A NEW FOOTSTEP PLANNING FOR SLIP
AND TD-SLIP MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF
MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

By
Serkan ISLAMOGLU
December 2020

A New Footstep Planning for SLIP and TD-SLIP Models
By Serkan ISLAMOGLU
December 2020

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Omer Morgiil(Advisor)

Hitay Ozbay

Ismail Uyanik

Approved for the Graduate School of Engineering and Science:

Ezhan Karagsan
Director of the Graduate School

i

ABSTRACT

A NEW FOOTSTEP PLANNING FOR SLIP AND
TD-SLIP MODELS

Serkan ISLAMOGLU
M.S. in Electrical and Electronics Engineering
Advisor: Omer Morgiil
December 2020

Spring Loaded Inverted Pendulum (SLIP) is a well-known model and an accu-
rate descriptive tool, which can scientifically represent the dynamics of the legged
locomotion. Torque actuated Dissipative SLIP (TD-SLIP), on the other hand, is
fundamentally an enhanced version of the SLIP model. Inclusion of more realistic
damping model and the hip torque actuation has led the researchers to develop a
sufficiently better analytic approximation. This thesis proposes a new methodol-
ogy to achieve footstep planning on the SLIP and TD-SLIP models, distinctly. It
contributes a novel planning algorithm by utilising the constructed touchdown-to-
touchdown map, and a novel recursive function to plan and execute the planning.
The thesis provides a background information about the modelling and simula-
tion of both of the used models, and an auxiliary function, which administers
a derivative-free method to calculate the minimum of an input function. After
defining the problems and the corresponding proposed solutions, the foundations
of the preparation phase is established. This phase is fundamentally constructed
to accumulate required information for the algorithm implementation and sim-
ulation phase. The main phase consists of subsections, which can be composed
of the combination of following properties; planning type, as online and offline,
policy type; as forward and backwards and output type; as based on distance or
based on minimum step count. According to the stated problem, the planning is
successfully realised not only for a single desired distance, but also an array of
waypoints. In addition to this, the presented illustrations of different initial states
show that the planning can also be constructed via any different initial touchdown
state. Therefore, the obtained results are quite promising, since all of the cases
and their combinations successfully reach the destinations with a negligible error
value, which is less than 1%. Although, the offline planning type provides the re-
sults in a rapid way, the obtained data to use the plan requires much more space,

il

v

which also increases dramatically when the step count (level) is incremented. In
addition to this, the forward planning is faster than the backwards one, but they
both generate very similar results.

Keywords: SLIP dynamics, Online - Offine Planning, Forward - Backwards Plan-
ning, Footstep Planning, Legged Locomotion.

OZET

SLIP VE TD-SLIP MODELLERI UZERINE ADIM
PLANLAMASI

Serkan ISLAMOGLU
Elektrik ve Elektronik Miihendisligi, Yiiksek Lisans
Tez Damsmani: Omer Morgiil
Aralik 2020

Yay Yiklii Ters Sarkag (SLIP) bacakli hareket yetenegini bilimsel olarak tem-
sil eden genis akademik alanlarda kabul gormiis hassas tanimlayici bir mod-
eldir. Bir diger yandan, Tork ile igletilmis dagitici sarkag ise (TD-SLIP)
yay yukli ters sarkacin temelde gelistirilmis bir siirtimiidiir. Daha gercekgi
sontiimlendirilmis model ve kalcadan uygulanan torkun bu sisteme dahil olmasiyla
modelin daha gercek¢i ve daha iyi analitik yaklagimlar: geligtirilmistir. Bu tez
adim planlamasinin hem SLIP hem de TD-SLIP ortamlarinda nasil saglandigini
gostermektedir. Hazirlanan yere-dokunugtan yere-dokunusa fonksiyonlar ile yeni
bir planlama algoritmas1 ortaya koyan bu tez, aymi zamanda tekrarlanan bir
fonksiyon ile planlamaya da katk:i saglar. Tezi daha detayli anlayabilmek icin
gecmigteki caligmalar iceren gerekli bilgilerle baglayip, simiilasyon ortamindaki
hesaplamalar i¢in tiirevsiz bir yontemle verilen bir fonksiyonun ¢iktisini en kiiciik
seviyede sunan bir yardimci bir fonksiyonuna deginilir. Ardindan hangi prob-
lemlerin ¢oziilecegi ile ilgili detayh bir aciklamayla devam edilip ayni1 problemlere
uygulanan ¢oziimleri de agiklhiga kavugturulur. Devaminda, simiilasyon ¢ncesinde
yapilan iglemlerin anlatimina gecilip, ana amaci simiilasyon sirasinda kullanilmak
lizere verilerin nasil olugturulduguyla ilgili detayl bilgiler verilmistir. Simiilasyon
asamas1 alt kisimlardan olugmaktadir. Bunlar cevrimicgi veya cevrimdigi plan
olusturulmasi, ileriye dogru veya tersten olusturulmus prensip se¢imi ve en kisa
mesafeye veya en diigiik adim sayisina gore cikt1 tipidir. Saglanan figiirler sadece
tek bir hedef pozisyonun ulagilmasina yonelik olmayip ayni zamanda birden fa-
zla ara noktalarin da erigimine yoneliktir. Buna ek olarak, ayni1 hedef noktaya
ulagsmak amaciyla farkli baglangi¢ durumlarinin ¢izimlemeleri de gosterilmistir.
Biitin durumlarda ve onlarin birbirleriyle olusturduklar1 kombinasyonlar hede-
flerine %1’den az yanhghk payiyla ulagtigindan alinan sonuclar olduk¢a umut

verici sayilabilir. Cevrimdigi planlama ¢ok daha hizli sonuclar iiretmesine ragmen

vi

elde edilen verinin kullanilmasi i¢in bir o kadar fazla alana ihtiyac vardir. Bu alan
ayni zamanda adim sayisinin artmasiyla beraber artmaktadir. Buna ek olarak,
ileriye doniik planlama geriye doniik olana gore biraz daha hizli sonuglar iiretmis

olup her iki yontem de hedef pozisyona ¢ok yakin noktalara gitmeyi bagarmigtir.

Anahtar sozcikler: SLIP dinamikleri, Cevrimici - Cevrimdigi Planlama, Ileriye
dogru - Geriye dogru Planlama, Adim Planlamalari, Bacakli Hareket Yetenegi.

Acknowledgement

I would like thank to my supervisor Omer Morgiil for his guidance and providing
me this great opportunity to work on. I would extend my gratitude with my
friends; Ezgi Abicilar for being my everything on everything. My study partner
Ahmet Safa Oztiirk, and my other always-there friends Giray Ilhan, Ahmet Can
Varan, Cetin Tasgtekin, Barig Cogkun, Kuter Kirimer, Kaan Yilmam and Arda
Ata Erdogdu.

Also, special thanks for Ismail Uyanik and Hasan Hamzacebi for helping me
out to construct the fundamentals of my work. Their supervision and advice led

me to figure out beneficial solutions.

Finally, I always thank to my family, who are always there to help me when I
am in need. My parents; Tun¢ Islamoglu and Yesim Biiyiikmeric, my aunt Filiz

Islamoglu, and my little and beloved sister Ece Islamoglu.

vil

Contents

1 Introduction 1
2 Background Information 6
2.1 SLIP - Constant Energy - Model 6
2.1.1 General Information 6

2.1.2 Model Simulation oL 14

2.2 MONOPOD - Torque actuated with Damping - Model 16
2.2.1 General Information 0L 16

2.2.2 Model Simulation 17

2.3 Used Libraries 18
2.3.1 fminsearch function 18

2.3.2 fmunsearchbnd function L. 19

3 Problem Definition & Proposed Solution 20
3.1 Problem Definition oo 20

CONTENTS

3.1.1 Touchdown-to-Touchdown Return Map
3.2 Proposed Solution L
3.2.1 Safe Guard Region
3.22 Goal Domain00

3.2.3 Reachable Touchdown State Set

4 Preparation Phase
4.1 Cloud Construction
4.1.1 Construction of the Inner Cloud

4.1.2 Construction of the Outer Clouds

5 Algorithm Implementation
5.1 Online Implementation
5.1.1 SLIP - Constant Energy - Model
5.1.2 MONOPOD - Torque Actuated with Damping - Model . .
5.2 Offline Implementation
5.2.1 SLIP - Constant Energy - Model

5.2.2 MONOPOD - Torque Actuated with Damping - Model . .

6 Results

6.1 SLIP - Constant Energy - Model Results

1X

23

25

26

27

27

29

29

30

36

41

45

45

23

54

56

o7

58

CONTENTS

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

X
Generic Results 58
Comparison - Online & Offline Implementation 63
Comparison - Forward & Backwards Planning Implemen-

tationo Lo 64

Comparison - Policy Type - Step & Distance Implementation 69

Comparison - Different Initial Touchdown States 69

6.2 MONOPOD - Torque Actuated with Damping - Model Results . . 75

6.2.1

6.2.2

6.2.3

Comparison - Online & Offline Implementation 75

Comparison - Forward & Backwards Planning Implemen-
tation 75

Comparison - Different Initial Touchdown States 80

7 Conclusion and Future Work 83

List of Figures

1.1

1.2

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

SLIP Model, Raibert’s Hopper, A human runner

Gravity effect on angular momentum at the end of the stance phase
compared to touchdown instant; decreasing effect on magnitude,

symmetric stride, increasing effect on magnitude

SLIP Model Coordinates & Parameters
SLIP Model Phases & Transitions

TD-SLIP(MONOPOD) Model Coordinates & Parameters

Problem Visualization
SLIP touchdown state vector visualization
Proposed Solution Example (Forward Planning)

Proposed Solution Example (Backwards Planning)

Cloud Construction Logic

Linearly sampled horizontal and vertical velocity values from the

Safe Guard Region L.

x1

LIST OF FIGURES xii

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

Constructed Inner Cloud — Red Ones Reachable Set (n xn, n =

225), Blue Ones Safe Guard Region (m*m, m=15) 34
Constructed Inner Cloud(3D) 35
Constructed Inner Cloud - MONOPOD (n*n, n=225) 36
Selected Goal Domains for the Outer Cloud 38
Constructed Outer Cloud - Level 1 39
Constructed Outer Cloud (3D) - Level 1 39
Constructed Outer Cloud - Level 1 - MONOPOD 40
Algorithm General Overview 42
Logic General Overview 42
Recursive Map Construction 44
Best Theta TD and Alpha Calculation 44
Online - Forward Planning - Minimum Distance 59
Online - Forward Planning - Minimum Distance 62
Online - Forward Planning - Minimum Distance 63

Target position = 13m - Offline - Forward Planning - Minimum
Distanceo 65

Target position = 13m - Online - Forward Planning - Minimum

Distance 65

LIST OF FIGURES

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

Target position = 26 m - Offline - Forward Planning - Minimum

Distance

Target position = 26 m - Online - Forward Planning - Minimum

Distance

Target position = 33m - Offline - Forward Planning - Minimum

Distance

Target position = 33m - Online - Forward Planning - Minimum

Distance
Target position = 50m - Online - Forward Planning - Minimum
Distance
Target position = 50 m - Online - Backwards Planning - Minimum
Distanceo
Target position = 60m - Online - Forward Planning - Minimum
Distance
Target position = 60 m - Online - Backwards Planning - Minimum

Distance

Target position = 70m - Online - Forward Planning - Minimum
Distance
Target position = 70 m - Online - Backwards Planning - Minimum
Distance
Target position = 80m - Online - Forward Planning - Minimum
Distance
Target position = 80m - Online - Forward Planning - Minimum

Step Count

xlil

LIST OF FIGURES

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

Target position = 60m - Online - Forward Planning - Minimum

Distance - velporizontar = 7-1000 m/s; velyertica = —3.8763m/s . . .

Target position = 60m - Online - Forward Planning - Minimum
Distance - velporizontar = 7-4000m/s, velyerticar = —3.8942m/s . . .

Target position = 60m - Online - Forward Planning - Minimum

Distance - velporizontar = 7-7000m/s, velyerticar = —3.9121m/s . . .

Target position = 30m - Offline - Forward Planning - Minimum
Distanceo
Target position = 30m - Online - Forward Planning - Minimum
Distance
Target position = 45m - Offline - Forward Planning - Minimum
Distanceo
Target position = 45m - Online - Forward Planning - Minimum
Distance
Target position = 20m - Online - Forward Planning - Minimum

Distance

Target position = 20 m - Online - Backwards Planning - Minimum
Distance
Target position = 30m - Online - Forward Planning - Minimum
Distance
Target position = 30 m - Online - Backwards Planning - Minimum
Distance
Target position = 30m - Online - Forward Planning - Minimum

Distance - velporizontar = 2-8000m/s; velyerica = —3.3640m/s . . .

Xiv

73

74

74

80

LIST OF FIGURES XV

6.30 Target position = 30m - Online - Forward Planning - Minimum
Distance - velporizontar = 3-3000m/s; velyertican = —3.3784m/s . . . 81

6.31 Target position = 30m - Online - Forward Planning - Minimum
Distance - velporizontar = 3-3000m/s, velyerticar = —3.4690m/s . . . 81

List of Tables

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Notation for SLIP states throughout the thesis 9
Notation for SLIP model parameters throughout the thesis 9
Notation for mapping functions throughout the thesis 10
Notation for SLIP events 10
Notation for SLIP simulation parameters 15
SLIP simulation parameters 16
MONOPOD simulation parameters 18

XVv1

Chapter 1

Introduction

Spring Loaded Inverted Pendulum (SLIP) model’s foundations were established
in the early years of 1990s [1]. It has been widely accepted in the literature,
and it provides a beneficial model on animal locomotion[2, 3, 4], and ensures the
capabilities of robust dynamic locomotion[5, 6, 7]. Animal locomotion on widely
different sized morphologies were recognized as the center-of-mass movement pat-
tern, and the discovery of these movement patterns led the researches to develop
simple yet accurate SLIP models. The descriptive and dynamical model utilises
the locomotion behavior by adopting running, walking and leaping modes, in the
light of providing speed, agility, and efficiency[8, 9, 10]. Therefore, it was ex-
pected that the well-studied model encourage the development of other different

structured, but similar logical models[11].

The Torque actuated Dissipative SLIP (TD-SLIP), on the other hand, was
established to overcome the structural deficits and problematic model assimilation
of the SLIP model[12]. TD-SLIP incorporates damping and hip torque actuation
with the constant energy SLIP model. The comparison between two models
clarified in the scientific work, which states the significance of the damping factor
on human and animal modeling, and the use of torque to decrease the energy
dissipation[12]. Although the analysis and control involves difficult challenges,

from an implementation point of view, the enhanced model is actually more

realistic.

