs art¬̧s¬h¬z¬ içselleştirilmi̧stir. Anl¬k nüfûs

büyümesi ve yenilenme oran¬aras¬ndaki etkileşimin ekonomideki sürekli çevrimleri

tetikledi¼gi görülmüştür.

Tezin beşinci bölümünde optimal büyüme modelinde nüfûs art¬̧s¬n¬n modellen-

mesinde sürekli zaman gecikmesi yap¬c¬ kullan¬̧sm¬̧s ve çevrimler çözümler oldu¼gu
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gösterilmi̧stir. Nüfûs büyüme mekanizmas¬nda Erlang sürecinden faydalan¬lm¬̧st¬r.

·Iktisad kuram¬nda optimal büyüme modellerinde Erlang sürecinin kullan¬lmas¬, bizim

bilebildi¼gimiz kadar¬yla ilk defa burada ele al¬nm¬̧st¬r. Bu mekanizma sayesinde sadece

nüfûs ki̧si baş¬sermayenin bir fonksiyonu olarak, yani içselleştirilerek düşünülmekle

kalmam¬̧s, ayn¬zamanda bugünkü nüfûs büyümesi geçmi̧s nesillerin nüfûs büyümesi

ile de ili̧skilendirilmi̧stir. Geçmi̧s nesillerin do¼gurganl¬k tercihleri ile sermaye birikimi

aras¬ndaki etkileşimin ekonomideki çevrimsel davran¬̧slar¬tetikledi¼gi gösterilmi̧stir.

Alt¬nc¬ve son bölümde gelecekteki araşt¬rma gündemi serimlenmi̧stir.

Genel olarak bu tezde, zaman gecikmesinin ve içselleştirilmi̧s nüfûsun (Solowcu,

ard¬̧s¬k nesiller, optimal büyüme modelleri gibi model) ekonomilerindeki iktisadi etk-

isi tart¬̧s¬lm¬̧s, zaman gecikmesinin ve içselleştirilmi̧s nüfûsun ilgili ekonomilerin du-

ra¼gan durumlar¬n¬yönlendiren Jacobi matrislerinin özde¼gerleri üzerindeki etkilerini

inceleyen varolan yöntemler tan¬t¬lm¬̧s ve yenileri geli̧stirilmi̧stir.

Anahtar Kelimeler: Hopf Çatallaşmas¬, Ard¬̧s¬k Nesiller Modeli, ·Içsel Nüfûs Art¬̧s

H¬z¬, Do¼grusal Olmayan Dinamikler, Çatallaşmalar
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CHAPTER 1

INTRODUCTION

Cycles have been on the agenda of researchers in the area of economics for at least

two centuries. Cycles (crises) are assumed to be welfare-costly and thus, the stabi-

lization of cycles (or, inevitability of crises) has been a major political and academic

topic. Main approaches are explained in detail in the chapters to come. However, in

essence, we can assert that there are basically two schools of interpretations: Those

who believe that cycles are caused by exogenous shocks (exogenous in the sense that

the shock is from a noneconomic variable); or those who believe that cycles are in-

trinsic to the economic behaviour.

The degree of mathematical sophistication in these models limits us in the sense

that it is only through these kind of attempts at the heart of economics that we can

understand how sensitive the economic model to di¤erent components and assump-

tions in the model. Unfortunately, we lack the necessary tools to complete a thorough

analysis in a general framework, in other words, an analysis that covers all the models

with all the possible assumptions. Thus, we have to consider particular models with

particular deviations from the existing literature. In that sense, our models may lack
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the immediate and direct policy implications for policy makers. Yet, if cycles mat-

ter practically, we have to make them an object of our study theoretically, as well.

Their existence, the causes, their amplitudes, their frequencies (or periods), their

qualities (persistent or decaying cycles), their stability, short run dynamics, welfare

implications, optimality or suboptimality etc. should be considered in a theoretical

framework.

In the thesis, we attempt to summarize the historical discussions about the char-

acteristics of cycles. We contribute to the literature by extending the existing tools

and refreshing the approaches in economics to understand and present mechanisms of

cycle-inducing investment lags and endogenous population growth and their implica-

tions for the macroeconomic dynamics. In other words, we try to establish the limits

and possibilities of nonlinear dynamics (i.e., cycles) vis-à-vis investment lags and en-

dogenous population growth. The interesting dynamics (limit cycles, i.e., persistent

cyclic behaviour) occur when these ingredients cause permanent adjustment failures

among the economic variables in the economy.

In order to address the e¤ects of delay and endogenous population growth in

macroeconomic models, we try to answer the the cycle puzzle in optimal growth

models with time delay in Chapter (2); we show that delay or endogenous popula-

tion growth alone may not be su¢ cient for the occurrence of cyclic dynamics in even

the most basic economic models or, in other words, cycles depend on the interaction

between the lagged capital accumulation and the instantenous population growth in

Chapter (3); we incorporate endogenous population growth mechanism in an overlap-

ping generations resource economy and show that cyclic solutions exist even in the

absence of unrealistic cycle-inducing assumptions in the existing literature in Chap-

ter (4) and �nally in Chapter (5), the endogenous population growth is handled with

continuos delay that links the past generations capital dependent fertility choices with
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the most recent ones�.

1.1 Historical Background

�Once a principle is set in motion, it works by its own impetus through all its conse-

quences, whether the economists like it or not.�F. Engels1

Just in the beginning of his monumental work The Age of Revolution 1789-1848

(�rst publication 1962), Eric J. Hobsbawn was wise to state that �words are witnesses

which often speak louder than documents�and in the sentences to follow, he listed

some words which had been invented or gained meaning (in terms of their modern

usage) within this period, words such as �capitalism�, �industry�, �working class�

etc. and more strikingly �(economic) crises�and �statistics.�

Economic crises entered in economic literature as early as Jean-Baptiste Say

(1803). By 1830, there were inquiries on early theories of cycles and crises and,

certainly there was some awareness of periodicity of times of prosperity and distress2.

(Besomi, 2008) According to Besomi (2008), one of the �rst accounts of �waves�were

by Thomas Tooke who in his 1823 publication Thoughts and Details on the High and

Low Prices of the Last Thirty Years, who attributed these crises mainly to exogenous

events such as bad seasons etc., and later incorporated some endogenous factors.

1Outlines of a Critique of Political Economy, Deutsche-Französische Jahrbücher, 1844. (in Marx-
Engels Collected Works, Vol.3, pg. 424)

2According to Besomi (2008) Wade (1833) supplied dates for some crises years (p. 150):
1763,1772, 1793, 1811, 1816, 1825�6. Jevons (1878) also gave years of crises: 1763, 1772�3, 1783,
1793, (1804�5?), 1815, 1825 (p. 231).
Wade, J. 1833. History of the middle and working classes; with a popular exposition of the econom-

ical and political principles which have in�uenced the past and present condition of the industrious
orders. Also an Appendix of prices, rates of wages, population, poor-rates, mortality, marriages,
crimes, schools, education, occupations, and other statistical information, illustrative of the former
and present state of society and of the agricultural, commercial, and manufactoring classes, London:
E¢ ngham Wilson (reprinted: New York: Kelly, 1966). 2nd edition 1834, 3rd edition 1835.
Jevons, W.S. 1878 �Commercial crises and sun-spots�, Pt. 1, Nature, vol. XIX, 14 November,

pp. 33�37. Reprinted in Investigations in Currency and Finance, ed. by H. S. Foxwell, London:
Macmillan, 1884, pp. 221�35 (Besomi, 2008).
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Hyde Clarke (1838) was of interest with the idea that �cycles in nature and society,

are subject to an elementary mathematical law� (Besomi, 2008). Although Clarke

was not speci�cally interested in economics, an enormous literature built upon crises

and cycles in economics. Citing Besomi (2008); Coquelin3 (1848) asserted that �com-

mercial perturbations have become in certain countries in some degree periodical�;

Lawson4 (1848) declared these periods would be �ve to seven years; Jevons (1878)

claimed a strict periodicity of 11 years in his survey with reference to �most writ-

ers�. One should note that early investigators were eager to identify the reasons of

cycles to exogenous shocks to the system, such as wars, bad seasons, embargoes, op-

pressive duties, the dangers and di¢ culties of transportation, social unrest increasing

uncertainty, arbitrary exactions, jobbing and speculations etc. The common point

was that these shocks either disrupts the proper working of the system or the proper

functioning of the exchange or production mechanisms (Besomi, 2008). These crises

were assumed to be corrected in the course of the self-adjusting nature of the economy

just after the exogenous determinant is removed.

A second group of analysts were then trying to model these cycles as a part of the

natural course of the economy. This group of researchers views cycles as a resultant

behaviour intrinsic to economic activity, not disjunct occurrences. This approach

forced them to identify the cyclic phenomenon and characterize it. Quoting Besomi

(2008), the transition from the exogenous shock models to �proper theories of the

cycle was a gradual process that took several decades, and was only completed at

the eve of World War I with the theories of Tugan-Baranowsky, Spietho¤, Mitchell,

Bouniatian, Aftalion and a few others.�Once again, Wade was one of the �rst who

�explicitly spoke of a commercial cycle intrinsic to a mercantile society,� and �in-

3Coquelin, C. 1848. �Les Crises Commerciales et la Liberté des Banques,� Revue des Deux
Mondes XXVI, 1 November, pp. 445�70. Abridged as Coquelin 1850 (Besomi, 2008).

4Lawson, J. A. 1848. On commercial panics: a paper read before the Dublin Statistical Society,
Dublin (Besomi, 2008).
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separable from mercantile pursuits� (see Besomi 2008). Moreover, as the cause of

�uctuations, Wade was one of the �rst to come up with the idea of �the lag between

change in price, change in demand and change in production, on which the principal

cyclical mechanism implicitly relied, becomes apparent�(Besomi, 2008).

In accordance with Besomi (2008), Persons (1926) also divides theorists into two

groups (without giving exact references, but by just mentioning names) according to

the their approach to cycles. We can replicate its taxonomy here. The �rst group

consists of economist who emphasize on factors other than economic institutions:

- Periodic agricultural cycles generate economic cycles: W. S. Jevons, H. S.

Jevons, H. L. Moore

- Uneven expansion in the output of organic and inorganic materials is the cause

of the modern crisis: Werner Sombart

- A speci�c disturbance, such as an unusual harvest, the discovery of new min-

eral deposits, the outbreak of war, invention, or other �accidents�may disturb

economic equilibrium and set in motion a sequence which, however, will not re-

peat itself unless another speci�c disturbance occurs: Thornstein Veblen, Irving

Fischer, A. B. Adams

- Variations in the mind of the business community (a¤ected, of course, by speci�c

economic disturbances) are the dominating cause of trade cycles: A. C. Pigou,

Ellsworth Huntington, M. B. Hexter.

The second group economists are those who emphasize on factors related to eco-

nomic institutions:

- Given our economic institutions (particularly capitalistic production and pri-

vate property) it is their tendency to development which results in business
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�uctuations: Joseph Schumpeter, Gustav Cassel, E. H Vogel, R. E. May, C. F.

Bickerdike.

- The capitalistic or roundabout system of production is the primary cause of

business �uctuations: Arthur Spietho¤, D. H. Robertson, Albert Aftalion, T.

E. Burton, G. H. Hull, L. H. Frank, T. W. Mitchell, J. M. Clark.

- Excessive accumulation of capital equipment, accompanied by maldistribution

of income, is responsible for lapses from prosperity to depression: Mentor Bou-

niatian, Tugan-Baranowsky, John A. Hobson, M. T. England, W. H. Beveridge,

N. Johannsen, E. J. Rich.

- The �uctuation of money pro�ts is the center from which business cycles origi-

nate (eclectic theories): W. C. Mitchell, Jean Lescure, T. N. Carver.

- The nature of the �ow of money and credit, under our present monetary system,

is the element responsible for the interruption of business prosperity: R. G.

Hawtrey, Major C. H. Douglas, W. T. Foster and Waddill Catchings, A. H.

Hansen, W. C. Schluter, H. B. Hastings, H. Abbati, W. H. Wakinshaw, P. W.

Martin, Bilgram and Levy.

Persons (1926) also gives the justi�cation of this classi�cation with reference to

essential points of the theories thereafter.

One should also notice that the two groups are also bifurcated in their terminology

which is very apt with their theoretical background. Those who understood crises as

disconnected events shaped their language accordingly with frequent use of �crises�;

yet those who evaluate cycles as a part of the state of the economy exploits the use

of the word �cycle�. The crises theorists tried to identify to reasoning of each crisis

with a particular exogenous shock which lies in the background of all the crisis. W.
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S. Jevons (1878), for example, thought that the sunspots with the exact periodicity

of 10.45 years are the main cause of crop-failures of which he believed to repeat every

10.44 years and this results with an economic burst. H. S. Jevons considered heat

emissions by the sun with the periodicity of 3.5 years to be prior reason of crop

cycles and thus the economic cycles. Irving Fischer was the one who put forward

most common causes of �uctuations as increase in the quantity of money, shock to

business con�dence, short crops and invention. Ellsworth Huntington, interestingly,

makes a connection between business cycles and mental attitude of the community

which depends on health. M. B. Hexter tried to �nd a link between �uctuations

in birth-rate and in death-rate and �uctuations in business enterprise (see Persons,

1926).

On the other hand, those who are tied with the cycles perspective tried to �nd a

causality in the economic system where one state logically precedes the other (Besomi,

2008). Joseph Schumpeter, for example, thought cycles to be �essentially a process

of adapting the economic system to the gains or advances of the respective periods

of expansion�(Persons, 1926). R. E. May blames increased productivity of labour;

Albert Aftalion indicates the existence and the universality of the new industrial

technique which has caused the appearance and repetition of economic cycles; L.

H. Frank explains cycles with his theory of variations in the rates of production-

consumption of consumers�goods; Mentor Bouniatian comes up with two ideas: (1)

the idea that the modi�cation of the social utility of wealth, resulting from changes

in the relation between the production of goods and the need for them, is a cause of

the general advance of prices in a period of prosperity [...] and of decline in a crisis,

(2) the idea that the time-using capitalistic process [...] is at the basis of a period of

advance. (Persons, 1926)5

5A more detailed list of theories and explanations can be found in Persons (1926).
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As the theories of �uctuations improved from crises to cycles the question �how�

takes place of the question �why� (Besomi, 2008). Ragnar Frisch (1933) o¤ers to

de�ne the dynamics in a theory within a mathematical setup6. Frisch and Holme

(1935) tries to identify the roots of a characteristic equation of a speci�c type of mixed

di¤erence and di¤erential equation which occurs in economic dynamics of Michal

Kalecki. (Kalecki will be discussed later.)