Figure 1.1: SLIP Model, Raibert’s Hopper, A human runner

Using the principles of Lagrangian dynamics, the derivation of physics based
mathematical models can be achieved. These methods are interestingly effective
on describing center of mass trajectories of the legged locomotion[13, 14, 15].
The expression is not only limited as formulations, but also influenced the real
physical robotic systems such as [16, 17, 18]. Additionally, the state-space models
[19, 20] and data-driven analogies to utilise transfer functions [21, 22, 23, 24| are
also studies to use input and output data for legged locomotion. Differently,
central pattern generator approach of the models are also known in the literature
so that the investigation of the legged locomotion extends in a broader pattern
25, 26, 27]. Many researchers have been anchored SLIP model template to achieve
more complex models for running with legged robots so that its practicality can
be increased [28, 29, 30, 31]. In addition to this, as the inclusion of the damping
in the leg causes the system to energy loss, in order to compensate it a single
linear actuator is combined with the model [32, 33], and its validated in [34]
by modelling the muscle activation. The activation includes injection of energy
during stance phase with a force-free leg length activation. Since the addition of a
linear actuator increases the mass on the robot leg, studies enlighted the possible
problem, and stated that it has a minor effect on system trajectories, although it
affects the dynamics [35]. In the light of these the fundamentals of the footstep

planning has successfully came into the picture [36, 37].

This thesis focuses on the footstep planning on the SLIP and TD-SLIP models.

2

The study enlightens the details behind how planning phase is constructed and
execution stage is processed on the simulation environment. The planning phase
is consisted of two fundamental chapters. The very first one is before the simu-
lation (i.e preparation) phase, and the other one is the path construction phase.
The preparation stage can be considered as the data accumulation part, in which
the model’s single steps’ possible reach sets and their corresponding goal domains
(possible goal sets) are combined as an array. The constructed goal domains are
selected from a safe guard region, where the minimal input changes do not affect
the implemented model to attain greater controllable input changes, and they are
assigned as the target vectors. Each target vector becomes a goal vector for a cal-
culated reach vector set, and all of the possible reach sets and their goal domains
constitute a single cloud domain. Each cloud domain, which is constructed upon
another actually covers a larger area. Therefore, as constructing a cloud takes
time, the number of clouds and the region incremental values can actually be up
to a predefined set of parameters. As preparation chapter is processed distinctly,
the cloud construction part does not go along with the simulation. However, the
gathered information is used within the simulation. On the other hand, the plan-
ning stage consists of main subsections, which are the online and offline planning
construction types. The keyword online means the planning is constructed after
the simulation is started, with respect to the initial state, whereas the keyword
offline states another process in between the preparation and simulation phases to
construct a plan for all possible starting states. Both of the implementation types
includes the forward and backwards path generation, and both of the generation
types are consisted of the planning based on the distance and step count. The
main purpose behind the planning with respect to distance is to minimize the er-
ror to reach the target position, and the aim behind the step count is to minimize
the step count as much as possible to reach the closest desired position. Addi-
tionally, the algorithm is executed with different initial states, and the waypoint
logic also implemented for both of the models. All of the mentioned different
planning executions are successfully achieved with at most 0.1% positional error,

and their corresponding results are provided in the related chapter.

The main contributions of this thesis are as follows. First, it provides a novel

Figure 1.2: Gravity effect on angular momentum at the end of the stance phase
compared to touchdown instant; decreasing effect on magnitude, symmetric
stride, increasing effect on magnitude

way to plan the footstep of the well studied models in the literature, regardless
of the initial starting state. The planning is not only successfully achieved by
providing a single goal distance, but also an array of desired distances. Secondly,
the cloud domain term is proposed, which can actually holds the required infor-
mation to connect the successive model steps. Additionally, for the algorithm
implementation part, comparisons between the online, which is the process af-
ter the simulation started, and offline, which is the procedure in between the
simulation and preparation phase, plannings stated. The statement includes the
selection of which one should choose with respect to their requirements. Also,
the comparison between the forward and backwards planning is provided so that
to understand and observe which one reaches better results. Finally, outputting
the results based on minimum distance error or based on minimum step count
is investigated. Therefore, a choice can be made according to the relevant situ-
ation, which can be reaching as close as it can, or reaching with smaller energy

consumption.

This thesis organized as follows. Chapter 2 provides beneficial background
information about the SLIP and TD-SLIP models. It includes the general infor-
mation, their locomotion phases and the phase dynamics for both of the models.
Chapter 3 defines the problem and its possible proposed solution. Chapter 4
emphasizes the work done in the preparation part or also described as the data
accumulation phase, which will be used in the next chapter. Additionally, Chap-
ter 5 realises the implemented algorithm for SLIP and TD-SLIP models, for

online and offline ways, respectively. It uses the mentioned work in Chapter 4,

4

and provides different ways so that the algorithm can be executed. Chapter 6
demonstrates the obtained results, and finally the very last chapter concludes the

work, and provides possible future extensions.

Chapter 2

Background Information

2.1 SLIP - Constant Energy - Model

2.1.1 General Information

Foundations of the Spring Loaded Inverted Pendulum were laid in the very late

years of 20" century [9, 38].

Figure 2.1 illustrates the general structure of the SLIP Model. The model is
consisted of a point mass (m), which is attached to a compliant, mass-less leg,
and a leg length of r. The spring constant is given with k, and the parameter b

is used to represent the viscous damping. Finally, the leg angle is indicated as 6.

On the other hand, Figure 2.2 exemplifies single step locomotion of the SLIP
model. There are basically two fundamental phases, which can be observed as
the Flight and Stance phases. During the flight phase, leg does not touch the

ground and during the stance phase leg touches the ground with toe position

Figure 2.1: SLIP Model Coordinates & Parameters

stays fixed. Flight phase can be divided further into two sub-phases (Descent-
Ascent) and Stance phase can also be divided into two-sub-phases (Compression-
Decompression). Different transition events, which are demonstrated on the Fig-

ure, identifies the current phase and the current behavior of the model.

1. Flight Phase

The Flight phase is the period where the leg remains completely untouched
to the ground and the body follows a ballistic trajectory. Therefore, ac-
cording to the model’s vertical velocity the phase is divided into two main

sub-phases

(a) Ascent Flight Phase: This is exactly the half sub-period of the
flight phase where the vertical velocity is always positive. Although,
the velocity is decreasing in magnitude, the model vertical position

keeps increasing.
(b) Descent Flight Phase: This is the remaining half sub-period of

7

HLIGHT PHASE+-STANCE PHASE—+—FLIGHT PHASE—

APEX
TOUCHDOWN

BOTTOM
LIFTOFF

\V/

P
| [ASCENT]

[DESCENT | DECOMPRESSION |

Figure 2.2: SLIP Model Phases & Transitions

the flight phase where the vertical velocity is always negative. The
velocity is increasing in magnitude, but the model vertical position is
decreasing. It can be considered as the opposite behavior of the ascent

phase.

2. Stance Phase

When the model touches the ground, the stance phase begins. The dy-
namics of this phase are non-integrable, because of the gravitational attrac-
tion. Just like the Flight phase, this phase is also consisted of two main
sub-phases, but these sub-phases are not identically occurred in half of the

period, because of the touchdown leg angle.

(a) Compression Stance Phase: In this sub-period of time, the leg
length becomes smaller, or in other words the rate of change of the leg
length is negative. The energy is stored on the compressed string, and

this phase occurs until the vertical leg velocity is zero.

(b) Decompression Stance Phase: This is the remaining sub-period of
the stance phase, the rate of change of the leg length is positive. After

the vertical velocity reaches to zero, the string converts its potential

SLIP States

r,0 Leg length and Leg angle

7,0 Leg compression and swing rates

q Body state vector in polar coordinates ¢ = [0, 0, r, 7]

Dr, Po Radial and angular momenta

Ttdy O, tea Touchdown leg length, angle and time

T, Oy, Ty Bottom leg length, angle and time

7105 G10s tio Liftoff leg length, angle and time

x,y Horizontal and vertical body positions

tx Horizontal toe position

T, Horizontal and vertical body velocities

b Body state vector in cartesian coordinates b
[;C,i',y,:l),tl']

Ya, Lo Apex height and velocity

Table 2.1: Notation for SLIP states throughout the thesis
SLIP Parameters

m, g body’s mass, gravitational acceleration

ke kg, C Leg stiffness during compression, decompression and
damping coefficient

E Total mechanical energy

Fy(r,7) Spring force function. For a given leg length it returns
spring force based on the stance phase of SLIP

Us(r,7) Spring potential energy function. For a given leg length
it returns stored energy on compliant leg based on the
stance phase of SLIP

Table 2.2: Notation for SLIP model parameters throughout the thesis

energy to kinetic energy, and the leg begins to move on the opposite

direction.

e Transition Events

Since the SLIP model is a hybrid one, it includes both continuous and
discrete dynamics with respect to the flight and stance dynamics. These
events can be considered as the boundaries in between the phases. They

fundamentally occur at the point where a phase is finished, and the next

Mapping Functions

Higs1a(ba) Touchdown to touchdown map
H,a(ba) Apex to apex map

H,1a(by) Apex to touchdown map
Hipya(bio) Liftoff to apex Map

Hips1a(bio) Liftoff to touchdown Map

tesp(b) Cartesian to Polar Transformation
tp—e(Q) Polar to Cartesian Transformation

Table 2.3: Notation for mapping functions throughout the thesis

SLIP Events

tid, tio touchdown and liftoff times

Ttdy Oia touchdown leg length and angle

Tl0, 1o liftoff leg length and angle

Tidy Oia touchdown leg compression and swing rates

Table 2.4: Notation for SLIP events

one is started. SLIP events table demonstrates the basic definitions of the

model events.

1. Apex Event: This event occurs in the Flight phase, and in between
the Ascent and Descent sub-phases. When this event occurs, the SLIP

body is on its maximum height, the maximum potential energy, and

zero vertical velocity. In other words, it occurs where the following

equation is equal to zero.

y=0
SLIP — flight

2. Touchdown Event: This is a phase transition event. It occurs, when

the slip body touches at the ground, or transitions into compression

sub-phase from descent. Differently from the apex event, this event

occurs at the crossing point of the following equation.

10

Yy —1rgcosty =0

j<0

3. Bottom Event: This event occurs in between the compression sub-
phase to decompression subphase. It occurs when the vertical velocity
is zero, it actually indicates the minimum height, and minimum po-
tential energy. It occurs at the zero crossing point of the following

equation.

r=20
SLIP — stance

4. Liftoff Event: This is the other phase transition event. It occurs,
when the slip body removes connection with the ground, and begins
to fly. It appears in between the decompression and ascent sub-phases.

The following equation identifies the zero crossing function.
Yy —1r,cosb, =0
y>0
e SLIP Dynamics

Based on the hybrid nature of the SLIP model, the stance and flight phases
exhibits different dynamics. Therefore, the following information is going

to clarify the flight phase’s and stance phase’s dynamics

1. Flight Phase Dynamics: During the Flight phase, the SLIP model
follows a ballistic trajectory. In Cartesian coordinates, the state vector

can be considered as;

b=z = y y tx (2.1)

11

Therefore, the flight dynamics becomes;
bi=1|i 0 y —g x] (2.2)

In Equation 2.2, the last variable of the vector is used for the multi-
step purposes. Therefore, for a single movement from apex to apex,
the locomotion is not necessary and can be considered as zero. The
variable remains constant during the stance phase, and has identical
dynamics with the body position state over the flight phase. Since
the controller action is assumed to be executed on each apex, the toe
position is instantaneously updated with the new touchdown angle,

independently from its dynamics.

Therefore, over a flat surface, the apex to touchdown map (H, :4(b,)),

becomes;

Ta +La\/2(Ya = Y)/9
Lo

Hy sta(bs) == T'4q COS 04 (2.3)

—2/29(Ya — y)
T+ T4g8in Oy

In addition to this, another simple way to derive the flight dynamics

is using polar coordinates. If we assume the state vector as;

a=10 6 r ¢ (2.4)

Therefore, the touchdown states can now be mapped with a transfor-

mation from Cartesian coordinates to polar coordinates;

O
(—yd + (z —ta)y)/r?
Ttd
((z —tx)z +yy)/r

Loy (bra) == (2.5)

For a given liftoff state, a transformation from polar coordinates to

Cartesian coordinates are required, so;

12

—Tlo sin 0[0
—7},8in 0 — 1y, CcOS 9;09}0
tp—w(qw) = T'10 COS 910 (26)
Fio COS 019 — 710 SN 70 SIN O100)0

0

According to the assumption of a flat surface with zero height, and toe
is located at the origin of the Cartesian coordinate frame. The liftoff

to apex map (fio—a(bi)), is derived as follows;

Llo + x‘loy.lo/g

Lo
Hiosal(bio) == 0.591,2 /g (2.7)
0

TioYio/ g

2. Stance Phase Dynamics: In the light of the assumption of the
friction-less revolute joint, the stance phase occurs in between the
first contact point of the ground and first lose-contact point with the
ground. As the best fit for the derivation of the stance phase dynamics
is the polar coordinates, the Lagrangian equation of the Figure 2.1 is

given by;

1 . 1
L= Em(i“Q +726%) — 5]’{3([0 — 1 —mgrcosf) (2.8)

Therefore, equations of the motion of the SLIP model in stance phase

can be derived as follows;

mit = mré® + k(ly —) — mg cos — (7 (2.9)
a 2/ .
0= a(mr) + mgrsiné (2.10)

Using 2.9 and 2.10, the dynamics in polar coordinates, q, are given by;

13

0
—gsin@/r —2r0/r
7

Fy(r,7)/m +16* — g cos 6

(2.11)

where Fy(r,7) is the spring force function;

. ke(lo — 1) ifr <0
Fy(r,7) = (2.12)

ka(lo — 1) ifr>0
Note that Equations 2.9 and 2.10 are nonlinear differential equa-
tions. In fact, due to the gravitational form, these equations are non-
integrable, hence a closed-form solutions cannot be found [39, 40]. Al-
though, there are no exact solutions for the stance map, there are also
several studies on approximate solutions of SLIP’s stance dynamics,
in the literature. The following simulation sections consider [39] and

[40], as the approximations.

2.1.2 Model Simulation

The model has been implemented on the MATLAB environment, so the simula-
tion utilises a few fundamental functions. These functions simulate the model to
jump from one point to another with respect to the parameters provided as an
input to the MATLAB’s ODE45 function. The ODE45 function solves the dif-
ferential equations by integrating the input function with respect to the provided

tinitial a0d t ;54 values, and an initial function value.

The first MATLAB function we utilize is called slip;,, which is the main tran-

sition events function and symbolically, which is given as in Eq. 2.13.

[Unews Cnew, Stop, params| = slip.(t,y, ¢, ie, params) (2.13)

14

’ Simulation Parameters

slipy, slip transition events

slipy, ¢ slip vector field

Sl1Pey slip event functions in between transitions

t current time

Y current state vector

c current phase

YUnew next state vector

Crew next phase

e stop conditional

stop boolean value

params required update parameters for the corresponding func-
tion

Table 2.5: Notation for SLIP simulation parameters

It contributes the model to execute required calculations in between two sub-
sequent phases. It does not only provide the new position, the new state, and the
is-fall boolean value, but also updates the model specific parameters, respectively.