The crises of capitalist mode of production had also a particular place in marxist

economic literature. Besomi (2008) references the �the young Friedrich Engels�who

gives an elegant dialectical interpretation in his Outlines of a Critique to Political

Economy (1844, pp. 433-4). Besomi quotes Engels with the following passage:

�The law of competition is that demand and supply always strive to complement

each other, and therefore never do so. The two sides are torn apart again and trans-

formed into �at opposition. Supply always follows close on demand without ever quite

covering it. It is either too big or too small, never corresponding to demand; because

in this unconscious condition of mankind no one knows how big supply or demand

is. If demand is greater than supply the price rises and, as a result, supply is to a

certain degree stimulated. As soon as it comes on to the market, prices fall; and if

it becomes greater than demand, then the fall in prices is so signi�cant that demand

is once again stimulated. So it goes on unendingly� a permanently unhealthy state

of a¤airs� a constant alternation of overstimulation and �agging which precludes all

advance� a state of perpetual �uctuation without ever reaching its goal. This law

with its constant adjustment, in which whatever is lost here is gained there, is re-

garded as something excellent by the economist. It is his chief glory� he cannot see

enough of it, and considers it in all its possible and impossible applications. Yet it is

6Frisch (1933) was a model of persistent �uctuations as a result of the superposition of random
exogenous shocks upon a damped system (Besomi, 2006). These type of models will be revised and
�nally evolve into real business cycle models.
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obvious that this law is purely a law of nature and not a law of the mind. It is a law

which produces revolution. The economist comes along with his lovely theory of de-

mand and supply, proves to you that �one can never produce too much�, and practice

replies with trade crises, which reappear as regularly as the comets, and of which we

have now on the average one every �ve to seven years. For the last eighty years these

trade crises have arrived just as regularly as the great plagues did in the past� and

they have brought in their train more misery and more immorality than the latter.

Of course, these commercial upheavals con�rm the law, con�rm it exhaustively� but

in a manner di¤erent from that which the economist would have us believe to be the

case. What are we to think of a law which can only assert itself through periodic

upheavals?�

Although neither Marx nor Engels put forward a complete theory of this cyclic

crises, they assumed that cycles are intrinsically embedded in the nature of capitalist

production. Marx calls these �realization crises�which are based on the failure of the

realization of the expected pro�ts of the capitalist. Failure is assumed to be rooted

in the overproduction of the economy due to insu¢ cient planning, which Marx refers

as the �anarchy of the capitalist production�. It is Michal Kalecki who tried to �nd

a mathematical reasoning for the marxist approach in a series of papers during 1930s

and later. In one of his most in�uential articles, Kalecki introduces lag structure in

the economy to explore the cyclic behaviour, in which he shows rigorously for the

�rst time that business cycles depends endogenously to production (investment) lags.

(Kalecki, 1935) (A brief exposition of Kaleckian model is still to be discussed with

the literature that builds upon.)

Before discussing in detail the Kaleckian setup and other models, we should track

the improvement of mathematical apparatus. Apparently, after a seminar by Kalecki

at a meeting in the Econometric Society at Leyden, Frisch and Holme (1935) is �rst to
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analyze the roots of di¤erence-di¤erential equations of the form
:
y (t) = ay(t)� cy(t�

�) and characterize the main properties with respect to the roots according to the

exogenous (empirical econometric) parameters a and c. It is James and Belz (1938)

who contributes to the mathematics of the characterization of the problem further.

James and Belz (1938) suggests that �a solution of a di¤erence-di¤erential equation

might be developed in terms of an in�nite series of characteristic solutions� and

investigates �the conditions under which such a development is possible.�In addition,

this paper gives methods �for determining the coe¢ cients of the development, when it

exists�and shows that the solutions of certain forms of integro-di¤erential equations

�can be given in the form of an in�nite series derived from a consideration of related

di¤erence-di¤erential equations.�Hayes (1950) partially closes the literature on roots

by giving the properties of the roots of transcendental equations of the form �(s) =

ses � a1es � a2 = 0 which is nothing but the resultant characteristic equation of a

subset of di¤erence-di¤erential equations with constant coe¢ cients, which frequently

occurs in dynamic economic systems with delays. As Zak (1999) points out, the �rst

thorough analysis of a general class of delay di¤erential equations is by Bellman and

Cooke (1963) with later fundamental work by Hale (1977).

Kalecki (1935)7 introduces production lags, a time delay between the investment

decisions and delivery of the capital goods, to show the generation of endogenous

cycles. He employs a linear delay di¤erential equation of the deviation of investment8

7A brief exposition of the Kalecki (1935) model and its properties can be found in Zak (1999) and
Szyd÷owski (2002). These texts reproduces Kalecki�s results with contemporary techniques which
are also employed in this thesis.

8Michal Kalecki studied the underlying forces of cycles in economy throughout his life and his
bunch of theories vary from linear di¤erence di¤erential equation systems to exogenous factors. As
Besomi (2006), in his study about Kalecki�s business cycle theories, pointed out Kalecki �either failed
to provide a rigorous proof of the stability of the cycle when the model was endogenous or failed
to provide an explanation of the cycle relying on the properties of the economic system, resorting
instead to exogenous shocks to explain the persistence of �uctuations.�Kalecki interpreted cycles as
the dynamic expression of the �intrinsic antagonism of capitalism�however he �acknowledged the
existence of disturbing factors, from which he abstracted in order to isolate a pure cycle.�Besomi
(2006) also reports that �Kalecki�s models describes damped �uctuations around a line of stationary
equilibrium and rely for the persistence o �uctuations on exogenous shocks�and moreover, all his
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which is denoted by J . The investment equation9 is of the form _J (t) = AJ(t) �

BJ(t� �). Kaleckian models exhibit endogenous cycles by employing simple time lag

in a linear delay di¤erential equation. Lags in the model serves two purposes: (1)

Lag structure is empirically signi�cant10 and (2) �rst order linear ordinary di¤erential

equations are known to be unable to give cyclic solutions while linear delay di¤erential

equations may exhibit endogenous cycles. Apart from showing that there can exist

endogenously driven cycles in the economy rather than crises determined by exogenous

shocks, Kalecki develops the mathematical techniques to characterize the stability

properties in linear delay di¤erential equations. Obviously, one had to wait for Hayes

(1950) for a full understanding of the stability properties in one delay linear di¤erential

equations, although Kalecki (1935) presents a thorough stability analysis (Zak, 1999).

Kaldor (1940) criticizes Kalecki (1935) by pointing out that the drawback of the

model is that �the existence of an undamped cycle can be shown only as a result

of a happy coincidence, of a particular constellation of the various time-lags and

parameters assumed� and �the amplitude of the cycle depends on the size of the

initial shock.� Instead, Kaldor (1940) proposes a nonlinear investment decision to

obtain cycles of the economy. Inspired by Kaldor (1940), Ichimura (1954) explores

the possibility of an economic system with a unique limit cycle; Chang and Smyth

(1971) reexamine the model and state the necessary and su¢ cient conditions of an

existence of a limit cycle; Grasman and Wentzel (1994) considers the coexistence of

a limit cycle and an equilibrium. The dynamics of Kaldor-Kalecki type of models

have been extensively studied on a series of papers by Krawiec and Szyd÷owski (1999,

2000, 2001, 2005), Szyd÷owski (2003) and Krawiec, Szyd÷owski and Tobo÷a (1999).

models �crucially depend for cyclicality upon one or more reaction lags.�
9The exact linear delay di¤erential equation studied by M. Kalecki (1935, p. 332) is

:

J (t) =
m
� J(t)�

m+n�
� J(t� �) where m and n are assumed to be constants.

10Kalecki (1935, pp. 337-338) estimates the lag between the curves of beginning and termination
of building schemes (dwelling, industrial and public buildings) as 8 months and lags between orders
and deliveries in the machinery-making industry as 6 months based on the data supplied by German
Institut fuer Konjunkturforschung. He assumed �that the average duration of � is 0.6 years.�
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Kaldor-Kalecki models have two mechanisms which would lead to cyclic behaviour,

one being the nonlinearity of the investment function and the other being the time

delay in investment (Krawiec and Szyd÷owski, 2001). Krawiec and Szyd÷owski (1999,

2001) proves that it is the time to build assumption rather that the nonlinear (s-

shaped) investment function that leads to the generation of cycles.

The main tool in these papers for creating cycles is Hopf bifurcation. �In 1942,

Hopf published the ground-breaking work in which he presented the conditions nec-

essary for the appearance of periodic solutions, represented in phase space by a limit

cycle.�(Szyd÷owski, 2002). With reference to the contributors of the study of the suf-

�cient conditions under which periodic orbits occur from stationary states are called

Poincaré�Andronov�Hopf theorems. As Kind (1999) points out, it is generally easy to

prove Hopf bifurcation since it doesn�t require any information on the nonlinear parts

of the equation system. Moreover, in systems with the dimension higher than two,

Hopf bifurcation may be the only tool for the analysis of the cyclical equilibria, since

the Poincaré-Bendixson theorem is not applicable. Furthermore, when the conditions

of Hopf bifurcation are satis�ed, it guarantees both the existence and uniqueness of

periodic trajectories (Krawiec and Szyd÷owski, 1999). However, Hopf theorem gives

no information on the number and the stability of closed orbits. On the other hand,

nonlinear parts can be used in the calculation of a stability coe¢ cient in order to

determine the stability properties of the closed orbits (Kind, 1999). Guckenheimer

and Holmes (1983, Thm. 3.4.2, pp. 151-153) both gives the theory and an example

in that direction. Feichtinger (1992) is an example of such a calculation in economic

literature.

Zak (1999) summarizes Kalecki�s contribution and extends his results to a general

equilibrium setup, which has been an open research area until then11. Zak (1999)

11Zak (1999, p. 325¤) also claimed that Kaleckian cycle in Kalecki (1935) was nothing but Hopf
cycles.
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inserts a production lag into a basic one sector Solowian model and shows that the

results also admits Hopf cycles under certain conditions. Later, Krawiec and Szy-

d÷owski (2004) reproduces the results and improves the analysis of the same model.

Zak (1999) also copies the results of an important contribution to the literature which

marked an important �false� attempt to extend the same analysis to the optimal

growth models with lags. Asea and Zak (1999) is the �rst to lay out the main tools

and shows that there exists a cyclic behaviour in these type of models. However, this

paper contains an error on the �rst order dynamic equations which erroneously lead

to Hopf cycles. The corrected characteristic equation12 is not easy to analyze to �nd

out whether the roots satisfy Hopf conditions, so studies afterwards turn to numerical

analysis to reveal periodic behaviour. Winkler et al. (2004), Winkler et al. (2005),

Collard et al. (2006), Collard et al. (2008), Brandt-Pollmann et al. (2008) are among

such studies.

Unlike Solowian systems which result with a characteristic equation of the form

h(�)
def
= ��Ae��r = 0; in optimal growth models, one should deal with more complex

characteristic equations. Apart from the nonlinearity of the utility and production

functions, optimal growth model is governed by a 2 � 2 system of equations (one

for state and the other for control dynamics), so the degree of the polynomial is

greater, if one can mention about degree of quasi-polynomials. Collard et al. (2006)

numerically shows that the advanced terms in Euler equations governing the dynamic

system dampen the �uctuation caused by the lags through a kind of smoothing e¤ect

(They call this phenomenon �time-to-build echo�). Short run dynamics of time-to-

build echoes are further studied by Collard et al. (2008) in which one can �nd the

associated numerical simulations. Winkler et al. (2004) provides numerical solutions

12Winkler et al. (2003) gives the correct dynamics and characteristic equations for any utility and
production function. In Collard et al. (2008) one can �nd the correct dynamics and characteristic
equations for a speci�c concave production function (f(k) = Ak�) and in Collard et al. (2006) the
case of CES utility function (u(c) = c1���1

1�� ) and the same production technology is studied.
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of models of time delay optimal growth models for a linear limitational production

function, while Winkler et al. (2005) gives a numerical analysis of a time-lagged cap-

ital accumulation optimal growth model with Leontief type of production functions.

Brandt-Pollmann et al. (2008) extends the numerical solutions to objective functions

with state externalities.

Dockner (1985) is of special interest since it opens a new line of research of Hopf

cycles in economy. Dockner (1985) give the root characteristics (local stability prop-

erties) of a 4� 4 system of dynamic equations in a simple form, where these 4� 4 is

the resultant dynamics of nonlinear optimal control problems with one control and

two state variables. These results have been exploited extensively by Wirl in a series

of papers13, with models of two states, one inducing an externality on the objective

function. Note that the etiology of cycles in these models are the externality which

is expressed with one of the state variables in objective function, rather than time

delays in the evolution of states. The optimality of such cycles has been studied

by Dockner and Feichtinger (1991). Optimality of cycles (in a similar two state ap-

proach) in more speci�c setups has also been studied. Wirl (1994) investigates cyclical

optimality in a Ramsey model with wealth e¤ects and Wirl (1995) repeats the same

for renewable resource stocks can be exempli�ed. Wirl (1992) simpli�es the �ndings

of Dockner (1985) in economic framework of two-dimensional optimal control models

and gives an economic interpretation to the necessary conditions for cyclic behaviour.

Wirl (1994) repeats and extends Wirl (1992). Wirl (1997, 1999, 2002) further extend

the results to optimal control problems with one state and an externality. Since the

externality is not included in the Hamiltonian of the optimal control problem, the

model has a 3 � 3 dynamics, yet the �ndings are in similar direction. Wirl (1999)

constructs an environmental model and repeats the analysis. Wirl (2004) analyzes a

model of optimal saving with optimal intertemporal renewable resources in terms of

13See various papers in references.
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thresholds and cycles.

One should also mention the seminal work by Kydland and Prescott (1982). In

their paper, Kydland and Prescott (1982) formulates a discrete time theoretical frame-

work and showed that US post-war economy �tted well. This is one of the major

studies that supports the idea that the time-to-build assumption contributes to the

cyclical behaviour in the economy even when the simplest equilibrium growth model

is employed.