The aim of the next function, slip,; is to evaluate the vector;

yp = slip,(t, y, c, params) (2.14)

The output of the Equation 2.14 represents the vector field. It calculates
the current state values in a sub-phase. For example, after changing the model
state (from liftoff event to apex event), this function calculates current states all
values, based on the provided time interval, until the next state is reached. The

last function slip., is symbolically given below;

[value, isterminal, direction] = slipe,(t,y, ¢, params) (2.15)

Function provided in Equation 2.15 handles to a function that computes event
functions to detect hybrid transitions. Throughout the simulations we use the

following parameters;

15

’ SLIP Simulation Parameters

spring constant (k) (350 N/m)
mass (m) (1kg)
gravitational force(g) (9.81N/kg)
leg length(ly) (1m)

Table 2.6: SLIP simulation parameters

Figure 2.3: TD-SLIP(MONOPOD) Model Coordinates & Parameters

2.2 MONOPOD - Torque actuated with Damp-
ing - Model

2.2.1 General Information

Torque actuated Dissipative Spring Hopper is a develop version of the SLIP model
[12]. Differently from the constant energy model, it utilises a torque parameter
and the damping constant. Therefore, the system dissipates energy with the

damping, but regains it with the applied torque.

The phases, sub-phases and transition events are completely the same as the
standard SLIP model as given in the Section 2.1. Therefore, will not be repeated

here.

e Flight Phase Dynamics: The flight phase dynamics are completely the

16

same with the previous section. The model fundamentally follows a ballistic

trajectory.

e Stance Phase Dynamics: The stance phase dynamics, on the other hand,
are a little bit complicated than the previous section. In the light of the in-
clusion of the damping and torque actuation parameter, the phase dynamics

become more complicated.

mit = mré* — mgcos 0 — k(r — lo) — br (2.16)
8 2 .
E(mr 0) = mgrsinf + 7 (2.17)

The equations are derived from the Euler-Lagrange formulation. The 7 pa-
rameter represents the applied hip torque, which can be observed from the Figure
2.3.

2.2.2 Model Simulation

The used functions in the MATLAB simulation is logically with the same with
the previous ones. The difference occurs from the incorporated effects of the
hip torque and damping. Therefore, the monopod,. function, which provides
the required calculations in between phase changes, takes the effect of torque
into account from the touchdown event to bottom, and bottom event to liftoff.
Additionally, the vector field among these compression and decompression sub-

phases (stance phase) are also calculated by the monopod,; function.

17

’ MONOPOD Simulation Parameters

spring constant (k) (350 N/m)
mass (m) (1kg)
gravitational force (g) (9.81N/kg)
leg length (y) (1m)
damping constant (b) (24Ns/m)

Table 2.7: MONOPOD simulation parameters

2.3 Used Libraries

2.3.1 fmansearch function

fminsearch is a well-known MATLAB function. As the name suggests the method
takes an unconstrained multi variable function as an input and calculates the
minimum by following a derivative-free method. It’s been explicitly used on

variety of MATLAB functions and also individual implementations.

The description of the function can be demonstrated as follows

min f(x) (2.18)

T

where:

T =18 a vector or a matrix

f(x) = is a function that returns a scalar

Additionally, the algorithmic implementation of the function can be demon-

strated as follows

x = fminsearch(fun, g, options) (2.19)
where:
fun = denotes a function to be minimized
o = initial vector

options = optimization options

18

The options field is not required, but in order to improve the process,

e maximum number of function evaluations
e maximum number of iteration count

e termination tolerance

can be arranged. These optional fields not only provide a better solution, but
if given appropriately it can also support to avoid being converged to a local

minima.

2.3.2 fmainsearchbnd function

fminsearchbnd is an improved version of the fminsearch. Likely fminsearch func-
tion, fminsearchbnd method uses the same input parameters with an inclusion of

setting upper and lower boundary parameter.

x = fminsearch(fun,zqo, LB, U B, options) (2.20)
where:
fun = denotes a function to be minimized
o = initial vector

options = optimization options
LB = lower bound
UB = upper bound

As fminsearch does not admit bound constraints, fminsearchbnd provides a so-
lution to this need, by using a transformation method (quadric for single bounds,
sin(x) for dual bounds) to convert bounded constrained problem into an uncon-
strained one. Then, applies the fminsearch procedure to calculate the function

minimum. [41]

19

Chapter 3

Problem Definition & Proposed

Solution

3.1 Problem Definition

Since we consider 2D-SLIP model, the SLIP touchdown points follow a one di-
mensional line. Let us assume that the initial touchdown position =z, € R, and
the fixed (derived) touchdown position z; € R be given, where xy > ¢, which is

demonstrated on Figure 3.1.

Our aim is to design a planning algorithm and a control law accordingly so
that after an (yet) undetermined number of steps, the SLIP touches down in a
sufficiently close neighborhood of z¢. Note that touchdown state vector w;; € R’
is given as in the following equation, where we assumed that the leg length is

given as 1 ([, = 1).

20

fixed(derived) distance
unknown number of steps (n)

Figure 3.1: Problem Visualization

Zo

Lo

Wed = Yo (3.1)
Yo

| Zo + sin th_

The very last parameter in Equation 3.1 actually demonstrates the touchdown

position in x direction. According to Figure 3.2, it’s clear that we have;

Tpg = To + losin Oy (3.2)

For convenience, let us define the following projection vector II5 : R® — R as;

5 (w) = w; (3.3)

for any w = |w; wy ws wy ws| € R°. Clearly we have

5 (weq) = xo + losin Oy (3.4)

21

o) L —I_ Si].]. 9“—{

Figure 3.2: SLIP touchdown state vector visualization

Remark. Note that 0,4 is our control parameter and we assume that we can
adjust it during the flight phase. Hence, if xo € R is known, the next ;4 € R is
determined by 60,4 only. Moreover during the stance phase, x;5 does not change
until the liftoff. After the liftoff, the mass follows a ballistic trajectory, which is
integrable. Hence if we determine next touchdown angle, then xy and yo of next
touchdown states were also determined. This implies that while searching possible

touchdown positions, we have only 3 free parameters; namely , y and 6.

Likewise, from Figure 3.2, we have

Yo = lo cos by (3.5)

Hence, if 0,4 is known, then yq is also known.

22

3.1.1 Touchdown-to-Touchdown Return Map

The touchdown event initiates the stance phase, where the body follows the
dynamics demonstrated in Equations 2.9 and 2.10. Therefore, by following a
similar representation to provided in [42], the touchdown to liftoff map can be

formulated as

(Ttos 1o+ O1o, O10) = Hiasio(Fea, 01a) (3.6)

where the variables with subscript of lo means the liftoff phase, and td cor-
responds the touchdown instant. Additionally, the H;;_,;, is the mathematical
function which describes for the touchdown to liftoff map, and it also depends on

the control parameter ;4.

In addition to this, the liftoff the apex map can be formulated as

(Ztdy, Vtar) = Hioostay (Zed, Utds 710, O10) (3.7)

where Hj, 141 corresponds to the liftoff to next touchdown map. Therefore,

the map from one touchdown to another becomes as

Higy—tdy, = Via1 © Hio—tdy © Vie © Hidy—10 © Vid, (3.8)

where Hyg,—tq, is the touchdown to touchdown return map. The symbols
subscripted with V' label is actually the mathematical representation of the co-
ordinate transformation matrices, to switch between the Cartesian and Polar
Coordinates. Hence, combining all together the touchdown to touchdown return

map can be formulated as follows

(Ttdy s Yedr) = Hidg—tdr (Tedy > Yedo) (3.9)

23

Let w?) € R® and w7 € R® be n'* and (n + 1) consecutive touchdown

states, respectively. Clearly we have,

w§g+l) - th,nﬁtd,(nqtl)wgg) (310)

b and

where Hiq,st4,(n+1) 1S the touchdown-to-touchdown map between nt
(n + 1) touchdowns. Due to the non-integrability of the stance dynamics,
exact mathematical expression of this map is not available. It could only be
approximated by some analytical methods [43, 42]. In this work, we will rely on
simulations of stance dynamics to evaluate this mapping. Clearly, we utilize the
iteration of this map. Let wgl)) € R be an initial touchdown state and wgg) e R”

be the corresponding touchdown state off the n'* step. Clearly we have;

wﬁi}’ = Hig,(n-1)>td,(n) © Hid,(n—1)—td,(n) © - - - th,odewEg) (3.11)

= th,owd,(n)wgg) (3.12)

where, Hyq0-ta,m) could be considered as n-step touchdown-to-touchdown

map.

With this information, we can define the footstep planning problem as follows;

e Problem 1 (Single waypoint footstep planning):

Given zp € R and zy € R with 2y > xy > 0, find an initial touchdown

state wﬁg) € R’ with H5(w§2)) = xp, such that for some n € N, the final

touchdown state wgg) given by 3.12 satisfies

s (w?) — 2/ < e (3.13)

for some sufficiently small ¢ > 0.

24

To define multiple waypoint footstep planning, let us assume that o € R
and x5, € R be given where ¢ = 1,2,... k with xy, > x5 |, > -+ > xp >
xy,. For an initial touchdown state wﬁfj), let us define the following for some

integers n;, i = 1,2,..., k;

Wit = Higooiam (W) (3.14)

ng d,n; i—1 .
wiy?) = Hi i)i =2,k (3.15)

e Problem 2 (Multiple waypoint footstep planning):

Given zp € R and zy, € R,i =1,2,...,k, find an initial touchdown state
wig) € R® with Hg,(wgi))) = I, such that for some integers n; € N the

following inequatilities are satisfied

[T (wy”) —] < e (3.16)
for some sufficiently small € > 0.

Remark. Clearly the solvability of the problems given above depends on finding
an appropriate initial touchdown state as well as appropriate touchdown angles

at each touchdown. Note that the touchdown angle is our basic control parameter
for the standard SLIP model.

3.2 Proposed Solution

As stated in the previous Remark, solvability of the problems given in the pre-
vious section depends on finding appropriate initial touchdown state(s) and cor-
responding touchdown angle(s) so that Equation 3.13 and 3.16 are satisfied. This
requires solving equations 3.12 and 3.15. But, since the map Hyq;—ta,i+1(.) is not
available analytically, we will resort to the numerical solutions, i.e. numerical

integration of the SLIP equation given by Eq. 2.9 and Eq. 2.10. Since, initial

25

touchdown state w;q is not known, but is only required to satify H5(U)§2)) = 19, We
choose a region of possible initial states Dy by choosing the components of initial
touchdown state components in a reasonable range by considering the velocity

values in a reasonable running behavior.

3.2.1 Safe Guard Region

The region has been constructed by observing a single SLIP stride. As each stride
consists of a touchdown, bottom, liftoff, apex and next touchdown state, different
next touchdown state vectors with respect to the different starting touchdown
states can be examined by changing the starting touchdown angle (touchdown-
to-touchdown map). Therefore, by using this method the state variances can be

investigated.

Observing the horizontal and vertical velocities are the fundamental idea be-
hind constructing the safe guard region. According to the SLIP configuration, in
the simulation, selecting an inappropriate starting velocity might cause the SLIP
to fall independent from the touchdown angle. Therefore, observing and avoiding
the undesired or unstable(irrecoverable) states provides a better and controllable

scope.

Hence we define Dy as follows;

Do ={w? eR’, T5(w)} =g (3.17)

Then numerically we evaluate the next touchdown state from D; which are

reachable from Dy, i.e.

Dy ={wl eR’ cw®Dy>swl = Hyog1w} (3.18)
= Hig0-ta,1(Do) (3.19)

26

3.2.2 Goal Domain

The goal vector can also be considered as the desired vector. It is specifically used
as the aimed next touchdown state. According to the algorithm, different starting
touchdown states can address to reach the same goal domain. Different reachable
vector sets are defined based on a provided desired vector. The function logic can
be considered as an inverse one, as the next touchdown vectors are provided as

an input, so that the current reachable vector sets can be obtained.

3.2.3 Reachable Touchdown State Set

A reachable touchdown state is a starting touchdown state set that is aiming to
react the provided goal domain. It consists of different horizontal and vertical

velocities with different touchdown angles.

Clearly, now we can define all successive touchdown states;

Di = th,O—)td,iDO; and 7=]_, 2, .o n (320)

Figure 3.3: Proposed Solution Example (Forward Planning)

Now our Problem 1 will have a solution if for some w;y € D,,, and Equation

3.13 is satisfied. The Figure 3.3 could be considered as the forward planning.

27

Alternatively, we can start from the final touchdown point and evaluate the
steps mentioned above in a backwards fashion. More precisely, let wgg) € R’ be
a touchdown state satisfy H5(w§§)) = x¢. As before, similar to Equation 3.17 we

define the initial possible states Dy as follows;

Do ={w e R’ 5w} =z, (3.21)

This time, using the inverse of touchdown-to-touchdown map, we find D,,_; as

follows;

Dy ={wyy VR, Hugaawyy € Dy} = Hygly 1y, (D) (3.22)

Similar to Equation 3.20, we can define all previous feasible touchdown states

D; as in Figure 3.4;

Figure 3.4: Proposed Solution Example (Backwards Planning)

28

Chapter 4

Preparation Phase

The preparation phase consists of a single sub-phase. In general, the work done
in this chapter has been used in the main simulation phase. It is a separate
part which has been processed before starting the simulation. It also can be
considered as data acquisition and domain construction, or in other words, the

gathered information will explicitly be used on the simulation chapter.

Section 3.2 clarifies the notations and terms, which have been used after across
the chapter, and also the structure. It provides the details behind the touchdown
state, stride, safe guard region, goal domain, and the reachable touchdown state
set. In addition to this, Section 4.1 enlightens the details behind why and in what
behavior the domain term is used, and also how it’s constructed. Also, the section

provides detailed information about the notion of inner and outer domains.

4.1 Cloud Construction

The fundamentals of the cloud construction algorithm is based on connecting
the touchdown state vectors starting from the safe guard region to the outer
regions. The idea behind this logic is to keep the all of the touchdown states

inside the safe guard region, or in order words, provide a way to push them into

29

the controllable region. If a touchdown state is outside the safe guard region,
then, by using the constructed clouds, figure out the corresponding touchdown
angles (also applied torque for MONOPOD model) in order to advance the state

inside the stable(more controllable) region.

Scanning through all of the possible states and their corresponding goal do-
mains reveals a distance array. As a pair, each initial and next touchdown state
has a distance value. At the beginning, the initial position of the first touch-
down position is 0. Hence, when the algorithm passes through 5 model states
(touchdown, bottom, liftoff, apex, next touchdown) the next touchdown state
has a non-zero position value. This value represents the distance between a spe-
cific starting touchdown state, a specific touchdown angle and a specific next

touchdown state.

4.1.1 Construction of the Inner Cloud

The inner cloud can be realised as a set, in which the randomly or linearly gen-
erated goal domains and their corresponding starting touchdown states has been
found together. In a touchdown state vector, the vertical position and the leg
position are associated with the touchdown angle. Therefore, their illustrations
on a figure is unnecessary and redundant. Excluding this information from the
state vector practically forces the algorithm to benefit from the horizontal veloc-
ity, vertical velocity and the calculated distance value, together in between the
starting and next touchdown states. Therefore, as the pair set becomes diagram-
matically shapeless (not a line, nor a polygon), it can be also mentioned as a

cloud.