1.2 Characteristic Equation of Dynamic Systems and Its

Roots

A dynamic system of di¤erential equations induces a characteristic equation of which

the placement of the roots of the equations in the complex plane gives clues about the

behaviour (stability, indeterminacy etc.) of the system. The characteristic equation

determines the behaviour of the system near its steady state (i.e. equilibrium point).

Following Hale and Lunel (1993, p. 17), a linear di¤erential equation of the form
:
x (t) = Ax(t) + Bx(t � r) has a nontrivial solution ce�t (c, constant) if and only if

h(�)
def
= ��A�Be��r = 0. Because of the transcendental function of �, this is not a

polynomial but is the type of functional form which is called quasi-polynomials. The

analysis of quasi-polynomials in economics dates back to Kalecki (1935). In his paper,

Kalecki (1935) introduces a gestation period to the model and ended up with a quasi-

polynomial. Later, Frisch and Holme (1935) and James and Belz (1938) contribute

to the literature on the characteristic solutions of mixed di¤erence and di¤erential

equations. However, a major breakthrough in the analysis is by Hayes (1950). Hayes

give the properties of certain di¤erence-di¤erential equations, mainly the ones of the

15



form h(�)
def
= �e�r � Ae�r � B = 014. Note that this equation is equivalent in roots

with the equation above.

Periodic solutions to dynamic systems are also analyzed extensively in control

theory. One way to detect limit cycles is Hopf bifurcation. Hopf bifurcation discards

tedious calculations and provides a powerful and easy tool to detect limit cycles. Kind

(1999) con�rms this by stating �in most cases the proof of a Hopf bifurcation is not

di¢ cult because it does not require any information on the nonlinear parts of the

equation system. Moreover, in systems whose dimensions are higher than two, Hopf

bifurcation theorem may constitute the only tool for the analysis of cyclical equilibria,

since the Poincaré�Bendixson theorem is not applicable in these cases�. Hopf cycles

appear when a �xed point loses or gains stability due to a change in a parameter

and meanwhile a cycle either emerges from or collapses in to the �xed point (Asea

and Zak, 1999). Under the circumstances the system can either have a stable �xed

point surrounded by an unstable cycle (called a subcritical Hopf bifurcation); or a

stable �xed point loses its stability and a stable cycle appears (called a supercritical

Hopf bifurcation) as the parameter(s) approaches to a critical value (Asea and Zak,

1999). Both cases can be economically signi�cantly meaningful. Supercritical case

which implies a stable cycle can be considered as a stylized business cycle or growth

cycles and the subcritical case can correspond to the corridor stability (Kind, 1999).

Let us state the Poincaré-Andronov-Hopf Theorem (Hale and Koçak, 1991, Thm.

11.12, p. 344) here, for the sake of completeness:

Theorem 1.1 (Poincaré-Andronov-Hopf) Let
:
x = A(�)x + F(�;x) be a Ck, with

k � 3, planar vector �eld depending on a scalar parameter � such that. F(�;0) = 0

and DxF(�;0) = 0 for all su¢ ciently small j�j. Assume that the linear part A(�) at

the origin has the eigenvalues �(�)�i�(�) with �(0) = 0 and �(0) 6= 0. Furthermore,
14For a summary of the roots of certain types of quasi-polynomials, see Özbay (2000, pp. 110-113)
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suppose that the eigenvalues cross the imaginary axis with nonzero speed, that is,

d�
d�
(0) 6= 0. Then, in any neighborhood U of the origin in R2 and any given �0 > 0

there is a � with j�j < �0 such that the di¤erential equation
:
x = A(��)x+F(��;x) has

a nontrivial periodic orbit in U .

According to the above theorem, one can summarize the su¢ cient conditions for

Hopf Bifurcation as follows:

- (H1) A(�)15 has only one pair of pure imaginary eigenvalues. (Pre-Hopf Con-

dition)16

- (H2) Pure imaginary eigenvalues cross the imaginary axis with nonzero speed,

i.e., d�
d�
(0) 6= 0. (Transverse Crossing)

The pre-Hopf condition is necessary for Hopf Bifurcation. Therefore, if this con-

dition is not met Hopf Bifurcation doesn�t exist for the system. This implies that

limit cycles do not occur via Hopf Bifurcation, if not via any other way17.

In the second chapter of this thesis, the author tries to sharpen the analysis of one

sector optimal growth model with one control and one state variables and time delay.

We �rstly give a brief outline of the mathematical history and �know-how�of delays

in economic models, as well as its interpretation, and then, we further the analysis set

of the model of Asea and Zak (1999) and try to introduce of a new technique for the

15Note that A(�) is nothing but the Jacobian matrix that results from linearization of the system.
If �x is the equilibrium point of _x = f(x), then the linear di¤erential equation _x = Df(�x)x = 
@f1
@x1
(x) @f1

@x2
(x)

@f2
@x1
(x) @f2

@x2
(x)

!
is the linear variational equation or the linearization of the vector �eld f at the

equilibrium point �x. (Hale and Koçak, 1991, Defn. 9.4, p. 267)
16The name is given by the author of the thesis.
17Asea and Zak (1999, p. 1164¤) mentions other ways in which periodic orbits may arise. Hete-

roclinic orbits are given as an option, yet there are stated to be �rare�.
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exposition of the eigenvalues of the characteristic equation of these type of models in

a generalized framework.

In the third chapter we introduce a new technique (see Louisell, 2001) to the study

of economic models with delays and incorporate this technique to evaluate the cycle-

inducing e¤ects of capital dependent population growth in economic models with time

delay. We employ the Solow-Kalecki framework and show that the presence of capital

dependent population growth induces cycles. Other than the introduction of a new

technique into the area of economics, one particular contribution of this chapter is

that the results clearly shows that delay is not su¢ cient in inducing cycles even in

the most simple economic models.

In the forth chapter, we show that Hopf bifurcation may emerge in an overlapping

generations resource economy through a feedback mechanism between population and

resource availability. In overlapping generations resource economy models, the cycle

inducing factor is mainly the nonlinearity of the regeneration of the resources. On the

contrary, we assume linear regeneration and yet, endogenize the population growth

rate. We show that the interaction between instantenous population growth and

regeneration rate triggers persistent cycles in the economy.

In the �fth chapter, we employ a continuous delay structure in the process of

recruitment in the population growth in an optimal growth model and hence obtain

cyclic solutions. We exploit Erlangian process in the population growth mechanism.

As far as we know, the incorporation of Erlangian process in optimal growth models

is handled in this chapter for the �rst time in economic literature. Through this

mechanism, not only the population is considered as a function of per capita capital,

or in other words, population growth is endogenized, but also the current level of

population growth is linked with those of older generations. We �nd out that the

interaction between the e¤ect of older generations�fertility choices and the accumu-
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lation of capital induces cyclic behaviour in the economy.

The sixth and the last chapter concludes with future research agenda.

Overall, the thesis considers the e¤ects of delay and endogenized population on

the economies of interest (Solow, overlapping generations, optimal growth model)

economically and tries to introduce the existing methods and develop new ones to

investigate the e¤ects of delay and endogenized population on the eigenvalues of the

Jacobians that the drive the economies of interest at their steady states.
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CHAPTER 2

OPTIMAL GROWTH MODELS WITH DELAY: PRELIMINARY

RESULTS

The question of the e¤ects of delay in economic models is not exhaustively studied

in economic theory. However the history of such analysis can be roughly separated

into two phases which is determined by the current state of the economic theory and

the elaboration of mathematical tools at hand. In one of his most in�uential articles,

Kalecki introduces lag structure in the economy to explore the cyclic behaviour, which

he shows rigorously for the �rst time that business cycles depend endogenously to

production (investment) lags (Kalecki, 1935).

Before discussing in detail the Kaleckian setup and other models, we should

track the improvement of mathematical apparatus. Apparently, after a seminar

by Kalecki at a meeting in the Econometric Society at Leyden, Frisch and Holme

(1935) is the �rst to analyze the roots of di¤erence-di¤erential equations of the form
:
y (t) = ay(t) � cy(t � �) and characterizes the main properties with respect to the

roots according to the exogenous (empirical econometric) parameters a and c. It is

James and Belz (1938) who contributes to the mathematics of the characterization of
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the problem further. James and Belz (1938) suggests that �a solution of a di¤erence-

di¤erential equation might be developed in terms of an in�nite series of characteristic

solutions�and investigates �the conditions under which such a development is pos-

sible.�In addition, this paper gives methods �for determining the coe¢ cients of the

development, when it exists�and shows that the solutions of certain forms of integro-

di¤erential equations �can be given in the form of an in�nite series derived from

a consideration of related di¤erence-di¤erential equations.� Hayes (1950) partially

closes the literature on roots by giving the properties of the roots of transcendental

equations of the form �(s) = ses � a1es � a2 = 0 which is nothing but the resultant

characteristic equation of a subset of di¤erence-di¤erential equations with constant

coe¢ cients, which frequently occurs in dynamic economic systems with delays. As

Zak (1999) points out, the �rst thorough analysis of a general class of delay di¤eren-

tial equations is by Bellman and Cooke (1963) with later fundamental work by Hale

(1977).

Kalecki (1935)18 introduces production lags, a time delay between the investment

decisions and delivery of the capital goods, to show the generation of endogenous

cycles. He employs a linear delay di¤erential equation of the deviation of investment

which is denoted by J19. The investment equation20 is _J (t) = AJ(t) � BJ(t � �).
18A brief exposition of the Kalecki (1935) model and its properties can be found in Zak (1999) and

Szyd÷owski (2002). These texts reproduces Kalecki�s results with contemporary techniques which
are also employed in this thesis.

19Michal Kalecki studied the underlying forces of cycles in economy throughout his life and his
bunch of theories vary from linear di¤erence di¤erential equation systems to exogenous factors. As
Besomi (2006), in his study about Kalecki�s business cycle theories, pointed out Kalecki �either failed
to provide a rigorous proof of the stability of the cycle when the model was endogenous or failed
to provide an explanation of the cycle relying on the properties of the economic system, resorting
instead to exogenous shocks to explain the persistence of �uctuations.�Kalecki interpreted cycles as
the dynamic expression of the �intrinsic antagonism of capitalism�however he �acknowledged the
existence of disturbing factors, from which he abstracted in order to isolate a pure cycle.�Besomi
(2006) also reports that �Kalecki�s models describes damped �uctuations around a line of stationary
equilibrium and rely for the persistence o �uctuations on exogenous shocks�and moreover, all his
models �crucially depend for cyclicality upon one or more reaction lags.�

20The exact linear delay di¤erential equation studied by M. Kalecki (1935, p. 332) is
:

J (t) =
m
� J(t)�

m+n�
� J(t� �) where m and n are assumed to be constants.
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Kaleckian models exhibit endogenous cycles by employing simple time lags in a linear

delay di¤erential equation. Lags in the model serve two purposes: (1) Lag structure

is empirically signi�cant21 and (2) �rst order linear ordinary di¤erential equations are

known to be unable to give cyclic solutions while linear delay di¤erential equations

may exhibit endogenous cycles. Apart from showing that there can exist endogenously

driven cycles in the economy rather than crises determined by exogenous shocks,

Kalecki develops the mathematical techniques to characterize the stability properties

in linear delay di¤erential equations. Obviously, one had to wait for Hayes (1950) for a

full understanding of the stability properties in one delay linear di¤erential equations,

although Kalecki (1935) presented a thorough stability analysis (Zak, 1999).

Kaldor (1940) criticizes Kalecki (1935) by pointing out that the drawback of the

model is that �the existence of an undamped cycle can be shown only as a result

of a happy coincidence, of a particular constellation of the various time-lags and

parameters assumed� and �the amplitude of the cycle depends on the size of the

initial shock.� Instead, Kaldor (1940) proposes a nonlinear investment decision to

obtain cycles of the economy. Inspired by Kaldor (1940), Ichimura (1954) explores

the possibility of an economic system with a unique limit cycle; Chang and Smyth

(1971) reexamine the model and state the necessary and su¢ cient conditions of an

existence of a limit cycle; Grasman and Wentzel (1994) considers the coexistence of a

limit cycle and an equilibrium. The dynamics of Kaldor-Kalecki type of models have

been extensively studied on a series of papers by Krawiec and Szyd÷owski (1999, 2000,

2001, 2005) and Krawiec, Szyd÷owski and Tobo÷a (1999). Kaldor-Kalecki models have

two mechanisms which would lead to cyclic behaviour, one being the nonlinearity of

the investment function and the other being the time delay in investment (Krawiec

21Kalecki (1935, pp. 337-338) estimates the lag between the curves of beginning and termination
of building schemes (dwelling, industrial and public buildings) as 8 months and lags between orders
and deliveries in the machinery-making industry as 6 months based on the data supplied by German
Institut fuer Konjunkturforschung. He assumed �that the average duration of � is 0.6 years.�
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and Szyd÷owski, 2001). Krawiec and Szyd÷owski (1999, 2001) prove that it is the time

to build assumption rather that the nonlinear (s-shaped) investment function that

leads to the generation of cycles.

The main tool in these papers for detecting cycles is Hopf bifurcation. �In 1942,

Hopf published the ground-breaking work in which he presented the conditions nec-

essary for the appearance of periodic solutions, represented in phase space by a limit

cycle� (Szyd÷owski, 2002). With reference to the contributors of the study of the

su¢ cient conditions under which periodic orbits occur from stationary states, these

theorems are called Poincaré�Andronov�Hopf theorems22. As Kind (1999) points out,

it is generally easy to prove Hopf bifurcation since it doesn�t require any information

on the nonlinear parts of the equation system. Moreover, in systems with the di-

mension higher than two, Hopf bifurcation may be the only tool for the analysis of

the cyclical equilibria, since the Poincaré-Bendixson theorem is not applicable. Fur-

thermore, when the conditions of Hopf bifurcation are satis�ed, it guarantees both

the existence and the uniqueness of periodic trajectories (Krawiec and Szyd÷owski,

1999). However, Hopf theorem gives no information on the number and the stability

of closed orbits. On the other hand, nonlinear parts can be used in the calculation

of a stability coe¢ cient in order to determine the stability properties of the closed

orbits (Kind, 1999). Guckenheimer and Holmes (1983, Thm 3.4.2, pp. 151-153) both

gives the theory and an example in that direction.

According to the Hopf theorem, one can summarize the su¢ cient conditions for

Hopf Bifurcation as follows:

- (H1) A(�); namely, the Jacobian of the nonlinear system, has only one pair of

pure imaginary eigenvalues. (Pre-Hopf Condition)

22Poincaré�Andronov�Hopf Theorem is given in Theorem (1.1).
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- (H2) Pure imaginary eigenvalues cross the imaginary axis with nonzero speed,

i.e., d�
d�
(0) 6= 0. (Transverse Crossing)

In other words, the roots (eigenvalues) of the Jacobian should loose stability at

the critical level of parameter � which is called the Hopf parameter.

Zak (1999) summarizes Kalecki�s contribution and extends his results to a general

equilibrium setup, which has been an open research area until then23. Zak (1999)

inserts a production lag into a basic one sector Solowian model and shows that the

results also admits Hopf cycles under certain conditions. Later, Krawiec and Szy-

d÷owski (2002, 2003, 2004) reproduce the results and improved the analysis of the

same model.

Zak (1999) merges the economic contributions of Kalecki (1935) and Solow (1956)

together with that of the mathematical contributions of Hayes (1950) and Hopf (1942).

Zak (1999) presents a Solow-Kalecki model in which capital accumulates according

to the rule,

_k(t) = sf(k(t� �))� �k(t� �); (1)

so that at time t, the productive capital is k(t � �). Now, it is easy to show that

delay di¤erential equation in (1) exhibits Hopf cycles around its steady state. Zak

(1999) states that �Hopf cycles are precisely the cycles that Kalecki found for his

model, although his demonstrations of cycles predate Hopf�s work and thus were not

so called.�

For the presentational purposes, we hereby present the �know-how�of Zak (1999).

23Zak (1999, p. 325¤) also claims that Kaleckian cycle in Kalecki (1935) is nothing but an Hopf
cycle.
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The characteristic equation for the capital accumulation equation in (1) is

h(�) � ��Be��� = 0;

where B = sf 0(k�) � �: from linearization and the steady state condition. Let � =

� + i! be the roots to the characteristic equation, then by Euler equation (ei! =

cos! + i sin!), we have

��Be��� cos �! = 0; (2)

! +Be��� sin �! = 0: (3)

Equations (2) and (3) completely characterizes the root distribution of the delay

di¤erential equation in (1). Zak (1999) shows that there is a parameter combination

that leads to a pure imaginary couple of complex eigenvalues which satis�es the

transverse-crossing condition.

To sum up, we may state that the main aim is to model the economic dynamics in

reduced form, without external shocks so that the model can be used to explain

business cycles. In that line, Kalecki (1935) shows rigorously that lags produce cycles

endogenously and Zak (1999) extends the idea to Solowian economies. Later, Krawiec

and Szyd÷owski (2002, 2003, 2004) further analyze the dynamics and other aspects in

a series of papers. This is summarized in the Table (1).8<:
Kalecki (1935)

+
Hayes (1950)

9=; + Hopf (1942) + Solow (1956)

| {z }
Zak (1999)

+
Krawiec and Szyd÷owski (2002, 2003, 2004)

Table 1: Solow-Kalecki models
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2.1 Delay in Optimal Growth Models

Zak (1999) also copies the results of an important contribution to the literature which

marks an important �false�attempt to extend the same analysis to the optimal growth

models with lags. The Solow-Kalecki idea has been revived and extended to the

Ramsey type optimal growth model by Asea and Zak (1999). In their paper, Asea

and Zak (1999) tries to determine the steady state characteristics of the following

model:

maxfc(t)g1t=0

1R
0

e�rtu(c(t))dt

subject to
:

k (t) = f (k(t� �)) + �k(t� �)� c(t);

k (t) = �(t); t 2 [�� ; 0];

(4)

where r; � > 0; � � 0 are discount rate, time delay and depreciation, respectively.

According to Asea and Zak (1999), the �rst order conditions are as follows:

:
c (t) =

u0(c)

u00(c)
[r + � � f 0(k(t� �))] ;

:

k (t) = f (k(t� �)) + �k(t� �)� c(t);

with the characteristic equation,

h(�) � �2 � �Be��� � Ce��� = 0: (5)

Although characteristic equation in (5) is harder to solve than the previous one, it

is still solvable and Asea and Zak (1999) shows that the root distribution contains a

pair of pure imaginary eigenvalues and that the model exhibits Hopf cycles.

Asea and Zak (1999) is the �rst to lay out the main tools and shows that there
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exists a cyclic behaviour in these type of models. However, this paper contains an

error in the �rst order dynamic equations which erroneously lead to Hopf cycles. The

corrected �rst order conditions are

:
c (t) = r

u0(c(t))

u00(c(t))
+
u0(c(t+ �))

u00(c(t))
[f 0(k(t))� �] ; (6)

:

k (t) = f (k(t� �)) + �k(t� �)� c(t); (7)

with the characteristic equation

h(�) �
�
r � re�� � �

� �
rer�e��� � �

�
� uc
ucc
e�r�fkk = 0: (8)

Note that the �rst order conditions constitute a system of delay and advance type of

di¤erential equations. As Collard et al. (2008) aptly states �unfortunately, as soon

as the dynamics of these models are characterized by a forward looking compo-

nent, the lack of numerical methods to solve these problems makes the quantitative

evaluation of their transitional dynamics di¢ cult.�

From this point on, the literature develops on three distinct lines of research. The

complexity of the characteristic equation prevents to produce analytical results and

thus, some researchers incline towards numerical simulations. Winkler et al. (2004),

Collard et al. (2008) and Brandt-Pollmann et al. (2008) are those who try numerical

simulations to comprehend the dynamic behaviour of optimal growth models with

delay. The main �ndings are summarized by Winkler et al. (2004) who states that

�both the frequency and the amplitude of the cycles depend on the length of the in-

vestment period,�and by Collard et al. (2008) who states that �for a large delay the

economy converges to the steady state by oscillations, but consumption smoothing

mitigates the induced echo e¤ects through an advanced Euler-type di¤erential.�Fur-

thermore, Collard et al. (2006) numerically shows that the advanced term in Euler
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equation governing the dynamic system dampens the �uctuation caused by the lags

through a kind of smoothing e¤ect (They call this phenomenon �time-to-build echo�).

Short run dynamics of time-to-build, i.e. echoes, are further studied by Collard et

al. (2008) in which one can �nd the associated numerical simulations. Winkler et

al. (2004) provides numerical solutions of models of time delay optimal growth mod-

els for a linear limitational production function, while Winkler et al. (2005) gives a

numerical analysis of a time-lagged capital accumulation optimal growth model with

Leontief type of production functions. Brandt-Pollmann et al. (2008) extends the

numerical solutions to objective functions with state externalities.

Note that the de�ciency of numerical simulations when it comes to Hopf bifurca-

tion is that Hopf bifurcation depends on the precise calibration of the Hopf parameter

and without such calibration it may be impossible to hit the limit cycle solution sim-

ply by the randomization of parameters. Moreover, the quasi-polynomial associated

with the characteristic equation naturally contains in�nitely many complex roots

which would result in cyclic behaviours. Considering the conditions which exclude

completely unstable solutions, like that of transversality condition, it is natural that

a random choice of parameters would result in decaying cycles that is, for the most

part, in accordance with the results and interpretation of Collard et al. (2008).

Another line is AK simpli�cation. Assuming that the production schedule follows

an AK production technology simpli�es the _c equation in the �rst order conditions.

The resulting �rst order conditions are,

:
c (t) = r

u0(c(t))

u00(c(t))
+
u0(c(t+ �))

u00(c(t))
[A� �] ;

:

k (t) = f (k(t� �)) + �k(t� �)� c(t):
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with the characteristic equation of

h(�) �
�
r � re�� � �

� �
rer�e��� � �

�
= 0:

Note that the resulting characteristic equation is easier to handle. Bambi (2008)

exploits the simpli�ed characteristic equation and �nds Hopf cycles and Winkler

(2008) solves
:
c equation �rst and then using the solution solves

:

k equation (See Barro

and Sala-i Martin, 1995, Ch. 4.1).

Although the �AK simpli�cation�approach enables some analytical results, the

main question of whether there exist limit cycles under concave production remains

unanswered. Though there is no clear justi�cation, the third approach is to show the

non-existence of such persistent cycles. Benhabib and Rustichini (1991), Caulkins et

al. (2010) and Hartl and Kort (2010) represent the school of �lack-in-faith in cycles�.

Caulkins et al. (2010) states that �here we in some sense defend the traditional

emphasis on models without delays by showing that an important class of models

with delays can be transformed into equivalent optimal control problems without

delays,� and �the existence of an equivalent problem without delays implies that

the optimal solution to the model with delays cannot involve oscillation.�Thus,

Caulkins et al. (2010) argues for the �non-oscillatory behaviour under exponential

depreciation.�

The e¤orts are summarized in the Table (2).

In this chapter, we try to formulate a new method to further comprehend the root

distribution of the characteristic equation of an optimal growth model with concave

production function and delayed investment structure.
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8<:
Kalecki (1935)

+
Hayes (1950)

9=; + Hopf (1942) + Ramsey (1927)

| {z }
Asea and Zak (1999)| {z }

Num. Simulation| {z }
Cycles Die Out

AK Prod�n| {z }
Limit Cycles

Concave Prod�n| {z }
No Limit Cycles

Winkler et al. (2004),
Collard et al. (2008),

etc.

Bambi (2008),
Winkler (2008),

etc.

Caulkins et al. (2010),
Hartl et al. (2010),

etc.

Table 2: Ramsey-Kalecki models

2.2 Roots of the Characteristic Equation: Some

Preliminary Results

We have already stated the �rst order conditions of Ramsey-Kalecki model (4) in

equations (6) and (7) with the associated characteristic equation:

h(�; �) �
�
r � re�� � �

� �
rer�e��� � �

�
� � = 0; (9)

where � = uc
ucc
e�r�fkk

���
css;kss

2 R: Also note that the steady state conditions are

r = e�r� (fk � �); and c = f(k)� �k:

h(�; �) is simply a quasi-polynomial, i.e., it can be generalized as

H(�) := A(�) +B(�)e�� + C(�)e��� ;

where A(:); B(:) and C(:) are real coe¢ cient polynomials of various degrees, them-

selves.
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Lemma 2.1 Let

H(�) := A(�) +B(�)e�� + C(�)e��� ;

be such that A(:); B(:) and C(:) are polynomials various degrees. Then the roots come

in complex conjugate pairs.

Proof. If

H(�) := A(�) +B(�)e�� + C(�)e��� = 0;

then we have

[H(�)]� = H(��) = A(��) +B(��)e�
�� + C(��)e��

�� = 0:

By Lemma (2.1), we may assert that the root distribution of h(�; �) = 0 in (9) is

in complex conjugate pairs.

The solution strategy in Zak (1999) depends on the identi�cation of the roots of

a real coe¢ cient quasi polynomial of the form

h(�) � ��Be��� = 0.

Note that in equation (9), � 6= 0 prevents us to use this solution strategy, since

otherwise, we may identify the roots of equation (9) by simply identifying the roots

of r � re�� � � = 0 and rer�e��� � � = 0 with the already well known techniques.

This is only possible when the production technology is AK, since then, � = 0. This

is already applied by Bambi (2008).

In this chapter, we propose a new method which increases the complexity of the

system by two by adding another (complex) unknown, say m = �+ i� 2 C; but, this
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reduces the system to two �lower dimensional�complex coe¢ cient quasi-polynomials.

De�ne

h0(�;m) �
�
r � re�� � ��m

� �
rer�e��� � �+m

�
= 0

such that

h(�) = h0(�;m):

In other words, suppose there exists a complex number m = �+ i� 2 C such that

m(r � re�� � rer�e���)�m2 = �:

De�nition 2.1 Let H(x) be a vector of quasi-polynomials with unknowns x 2 Cn.

S[H(x)] = fx 2 Cn : H(x) = 0g:

De�ne the solution set of the characteristic equation h(�) = 0 as

S[h(�; �)] = f�2 C : h(�; �) = 0g;

and the solution set of the characteristic equation h(�;m) = 0 as

S[h0(�;m)] = f(�;m)2 C2 : h0(�;m) = 0g:

Note that Lemma (2.1) implies that if x 2S[H(x)], then its complex conjugate is

also a solution, that is, x�2S[H(x)]:

Theorem 2.2 If � is a solution to h(�; �) = 0; i.e., �2S[h(�; �)], then for m =

�+ i� 2 C such that

m(r � re�� � rer�e���)�m2 = �;
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we have (�;m)2S[h0(�;m)]. Moreover, if (�;m)2S[h0(�;m)] such that

m(r � re�� � rer�e���)�m2 = �;

then �2S[h(�; �)].

Theorem (2.2) is important in the sense that now the whole root distribution of

h(�; �) = 0 can be characterized as the solutions to h0(�;m) = 0 given thatm satis�es

m(r� re��� rer�e���)�m2 = �: In other words, the roots that govern the dynamics

of the economy can be obtained as the solutions (�;m) to the following system of

quasi-polynomials

h1(�;m) : =
�
r � re�� � ��m

� �
re(r��)� + (r � �) +m

�
= 0; (10)

h2(�;m) : = m(r � re�� � re(r��)� )�m2 � � = 0: (11)

h1(�;m) is simply h0(�;m) in which the terms are reorganized so that the symmetry

appears as daylight. Now de�ne

g(�;m) =
�
r � re�� � ��m

�
:

Then, h1(�;m) can be restated as

h1(�;m) = g(�;m)g(r � �;m):

Lemma 2.2 S[h0(�;m)] = S[h0(r � �;m)]
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Proof. Note that

h1(�;m) = h1(r � �;m);

h2(�;m) = h2(r � �;m):

The rest follows.