The very first process of this part starts with figuring out the safe guard region.
The definition of a safe guard region has provided in the Section 3.2.1. After
evaluating or approximating the safe guard region, two different vector sampling

methods can be achieved.

Two types of sampling has been used from the safe guard region. The very

30

calculate reachable
vector

when finished

Figure 4.1: Cloud Construction Logic

first one uses to sample the goal domain vectors (horizontal and vertical velocity)
in a random manner, and the second one utilises from linearly sampling ways.
Linearly sampling can cover the safe guard region properly. However, randomly
sampling can achieve a better precision. What is best to do is to cover the
region with a better precision, which can be provided by sampling in a random
manner with a greater sample count. However, covering a wider area takes more
time. Therefore, the implementation path should be selected according to the

computer’s specifications.

Assume that the algorithm has sampled n goal vectors from the safe guard
region. For each goal domain vector, another n number of vectors have been
randomly sampled, and this new sampled vector set is called the reachable vector
set. This set’s sampling region can be considered as an extended or wider version
of the safe guard region. The size of this covering region can totally up to the
user, but extending it with a small number can contribute more robust results,
because of the relatively narrower composed region. In this way, the size of the
first cloud becomes n * n. Each element in the reachable vector has provided as

an input to fminsearchbnd function.

The fun parameter in the fminsearchbnd function can be considered as a
function to figure out a starting touchdown state with respect to the provided goal
domain. The function takes two inputs; randomly sampled reachable vector as the
initial condition, and provided goal domain as the next touchdown state. After
providing the reachable set’s region limits as the lower and upper boundaries, the
fminsearchbnd easily calculates the best specific starting vector with a specific

touchdown angle to reach the desired goal domain.

31

[stateinitial, error] = fminsearchbnd(

Q(statemitiar) fun(stateinitia, stategoq), LB, U B, options

where:

stateiniriar = reachable vector, starting touchdown state

stategoqr = goal domain vector

error = fminsearchbnd error

fun = touchdown to touchdown single step function
LB = reachable vector set region - LOWER

LB = reachable vector set region - UPPER

options = includes MaxFunFEvals, TolX, Maxlter

The parameter provided in @Q() means that the values inside can be changed
with respect to the error function (which is the output of the fun), and other
parameters contributed in fun() remains the same. For example, in the Equation
4.1, stateinitia has changed at each iteration, but statey,q remains the same. The
provided error values is actually the output of the euclidean distance between the
given goal domain vector(goal horizontal and vertical velocity) and the output of

the fun, which is the next touchdown state(horizontal and vertical velocity).

After figuring out the best (minimum error) starting touchdown state to reach
the goal touchdown state vector, a datum has been created, and stored in an
array to be used in the simulation part. Datum’s fields are given in the equation
4.2.

Datum = |distance x{ Yy 0w, Ora, error] (4.2)

where:

32

3.75¢— ———— o-———-= o-—--- ----- O-————-—e--—-—--O - —-- O--I TG -——--0-————— o-————— o-——-= o———-- - ————— o)
I
I
o o o o o o o o o o o o o)
38— |
o] o o o o o o o o o o] o o] ¢>
I
- — I
3.85 o o o o o o] o] o] o] [0
I
I
o o o o o o o o o o o o o
391 ?
I
o o o o o o o o o o o o o ®
I
-3.95 — |
‘? [e]] [e]] [e]] [e]] [e] o o] o o 0]
8 T
< I
2 46— e} o] o] o e} o o o o o o ¢
3 |
T I
g o o o o o o o o o o o o o [0)
-4.05 — |
o o o o o o o o o o o o o ¢
I
41 |
o o o o o o o o o o o] o o] o]
I
I
o o o o o o o o o o o o o 0]
415 [
I
o o o o o o o o o o o o o ¢
I
42 I
o o o o o o o o o o o o o [0)
I
I
uss ! ! ! ! 4 ! ! ! ! b
6.75 638 6.85 6.9 6.95 7 7.05 7.1 715 7.2 7.25

Horizontal Velocity

Figure 4.2: Linearly sampled horizontal and vertical velocity values from the
Safe Guard Region

distance = the distance between the starting touchdown and the goal touchdown state

x = starting touchdown horizontal velocity
n = starting touchdown vertical velocity
Otd, = starting touchdown angle

04, = goal touchdown angle

error = fminsearchbnd error

The result of equation 4.2 is a single reachable vector set output. Inner cloud
consists of n number of them for single goal domain, and n * n number of them,

in total.

Figure 4.2 illustrates the selected horizontal and vertical goal domain vectors
for the linearly sampling type. The magenta border color demonstrates the as-
signed safe guard region. The sample size has been selected as n = 225, so that
the row and the column size are equal and 15. The boundaries of the safe guard
region is selected based on the system behavior. Which means that the model sim-

ulations were observed under specific conditions with different initial parameters.

33

32— Constructed Inner Cloud

36—

38—

Vertical Velocity
IS
I

42—

44—

Horizontal Velocity

Figure 4.3: Constructed Inner Cloud — Red Ones Reachable Set (n * n,
n = 225), Blue Ones Safe Guard Region (m *m, m = 15)

Then, according to the obtained results, the most robust points were observed.
Therefore, the boundaries of the region are selected as (6.75 m/s 7.25m/ s) for

the horizontal velocity, and (—4.25 m/s —3.75m/ s) for the vertical velocity.

Figure 4.3 shows the final form of the constructed inner cloud domain.
The blue vectors are the goal domains, and the surrounding red ones are
the corresponding reachable vector set which can be connected to the vec-
tors inside the safe guard region. The boundaries for the reachable vector

set is selected as (6_25 m/s 7.75 m/s) for the horizontal velocity vector, and
(—4.75 m/s —3.25m/ s) for the vertical velocity vector. The upper left and the

bottom right corner areas imply that the SLIP could not make successful strides.
In addition to this, Eq. 4.3 demonstrates an example of a single element in the
constructed array, where each index consists the values regarding with a single

movement.

Datumpmonopod = [dz’stance xy Yy Oy uay Owa, error (4.3)

34

Constructed Inner Cloud - 3D

Positional Change
IS
|

-34

Horizontal Velocity Vertical Velocity

Figure 4.4: Constructed Inner Cloud(3D)

where:

g, = applied torque at the touchdown state

Figure 4.4 demonstrates the 3D version of the Figure 4.3. The positional
change axis illustrates the slip movement from one red cross to blue circle. Ac-
cording to the simulation, an approximate slip stride is around 6 to 7 meters, but

for some specific cases it can have the lower values.

On the other hand, for the MONOPOD (torque actuated with dampling
model) model, reachable set Datum is a little bit different. Differently from
the Equation 4.2, Equation 4.3 has an extra field, which has been used to store
the information of amount of the applied torque. The applied torque is a ramp
function which has been implemented in between the starting of the touchdown
state until the end of the bottom state [12].

The boundaries for the safe guard region is selected as (3 m/s 3.5m/ s) for

the horizontal velocity vector, and (—3.5 m/s —3m/ s) for the vertical velocity

35

x . . X% x
x % x
X # X% XX o g X
X x X b3 X
x x % w xX X000 %
x x %)X K x %X o
FREX xx X X
X% x &
WX %
“ % x x oy XK Xffx*ii s X%
x X x)X xS ses Ko X x
. x* " x " X x X X% XXy
23 & & X@ x x o x x% *(XXXX x x
- S— ax x X%
< x x x
(3 ackas) 8& [i . S
x X x x 7 x
W00 RO To® X x x xx 7
o X0 ﬁé) . X x
2 X x X X « XXx
8 et X %5 x X x x "% x
s R @ x<x « X) X X
s Bix Os D®% BX % X X . X oxx X
= O30 X e AIX 7 x x x x *
5] o K XD % x x X
ks3 % R 1B K x
£ E3050 G4 Eoox K o .
x x
> &&»@xgx X x ¥ x x % x
mod & LI T,
2 x
o x %
2 -~
XXX X xy X
% B XXX XX X x N
K o x % L
KO x X XKLk XX
% §§&¢§< X Kx X T X *
* X%y o o X
% BERE R Xk %
% S X XK x X X X
xS & T % X
XX xx * * x
ksl % xx X
X X S X x X X
F$) xé%xﬁg WX Rk x %
»&x X X x »
o X % X x x
P x X X % x X % X
g% S TN X X TS
4

Horizontal Velocity

Figure 4.5: Constructed Inner Cloud - MONOPOD (n x n, n = 225)

vector. Also, for the reachable vector set, they are selected as (2.5 m/s 4m/ s)

for the horizontal velocity vector, and (—4 m/s —2.5m /s) for the vertical ve-

locity vector.

The MONOPOD’s constructed inner cloud has shown in the Figure 4.5. Dif-
ferently from the Figure 4.3, the density unfolds at the left side of the plot, and

diminishes when it advances from left to right.

4.1.2 Construction of the Outer Clouds

The construction of the outer clouds almost follows the same procedure as in the
Section 4.1.1. The main difference between them is the construction of the goal
domains. In the previous section, goal domain vectors have been selected based
on the randomly or linearly sampling processes. However, outer domain’s goal

vectors are selected based on inner domain’s reachable vector set.

In order not to break the order, there are n number of vectors which are

36

randomly selected from the inner cloud’s reachable vector set. In this execution,
the most important thing to implement is that the selection process should be
achieved with respect to their distinct goal domains. In other words, if the first
goal domain has been selected from the reachable set index x, and row y, then the
algorithm should not select the index x, again. Because selecting more than one
value from the same index drives the algorithm to not cover every vector which

is connected to the inner cloud.

. / / - /
dZStCLTLC@l ZTor Yo 9td01 etdu erTror > Lgoal Ygoal

. ’ ! . / /
distances Ty Yoo Grdyy, Oray, €rrors > 1 Tyou Ygoal

. / / - /
distances Loz Yos etdos 9tdl3 errors > Lgoal Ygoal (44)

/ /
goal ygoal

distance, x(, Yo, Oy, Otay, errornp| ——>|x

Equation 4.4 demonstrates n number of samples in the inner cloud, for a single
goal domain. Selecting more than one value from this array pushes the algorithm
to connect the same goal domain more than once. Therefore, for the outer cloud,
each selected goal domain should push the algorithm into a distinct inner goal

domain.

On the other hand, one way to prevent the restriction in the goal domain
selection, is to use more than n samples. However, this process increases the

construction time, and also the size of the constructed cloud array.

The provided algorithm uses n samples for the outer rings. Therefore, for a
single outer cloud, the size of the constructed array becomes 2 % n x n and for
more than m number of outer clouds, the size of the constructed array becomes

(m+1)*n*n.

Figure 4.6 shows the selected goal domains for the outer region. The green
circles have been selected from the inner clouds reachable vector set, and the

selection process has implemented for each distinct set. This proves that each

37

32— Selected Goal Domains for the Outer Region

36—

-3.8 —

Vertical Velocity
IS
I

42—

44—

Horizontal Velocity

Figure 4.6: Selected Goal Domains for the Outer Cloud

green circle has a one-to-one relationship with the previous cloud’s goal domain.
Hence, any horizontal and vertical velocity combination can be pushed inside the

safe guard region.

Differently from the previous figures, Figure 4.7 illustrates the first level of
the outer constructed cloud. The reachable set of the outer cloud has been scat-
tered with a deep orange color, and it has constructed by using the green circles,
which are the outer cloud’s goal domain vectors. Similarly in Figure 4.3, the
upper left and lower right corner areas could not be sampled, but the remaining
parts have covered the outer domain. The boundaries for the reachable vector

set is selected as (5.75 m/s 8.25 m/s) for the horizontal velocity vector, and
(—5.25 m/s —2.75 m/s) for the vertical velocity vector.

Similarly in Figure 4.4, the Figure 4.8 demonstrates the 3D version of the
Figure 4.7. As, the orange crosses are the reachable vector set for the green circles,
the positional change between them shows the possible single stride movements.
Not differently from the previous Figures, the obtained sets are similar, it has a

wider range.

38

Vertical Velocity

Positional Change

Constructed Outer Cloud - Level 1

Horizontal Velocity

Figure 4.7: Constructed Outer Cloud - Level 1

Constructed Outer Cloud - Level 1

x

& 3 >
Xxxxy‘xxx‘x Boo% X T x X B xx)éxi
Xy 5 x " x X

X % N %

T X7 X o

x

75
Horizontal Velocity 8555 Vertical Velocity

Figure 4.8: Constructed Outer Cloud (3D) - Level 1

39

Constructed Outer Cloud - Level 1 - MONOPOD

AR T 5 HADRP0X O R x
yi;g(X

oy S
Boxox % % Bo% x x .
$oxox Koo R %
X % x
X x R Koo X
y

x Xy % x
x

x %
Xk X x x
xox o x x
P x
x X0 %k
. X XL x
x
xx
x
x
x
x
x x %
= * X
] x x X
o
Q x X
=
8 = x Fo
=
)
> x
x x
%
i
I/ 2 | |
2 25 3 3.5 4 4.5

Horizontal Velocity

Figure 4.9: Constructed Outer Cloud - Level 1 - MONOPOD

In addition to this, the MONOPOD'’s constructed outer cloud has shown in
the Figure 4.9. Differently from the Figure 4.7, the density unfolds at the left
side of the plot, and diminishes when it advances from left to right. Just as

demonstrated as in the Figure 4.5.

40

Chapter 5

Algorithm Implementation

The main idea behind the logic is that it is possible to connect each starting
touchdown vector and goal domain vector with pairs. By connecting these pairs
end to end, any distance becomes reachable, independent from the step count.
The algorithm calculates the required number of steps to reach the destination
by itself. The most important thing to not afford to overlook is that the amount

of error when connecting the pairs.

The implementation part fundamentally consists of two parts. First one nar-
rates the online implementation, whereas the second one emphasizes the offline
implementation. Both of the parts have related subsections, and these subsec-
tions mainly highlights the forward and backwards planning implementation on

SLIP and MONOPOD model, with respect to distance and minimum step count.

Figure 5.1 demonstrates the general overview of the Algorithm. After the ini-
tial touchdown state, the algorithm is executed based on the implementation,
policy and planning type. As the Figure 5.2 illustrates the execution part funda-
mentally based on constructing the map in a recursive way and feeding the model

based on the acquired results.

Regardless of the selected exploited model, the word online has been used in

order to execute and construct the planning phase just after the beginning of the

41

' N

Distance

Algorithm Start

Online

Step

ackwards

Distance Step

Figure 5.1: Algorithm General Overview

Al initial Apex state

L

L4
Calculate initial Keep constructing Target distance

touchdown state recursive map reached S

Figure 5.2: Logic General Overview

42

simulation. On the other hand, the offline keyword has been used to indicate
that the planning of all possible ways to all possible distances has already been

constructed before starting the algorithm.