Thus, the eigenvalues are symmetrical with respect to Re� = r
2
> 0:

De�nition 2.2 Denote the solutions (�;m) of g(�;m) = 0 and h2(�;m) = 0 by

S1[g(�;m); h2(�;m)];

the solutions (�;m) of g(r � �;m) = 0 and h2(r � �;m) = 0 by

S2[g(r � �;m); h2 (r � �;m)];

and the solutions (�;m) of g(�;m) = 0; g(r � �;m) = 0; and h2(�;m) = 0 by

S12[g(�;m); g(r � �;m); h2(�;m)]:

Theorem 2.3 We have

1. For � = r
2
2 R and m = r

2
(1 � 2e r�2 ) 2 R, (�;m) 2 S12 if m2 = �; otherwise,

S12 = ?;

2. S12 � S1 and S12 � S2;

3. S1 � S[h0(�;m)] and S2 � S[h0(�;m)],
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4. S1 and S2 are symmetric with respect to Re� = r
2
, that is, (�;m) 2 S1 if and

only if (r � �;m) 2 S2;

5. S1 [ S2 = S[h0(�;m)].

Proof. For the �rst part, note that for the solutions (�;m) = (� + i!; � + i�) 2 S12

are characterized by

cos!� =
r � �� �
re��

;

sin!� =
�(! + �)
re��

;

cos!� =
�� �
re(r��)�

;

sin!� =
! � �
re(r��)�

;

m(r � re�� � rer�e���)�m2 = �:

The rest follows. Parts (2)-(5) are obvious.

Parts (4) and (5) of Theorem (2.3) implies that to �nd the complete root dis-

tribution S[h0(�;m)], it is su¢ cient to �nd the roots of S1 (or S2). Part (5) also

implies that there are in�nite number of stable and unstable roots due to symmetry

around Re� = r
2
which implies that this economy is saddle path stable. This result

is in accordance with Winkler et al. (2004): �[Characteristic equation] has [...] an

in�nite number of complex solutions with negative real parts and an in�nite number

of solutions with positive real parts.�

Although we are short on completing the analysis towards identifying the root

distribution, we believe that it is now possible to exploit existing tools to �nd the

roots of g(�;m) = 0, and the sensitivity of the distribution of the roots with respect

tom. If such sensitivity is low enough, we can securely be sure to at least characterize

the shape of the root distribution.

35



CHAPTER 3

CAPITAL DEPENDENT POPULATION GROWTH INDUCES

CYCLES24

Kaleckian investment lag is historically important since Kalecki laid a mathemati-

cal foundation of the economic cycles as early as mid thirties. The main mathematical

apparatus (namely the Hayes�Theorem) which analyzes the characteristic roots of

quasi-polynomials emerged at �fties. Hayes (1950) gives a complete stability charac-

terization for the �rst order linear delay di¤erential equations. However, as Zak (1999)

points out, the �rst thorough analysis of a general class delay di¤erential equations

is by Bellman and Cooke (1963) with later fundamental work by Hale (1977).

Kalecki (1935) introduces production lags, a time delay between the investment

decisions and delivery of the capital goods, to show the generation of endogenous

cycles. Kalecki (1935) employes a linear delay di¤erential equation of the deviation of

investment which is denoted by J . The investment equation is _J(t) = AJ(t)�BJ(t�

�). Model of Kalecki (1935) exhibits endogenous cycles by employing simple time lags

in a linear delay di¤erential equation. The dynamics of Kaldor-Kalecki type models

24This essay is published in Chaos, Solitons and Fractals, Volume 44, Issue 9 (July 2011).
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is extensively studied on a series of papers by Krawiec and Szyd÷owski (1999, 2000,

2001, 2005) and Krawiec, et al. (2001). Kaldor-Kalecki models has two mechanisms

which would lead to cyclic behaviour, one being the nonlinearity of the investment

function and the other being the time delay in investment (Krawiec and Szyd÷owski,

2001).

Periodic solutions to dynamic systems are also analyzed extensively in control

theory. One way to detect limit cycles is Hopf bifurcation. Hopf bifurcation discards

tedious calculations and provides a powerful and easy tool to detect limit cycles. Hopf

cycles appear when a �xed point loses or gains stability due to a change in a parameter

and meanwhile a cycle either emerges from or collapses in to the �xed point (Asea

and Zak, 1999). Under these circumstances the system can either have a stable �xed

point surrounded by an unstable cycle (called a subcritical Hopf bifurcation); or a

stable cycle loses its stability and a stable cycle appears (called a supercritical Hopf

bifurcation) as the parameter(s) approaches to a critical value (Asea and Zak, 1999).

Both cases can be economically signi�cantly meaningful. Supercritical case which

implies a stable cycle can be considered as a stylized business cycle or growth cycles

and the subcritical case can correspond to the corridor stability (Kind, 1999). Hopf

Bifurcation dominates the literature when the problem reduces to detect cycles in

dynamic models. The analysis further boils down to �nding a pair of pure imaginary

roots, since the nonzero speed condition is not actually necessary for having Hopf

bifurcation25 (see Farkas, 1994, p. 418; Manfredi and Fanti, 2004). Zak (1999) and

Szyd÷owski and Krawiec (2004) applied the improvements of Hopf theorem to the

Solow-Kalecki type of growth models.

25To be more speci�c, let us quote Farkas (1994): �[The nonzero speed condition] is expressed
by saying that the pair of complex conjugate eigenvalues crosses the imaginary axis with non-zero
speed. This is also a generic requirement, though it is not absolutely necessary: the existence part
of the Theorem remains valid even in the degenerate case when this derivative is zero [etc.]�
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According to the model presented by Zak (1999), the capital becomes productive

after a time period r. That is, the productive capital at time t is k(t� r). Moreover,

capital also depreciates through production. Therefore, the evolution of capital is

governed by the following delay di¤erential equation:

_k(t) = f(k(t� r))� �k(t� r): (12)

However, Brandt-Pollman et al. (2008) classi�es the lag structure given in equation

(12) as a delivery lag26 rather than a time-to-build lag27. Yet, we will employ time-

to-build lag structure, which is of the form

_k(t) = f(k(t� r))� �k(t): (13)

We show that the capital evolution with the lag structure in equation (13) will not

yield Hopf cycles if the production function is of Cobb-Douglas type.

The population growth in Zak (1999) is assumed to be zero. However, the results

will mostly remain if constant population growth is used. Cigno (1981) introduced a

capital dependent (variable) population growth. The said population growth equa-

tion tries to link the growth of population with per capita consumption and degree

of industrialization, where the relation is positive for the former, but negative for

the later. That is, the dynamics re�ect the positive e¤ect of higher per capita con-

sumption and the negative e¤ect of higher degree of industrialization. Denoting the

per capita consumption with (1 � s)Q=L, the dynamics in the paper is given to be

n(t) = f(1 � s)(Q=L)gv1(K=L)v2 ; where v1; v2 > 0. Cigno (1981) found out the sta-

bility characterization of endogenous population growth in an exhaustible resource

26Delivery lag is such that investment for new capital goods is made at time t but the new capital
goods need some time r to be delivered and, thus, to be productive (Brandt-Pollman et al., 2008).

27Time-to-build lag is such that capital goods need some time r over which they require invest-
ments in order to be produced (Brandt-Pollman et al., 2008).
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framework. Cigno (1981) concludes that, for certain parameter settings the steady

state is stable.

We show that constant population growth is not su¢ cient to obtain cyclical be-

haviour in certain type of capital accumulations, given that the production is Cobb-

Douglas. However, a capital-dependent population growth rule leads to Hopf cycles.

This chapter is organized as follows. In Section 2 we show that Cobb-Douglas

production function and constant population growth model doesn�t contain Hopf

cycles. We have introduced the theorem from Louisell (2001), which gives an easier

method to detect pure imaginary roots. In section 3, we extend the model so that

the population growth is now capital dependent. Employing similar techniques, we

have found out that the latter model gives Hopf cycles. Section 3 is the conclusion.

3.1 Constant Population Growth

Finding pure imaginary roots has been widely discussed in the literature. The follow-

ing theorem from Louisell (2001) constitutes a shortcut to detect the pure imaginary

roots of certain type of di¤erence-di¤erential systems.

Let A0, A1 2 Rn�n, h > 0. Consider the following di¤erence-di¤erential equation

_x(t) = A0x(t) + A1x(t� h); (14)

which has a characteristic function of

T (�) = �I � A0 � A1e��h; (15)
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Theorem 3.1 (Louisell, 2001) Let A0, A1 2 Rn�n, h > 0 and let

J =

0B@ A0 
 I A1 
 I

�I 
 A1 �I 
 A0

1CA ; (16)

where 
 denotes the Kronecker product28. Then, all imaginary axis eigenvalues of

the delay equation (14) are the eigenvalues of J.

Assume that we are faced with an economy endowed with Cobb-Douglas produc-

tion function and capital lag29 which is given as follows:

_k(t) = sk� (t� d)� (n(t) + �) k(t); (17)

where � 2 (0; 1) is the constant capital�s share in production, d > 0 is the constant

capital lag, � > 0 is the constant depreciation of capital and s > 0 is the constant

rate of savings. Denote n(t) =
_L(t)
L(t)
. Under the standard growth model with time lag,

where the rate of population growth is assumed to be constant, i.e. n(t) = n for all

t > 0, we will show that this Solow-Kalecki growth model does not induce any Hopf

cycles.

The steady state level of capital is

kss = (
s

n+ �
)

1
1�� ; (18)

28Let W 2 Rm�n and Y 2 Rp�q:Then W 
 Y 2 Rpm�qn is as follows

W 
 Y =

0@w11Y ::: w1nY
: : :

wm1Y ::: wmnY

1A ;
29Capital lagged Cobb-Douglas type production function is assumed to be

Y (t) = K�(t� d)L1��(t)
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and the linearization of the dynamic system around its steady state will yield

_z(t) = (�sk��1ss )z(t� d)� (n+ �)z(t); (19)

with the change of variable z(t) = k(t) � kss. The matrix which should be used to

employ the result of the theorem from Louisell (2001) is as follows30:

J =

0B@ A0 A1

�A1 �A0

1CA ;
where A0 = � (n+ �) and A1 = �sk��1ss = � (n+ �). In this case, we have �1;2 =

�(n + �)
p
1� �2 2 R as eigenvalues. Since, this matrix does not possess any pure

imaginary eigenvalues, the linearized system which is characterized by equation (19)

has no pure imaginary eigenvalues Therefore, Kaleckian growth models with Cobb-

Douglas type of production functions and capital lag do not induce any Hopf bifur-

cation.

3.2 Capital Dependent Population Growth

Note that any variation in the population growth rate within some certain limits does

not change the above result. Suppose that the population growth is not constant but

exogenously time dependent. Moreover, suppose that the n(t) is convergent for some

nss, that is n(t)! nss as time goes to in�nity. Then neither the steady state values,

nor the linearized system dynamics which is given by equation (19) is e¤ected. Thus,

time-varying population growth is not su¢ cient for cyclic behaviour31, since the only

mechanism that would give this kind of behaviour is a Hopf cycle.

30Note that A
 I = A if I 2 R1x1 for any A 2 R1x1.
31Time-varying population growth case is exploited for the insights it presents. Other than that,

the author is fully informed that this kind of population growth functions are not employed in the
literature.
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On the other hand, the behaviour can drastically change if we use wealth-induced

population dynamics, even if we stick to the Cobb-Douglas production function.

Cigno (1981) proposes the following population growth

n(t) = (1� s)v1k(t)�v1�v2 ;

where v1 and v2 are positive constants. For the ease of calculations, assume zero

depreciation, i.e. � = 0. Substituting this into the capital accumulation equation, we

obtain

_k(t) = sk� (t� d)� (1� s)v1k(t)1+�v1�v2 ; (20)

Steady state equation will adjust accordingly:

kss = (
s

(1� s)v1 )
1

1��(1�v1)�v2 ; (21)

whence the linearized system around the steady state will be governed by

_z(t) = (�sk��1ss )z(t� d)� (1� s)v1(1 + �v1 � v2)k�v1�v2ss z(t); (22)

with the change of variable z(t) = k(t) � kss. The corresponding matrix J in accor-

dance with Louisell (2001) is

J =

0B@ A0 A1

�A1 �A0

1CA ;
where A0 = �(1� s)v1(1+�v1� v2)k�v1�v2ss and A1 = (�sk��1ss ). The two eigenvalues

of J are

�1;2 = �
q
A20 � A21; (23)

Proposition 3.1 If �� < 1 + �v1 � v2 < �, then the system undergoes Hopf bifur-
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cation.

Proof. The eigenvalues are pure imaginary given that A20 �A21 < 0. This is the case

if and only if j1 + �v1 � v2j < j�j = �.

We know from D-Subdivision method that the Hopf boundary is obtained in either

the �rst or second quadrant of the coe¢ cient space32. The sign of the coe¢ cient of

z(t), which is �(1� s)v1(1+�v1� v2), determines on which quadrant the coe¢ cients

lie. If (1 + �v1 � v2) > 0, the coe¢ cients are on the second quadrant and otherwise

they are on the �rst. We should also note that the saddle-path stability is sacri�ced

for a limit cycle. That is, endogenous population growth eliminates the unstable

manifold, however we obtained a limit cycle.

The Hopf cycles exist when the parameters are in a relationship within some limits.

To understand this, the following restatement of the previous proposition may help:

Proposition 3.2 If v1 < 1, then the system undergoes Hopf bifurcation if 1�v2
1�v1 < �

and 1�v2
1+v1

> ��:

Proposition 3.3 If v1 > 1, then the system undergoes Hopf bifurcation if 1�v2
1�v1 > �

and 1�v2
1+v1

> ��:

Both propositions keep the parameters v1 and v2 close enough to ensure nonex-

plosive dynamics33 where cyclic behaviour is not possible. In the both propositions,

32The coe¢ cients can lie on the �rst or second quadrant of the parameter space (a; b), since b > 0
and these quadrants are those on where the Hopf boundary (the boundary where the system loses
it stability) lies (See Bambi, 2008). The parameters (a; b) are the coe¢ cients of the characteristic
equation h(z) = z + a+ be�z� = 0.

33The positivity constraint of the parameters v1 and v2 maintains the economic intuition as in
Cigno (1981), that the population growth rate is positively related to per capita consumption and
inversely related to the degree of industrialization. We do not see these explicitly since we are
employing per capita variables. Yet, Cigno (1981) also �nds a similar result that underlines that
these parameters should be close to each other to obtain stable growth.
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the relative ratio of distance to one should not exceed � given a lower bound to v2

for a given v1. Whereas, the other inequality is an upper bound to v2. To be more

illustrative, we can substitute for a common value for the constant of the share of

capital in production, �; is � = 1
3
and further analyze the parameter combinations

that allows for Hopf cycles.

Proposition 3.4 Let � = 1
3
. If �4+3v2 < v1 < �2+3v2, then the system undergoes

Hopf bifurcation.

Proof. Plug � = 1
3
. The rest is straightforward.

This relation between parameters v1 and v2 is visualized in Figure (1).

­1 0 1 2 3 4 5
­5

0

5

10
v1 and v2 combinations which induces Hopf cycles when α=1/3

v2

v 1

Figure 1: v1 and v2 combinations which allows for Hopf bifurcation when � = 1
3

(The horizontal axis is v2 and the vertical axis is v1).

The shaded region gives the v1 and v2�s which induces Hopf cycles when � = 1
3
,

whereas the bold lines gives the boundaries of this region.
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3.3 Conclusion

In this chapter, we have analyzed the e¤ects of varying population growth in a Solow-

Kalecki type of growth model. We show that Cobb-Douglas type production functions

and time-delay are not su¢ cient for the economy to have cyclical behaviour. This is

contrary to the common belief that delay is su¢ cient to obtain cyclic dynamics.

We extend the model so that population growth is endogenized. Then we show

that capital dependent population dynamics can enforce Hopf bifurcation.
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CHAPTER 4

HOPF BIFURCATION IN AN OVERLAPPING GENERATIONS

RESOURCE ECONOMY WITH ENDOGENOUS POPULATION

GROWTH RATE34

In response to a feedback mechanism between population growth and carrying

capacity of the environment, scarce environmental resources have been advocated to

put a constraint on population growth (Smith, 1974). Indeed, Smith (1974) postulates

that population growth should possess the following properties for a more realistic

growth model: �1) when population is small in proportion to environmental carrying

capacity, then it grows at a positive constant rate, 2) when population is large in

proportion to environmental carrying capacity, the resources become relatively more

scarce and as result this must a¤ect the population growth rate negatively� (see

Accinelli and Brida, 2005; Brianzoni et al., 2007, p. 2).

Motivated by Smith�s idea, we analyze the dynamics of an overlapping genera-

tions economy that contemplates a feedback mechanism between population growth

rate and resource availability. We adopt a Beverton Holt population growth function

34This essay is a joint work with Burcu Afyono¼glu Fazl¬o¼glu and Hüseyin Ça¼gr¬Sa¼glam.
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(see Beverton and Holt, 1957) which is a discrete time version of the logistic popula-

tion growth function (for the logistic population growth function see among others,

Schtickzelle, 1981; Faria, 2004; Accinelli and Brida, 2005; for a discrete time Romer

model, see Brianzoni et al., 2007). However, we modify Beverton Holt population

growth function in which the carrying capacity depends on the available resource

stock in a convex-concave fashion. As carrying capacity of nature are nor �xed nei-

ther static (Arrow et al., 1995), we consider that the carrying capacity increases with

the available resource stock at an increasing rate at �rst and at a decreasing rate

afterwards. This is simply more realistic because population growth rate responds to

the changes in the available resource stock and population is bounded from above.

Through this feedback mechanism between population and resource availability, we

show that the introduction of endogenous population growth rate implies that Hopf

bifurcation may emerge in an overlapping generations resource economy.

Nonlinear dynamics (such as multiplicity of the steady states or Hopf bifurcation)

have been obtained in overlapping generations models with resources (see among

others Koskela et al., 2008; Antoci and Sodini, 2009). The dynamics in these studies

mainly rest on the assumptions of logistic regeneration function or some assumptions

on the intertemporal elasticity of substitution. Under logistic regeneration function of

resources, it has been shown that further assumptions on the parameters of utility and

production function bring dynamics such as local indeterminacy or bifurcations35. In

particular, Koskela et al. (2008) examines whether renewable resource based overlap-

ping generations economies may have di¤erent types of dynamics other than saddles

and numerically show that �ip bifurcation may arise if the intertemporal elasticity

of substitution in utility is less than a certain critical value. Our setting allows us

35Under linear regeneration of renewable resources, the overwhelming majority of standart re-
source models in OLG framework (where population is constant or growing at a consant rate, see
Farmer, 2000; Valente, 2008; Kemp and van Long, 1979) reveal that the dynamics converge to a
single steady state or to a balanced growth path with saddle path stability (see Mourmouras, 1991).
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to obtain Hopf bifurcation under the convex-concave dependence of carrying capac-

ity on the resource availability without referring to logistic regeneration, shocks or

constraints on parameter values. Thus, the novel feature of our study is to reveal

Hopf bifurcation by incorporating endogenous population growth rate à la Smith

(1974). In this regard, our study complements Koskela et al. (2008), Seegmuller and

Verchère (2007) (overlapping generations economy with environment and endogenous

labor supply) and Antoci and Sodini (2009) (an overlapping generations economy with

negative environmental externalities) that provide additional channels for interesting

dynamics in overlapping generations framework.

Hopf bifurcation is economically important as it provides a powerful and easy tool

to detect limit cycles and justify the emergence of cycles endogenously (for further

details, see Benhabib and Farmer, 1999; Kind, 1999). Hopf cycles appear when a

�xed point loses or gains stability due to a change in a parameter and meanwhile a

cycle either emerges from or collapses into the �xed point. The dynamic system can

either have a stable �xed point surrounded by an unstable cycle; or a stable cycle

loses its stability and a stable cycle appears as the parameter(s) approach(es) to a

critical value (see Asea and Zak, 1999; Yüksel, 2011). Both cases can be economically

signi�cantly meaningful so that cycles or cyclical paths may turn out to be optimal

via Hopf bifurcation (for further details see Kind, 1999).

The chapter is structured as follows. The model is introduced in the following

section. The equilibrium dynamics and the local stability analysis are provided in

Section 4.2. Section 4.3 concludes.
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4.1 The Model

We consider a two period overlapping generations model with in�nite horizon. We

di¤er from the standard framework in two respects36. Firstly, we assume that the

renewable resources are essential to production. Second, under the presence of limited

resources, we allow for the growth rate of the population to depend on the per capita

resource availability.

At each period t, a generation of agents appears and lives for two periods, young

and old. The population in period t; consists of Nt young and Nt�1 old individuals.

We assume that the rate of population growth nt+1 is related with the total available

resource stock et and the population growth rate nt:

Nt+1 = (1 + nt)Nt, where

nt+1 = g(et; nt)nt:

We consider a Beverton-Holt population growth rate function (see Beverton and

Holt, 1957) in which the carrying capacity of the environment depends on the available

per capita resource,et; stock in the following manner:

g(et; nt) =
rh(et)

h(et) + (r � 1)nt
;

where h(e) : R+ ! R+represents the carrying capacity of the environment and r >

1 denotes the inherent growth rate (this rate being determined by life cycle and

demographic properties such as birth rates etc., see among others, Brianzoni et al.,

2007). We conjecture that for low values of the resource stock the carrying capacity of

the environment increases with an increasing rate while for high levels of the resource

36For the standard framework, see de la Croix and Michel (2002).
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stock at an increasing rate at �rst and at a decreasing rate afterwards with the

following convex-concave function (Capasso et al., 2012):

h(e) =
� 1e

�

1 + � 2e�
; (24)

with � 1 > 0; being the population scale factor, � 2; � > 0 being the population curva-

ture parameters37.

The resource can act as both stores of value and inputs to the production process.

The economy is initially endowed with a positive amount of the natural resource E0

which belongs to the �rst generation of old agents. We assume that at the beginning

of each period t, the old agents (generation t�1) own the stock of the natural resource,

Et. Incurring no extraction costs (see Dasgupta and Heal, 1979), old agents decide on

how much of this resource will be extracted for production Xt and how much would

be sold to the young (generation t) as assets At(= Et �Xt). From period t to t+ 1;

the assets bought by the young generation regenerates at a rate � > 138: Therefore,

the law of motion of the resource stock writes as follows:

Et+1 = �At;

at = et � xt;

(1 + nt)et+1 = �(et � xt) ;
37Note that �2 =

��1
(�+1)e� determines the in�ection point at which carrying capacity h(e) function

switches from convexity to concavity, or vice versa (this point is simply the one through which the
second derivative changes sign). Also note that for the parameter combination (�2; �), e is on the
convex portion of the function if it satis�es �2 <

��1
(�+1)e� ; and e is on the concave portion of the

function if it satis�es �2 >
��1

(�+1)e� : The second derivative of h(e) with respect to e is

dh(e)

de
=
�1�e

��2[�� 1� �2e�(�+ 1)]
(1 + �2e�)3

:

38Note that if � = 1, the resource turns out to be non-renewable.
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where quantities of resource assets and extracted resources per young individual are

denoted by, et = Et
Nt
; at =

At
Nt
and xt = Xt

Nt
; respectively.

Each agent is endowed with one unit of labor when she is young and supplies it

to �rms inelastically. Young households receive wage wt; which is allocated between

consumption of the good produced by the representative �rm and the purchase of

the ownership rights for the natural resource. When old, they consume their entire

income generated by selling their stock of natural resources Xt+1 to the �rms and

their assets At+1 to the young at prices Pt+1 and Qt+1; respectively. We assume that

the life-time well-being of the representative individual is measured by the logarithmic

function over young and old periods consumption, i.e., U (c; d) = u (c)+�u (d) ; where

� 2 (0; 1) is the subjective discount factor. Accordingly, the representative agent

born in period t, maximizes his utility with respect to the young and old periods�

consumption, taking wages and the price of the natural resource as given.

max
fct;dt+1;atg

ln ct + � ln dt+1

subject to

ct +Qtat = wt; (25)

dt+1 = Pt+1(1 + nt)xt+1 +Qt+1(1 + nt)at+1; (26)

(1 + nt)et+1 = �at; (27)

at = et � xt; (28)

ct � 0; dt+1 � 0;

et+1 � 0; E0 > 0; given:
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The �rst order conditions for an interior solution of this problem is as follows:

dt+1
�ct

= �
Qt+1
Qt

; (29)

Pt+1 = Qt+1: (30)

Equation (29) guarantees the equalization of the intertemporal marginal rate of

substitution and the change in prices taking the regeneration factor into account. The

latter is a no-arbitrage condition which is an equilibrium condition revealing from the

maximization problem of the representative household.

Firms are owned by the old households and produce an homogenous consumption

good under perfect competition. At each period, a single �nal good Yt is produced

in the economy by means of labor Nt and the natural resource Xt according to the

following technology:

Yt = Xt
�N1��

t ; 0 < � < 1:

Under the perfectly competitive environment, the representative �rm producing

at period t maximizes its pro�t by choosing the amount of labor and the resource

input that will be utilized in the production process. At an interior solution of the

�rm�s optimization problem, where all variables are expressed in per capita terms

(yt =
Yt
Nt
), pro�t maximization implies:

(1� �)yt = wt; (31)

�yt = Ptxt: (32)

Intertemporal equilibrium requires the clearing of the resource market, the clearing
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of the labor market and the clearing of the goods market for all t:

(1 + nt)et+1 = �(et � xt) ; (33)

yt = ct + dt(1 + nt�1)
�1: (34)

4.2 Equilibrium Dynamics

The intertemporal equilibrium dynamics can be reduced to a three�dimensional linear

system in terms of the law of motions of et, xt and nt.

From equations (25)-(31) and (34), we obtain that

ct =
wt

(1 + �)
=
(1� �)yt
(1 + �)

; (35)

dt+1 =
(1 + nt)(�+ �)

(1 + �)
yt+1: (36)

Plugging equations (30), (32), (35) and (36) into (29), we obtain the law of motion

of the resource stock:

xt+1 =
��(1� �)

(1 + nt)(�+ �)
xt: (37)

In addition, we have the dynamics of the natural resource stock and the popula-

tion:

et+1 = � �xt
(1 + nt)

+
�et

(1 + nt)
; (38)

nt+1 = g(et; nt)nt: (39)

Thus, the dynamics of the model economy is driven by (37), (38) and (39).

Lemma 4.1 (Steady States) The steady states of the model economy are charac-
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terized by the following steady state equations:

x

�
��(1� �)

(1 + n)(�+ �)
� 1
�

= 0; (40)

so that, x = 0 or
��(1� �)

(1 + n)(�+ �)
= 1;�

�

(1 + n)
� 1
�
e =

�

(1 + n)
x; (41)

n (g(e; n)� 1) = 0; (42)

so that, n = 0 or g(e; n) = 1:

The Jacobian that governs this system of equations at the corresponding steady states

is as follows: 266664
��(1��)

(1+n)(�+�)
0 ���(1��)

(�+�)
x

(1+n)2

� �
(1+n)

�
(1+n)

��(e�x)
(1+n)2

0 gen gnn+ g

377775
����������
(x;e;n)

:

Lemma 4.2 (Locally Unique Steady States) Among the steady states characterized by

equations (40), (41) and (42), the following are the ones that satisfy local uniqueness:

1. Zero Steady State with No Population Growth with n = e = x = 0;

2. Zero Steady State with Non-zero Population Growth with e = x = 0;

g(0; n) = 1 and g(0; 0) 6= 1;

3. Zero Extraction, Non-zero Resource Steady State with �
(1+n)

= 1; x = 0

and g(e; n) = 1;

4. Non-Zero Steady State with g(e; n) = 1; ��(1��)
(1+n)(�+�)

= 1 and.
�

�
(1+n)

� 1
�
e =

�
(1+n)

x:

The �rst, the second and the forth steady states in the above list exhibit unstable
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monotone dynamics 39. However, the third steady state exhibits nonlinear dynamics

under plausible parameters. In what follows we will show that the in Zero Extraction,

Non-zero Resource steady state, we may encounter Hopf bifurcation leading to limit

cycles. The analysis of Hopf bifurcation provides a powerful and easy tool to detect

limit cycles that discards tedious calculations. Hopf cycles appear when a �xed point

loses or gains stability due to a change in a parameter and meanwhile a cycle either

emerges from or collapses into the �xed point. The dynamic system can either have a

stable �xed point surrounded by an unstable cycle; or a stable cycle loses its stability

and a stable cycle appears as the parameter(s) approach(es) to a critical value (see

Asea and Zak, 1999; Yüksel, 2011). Both cases can be economically signi�cantly

meaningful (for further details see Kind, 1999). Yet, to prove the result, we need the

following lemma.

Lemma 4.3 (Hopf Conditions for the 2x2 discrete dynamic system) Let J be the

2 � 2 Jacobian matrix associated with the 2 � 2 discrete dynamic system and T and

D be the trace and the determinant, respectively. Then, Hopf bifurcation occurs when

D = 1;

�2 < T < 2:

Proof. See Antoci and Sodini (2009, p. 1443).