At the beginning of the algorithm some parameters are assigned to select the

implementation constraints. These constraints are as follows,

[J implementation type: online — offline
[J policy: distance — step
[planning type: forward — backwards

[J waypoints: (waypoint1 waypointy ... waypointg)

The implementation type can be online or offline. If its assigned as online
then the algorithm will construct the planning based on the starting touchdown
horizontal and vertical velocity vectors, but if not then it will use the all possible
ways mat file to choose the appropriate planning based on the same vectors. In
addition to this the policy can be distance or step. If it’s indicated as distance,
then the algorithm will try to minimize error in between the given waypoints and
model leg positions. If not, then the algorithm tries to construct the planning
based on using the smallest step count. Forward and backwards planning are
provided to choose the path construction type. Finally, the waypoints is an array

where the algorithm or provider desires the model to place the leg positions.

In addition to this, Figure 5.3 shows how the recursive map is constructed. It
basically follows similar procedures according to the planning type. Also, Figure
5.4 demonstrates the calculation of the possible list of 6;; and a (which is the

amount of torque to be applied) values.

43

Figure 5.3: Recursive Map Construction

constructed map calculate based on
i g minimum distance
: Distance
,__.-ff,f \\""\.‘_\
.-f'/ \‘\, 5
g -
_"find best reach . get list of theta tds and
L indices y alphas based on policy
b . type
"\\\‘\\ ff‘;!_,/

Slep

calculate based on
minimum step count

Figure 5.4: Best Theta TD and Alpha Calculation

44

5.1 Online Implementation

Online implementation takes place in two different models, i.e. constant energy
and torque actuated with damping. Different construction methods and their

combinations with each other take place, based on the parameter selection.

Every phase in this section begins with the very first touchdown state. The
current horizontal and vertical velocity vectors are provided to an iterative algo-
rithm as inputs, and the algorithm finds the possible goal domains. By feeding
those goal domains as input to the same algorithm, it encounters new goal do-
mains. In general this process iterates over all constructed clouds so that the

desired waypoints can be reached.

In addition to this, the datum’s constructed in Equation 4.2 have an error
value. When the algorithm begins to plan the footsteps, this error value might
lead it to an unsolved situation. Therefore, to eliminate the misleading plannings
high errors (> le—5), a function always runs before everything else. The reason
behind not eliminating these values in the Chapter 4 is to observe effects of

distinct variations of errors on the simulation.

5.1.1 SLIP - Constant Energy - Model

5.1.1.1 Forward planning based on distance

After calculating the horizontal and vertical velocity vectors, based on the
very first touchdown state, the forward planning starts with a function called
construct PathsCheckInterval.

45

best_vector_set = construct PathsCheckInterval(

constructed_vectors, velocity_vector, target

) (5.1)

where:

constructed_vectors = constructed cloud domains (m*n*n)
velocity _vector = current touchdown velocity vector

target = mainly includes the waypoints, error rates, max iteration count

The Equation 5.1 takes 3 inputs, which are the constructed cloud do-
mains, touchdown state velocity vectors, and a target value to control the
conditions. This function creates a velocity region according to the provided
target region error. Assume that the initial touchdown velocity vector is

<7.1000 m/s —3.8763 m/s), and the region error as 0.2%. Then, the constructed

7.0858m/s —3.8685m/s

7.1142m/s —3.8840m/s
sidered as a square which has located on the Figures 4.7 or 4.9. This size of the

velocity region becomes . This region can be con-

region can be adjusted to different situations with respect to the assigned region

error.

The reachable set vectors inside this region have been assigned as the proper
vectors(minimum Euclidean distance), and their current touchdown state, goal
domain vector, reach indices, and cloud indices are stored in the output object.
In addition to this, in order to connect the goal domain vector and reachable
vector set in a recursive way, the proper reachable vectors have given to function

given below.

46

best vector_set = construct PathsCheckInterval Recursive(

constructed_vectors, best_vector_set(i), target

where:

best_vector_set(i) = the i-th reachable vector in the current set

The recursive function, provided in Equation 5.2, identifies the next waypoint
in the first place, and compares it with the current vector’s position by using con-
ditionals. The very first condition checks whether the first waypoint is the final
one or not. If it’s the last one, then the function continues with two additional
conditions. Both of the conditions checks the distance between the simulation’s
current position and the last waypoint. If it’s smaller than the desired last way-
point value (with an error interval), then it keeps iterating. If its not, but inside
the acceptable interval, then it stores and continues with the next one, else it
discards the path and moves to the next one. The acceptable range can be con-
structed by assigning a dynamic error value, because placing the same error value
for any desired distance might be acceptable for small values, but causes greater
fluctuation for greater distance values. Returning back to the conditionals, if the
identified waypoint is not the last one, then we execute the same process for the
smaller than case, if its not then we assign another adaptive error condition to

check whether its passes the waypoint or not.

After constructing all of the possible paths, or in other words the
best_vector_set, another important fundamental function which is called
findBest F'itVector BasedOnConstructedCloud is executed. The function is

symbolically indicated below.

47

best_reach_indices = findBest ReachIndices BasedOnConstructed Paths(

best_vector_set, target

) (5.3)

where:
best_reach_indices = closest paths to reach the provided waypoint array

Equation 5.3 recursively calculates the best reach indices according to the
closest distance values with respect to the provided waypoint inputs. It takes
the constructed vector set in Equation 5.1 and the target object as inputs, and
returns an array which stores the indices of the closest distances, according to

an error value. To exemplify, assume that the last waypoint is (80 m), and the

error value is 0.1%, then the interval becomes (79,92m 80.08 m) Therefore,
the function, in Equation 5.3, gathers the possible indices whose positions falls

inside this region, and returns them as an array.

After that, a minimization function takes the output of the Equation 5.3 as
an input, and outputs a single index array which can be considered as the best

cloud set combination to achieve the goal.

The below function calculates the necessary touchdown angle array based on
the acquired vector set and their reach indices. It also outputs the best distance,

which also the result of the provided policy -based on distance-.

[best_theta_tds, best_reach_index, best_distance] =
getClosestT hetaTds_basedOnDistance(

best_vector_set, best_reach_indices, target

) (5.4)

48

where:

best_theta_tds = best touchdown angles
best_reach_index = best vector set’s path indices

best_distance = calculated closest distance to achieve the goal

In Equation 5.4, the function outputs three distinct objects, which are
best_theta_tds, best_reach_index and best_distance. The variable best_theta_tds
contains the best touchdown angles to reach the goal. The step size to reach the
goal can also be noticed as the size of this array. Also, the variable best_distance
is the distance that is closest to the desired waypoint array. The reason behind

outputting the best_reach_index will be clarified in the Equation 5.5.

The functions contributed so far are only executed once, so that the best
path can be revealed. Assigning the corresponding best_theta_tds value in each
touchdown state pushes the algorithm to step on closest positions to the desired
waypoint array. In this process, one important thing to remember is that, the
closest positions can rarely become the desired waypoints (even most cases the
best_distance in Equation 5.4), because the algorithm selects the closest velocity
vector from the interval mentioned in part related with the explanation of Equa-
tion 5.1. Therefore, a positional correction (or can be considered as the angle
correction) is required to take place at the each touchdown state. This function

is symbolically given below.

[recalculated_theta_td, error| =
positionalCorrection(

touchdown_vector, best_vector_set, best_reach_index, best_theta_tds

) (5:9)

where:

49

recalculated_theta_td = corrected touchdown state angle
error = correction error

touchdown_vector = current touchdown horizontal and velocity vector

The function indicated in Figure 5.5 outputs the recalculated_theta_td, which
can be considered as the corrected version of the corresponding value of
best_theta_tds array. To exemplify this process, assume that current value of

the best_theta_tds with respect to the touchdown count is (0.4855 rad>. When
this value fed into the function, it becomes as <O.4853 rad>. The value of the

corrected theta touchdown angle can vary according to the selected region er-
ror in target prop of the Equation 5.1. It is important to note that this minor

improvements are very crucial, and must not be prevented to execute.

As mentioned, Equation 5.5 only corrects the touchdown angle if there exist
another step to process. Therefore, for the final step, one closing minor correction
takes place in order to reach the best_distance output of the Equation 5.4. The
last step correction function fixes the final position of the simulated model, and

eliminates the effect of the accumulated error so far.

The fundamental functions of this part can be considered as mentioned one at
the start of this section. The remaining ones are essentially the updated, changed

or adjusted versions of them.

5.1.1.2 Backwards planning based on distance

The planning phase of the constructing the possible paths in a backwards
approach is the same until the beginning of the Equation 5.1. However,
this time, rather than using that, the algorithm exploits a function called
construct PathsCheckInterval Backwards to establish the paths.

20

best_vector_set = construct PathsCheckInterval Backwards(

constructed_vectors, target

where:

constructed_vectors = constructed cloud domains (m*n*n)

target = mainly includes the waypoints, error rates, max iteration count

Differently from the Equation 5.1, the backwards construction function takes
2 inputs. The initial touchdown horizontal and vertical velocity information is
redundant for this step, because, the process can start with any final touchdown
velocity vector. Hence, the construction process can be completed without the

knowledge of the initial touchdown state velocity vectors.

Equation 5.6 begins with looping through all of the possible goal domains with
respect to the provided constructed cloud set. For each goal domain, the possible
reach set has been extracted and for each possible reach vector a region has
been constructed. This region is very similar to the one mentioned in subsection
5.1.1.1. Then, among all possible reach vectors inside this region, a recursive
function has been called to repeat this process until the the paths around the

goal distance has been constructed. The functions symbolically given as follows;

best_vector_set = construct PathsCheckInterval BackwardsRecursive(

constructed_vectors, best_vector_set(i), target

) (5.7)

where:

best_vector_set(i) = the i-th reachable vector in the current set

51

The recursive function in Equation 5.7, exploits the same logical process in
Equation 5.2, but implements the construction method emphasized in this section.
At the end of this process, a best_vector_set array has been constructed, and it
carries the combination of all possible paths, which has positioned around the

goal distance.

After acquiring the best_vector_set, same procedures are executed as after the
Equation 5.2, which are fundamentally finding the best reach indices, acquiring
the best touchdown angles from the provided indices, and executing the positional

correction function on each stride.

5.1.1.3 Forward and Backwards planning based on minimum step

count

Constructing a footstep plan based on the minimum step count is valid for both
forward and backwards methods. It basically replaces the function indicated in
Equation 5.4, and implements a different method to establish the essentials. The

functions given symbolically as follows;

[best_theta_tds, best_reach_index, best_distance| =
getClosestT hetaTds_basedOnMinimumStep(

best vector_set, best_reach_indices, target

where:

best_theta_tds = best touchdown angles
best_reach_index = best vector set’s path indices

best_distance = calculated closest distance to achieve the goal

In Equation 5.8, the provided function’s main purpose is to reach the goal

52

domain with minimum error and step count. When selected, among the provided
best index array, the algorithm tries to find the least possible step count to reach
the closest position to goal distance. The execution loops through all rows in the
best_reach_index, and compares them with the local best distance and step count

variable.

5.1.2 MONOPOD - Torque Actuated with Damping -
Model

Differently from the constant energy model, the path planning part for the
MONOPOD model, brings another controllable variable, which can be consid-
ered as the applied torque value. Therefore, new functions to be referred are the

modified and updated versions of the functions indicated so far.

5.1.2.1 Forward planning based on distance

Planning phase begins at the very first touchdown state of the simulation. The
acquired horizontal and vertical velocity have been given to a function sequence
to execute a planning to achieve the goal. The planning phase starts with con-

structing the best_vector_set. The functions given symbolically as follow;

best vector_set = construct PathsCheckInterval(

constructed_vectors, velocity_vector, target

) (5.9)

The function mentioned in Equation 5.9, uses almost the same logic with
the Equation 5.1. The difference between two function implementations results
from the distinct models. First difference is the selection of constructed_vectors.
The domain has been constructed with the use of MONOPOD model, and the

established clouds can be observed from Figures 4.5 and 4.9.

93

As mentioned in the Equation 4.3, the domain’s datum has an additional value
of a;, which has been used to specify the amount of applied torque. Therefore, the
end to end connection of the reachable vectors and the goal domains are required
to control not only the touchdown angle (), but also the applied torque over
time(«).

The execution tasks clarified in the sub-section 5.1.1.1 also applies in this sub-
section, too. Therefore, appending and implementing the explained differences
construct valid paths for the MONOPOD model.

5.1.2.2 Backwards planning based on distance

This sub-section is basically the combination of sub-sections 5.1.1.2 and 5.1.2.1.
As mentioned in the previous part, input constructed vector in Equation 5.6 has
been selected from the preparation of the MONOPOD model. In addition to
this, the path construction part with respect to the acceptable region controls

the touchdown angle(f;4) and applied torque(a), respectively.

The path construction policy can also be selected as step. However, as it will
be the same implementation with Section 5.1.1.3, it is not necessary to reexplain
it.

5.2 Offline Implementation

Similarly in Section 5.1, Offline process can be executed in constant energy and
torque actuated with damping model. The logic of the benefited functions are

fundamentally the same, but the implementations are different.

Each distinct planning in this section has been carried out in between the
preparation phase and the beginning of the simulation. Therefore, this part can be

considered as modifying the results achieved in Chapter 4, and resolving them in

o4

the simulation. Equivalently in Section 5.1, the constructed paths are also based
on the improved domain sets, whose affecting high error values are eliminated.
Based on the constructed clouds in the previous section, the following function
calculates all of the possible paths that can be constructed based on the provided

input step size. The function is symbolically as follows;

lall_possible_paths] = construct AllPossibleW ays(constructed_vectors, level)
(5.10)

where:

all_possible_paths = a huge sized array, based on the provided level

level = recursion level, can be considered as the step count

all_possible_paths.next = construct All Possible Paths Recursive(

constructed_vectors, all_possible_paths(i)

) (5.11)

where:

all_possible_paths(i) = i-th row of possible ways array

The level parameter in Equation 5.10 can be indicated as the step count. It
construct all possible paths based on the given step count. Assume that the
level of the function is assigned as n, then the function recursively calls itself to
construct paths starting from 1 to n. In other words, the function gathers all
information, which consists the cluster of horizontal and vertical velocities, about

a single stride, two step strides, three step strides, and n step strides.

After constructing the all of the possible ways, its straightforward to use it

in the planning phase, because the algorithm has the opportunity to reach any

95

distance with respect to the initial touchdown state, without making any further

calculation.

5.2.1 SLIP - Constant Energy - Model

5.2.1.1 Forward planning based on distance

Similar approach in Section 5.1.1.1, forward planning phase starts when the model
is in initial touchdown state. The touchdown state’s horizontal and vertical ve-
locity has been given as an input the to calculation function. The mentioned

function is symbolically as follows;

[best_theta_tds, best_reach_index, best_vector_field, best_distance] =

findBestPath(
all _possible_paths, touchdown_vector, target
) (5.12)
where:
best_theta_tds = best touchdown angles
best_vector_field = best vector set
best_reach_index = best vector set’s path indices
best_distance = calculated closest distance to achieve the goal
all_possible_paths = all possible ways including n steps
touchdown_vector = current touchdown horizontal and velocity vector
target = mainly includes the waypoints, error rates, max iteration count

The resulting output variables are placed into the positional correction func-
tion, and with respect to the corrected angles, the constructed plan can be pro-
cessed. Additionally, the policy type can also be selected as step, but its not

separately mentioned as its indicated in Section 5.1.1.3.

o6

5.2.2 MONOPOD - Torque Actuated with Damping -
Model

Implementing the Equation provided in 5.10 with the results acquired from the
MONOPOD part of the Chapter 4 constructs different possible paths for the
torque actuated model. These paths can cover wider areas as there exists two
control inputs, which are stated as the touchdown angle (6;;) and the applied

torque(a).