Proposition 4.1 (Hopf Bifurcation for the Zero Steady State with non-zero

Population Growth) Following the Beverton-Holt speci�cation, we employ the mod-

i�ed Beverton-Holf function g(et; nt) =
rh(et)

h(e)+(r�1)nt , with convex-concave carrying ca-

39The unstable character of the �rst steady state is analytically obvious, yet for the forth steady
state, the unstable dynamics are demostrated numerically and the details of this analysis is skipped
for the sake of compactness. The details can be provided upon request.

55



pacity h(e) = �1e�

1+�2e�
for some �; � 1; � 2 > 0: Then, if there exists a parameter combi-

nation (�; r; �; � 1; � 2) such that

h0(e)e = 1 + n;

� > 1;

0 <
r � 1
r

< 4;

then the steady state

x = 0; n = �� 1; and n = h(e);

undergoes Hopf bifurcation.

Proof. The Jacobian associated with this steady state is

266664
�(1��)
(�+�)

0 0

� �
(1+n)

1 � e
(1+n)

0 gen gnn+ 1

377775 :

The associated characteristic equation,

�
�(1� �)
(�+ �)

� �
��

(�� 1)(�� gnn� 1) +
e

(1 + n)
nge

�
= 0;

reveals that one of the eigenvalues is �1 =
�(1��)
(�+�)

: Note that �1 =
�(1��)
(�+�)

< 1: Then,

if the remaining second order polynomial has complex roots with unit magnitude, we

can conclude that the steady state exhibits Hopf bifurcation (see Wen et al., 2002).
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Consider, the 2� 2 matrix associated the quadratic polynomial,

264 1 � e
(1+n)

nge gnn+ 1

375 : (43)

Denote

T = 2 + gnn;

D = 1 + gnn+
e

(1 + n)
nge;

as the trace and the determinant of matrix (43), respectively. Rewriting the Hopf

conditions (see Lemma 4.3), we have

0 <
e

(1 + n)
nge = �gnn < 4: (44)

From the steady state condition (42), we know that g(e; n) = 1: Since rh(e)
h(e)+(r�1)n = 1

and r > 1; we have

h(e) = n. (45)

Suppose h(e) = �1e�

1+�2e�
: We know from (45), h(e) = n: Moreover, suppose

h0(e)e = 1 + n:

Thus, the steady state can be recast as,

x = 0;

n = �� 1 > 0;
�1e�

1+�2e�
= n:

Now, we want to show that this steady state satis�es the Hopf conditions provided
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in (44). Note that,

ge =
rh0(e)(r � 1)n
[h(e) + (r � 1)n]2

;

gn =
�rh(e)(r � 1)

[h(e) + (r � 1)n)]2
:

Furthermore, note that,

e

(1 + n)
nge = �gnn =

r � 1
r
;

and

0 <
r � 1
r

< 1 < 4:

Thus, the zero steady state with non-zero population growth exhibits Hopf bifurca-

tion.

Example 4.1 For the parameter combination

� = 3; � 1 = 1; � 2 = :05;�bif = 1:5203;

the steady state

x = 0; n = �� 1 = :5203; and e = h�1(n) = 0:8114;

undergoes Hopf bifurcation.

The above example clearly shows that there exists Hopf bifurcation for plausible

parameters. However, to fully comprehend the relationship of the parameters which

causes Hopf dynamics, we further our analysis by constructing a Hopf boundary.

To maintain simplicity, without loss of generality we assume that r = 2. Then,
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the trace of the Jacobian is

1 < T = 2� r � 1
r

=
3

2
< 2:

Thus, by the Lemma (4.3), Hopf condition reduces into a condition about the

determinant, i.e., D = 1. Given the steady state equations, the determinant of the

Jacobian in terms of � and � is

D(�;�) = 1 +

�
r � 1
r

��
�(�� 1)(� 1 � (�� 1)� 2)

� 1�
� 1
�
:

(�;�) couples that maintain the condition that D(�;�) = 1 imply that

�hopf =
� 1�

(�� 1)(� 1 � (�� 1)� 2)
: (46)

Equation (46) gives the Hopf boundary. Figure (2) presents this boundary. Note

that inside the curve we have a fully unstable system, whereas outside the curve, the

system becomes full stable. Thus, as the parameters (�;�), the population parameter

and regeneration rate respectively, vary, in the trace-determinant space, the system

moves from the inside to the outside, or vice versa, of the boundary40.

In �gure (3), we present the trace-determinant space. Note that trace only depends

on r, thus as parameters (�;�), trace-determinant couple varies in the sense that

trace stays as a constant. This can be clearly seen in the line on the graph. In the

graph, � = 1:5203 is kept as a constant and as � varies, one can keep track of the

determinant. For the values of � that are close its lower physical levels, the trace-

determinant couple stays in the stable region (triangle) where the eigenvalues are real.

40Note that � > 1 by de�nition and � < 1+ �1
�2
in order to obtain a positive � which is a physical

condition of the model.
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Figure 2: �� � couples at which the Hopf bifurcation occur

As � increases and exceeds �complex,

�complex =
1

4

�
r � 1
r

�
� 1�

(�� 1)(� 1 � (�� 1)� 2)
= 0:375;

trace-determinant couple crosses the complex eigenvalue border. Note that this com-

plex eigenvalue boundary is also given by the red-curve in �gure (2). As � further

increases, trace-determinant couple crosses the Hopf boundary, i.e.,

�hopf =
� 1�

(�� 1)(� 1 � (�� 1)� 2)
= 3:

The similar behaviour can be traced on the line in the �gure (2). Note also that,

these values are compatible with the numerical example.

One remark is that Hopf bifurcation supporting steady state is on the convex

part of the h(e; � ; �) which is well expected. Hopf bifurcation arises as an interaction
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Figure 3: Trace-determinant space as parameters vary

between the curvature (convexity) of the population and the regeneration rate of the

resources. In other words, limit cycle behaviour is observed because the economy

fails to smooth out the counter cyclical e¤ects of population change and the resource

regeneration.

4.3 Conclusion

Through a feedback mechanism between population and resource availability, we show

that Hopf bifurcation may emerge in an overlapping generations resource economy.

It is worthwhile to point out that the linear regeneration speci�cation in our model

provokes the question of how the stability of the system would change under a nonlin-

ear regeneration function. Allowing the renewable resource to regenerate nonlinearly

(e.g. logistic) could bring even more complex dynamics.

61



CHAPTER 5

THE OPTIMAL GROWTH MODEL WITH ENDOGENOUS

POPULATION GROWTH RATE AND THE EFFECT OF PAST

GENERATIONS41

5.1 Introduction

Endogenized population growth is long been considered in economic models. Even

Solow (1956) takes endogenized population growth into account. However, the ac-

cumulated literature fails to account for the relationship between the past fertility

habits of older generations and the choice of fertility today. The aim of this chapter

is to investigate and analyze the e¤ects endogenous and past fertility dependent labor

supply growth (i.e. population growth) on growth in an optimal growth model.

Within the Solowian framework, Fanti and Manfredi (2003) endogenizes labor

supply growth with respect to per-capita capital and past fertility rates. Their en-

dogenization depends on an introduction of the age structure prevailing in the pop-

ulation (p. 103). Fanti and Manfredi (2003) shows that �globally stable oscillations

41This essay is a joint work with Burcu Afyono¼glu Fazl¬o¼glu and Hüseyin Ça¼gr¬Sa¼glam.
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around the path of balanced growth�exist. We follow Fanti and Manfredi (2003) by

extending their population growth framework into an optimal growth model.

We model a population structure that embodies the fact that older generations�

fertility choices, to some extend, sustain today. Mathematically speaking, we employ

an Erlangian process that takes past fertility choices into account in an exponentially

fading memory fashion. That is to say, the older the generation, the smaller its e¤ect

on today�s fertility choice. We further try to consider endogenizing population growth

rate. In other words, population growth doesn�t evolve exogenously, that is, follow

a time path independent of economic variables. Compared to growth models with

constant exogenous population growth, in this chapter, we speci�cally assume that

the population growth rate is an integral term that depends on per-capita capital, k;

the purpose of which is to mimic the e¤ects of past wealth related fertility on current

population.

Our model employs a continuous delay structure42 in the process of recruitment

in the population growth á la Fanti and Manfredi (2003) and hence obtain cyclic

solutions. Cyclic solutions for optimal growth models with delay has been discussed

in economics since Kalecki (1935). Detailed exposition of these discussions can be

found in the Introduction and speci�cally in Chapter 2 of this thesis. The literature

on optimal growth models with delay and concave production technology developed

on three distinct lines of research. The complexity of the characteristic equation pre-

vents to handle analytical results and thus, some researchers incline towards numer-

ical simulations. Winkler et al. (2004), Collard et al. (2008) and Brandt-Pollmann

et al. (2008) are those who try numerical simulations to comprehend the dynamic

42We may as well choose �xed delay instead of a distributed delay structure, yet "the former is
better suited when there is no variability in the process of transmission of the past into the future:
for instance when we assume that all individuals are recruited in the labour force at the same �xed
age" (Fanti and Manfredi, 2003, p. 107) Moreover, an interested reader may consult to Invernizzi
and Medio (1991) for an economically oriented discussion of distributed delays.

63



behaviour of optimal growth models with delay. The main �ndings is summarized

by Winkler et al. (2004) who states that �both the frequency and the amplitude

of the cycles depend on the length of the investment period,�and by Collard et al.

(2008) who states that �for a large delay the economy converges to steady state by

oscillations, but consumption smoothing mitigates the induced echo e¤ects through

an advanced Euler-type di¤erential equation.�Furthermore, Collard et al. (2006) nu-

merically shows that the advanced terms in Euler equations governing the dynamic

system dampen the �uctuations caused by the lags through a kind of smoothing

e¤ect (They call this phenomenon �time-to-build echo�). Short run dynamics of time-

to-build echoes are further studied by Collard et al. (2008) in which one can �nd the

associated numerical simulations. Winkler et al. (2004) provides numerical solutions

of models of time delay optimal growth models for a linear limitational production

function, while Winkler et al. (2005) gives a numerical analysis of time-lagged cap-

ital accumulation optimal growth model with Leontief type of production functions.

Brandt-Pollmann et al. (2008) extends the numerical solutions to objective functions

with state externalities.

Note that the de�ciency of numerical simulations when it comes to Hopf bifurca-

tion is that Hopf bifurcation depends on the precise calibration of the Hopf parameter

and without such calibration it may be impossible to hit the limit cycle solution sim-

ply by the randomization of parameters. Moreover, the quasi-polynomial associated

with the characteristic equation naturally contains in�nitely many complex roots

which would result in cyclic behaviour. Considering the conditions which exclude

completely unstable solutions, like that of transversality condition, it is natural that

a random choice of parameters would result in decaying cycles that is, for the most

part, in accordance with the results and interpretation of Collard et al. (2008).

Another line is AK simpli�cation. Assuming that the production schedule follows
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AK production technology simpli�es the _c equation in the �rst order conditions. Note

that, the resulting characteristic equation is easier to handle. Bambi (2008) exploits

the simpli�ed characteristic equation and �nds Hopf cycles and Winkler (2008) solves
:
c equation �rst and then using the solution solves

:

k equation (See Barro and Sala-i

Martin, 1995, Ch. 4.1).

Although �AK simpli�cation�approach enables some analytical results, the main

question of whether there exists limit cycles under concave production remains unan-

swered. Though there is no clear justi�cation, the third approach is to show the

non-existence of such persistent cycles. Benhabib and Rustichini (1991), Caulkins et

al. (2010) and Hartl and Kort (2010) represents the school of �lack-in-faith in cycles�.

Caulkins et al. (2010) states that �here we in some sense defend the traditional em-

phasis on models without delays by showing that an important class of models with

delays can be transformed into equivalent optimal control problems without delays,�

and �the existence of an equivalent problem without delays implies that the optimal

solution to the model with delays cannot involve oscillation.�Thus, Caulkins et al.

(2010) argues for the �non-oscillatory behaviour under exponential depreciation.�

We o¤er a delayed model in which persistent cyclic solutions are analytically

valid, thus there is no need for numerical simulations for searching the existence of

cycles, but only for their validation and there is no need for economically binding

mathematical simpli�cations such as AK production technology.

We speci�cally �nd Hopf bifurcation. �In 1942, Hopf published the ground-

breaking work in which he presented the conditions necessary for the appearance

of periodic solutions, represented in phase space by a limit cycle�(Szyd÷owski, 2002).

With reference to the contributors of the study of the su¢ cient conditions under which

periodic orbits occur from stationary states, these theorems are called Poincaré�

Andronov�Hopf theorems. Hopf bifurcation discards tedious calculations and pro-
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vides a powerful and easy tool to detect limit cycles. Kind (1999) con�rms this by

stating �in most cases the proof of a Hopf bifurcation is not di¢ cult because it does

not require any information on the nonlinear parts of the equation system. More-

over, in systems whose dimensions are higher than two, Hopf bifurcation theorem

may constitute the only tool for the analysis of cyclical equilibria, since the Poincaré�

Bendixson theorem is not applicable in these cases.�Hopf cycles appear when a �xed

point loses or gains stability due to a change in a parameter and meanwhile a cycle

either emerges from or collapses in to the �xed point (Asea and Zak, 1999). Un-

der the circumstances the system can either have a stable �xed point surrounded by

an unstable cycle (called a subcritical Hopf bifurcation); or a stable cycle loses its

stability and a stable cycle appears (called a supercritical Hopf bifurcation) as the

parameter(s) approaches to a critical value (Asea and Zak, 1999). Both cases can be

economically signi�cantly meaningful. Supercritical case which implies a stable cycle

can be considered as a stylized business cycle or growth cycles and the subcritical

case can correspond to the corridor stability (Kind, 1999).

The chapter is structured as follows: In the �rst part we present the model and

introduce the population structure along with the economy; in the following part, we

show the existence of a pair of pure imaginary eigenvalues; next we simulate to show

whether there exist plausible economic parameters that support Hopf bifurcation and

the last part concludes.
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5.2 Model

Suppose that the representative consumer maximizes lifetime utility, according to the

constant discount factor r > 0, that is

max
1R
0

e�rtu(c(t))dt

subject to

_k (t) = f (k(t))� c(t)� (� + n̂(t; k(t))) k(t);

k(0) = k0.

where � > 0 is the constant depreciation.
_L(t)
L(t)

= n̂(t; k(t)) is the endogenous time-

varying population growth rate in the following form:

n̂(t; k(t)) =

tZ
�1

n(k(�))G(t� �)d� :

The population growth rate depends on the structure of the memory function G,

which is a probability distribution over time. In other words, the memory function

G satis�es 1Z
0

G(u)du = 1:

One advantage for the abovementioned population structure is that by the appropriate

choice of functions the model can be transformed to various optimal growth models.