5.2.2.1 Forward planning based on distance

Forward planning on MONOPOD model applies the same procedure indicated in
section 5.1.2.1. The resulted touchdown angles and torque values are provided
from the best possible path to reach the goal. The same positional correction and
last step correction function has been used to eliminate the positional velocity
error. It is also important to note that, like previous parts, the policy can be

selected as the minimum step count.

o7

Chapter 6

Results

The results part consists of two sections. One of them demonstrates the constant
energy model results, and the other one illustrates the torque actuated with

damping results.

Obtained results are executed in the MATLAB environment [44]. The specifi-
cations of the simulation computer are 64 GB ram and Intel(R) Xeon(R) E-2176M
CPU @2.70GHz, 2.71GHz.

6.1 SLIP - Constant Energy - Model Results

6.1.1 Generic Results

Each figure in this section follows the same plotting template, and consists of 3
rows and 5 columns. The illustration template can be examined in a detailed

way.
e Row 1, Column 1: Horizontal position change over time

o8

Desired Position Change: 80, SLIP Movement: 79.841

100 75 2 ‘ 5 2 {\

- | WHWHW I W fil J \N\ |

;
st (\
\“ u H \ f\m
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15) 50 100

——
E—

_
—

—————

R L

X Real TD point

2 751

N
3
~

°

o

>

&

°

o

>

&
Position

x

<

o

>

3

a3

°

o

>

=3
o
>
@
3
)
e
P
&

55 L L L L L 20

Figure 6.1: Online - Forward Planning - Minimum Distance

The positional change over time in Figure 6.1 demonstrates the position of the
model body. The leg position is not included, because it’s position alters back
and forth in time, rather than increasing in a constant (very close to constant)

way.

e Row 1, Column 2: Horizontal velocity change over time

The horizontal velocity changes in between the states. It’s expected that the
velocity should increase in the liftoff state, decrease in the touchdown state, and
remains constant on apex and bottom states. When the demonstrated Figures

are examined carefully, these velocity alterations can be observed.

e Row 1, Column 3: Vertical position change over time

Unlike horizontal position, the vertical position does not constantly increase.
It basically represents the current height of the model, and expected to be max-

imum at apex, and minimum at the bottom states. Therefore, the each periodic

29

behavior can be considered as a single step.

e Row 1, Column 4: Vertical velocity change over time

Like Horizontal velocity, the vertical velocity also alters in between the states.
At apex and bottom the vertical velocity is expected to be 0, minimum at touch-

down state, and maximum in bottom state.

e Row 1, Column 5: Vertical position change over horizontal position

This plot is very similar to Row 1 and Column 3, the only difference only
occurs on the plot’s x axis. This is actually beneficial for the cases, where the
horizontal position is not constantly increasing (Different ground types, outside
effects).

e Row 2, Column 1: Leg position change over time

The graph of the leg position is almost identical to the horizontal position.

The variation of the ragged view originated from the states.

e Row 2, Column 2: State change over time

As it can be understood from the name, the plot illustrates the current state
change of the model over time. It follows a periodic change as long as the used

model moves.

e Row 2, Column 5: Supplied external energy change over time

For the SLIP model, this part is always 0, because the model follows a con-
stant energy approach. On the other hand, for the MONOPOD model this part

becomes meaningful.

60

e Row 3, Column 1: Spring compression

It only changes between the beginning of the touchdown state and the end of
bottom phase. Therefore, in between these states, the values if smaller than 1,

and for the remaining phases, it becomes 1.
e Row 3, Column 2: Leg angle change over time

This plot is one of the most important one among the others. It demonstrates

the current leg angle, and the touchdown state angles can be smoothly observed.
e Row 3, Column 5: Total energy over time

Total energy over time plot is also illustrated in the general figure template.
Just like external energy, for the SLIP model it’s supposed to be a constant,
and for the MONOPOD model, it’s expected as a combination of increasing and

decreasing values.

e Row 2,3 Column 3,4: Positional Change in between the Touchdown states

over time

The footstep positions are illustrated in the bigger part of the generic figure.
Visualizing the implemented model’s behavior on each stride is important to

observe the behavior of the model.

Figure 6.1 shows an example of constructed planning for the SLIP model. The
waypoint values are provided as (19m 45m 80 m) Therefore, the model has
to step on the provided array in a connected manner. The provided figure’s
first three strides are (6.537m 6.513m 5.934 m), and the addition of these

positions is <18.984 m) As this value is very close to the first waypoint, it
can clearly be stated that the first goal has been reached. For the second goal

61

Desired Position Change: 100, SLIP Movement: 100.4884

2
100

80
60
40

%
——

20

SH‘\

~

M

filll

i

il /h m /\U /\/W

5

il

o
—
e

B i

W‘H

[\M
Lt

I

5 10

-5

15 0 5

100
80
60

yt

40 1

20

o

o

@ © -

)

7

* Real™

X3
Y 6.643
.

3
X10
6 Y 6.783
Y 6.632
.

X1
-
X11
Y 6.529

X9
Y 5.903

T x13
Y 5.918

P
€X8
Tin Y 5.905

Y 6.528

50

100

2

X14
Y 6.424
.

X15
Y 5.938

e]

I

!

I

14

Figure 6.2: Online - Forward Planning - Minimum Distance

10

point, which is <45 m), the model successfully jumps for four more steps. The

positional differences of these steps are (6.594m 6.656m 6.663m 6.132 m),

respectively. The total positional difference from the initial touchdown state

becomes (45.032 m), so the second waypoint has been reached. Finally,

for the last waypoint or the latter goal position, the remaining steps are

<6.42 m 7.07m 6.735m 6.755m 7.831 m> , jointly. The total value of the last

steps is (34,811 m), Therefore, the total positional difference from initial touch-

down state to goal position becomes <34.811m + 45.032 m) = 79.843m. As a

result, the first waypoint is reached in 3 strides, second one in 7 strides and the

last one in 12 strides. The planning has been successfully executed with an error
value of 0.0019914, or in other words, the deviation is 0.19%.

Figure 6.2 demonstrates the same logic with different waypoint set.

The waypoint set is randomly selected as <32m 63m 100 rn)

First

5 strides of the model are (6.503m 6.283m 6.643m 6.519m 5.93m>,

so the total positional difference is <31.978m).

62

Next 5

steps

are

15

Desired Position Change: 200, SLIP Movement: 199.9884

WNWWWW

| w

i - WU -

\W i rU»r‘ |WM

m

t

mmumu v

)

Posmon

0.5
0

10

20

Real TD point
x

50 100 150 200

30

Figure 6.3: Online - Forward Planning - Minimum Distance

(6.632m 6.121m 5905m 5.903m 6.783m) ((63.222m)), and the in re-

maining strides are in total

(100.4884 m) . Hence, from the initial planning phase

the first waypoint has been reached in 5 steps, next one in 10 steps, and the final

one in 16 steps. Also, the error percentage is 0.48%.

In Figure 6.3, the waypoint count has been increased to 5, and the distance

final goal distance incremented by two times. The algorithm successfully planned

the footstep, with respect to the provided waypoints. The final positional change

s (199.9884 m), the number execution steps are 5, and the error percentage is

0.058%.

6.1.2 Comparison - Online & Offline Implementation

This subsection fundamentally compares online and offline implementation re-

sults.

As the algorithmic difference almost the same as mentioned in Sections

5.1.2.1 and 5.2.2.1, the main resulting difference is occurred from the amount of

63

time to construct a plan.

The randomly acquired goal distances of Figures 6.4 and 6.5 are equivalent.
Therefore, they represent the results of a two step planning. The executed plans
are very similar to each other (i.e. (13.0005 m) and (13.008 m)) However,
the positional difference occurs from the implementation characteristics. The
offline implementation accommodates every possible planning scenario, whereas
the online version reserves a portion of it (at most 3000 appropriate paths). The
reason behind holding a part is to avoid waiting a lot in the planning phase.
The execution time of the offline planning took approximately 10ms, whereas

the construction of possible online paths occupy 0.76s.

Differently from Figures 6.5 and 6.4, Figures 6.7 and 6.6 illustrate an example
of 4 step planning, where the desired distance is assigned as (26 m) The results

of both implementation methods are very close to the goal position ((26.0041 m)

and <26.0003 m), respectively). However, the difference between plan construc-
tion times increases exponentially when the step count is incremented. Therefore,

offline planning took approximately 20 ms, and the online one occupied 7.45s.

Final Figures in this section (6.8 and 6.9) demonstrates results of a 5 stride

footstep plan. The construction times are 25 ms and 14.3 s, respectively.

6.1.3 Comparison - Forward & Backwards Planning Im-

plementation

The specifications of the forward and backwards planning implementations are
mentioned at the Sections 5.1.1.1 and 5.1.1.2. Therefore, this subsection only

emphasizes the results and their corresponding comparisons.

Figures 6.10 and 6.11 demonstrates the results of the forward and backwards
planning, with respect to a random goal distance. Both of the methods success-

fully reached very close positions to the goal destination, and their execution

64

Desired Position Change: 13, SLIP Movement: 13.0005

25 T T 6 4 i 1 [16
: T WANANA | WANAA
‘ 14 / /’\ [ol | | 14 / / [
15 o 12 / I / s ‘ 1.2 ‘ I /
266 ‘ N | / | B o ~E / \
10 64 it / T TV
: : U NN NN
0 6 06 . 4 } 06
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 5 10 15 20
t t 6.58)) ! : : y
25 3 X2 1
2 6.56 Yes571|
305
2 @
15 ° 6.54 iy
© = 0
10 @ g
1 £
s 6.52 505
<
0 0 S -
0 1 2 3 0 1 2 3 G 65 0 0.5 1 15 2
t t g t
a
4 \ % 6.48 - 1 45
|
09 H % \ 6.46 I \
‘ 20 §35
® 5
£ X1 b
08 6.44 E
v M 20 Y 6.43 - U ‘
| P A N N A O
O s 1 15 2 O es 1 15 2 111 12 13 14 15 16 17 18 19 2 %, 1 2 3
t t Time t

Figure 6.4: Target position = 13m - Offline - Forward Planning - Minimum
Distance

Desired Position Change: 13, SLIP Movement: 13.008

25 75 6 ‘ 4 7 6
» [N} e / N
14 1.4
1 | A | /
15 < 12 / \ 50 12 [
10 > b e \
6.5 1 \ 1 \
5 08 | 4 08 |
0 6 06 6 06
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 o 5 10 15 20
t t 72) . . y
25 3 1
7L
20 305
2 5
15 ° 2
s b s 0
0 L} 6.8 T
1 5
5 505
- 66
0 0 S 4
0 1 2 3 0 1 2 3 =2 o 05 1 15 2
t t s t
6.4
1 ‘ T w‘ 40 45
62 g
20 40
0.9 \ ‘ \ ‘ - |
5 g \ \
‘ ‘ 20 535 ‘
2 ol |
08 | w ‘ ‘
| -20 30 ‘ b
07 w0 58 »
o 05 1 15 2 o 05 1 15 2 111 12 13 14 15 16 17 18 19 2 o | 2 3
t t Time t

Figure 6.5: Target position = 13m - Online - Forward Planning - Minimum
Distance

65

Desired Position Change: 26, SLIP Movement: 26.0041

40 5
77 T il f\\ /“\\ N f 16\ (W\\ /W\ N
30 [/ | [\ | \
68 ”\/‘\/\\/H\ NIRRT \[|
| = | |
~20 566 ~ 12 \ \ | [Eo N1'2\ \/ ‘ \‘ \\‘ |
64 1t | il “ |
10
6.2 08 J | 08
0 6 06 5 06
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 10 20 30
t t 6.65) ! : v
[FedTopom] +
40 3 X2 1
6.6 Y 6.631
30 X1 5 o0s
2 Y 6.557 o
2 [i]
=20 k! 6.55 5 0
@ c
1 X3 §
10 Y 6.502 %05
o 65f .
0 0 S 4
0 2 4 6 0 2 4 6= 0 1 2 3
t t s t
6.45 -
1 ‘ 40 45
2 6.4 w0
0.9
g <
- 20 835
08 ‘ - 6.35 X4 u
20 Y 6.314 30
0 1 2 3 4 0 1 2 3 1 15 2 25 3 35 4 o 2 4
t Time t

Figure 6.6: Target position = 26 m - Offline - Forward Planning - Minimum

Distance

Desired Position Change: 26, SLIP Movement: 26.0003

40 75 2 5 2
N N A N N
30 ; s /\\ f \\ ’/\ N “5\ /\\ / \ / \ N
- [\ n) \ [- VA \ [
>20 8 N VAR [20 N IWRWA \ [
S5 | [| N \([\ | \
6.5 \ A \} [\ H
1] | | 1 | \
10
I J |\ R
0 6 05 5 05
0 2 4 6 0 2 4 0 2 4 6 0 2 4 6 0 0 20 30
t t 6.8 . : : y
I
40 3 . X3 1
671 X2 Y 6.755 N
30 Y 6.721 305
2 2
) 6.6 i}
=20 5 xa 5 0
1 Y6499 | §
10 65 e 505
0 0 s 4
0 2 4 6 0 2 4 6 =64l 0 1 2 3
t t s t
4 ‘ ‘ % 63 45
20 40
09 ‘ r \ ‘ /\ 621 >
] =
SR
08 ‘ 6.11x1 =
20 Y 6.026 30 ‘
07 w0 6 25
0 1 2 3 4 0 1 2 3 4 1 15 2 25 3 35 4 0 2 4
t Time t

Figure 6.7: Target position = 26 m - Online - Forward Planning - Minimum

Distance

66

Desired Position Change: 33, SLIP Movement: 33

50 2 5 2
7 N N N N N N
40 [Al A [al A
6.8 s A\C\A\C\/\\J\ s ’/\\“\A\“\‘/\\‘j\
% . NANANAUREAYE I SNV AV
300 AL e AR
@ o4 dUE Y NI
\ | |
0 o2 VU .
0 6 05 5 05
0 2 4 0 2 4 0 2 4 6 0 4 6 0 10 20 30 40
t t 6.9 : . y
50 3 .. 1
6.8 s
40 X1 >
2 Y 6.806 Y 6.811 X4 g 0.5
30 o 6.7 Y 6.657 o
5 ; 5 0
20 @ . g
1 o}
6.6 X2 %05
° Y654 u
< .
0 0 o -1
0 2 4 0 2 4 =65 0 2 4 6
t t s t
i ‘ T 40 b4r 45
T
09 & \ / 63 1 40 w
2 / X5 B
£° / veiss| &
0.8 6.2 lou
-20 / 30
07 40 6.1 . . , , | | | o
0 2 4 o 2 4 6 1 15 2 25 3 35 4 45 5 0 2 4 3
t Time t

Figure 6.8: Target position = 33 m - Offline - Forward Planning - Minimum

Desired Position Change: 33, SLIP Movement: 33.0006

Distance

50 75 2 5 2
40 \ I\ \
/ Nnp AN
7 15\, A AWA 1.5 ,\ AN
30 = ‘ﬁ\gw‘c\\ = w/‘\“\‘\‘\\
g N H\,u/\ L 8o N Al \{ |
S \ N \
20 \/ \,‘ | \/ I |1 I \‘ |
65 1 \j | \j ‘ HATERTAR ||
o ! ! J | |
u v | | U
0 6 05 5 05
0 2 4 0 2 4 6 0 2 4 6 0 4 6 0 10 20 30 40
t t 7 T T T y
X5
50 3 L 1
6.9 Y 6.967
40 >
N 681 X2 1 g0
30 ° Y 6.708 X3 fir
B . X4 5 0
20 @ 6.7 Y 6.657 Y 6.643 E
1 e . 2
10 66 @ 0%
c
0 0 S -
0 2 4 0 2 4 6 %65 0 2 4 6
t t s t
6.4
1 ‘ T T T 40 45
6.3
20 \ /\ wof 1] [T
0.9 / N
o L
® o0 / 62 535 ‘
- w
08 X1
6.1
‘ 20 / Y 6.026 3
07 w0 6] 2
0 2 4 2 4 6 1 15 2 25 3 35 4 45 5 o > 4 6
t Time t

Figure 6.9: Target position = 33 m - Online - Forward Planning - Minimum

Distance

67

Desired Position Change: 50, SLIP Movement: 50.0032

60 75 6
16} f i ‘(\ ‘(\‘ 6) IA\ ﬂ\ ‘/\‘
ein 4 i
o v I A AT N =LA
- 3 wrf] [l 5 MELRIR HI
> | H N IR
] | | 0 I |
20 65 | |
08 2 08
0 6 06 4 06
0 5 10 0 5 10 0 5 10 0 5 10 0 20 40 60
t t 6.6 T - T y
o s %1 ealTDpoint 0 . }
Y 6.486 Y 6.58 X7
6.5 Y6557 |
805
40 2 o
< o &
> g 6.4 3 0
20 1 3
%05
- 63 X3
0 0 S Y 6.244 1
0 5 10 0 5 10 5§ . 0 2 4 6 8
t t s t
6.2 X5
1 T T 40 Y6.13 45
I . =
6.1 Y 6.066
20 40
09] F
© | X6 5
) £ / 6 x2 Y 5.99 E
08 / Y 5.949 *
-20 / . 30
07 40 5.9 2
0 2 4 6 8 0 2 4 6 8 1 2 3 4 5 6 7 8 0 10
t t Time t

6.10:

Target position = 50m - Online - Forward Planning - Minimum
Distance

Desired Position Change: 50, SLIP Movement: 50.6379

60 75 2 5 2
40 15(\ ‘/\N{\ \(15 /\ /\/\H\“ \‘!
- | - |
. Fes « \\\ m;]r\ﬂ \H/\ Eo ~ w\(\f /\/wﬂ /‘\\/\
2 HTY LY AN
: RARRRIRE EVERE T
0 55 05 5 05
0 5 10 0 5 10 0 5 10 5 1 0 20 40 60
t t 7 T T T y
60 3 1
&8y A0 :;2687
X2 X4 Y6.858 | 305
40 2 Y 6.589 Y 6.608 ®
< 2 6.6 . X3 i i
> 2 Y 6.453 s ©
20 1 . 5
6.4 505
0 0 s -
0 5 10 0 5 10 5621 X1 0 2 4 6 8
t t & Y 6.06 X5 t
Y5.979
1 U T “ 40 6 45
40
09 ‘ ‘ 2 58
< 335
- o | g
08 56 & 30
20 X8
Y 5.403 %
07 5.4 . . |
40 20
0 2 4 6 8 0 2 4 8 1 2 3 4 7 8 0 5 10
t t Time t

Figure 6.11: Target position = 50 m - Online - Backwards Planning - Minimum

Distance

68

times are not much different from each other. According to the provided Figures,
the number of steps can be counted as 8, and the plan construction times are
40.26s (for forward) and 58.04 s (for backwards), respectively.

In addition to this, Figures 6.12 and 6.13 represents the results when the
goal destination is increased to 58.04m. The number of executed strides can
be counted as 9, and the execution times are 36.26s (for forward) and 64.04s
(for backwards), respectively. Comparing with the previous Figures, Although
the stride count has been increased, for the forward case, the amount of time to
construct the plan seems like decreased. The reason behind this situation can be
interpreted as the goal distance is in a better reachable interval than the previous

one.

The very last Figures of this section consists of 6.14 and 6.15. The number of
step count can be regarded as 11, and the plan establishment times are 43.46s

(for forward) and 71.61s (for backwards), respectively.

6.1.4 Comparison - Policy Type - Step & Distance Imple-

mentation

Figures 6.16 and 6.17 demonstrate the obtained results with respect to minimum
distance and minimum step count. For the first figure, the policy type is selected
as minimum distance, so there are 13 steps were required to reach the target
position. However, second illustration shows the same position can be reached
with lesser steps, i.e. 12, with a slightly increased error value. The error values
of the provided plots are 0.09%, and 0.1%.

6.1.5 Comparison - Different Initial Touchdown States

Previous Subsections demonstrate the results based on the same initial touchdown
state, which is <yhom‘zonml 7.1000m/s 0.8842m —3.8763m/S Ynorizontal + th).

69

Desired Position Change: 60, SLIP Movement: 59.8327

80 75 2 5 2
: i i il
B 1.5 | | } | B 1.5
=40 ;'365‘”—][—“ v—ﬂrkr ~ \}/\J\/ g /“//\‘ \}}\H] Bo N \(\[\\J(\A{\(\J\/u
1 | ‘ 1 w
. : T T
0 55 05 5 05
0 5 10 0 5 10 0 5 10 0 5 10 0 20 40 60 80
t t 8 T T y
80 3 78} 1
X9
o w
.40 5 74+ E
20 ! L X6 % 05
72 Y 7.07
0 0 s Rl
0 5 0 0 5 10 § 7t < e 0 e;) 10
! ! & 68l Y 6.735 |Y 6.755
1 H T “ ‘ 40 b s . 45
09 " | 66 ve6.486 Y 6.467 ¢ :.413 40 [H ‘ ‘ |
] 6.4 33
| 6.2 Y 6.106 v
o = e 2
0 60 5 0 'Aoo 5 10 61’ 2 3 4 é 6 8 9 200 5 10
t t Time

Figure 6.12: Target position = 60 m - Online - Forward Planning - Minimum

Distance

Desired Position Change: 60, SLIP Movement: 59.6635

80 75 2 5 2
o 7 A AN At ML
F " \N“‘ HH i /‘f/\
) T WY
& ARRRRRRE i
0 6 05 5 05
0 5 10 0 5 10 0 5 10 0 X7 0 20 40 60 80
t t 6.8 : Y 6.772
. . . . =
80 3 1 1 X4 |x5 |X6 |x8 |
67} X2 X3 |y6773y6.771) Y 6.77| Y 6.772
Y 6.749| Y 6.749 N
60 805
=40 g é 0
1 £
20 65F 505
0 0 s -
0 5 10 0 5 10 Z64r 0 5 10
t t s t
1 ‘ 40 6.3 X9 45
Y 6.226
20 " 40
o | ol
ﬁ ot |/ / / X1 535
08 = | 6.1 Y608 E
20 | 30
07 40 6 . . 25
0 5 10 0 5 10 1 2 3 4 5 6 8 9 0 5 10
t t Time t

Figure 6.13:

Distance

70

Target position = 60m - Online - Backwards Planning - Minimum

Desired Position Change: 70, SLIP Movement: 69.9972

80 75 5
16 16
60
7 14 14
40 k w12 Eo o2
6.5 1 1
20
08 08
0 6 06 5 06
0 5 10 0 5 10 0 5 10 0 5 10 0 20 40 60 80
t t 6.7 T T T T T T - - - 5 y
X Real TD point . X 11
80 3 | X6 Y 6.688 1
66 X5 |Y6.65° .
60 X1 X7 305
X3 Y 6.508 X9 3
2 @
o 65 Y6486 Y6467 [al Y4 Y6466 | | &
.40 T o . s 0
] g
1 5
20 6.4 1 X-os
<
0 0 S -
0 5 10 0 5 10 Fe3r 1 0 5 10
t t g t
a
1 40 621 X4 x10 1 45
Y6.127 Y 6.135
2 " i 4
09 0 61} 1. 0
o
_ k] X2 X8 3
£ Y 5.986 Y 5.991 2%
08 6 . . b
20 30
o “ 59 »
0 5 10 0 5 10 1 2 3 4 5 6 7 8 9 10 1 o 5 10
t t Time t

Figure 6.14: Target position = 70m - Online - Forward Planning - Minimum
Distance

Desired Position Change: 70, SLIP Movement: 70.0948

100 16 4 16
80 7
14 14
68 2
60 - -
= Ses N2 Eo N2
40 64 1 1
2
20 62 08 08
0 6 06 -4 06
0 5 10 0 5 10 [5 10 0 5 10 0 50 100
t t 66/ X1 — — — —_— y
Y6.511 [X3 X5 X7 X9
80 3 =———""1Y6.453 Y 6.451 Y 6.451 Y 6.451 1
. o . .
60 6.4 X2 X4 X6 X8 X10 |50
5 Y 6.457 Y 6.451 Y 6.451 Y 6.451 Y 6.451 |&
< 2 i
.40 s 5 0
1 62 {5
20 505
c
0 0 S -
0 5 10 0 5 0 Z e 4 0 5 10
t t s t
1 40 45
58 i
20 40
0.9
3 X1 g
- 5 0 561 535
2 x]
s Y 5517
08 =
20 30
07 % 5.4 | | »
0 5 10 0 5 10 1 2 3 4 5 6 7 8 9 10 1 o 5 10
t t Time t

Figure 6.15: Target position = 70m - Online - Backwards Planning - Minimum
Distance

71

Desired Position Change: 80, SLIP Movement: 80.007

100 75 2 5 2
80
. , RNy TN PO
- 3 ~ \H ‘ 5o N \”p [H‘
S N
@ 6.5 1” u\] UH~ “\ JH v‘\u\
o I 1 HITHTTTTT
0 6 05 5 05
0 5 10 15 0 10 15 0 5 10 15 0 5 10 15 0 50 100
t t 6.7 T T T T T y
)
100 3 sl s w7 1
X1
80 Y 6.514 | Y 6.635
A Y 6.486 ! ? 05
0 . 650 , 2
5 5 s 0
4 ® X3 £
0 1 6.4 Y 6.467]
20 X13 505
Y 6.273
0 0 § 63 L 4
0 5 10 15 0 10 15 2 0 5 10
t t £ 62 X4 X8 t
Y 6.139 S0E
1 40 » . 45
‘ ‘ 1 ‘ 1 ‘ 6.1
| X2
09 2 | Y 5.986 o
© | 6 . X6 X9 X 12 3
- 20 | Y 5.91 Y 5.911 Y 5.909 235
08 / [sof - s . 1"
20 30
. .
07 -40 58 X 5 X X 10 X 11 25
0 5 10 0 10 0 2 4 6) &vi5832 [0 Y 5.824 14 0 5 10 15
t t Time t
Figure 6.16: Target position = 80m - Online - Forward Planning - Minimum
Distance
Desired Position Change: 80, SLIP Movement: 79.9196
100 75 > 5 >
8 7 15 [\‘ 15 ﬂ [\‘ q /\
s . . T
: - JINAI | - T
40
20 6 05 \ 05 ‘
0 55 0 N 0
o 5 10 1 o 10 15 0 5 10 15 0 5 10 15 0 50 100
t t 8.5 T T y
100 3 1
X 12
0 8 Y8245| 35
2 @
60 ° Iy
% 5 s 0
40 . 750 5
20 X6 @08
c Y 7.061
0 0 2 . X 11 1
o 5 10 1 0 10 5E 7 X9 - 0 5 10
t t £ X7 Y 6.736 ' t
X1 X3 5 Y 6.623 | o
.
1 ‘ ‘ ‘ 40 65k] Y 6.486 l Y 6.467 v 6.413 I | 45
’ X8 %10 40
0.9 20 X2 Y6513 | | y6.a60
£ Y 5.986 | ¢ 35
- 08 20 6 . X4 2
Y 6.106 w80
07 20 2
06 -40 55 2
5 10 0 10 0 2 4 6 8 10 12 0 5 10 15
t t Time t

Figure 6.17: Target position = 80m - Online - Forward Planning - Minimum

Step Count

72

Desired Position Change: 60, SLIP Movement: 59.8327

Time

80 7.5 2 T 5 2 il
I L] |
60 7 " L) |
- | r ‘5\\\«\“ \H\ L \‘\\ \ 15 \ \ \
=40 865 N \\HH H S0 N HU “‘U
S U \/‘ \“ N (W H‘M\\\
|V H\M 1”\ H\ \‘H
= o T | I LY
| L
0 55 0.5 -5 ! 0.5
0 5 10 0 5 10 0 5 10 0 5 10 20 40 60 8
t 8 . . y
80 3 7815 1
X9
Y 7.814 3
60 , 76L §os
< o I
=40 % 74| g 0
1 5
20 X6 35 05
r2r Y 7.07 B
c
0 0 S » -1
0 5 10 0 5 0% 71 0 5
! ! < 62755 !
6.8 kil
1 . L
X1 X3 X7
09 66| ve.486 Y 6.467 B v 6.735 40 U ‘ ‘ ‘
o8 g 641 T . %35
‘ } = X4 530 ‘
62 Y 6.106
07 X2
Y 5.986 ®
6L | | |
%% 5 w0 "% 5 10 2 4 5 6 7 8 9 2

10

Figure 6.18: Target position = 60 m - Online - Forward Planning - Minimum
Distance - velporizontar = 7-1000m/s, velyerticar = —3.8763 m/s

The value of Yporizontar does not mean anything as the algorithm considers it equal
to 0. The reason behind this consideration is that it is actually the point where
planning started to be constructed. Second parameter in the matrix is the hori-
zontal velocity, third one is the current height (vertical position), fourth one is the
vertical velocity and the last one is the leg position. Therefore, different initial

state results can be observed from the following figures.

Figure 6.19 demonstrates the result where the goal distance is selected as 60 m.

Positional leg differences can be discovered by comparing it with Figure 6.18.

Similarly in the previous Figure 6.19, algorithm worked perfectly, and con-
structed the planning based on the given initial velocity of velnorizontal
7.7000 m/s, velyerticar = —3.9121m/s.