Below we present one such example.

Example 5.1 When n(k(�)) = n 2 R+ and G(t � �) = �(t � �), where �(�) is

Dirac-delta function, n̂(t; k(t)) = n, and the model reduces into the standard Ramsey

optimal growth framework. Also note that this benchmark model has a unique steady

state which is saddle path stable.
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For the purposes of this chapter, we assume that the function n(�) is linear43 with

respect to k(t), i.e. n(k(�)) = nk(�). is the Erlangian type of density function which

is de�ned as

Gj;a(x) =
aj

(j�1)!x
j�1e�ax; x > 0, a > 0, j = 1; 2; :::; r

Varying r will give di¤erent densities. For j = 1, we have classical exponentially

fading memory, whereas for larger j�s, we have several �humped�memories of Gamma

shape. The function Gj;a(�) is the delaying kernel, which is chosen to be a probability

density. In particular, the mean delay implied by Erlangian density of parameters

(j; a) is given by �� =
j
a
and its variance is �2� =

j
a2
(Manfredi and Fanti, 2003, p.

586). As �� ! 0, that is a ! 1 when j = 1, the underlying unlagged system is

recovered, in other words, the capital accumulation equation reduces into

_k (t) = f (k(t))� c(t)� (� + n̂(k(t)) k(t):

Thus a �nite a implies that the population dynamics are a¤ected by the past gener-

ation�s fertility rate with special emphasis on the generation at t� �� :

The idea is that the supply of labor is related to past fertility which is a func-

tion past levels of the per capita capital. We will assume j = 1 in this chapter44.

Denote �1(� ; k) =
tR

�1
nk(�)ae�a(t��)d� and �2(� ; k) =

tR
�1

nae�a(t��)d� . Note that

d
dk
�1(x; k) = �2(x; k) by Leibniz Rule. In other words, the optimal growth model in

43Positive and nondecreasing with respect to per capita income is in accordance with Malthusian
mechanism (see Manfredi and Fanti, 2004)

44Note that Gj;a brings 2j additional equations. We will show that in the following sections.
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question is

max
1R
0

e�rtu(c(t))dt

subject to

_k (t) = f (k(t))� c(t)�
�
� +

tR
�1

n(k(�))Gj;a(t� �)d�
�
k(t);

k(0) = k0.

Then, the dynamics governing the Hamiltonian system will be as follows:

_c =
uc(c)

ucc(c)
(r + � � f 0(k) + �1 + k�2) ;

_k = f(k)� c� �k � k�1;

�1(� ; k) =

tZ
�1

nk(�)ae�a(t��)d� ;

�2(� ; k) =

tZ
�1

nae�a(t��)d� :

We will employ a linear chain trick and introduce auxiliary variables (see MacDon-

ald, 1978; Manfredi and Fanti, 2004) to transform the integral terms into ordinary

di¤erential equations. The auxiliary variables are such that �these extra equations

are linear and each links two successive numbers of a chain of variables�(Manfredi

and Fanti, 2004). It has to be emphasized that, for the memory function to solve [ _k,

_c] from t = 0, with a given previous set of values of [k(t)] over the interval (�1; 0) is

equivalent to solving the set of equations [ _k, _c and the additional linear ordinary dif-

ferential equations] from t = 0 with an appropriately interrelated set of initial values.
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The the �rst order conditions are

_c =
uc(c)

ucc(c)
(r + � � f 0(k) + �1 + k�2) ; (47)

_k = f(k)� c� �k � k�1; (48)

_�1 = a(nk � �1); (49)

_�2 = a(n� �2); (50)

with the steady state equations

f 0(k) = r + � +�1 + k�2;

c = f(k)� �k � k�1;

�1 = nk;

�2 = n:

The 4� 4 system has the following Jacobian around its steady state:

266666664

0 � uc(c)
ucc(c)

(f 00(k)� 2n) uc(c)
ucc(c)

uc(c)
ucc(c)

k

�1 r �k 0

0 �an �a 0

0 0 0 �a

377777775
A quick glance shows that the last row of the characteristic matrix gives the eigen-

value, �4 = �a < 0. To analyze the stability of the system, we have to focus on the

remaining 3� 3 matrix,

det

266664
�� � uc

ucc
(f 00(k)� 2n) uc

ucc

�1 r � � �k

0 �an �a� �

377775 = 0:
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The characteristic equation of this system is

�3 + (a� r)�2 �
�
uc(c)

ucc(c)
(f 00(k)� 2n) + akn+ ar

�
�� a (f 00(k)� n) uc(c)

ucc(c)
= 0:

We will check Liénard-Chipard (LC) conditions to test whether the system is stable

or not45. A �rst glance shows that the system is not necessarily stable if the standard

concavity assumptions on utility and production technology is assumed, since bn =

b3 < 0.

b3 = �a (f 00(k)� n) uc(c)
ucc(c)

< 0;

b2 = �
�
uc(c)

ucc(c)
(f 00(k)� 2n) + akn+ ar

�
< 0;

b1 = (a� r) ;

b0 = 1:

45See Gandolfo (1996) for the complete LC characterization of stability. To recall, given an n� th
order characteristic equation;

b0�
n + b1�

n�1 + b2�
n�2 + :::+ bn = 0; b0 > 0

one should have any one of the following four conditions

1.
bn > 0; bn�2 > 0:::;41 > 0;43 > 0; :::

2.
bn > 0; bn�2 > 0:::;42 > 0;44 > 0; :::

3.
bn > 0; bn�1 > 0; bn�3 > 0; :::;41 > 0;43 > 0; :::

4.
bn > 0; bn�1 > 0; bn�3 > 0; :::;42 > 0;44 > 0; :::

where

4n =

��������������

b1 b3 b5 b7 ::: 0
b0 b2 b4 b6 ::: 0
0 b1 b3 b5 ::: 0
0 b0 b2 b4 ::: 0
0 0 b1 b3 ::: 0
::: ::: ::: ::: ::: 0
0 0 0 0 ::: bn

��������������
:
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5.3 Pure Imaginary Roots

Below we present a theorem that gives the conditions on the coe¢ cients of a third

order polynomial to admit a pair of pure imaginary roots.

Theorem 5.1 The characteristic equation �(�) := �3+b1�2+b2�+b3 = 0; has a pair

of purely imaginary roots �hi; (i =
p
�1; h 6= 0) if and only if b1 > 0 and b1b2�b3 = 0

are satis�ed. In this case, we have the explicit solutions � = �b1;�
p
b2i.

Proof. We have a third order equation as the characteristic equation. For this

equation to have a couple of complex conjugate pure imaginary roots, we should have

�3 + b1�
2 + b2�+ b3 = (�� �)(�� i�)(�+ i�) = 0;

where � 2 R. That is, we have

(�� �)(�� i�)(�+ i�) = (�� �)(�2 + �2) = �3 � ��2 + �2�� ��2:

In other words, there should be a certain relation between the coe¢ cients, which can

be summarized as follows,

b2 =
b3
b1
: (51)

This relation holds if b1 = (a� r) > 0 since b2 and b3 are negative46. Immediately

note that if equation (51) holds, then we have

�1 = � = �b1 = � (a� r) < 0;

�2;3 = �i� = �i

s�
uc(c)

ucc(c)
(f 00(k)� 2n) + akn+ ar

�
2 C:

46Note that the other real root � = b1 = (a� r) < 0.
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Given the theorem (5.1), we only need to show whether there exists a feasible

value for the parameter a so that the economy admits Hopf bifurcation. Below we

prove that result.

Theorem 5.2 For any n > 0, there exists a > r > 0 such that the above system

admits Hopf bifurcation.

Proof. Denoting U � uc(c)
ucc(c)

and F = f 00(k); coe¢ cient-wise, equation (51) enforces

the following equation:

a (F � n)U = (U (F � 2n) + akn+ ar) (a� r) ;

or, equivalently,

(kn+ r)a2 � (Un+ rkn+ r2)a+ Ur(2n� F ) = 0: (52)

Note that equation (52) has a root a such that a > r if

A(a� r)2 +B(a� r) + C = 0; (53)

has a positive root. Reorganizing terms we obtain

Aa2 + (B � 2Ar)a+ (Ar2 + C) = 0: (54)

Thus, equation (54) has a positive root, if

A = (kn+ r) > 0;

B = 2r(kn+ r)� (Un+ rkn+ r2);

C = Ur(2n� F )� (kn+ r)r2 < 0:
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Now,once again, note that equation (54) has a positive root since for any n, we have

A > 0 and C < 0; and Intermediate Value Theorem47 applies.

Theorem (5.2) implies that for any choice of n, one can �nd a plausible value for

a such that the Jacobian that derives the system of equations at the steady state

admits a pair of pure imaginary eigenvalues and that is to say, the system admits

Hopf bifurcation. In the section that follows we simulate to show that for commonly

accepted values of economic parameters, one can obtain parameters that support

Hopf bifurcation.

5.4 Simulation

We can further simulate48 to show explicitly that such a exists. Let

u(c) = ln(c);

f(k) = k�:

Then,

U � uc(c)

ucc(c)
= �c;

F = f 00(k) = �(�� 1)k��2:

where the steady state values are

c = k� � �k � nk2;

�k��1 � 2nk = r + �:

47Let f(x) = Ax2 +Bx+ C where A > 0and C < 0. Then, f(0) = C < 0 and limx!1 f(x) > 0.
Moreover, f is continuous. Thus, by IVT, there exists a ~x > 0 : f(~x) = 0.

48We use Matlab R2010a and Mathematica 7 for the simulations.
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Let the parameters be as follows

� = 0:3;

r = 0:03;

� = 0:1;

n = 1:

Then, we have ahopf = 0:1006 (and a = �0:8185) that solves49 equation (52), which

satis�es a > r. Thus, we have a couple of pure imaginary roots. a is a parameter that

is incorporated into the model by the Erlangian setup. A �nite ahopf implies when the

population dynamics are a¤ected by the past generation�s fertility rate with special

emphasis on the generation at t � �� , the economy is driven into persistent cycles.

Moreover, it is totally consistent with the existing literature that we choose a to be

the Hopf parameter (see Fanti and Manfredi, 2003). However, Fanti and Manfredi

(2003) is short on interpreting the Hopf parameter with respect to the economy they

are considering. In Fanti and Manfredi (2003), Hopf bifurcation arises for a very large

value of elasticity of capital � = 0:88: The authors avoid it with a rather unconvincing

argument50. In an optimal growth model where Erlangian population is incorporated,

we obtain Hopf bifurcation with rather more plausible set of parameters.

The contribution is that under standard neoclassical assumptions, the optimal

49The steady state levels are,

c = 0:6048 > 0;

k = 0:3160 > 0:

50�We notice that, although persistent oscillations seem to require a rather large value of the
elasticity of capital � (even higher than those estimated by using a broad de�nition of capital stock
including the human capital), this is just a feature of the low-order kernel (r = 2) considered here for
purposes of analytical simplicity. Indeed by resorting to higher order distributions of the delaying
kernel (e.g., Erlangian densities of order r = 3; 4; 5:::), which are more realistic, we obtained, via
simulation, more realistic �critical�values of the elasticity of capital�(p. 111¤).
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growth model with a population growth structure of (distributed) time delay admits

Hopf bifurcation (limit cycle behaviour).

5.5 Conclusion

In this chapter we incorporate a per capita capital dependent age structure in the

population growth mechanism in an optimal growth model. Through this mechanism,

not only the population is considered as a function of per capita capital, or in other

words, population growth is endogenized, but also the current level of population

growth is linked with those of older generations. We show that the interaction between

population growth that takes the fertility choices of past generations into account and

capital accumulation may drive the economy into a persistent cycles.
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CHAPTER 6

CONCLUDING REMARKS

In the introduction of the thesis, we try to summarize the development and history

of the use of delay in economic models. Mainly, it is Kalecki (1935) who introduces the

delay in economic models to show that the crises (cycles) are intrinsic to economic

behaviour. The development of mathematical apparatus makes the reproduce the

results of Kalecki (1935) in more elaborated models possible. In the second chapter,

we try to sharpen the analysis of one sector optimal growth model with one control and

one state variables and time delay. We �rstly give a brief outline of the mathematical

history and �know-how�of delays in economic models, as well as its interpretation,

and then, we further the analysis set of the model of Asea and Zak (1999) and try to

introduce of a new technique for the exposition of the eigenvalues of the characteristic

equation of these type of models in a generalized framework. However, it is necessary

to further the analysis to lay out the exact distribution of eigenvalues in the complex

plane either via more elaboration in the analytical techniques or via numerical tools.

We also develop a new method that could be used to evaluate the relationship

between the magnitude of delay and the frequency of cycles in a Ramsey-Kalecki
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model. Louisell (2001) gives an example in which there is no correlation between the

two. We approve this and yet, it seems that for some interval of delay, there is a

positive correlation. The results should be numerically simulated.

In the forth chapter, we show that Hopf bifurcation may emerge in an overlapping

generations resource economy through a feedback mechanism between population

and resource availability. In overlapping generations resource economy models, the

cycle inducing factor is mainly the nonlinearity of the regeneration of the resources.

On the contrary, we assume linear regeneration and yet, endogenize the population

growth rate. We show that the interaction between instantenous population growth

and regeneration rate triggers persistent cycles in the economy. Allowing the renew-

able resource to regenerate nonlinearly (e.g. logistic) could bring even more complex

dynamics. This is in our research agenda.

In the �fth chapter, we employ a continuous delay structure in the process of

recruitment in the population growth in an optimal growth model and hence obtain

cyclic solutions. We exploit Erlangian process in the population growth mechanism.

We �nd out that the interaction between the e¤ect of older generations� fertility

choices and the accumulation of capital induces cyclic behaviour in the economy. We

are in the process of further numerical simulations that shows the economy in action.

We also study the wealth e¤ect in utility by way of Erlangian process. That is to

say, we are working on a model where the representative agent takes utility from his

or her ancestors�wealth level through an exponentially fading memory and we intend

to contribute to the existing literature of social status.
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