73

Desired Position Change: 60, SLIP Movement: 60.144

2

5

0 N nA
¢ b A A F [\ s N\‘A‘ |
all ﬂH I Ui I WM
. . ity IV
% 5 10 % 5 0 % 5 s S 5 0 %0 2 @ e
! ' 2 (Y72 I y
:: 3 7 éé.gm .$3.086 ,ég'%s 5;'127 §o.;
2 I
%40 o g 0
2 1 6.8 gr&s
% 5 10 % 5 10%66 o 5 10
t t g t
| N T
o9 P ” ﬂ / / q 5 2_18 5 2.211 ég.zn §40
08 =7 \/ / / / / /\ * i I T &”
0.7 6 L
0 5 w0 % 5 10 1 2 3 4 5 6 7 8 9 % 5 10
t t Time t

Figure 6.19: Target position = 60 m - Online - Forward Planning - Minimum
Distance - velporizontar = 7-4000m/s, velyerticar = —3.8942m/s

Desired Position Change: 60, SLIP Movement: 59.9979

3B Ao s
. 6 T VT
800 [’ : [’ 705;:@;;,;”, : 0 : 1 1 R
T T e p

0 S 4 == ™
‘ : 0 : w e e Tiie e v @ s @ % N

Figure 6.20: Target position = 60 m - Online - Forward Planning - Minimum
Distance - velporizontar = 7-7000m/s, velyerticar = —3.9121 m/s

74

6.2 MONOPOD - Torque Actuated with Damp-
ing - Model Results

6.2.1 Comparison - Online & Offline Implementation

Comparably with the previous section, the MONOPOD model’s online and offline
implementation is also satisfactory for reaching the desired goal positions. The

fundamental difference occurs from the time constraints.

According to the results illustrated in Figures 6.21 & 6.22, the algorithm suc-
cessfully reached the provided goal distance. The step size in this part is relatively
smaller than the one proposed in the SLIP results section. Therefore, the num-
ber of strides to execute a plan is also increased, respectively. Both of the model
implementations successfully completed the task by stepping 12 times, and the
error percentages resulted as 0.0017% and 0.0074%. On the other hand, for the
offline case, the path construction process took 30 ms, and for the online case, it
took 18s.

In addition to this, Figures 6.23 and 6.24 illustrates the results when the
target distance is selected as 45 m. Both of the implementation types consistently
jumped for 19 times. Error rates are 0.24% and 0.0026%, respectively. Finally,
the path construction took 35 ms and 39.29s.

6.2.2 Comparison - Forward & Backwards Planning Im-

plementation

Figures 6.25 and 6.26 shows the results of forward and backwards implementation
on the torque actuated with damping model. The goal distance is selected as 20 m,
and execution error has came up as 0.008% and 0.004, respectively. The amount
of time to find the best path is much bigger than the offline case, but very similar

to each other. In total, the algorithm has computed to reach the goal by 8 steps.

75

Desired Position Change: 30, SLIP Movement: 30.0022

40 35 2 6 2
® I ¢ |
s 15 | r 15 |
>20 2 N “ E N “ |
Iy \ 0 \ \
, 25 1 v 1 \' u ‘
0 » \
0 2 05 4 05
0 5 10 0 5 10 0 5 10 0 5 10 0 10 20 30 40
t t 2.9 - - y
% Real TD point
40 3 . 1
28F X2 G 4
30 Y2734 Y 2.823 . 3 05
2 5
X 12 2
27 ’
520 g Y 2.66] 10 vesss| © o
@ Y 2616 £
0 ! 26 2 205
1 : 0.
X1 &
0 0 s Y 2.51 .
0 5 10 0 5 10 F25 ° X4 X8 0 5 10
R . S Y 2.445 Y 2.437 L
. .
1 % 24 . .
S0 X 20T T4 A= -
095 Y 2.397 Y 2.404
20 / 23 X6 .18
09 2 Y2217 26
£ / . 2
085 0 22 X 11 1 14
Y2114
08 | 12
2 21 n o
0 5 10 0 5 10 0 2 4 6 8 10 12 o 5 10

Figure 6.21: Target position = 30m - Offline - Forward Planning - Minimum
Distance

Desired Position Change: 30, SLIP Movement: 29.9995

40 35 2 6 2
30 4 (\
15 (\ [\ » 1.5 | m
a0 s . ﬂ i ATITAR: . ﬂ LIV
IR TLRLVAY I T
1 1
o .
0 25 05 -4 05
0 5 10 0 5 10 0 5 10 0 5 10 0 10 20 30 40
t t 2.9 - - y
*__Real TD point
40 3 . X 10 1
281 X2 X5 Y2766 ||
30 N Y 2734 Y 2.823 L 208
o * I
=20 o4 27+ X7 5 0
4 Y 2.643 5
10 %05
261
c
0 0 S X1 8 1
0 5 10 0 5 10 = Y 2.51 Y 2.523 0 5 10
o
t t £ o 3 t
25 X4
; : ‘ ‘ w0 .Y2.445 P
- ‘ ‘ wal . Y2399 | o R i o
20 / . X3 2 18
Y 2.326 >
< 3
) g Y 2.397 ' 26
= 23 ¢ 10&
085 0 X6 X9 14
Y2217 Y2218 1
08 2 0o | | : I o
0 5 10 0 5 10 0 2 4 6 8 10 12 0
t t Time t

Figure 6.22: Target position = 30m - Online - Forward Planning - Minimum
Distance

76

Desired Position Change: 45, SLIP Movement: 45.1077

) W | il | B | et
WW Mo |+ i

0
0 1 15 10 0 1
t 3 . . . y
*__Real TD point
50 3 28]
=
2 26 go
30 ° iy
~ 20 % 24 T
1 g
10 ool < x X xx 505
0 0] 4
0 0 5 10 15 2r
t

thet:

.
0 2 4 6 8 10 12 14 16 18 20 '00
t Time t

M]

Figure 6.23: Target position = 45m - Offline - Forward Planning - Minimum
Distance

Desired Position Change: 45, SLIP Movement: 45.0094

. . T 5 T
2% 53 N\/ “ﬂ %) ﬂ‘wn
fﬁ "WW O | TN |
Rt SO
e BT i

Figure 6.24: Target position = 45m - Online - Forward Planning - Minimum
Distance

77

Desired Position Change: 20, SLIP Movement: 20.0016

25 35 2 6 2
“ f\ ‘
N \
5 L i o)
. E o WAV g
0 33 \‘/\‘ll\ “\H || i SR
\ \
ARG
5 2
0 25 05 4
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0
t t 2.9 - - y
% Real TD point
25 3 ! 1
2 281 X2 X5 N
A Y 2734 Y 2.823 208
15 o i &
= g 271 5 0
% g
10 ; 5
5 %05

o
°
~
-
£
)
o
°
)
)
Position
o
>
< X
o=
a
< x
N ®
A
o
~
- a
e
)

25 X4
Y 2.445
1 - 40 x3 |
‘ ‘ Y 2.397 20 R o R S
0.95 24 . X7 M
20 | Y2341 | 18 W‘
o 3
- 00 ® T T 16 B
= 23F X6 18
0.85 0 | Y 2,201 14
. 12
08 20 22 L L L L L L 10
0 2 4 6 8 0 2 4 6 8 1 2 3 4 5 6 7 8 o 2 4 3 B
t t Time t

Figure 6.25: Target position = 20m - Online - Forward Planning - Minimum
Distance

Desired Position Change: 20, SLIP Movement: 19.932

25 a5 2 6 2
N 1\
“ (15 / f\ 1 \ 15 ‘C\)
15 5 m‘ﬁ\ﬁﬂ/“ ,‘\ [E \ \ \“cﬂ\‘f\\A/ f\ J\
~ 3 L—J " /‘/\f FATAT \ R TATAY: g In
10] w\juduv\j\/ “\ 0 \ \ ‘\j \/ v\ 1\] /
° ‘ * \J A
0 25 05 -4 05
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 o 5 10 15 20
t t 3 - - : y
% Real TD point
25 3 X8 |
X2 Y 2.955
2 28+ Y2734 1 Bos
2 . 2
15 ® &
= & X6 R
10 ® X1 £
26
. ! Y 2.51 a | Y 2.526 % 0s
3 X7
0 0 s Y 2.307 || Y 2419 Y 2.411 ,
0 2 4 6 8 0 4 6 8 G 24 . *: 0 2 4 6 8
t t g t
a
1 40
| T 22] I P o
0.95 " | . -
09 £ | Y 1.98 3
- g / [2t A { B
0.85 0 " Wy
12
08 20 1.8 L L L L L L 10
0 2 4 6 8 0 2 6 8 1 2 3 4 5 6 7 8 o 2 4 3 B
t t Time t

Figure 6.26: Target position = 20m - Online - Backwards Planning - Minimum
Distance

78

Desired Position Change: 30, SLIP Movement: 29.9995

30 . W 15 | f ; f‘\A\ : \ s}y | 0, (\
P Ww J w “ dﬂVﬁV’Wv"f‘J V vf I W\RN\[\(\}\P\W “ ! ‘/Mr\fm

w ' : ‘ .] '

T] o - W i
- g\ | | B

oasd J J s \/\/\” ’} /W[\/\/ 23t 1, ﬂru h WUWH ‘

" | R S -

0 5l 10) 5‘ 10 0 2 4 Tii1 8 10 12 5t 10

Figure 6.27: Target position = 30m - Online - Forward Planning - Minimum
Distance

Desired Position Change: 30, SLIP Movement: 30.0022

i: E SW{H'HMM N"’Mr\/\ f\/”\’”/q”\/ﬂ\,« % [{ \{ \ N"S/“A\W\J\\w A‘N\w
: . SR VATt T
. T | = i 77777 -
2 / 23 1 4
o N :_;DML\M/W) | W ’F WW T
0 : 0 %% : 10 0 2 4 o 8 10 2 1% : 10

Figure 6.28: Target position = 30m - Online - Backwards Planning - Minimum
Distance

79

Desired Position Change: 30, SLIP Movement: 29.9958

40 35 2 5 2
. JL a e kDO o L
. : St bl gl LT e F T PR PRI
; o Faziia T R T
" | T T Y AR
00 5 10 ’ 50 5 10 0 50 5 10 -50 5 10 0‘50 10 20 30 40
t t 28 ‘ :
27 1
0 N 62.704 go.s
20 2 261 X2 =

"" Y2512 £
10 25¢ T X6 505
0 0 s Y 2536 o }

0 5 10 0 5 0 =24 . Y237 4 0 5 10
t t £ L t
w© 03] $;.284 é ;-395 | é 12.2288 s
I X8 X9
. 20/ “g“ ,\) /W \A ‘\‘\ f “ﬂ ‘\ 22 52.123 Y 2.266 Y 2.263 g gzo]‘_rnhwﬂﬂ?
= T bojxr ot R . &
| \\'\‘ e “ Jreoe x11 | x13 ‘SH\HH V_) JﬂF
| Y2101 | v2102
o 5 10 % 2 4 6 8 10 12 1w 0 5 T
t Time t

Figure 6.29: Target position = 30m - Online - Forward Planning - Minimum
Distance - velporizontar = 2.8000m/s, velyerticar = —3.3640m/s

When the distance is incremented by 10 m, the MONOPOD model also in-
creases its stride count by 4, and managed to reach that new goal position, with
a very small error value. The horizontal and vertical position and the velocity
can be observed from the Figures 6.27 and 6.28. The change of energy and the

behavior can also be interpreted from the corresponding plots.

6.2.3 Comparison - Different Initial Touchdown States

In the previous MONOPOD results, the initial touchdown state was selected as
<yhmzontal 3.3000m/s 0.8842m —3.3784m/S Ynorizontal —|—€td>. Therefore, in

order to analyze the behavior on different initial touchdown state, this values are

changed and results were obtained respectively.

In the Figure 6.29, the touchdown horizontal and vertical velocities are selected
as (2.8000 m/s —3.3640m/ s) . It’s also clear the algorithm successfully executed

the constructed planning with respect to a different initial touchdown state.

80

Desired Position Change: 30, SLIP Movement: 30.0022

40 SSW 6
I
4
30
3 15 N HNMH{\ L, | \ 1.5A H\/Mﬁﬂ
N/
>20 3 ~ m‘”\ H\ | NUO \ N / “\NH /‘
25 1 U 1 U
10 B
0 2 0.5 -4 0.5
0 5 10 0 5 10 o 5 10 0 5 10 o 10 20 30 40
t t 29 . .
40 3 . 1
28 x2 — i
30 Y2734 Y 2.823 3 os
2 1 u X 12 2
27+
520 § | Yzeo2 Vass| S o
g
1 ! H
10 26 “ Y10 05
3 Y 2.51 Y2616
0 0 S 4
0 5 10 0 5 10 F25 . x4 X8 E 0 5 10
. 3 Y 2.445 Y2437 ,
t kS) |
1 40 24+ . . 4
‘ X3 X9 o I O I _
0.95 Y 2.397 Y 2.404 0
20 | / 231 X6 1 .18
09 ﬁ / [/ Y2217 g'e
=) / 22+ ¥ 14
0.85 0 | | - X 11 14
Y2114 12
08 L L L L n]
20 2.1 0
0 5 10 0 5 10 0 2 4 6 8 10 12 0 5 10
t t Time t

Figure 6.30: Target position = 30m - Online - Forward Planning - Minimum
Distance - velporizontar = 3-3000m/s, velyerticar = —3.3784m/s

Desired Position Change: 30, SLIP Movement: 30.0061

40 4 16 4 6 i
/V ,\ npo '\
\ | |
30 4 \ /\ [[‘Hﬂ 2 \ 1'4\ "‘\‘ [/"W
s 12 }/M (H o 12 /M ‘m il
5 5
=20 3 . \ £, o [\ ‘
3
10 08 . 08
0.6 0.6
0 25 -6
0 5 10 o 5 10 0 5 10 0 5 10 o 10 20 30 40
t t 32 . .
X RealT X 12
40 3 Y319 1
30 3r 1 Bos
2 2
< o &
.20 kS g ©
1 28+ | £
10 Xa 505
c X1 Y263 ST
0 0 o 1
0 5 10 0 5 10 o6 2576 X9 Y 2.557 0 5 10
3 Y 2517
t t o X5 t
X3 Y 2.585
T T 40 vees T 520364 B B
\ ‘ ‘ 241 X2 X6 20
095 Y 2.201 Y 2.438 wll 1] WT
20 , N
09 -] | X8 S16
- % ’ | | / 22t Y 2.304]
= Wy
0.85 0 , X7
| ’ Y201 12
0.8 2 L 10
20
0 5 10 0 5 10 0 2 4 6 8 10 12 5 0

Figure 6.31: Target position = 30m - Online - Forward Planning - Minimum
Distance - velporizontar = 3-3000m/s, velyerticar = —3.4690 m/s

81

Similarly in Figure 6.31, changing the initial velocity vector on the opposite
direction ((3.3000 m/s —3.4690m/ s)), also resulted as a success. The planning

is executed and the concluding error occurred as infinitesimal.

82

Chapter 7

Conclusion and Future Work

This thesis presented a new approach for the footstep planning on Spring Loaded
Inverted Pendulum(SLIP) and Torque actuated Dissipative SLIP (TD-SLIP)
model. The results consisted of online and offline as the construction type of the
planning, forward and backwards as the algorithm type, and based on minimum
distance and based on minimum step count as the policy type. The combina-
tion of these options provided wider range of results. Therefore, implementing
the algorithm for both SLIP and TD-SLIP model provided much informative

derivations.

The results Chapter starts with the waypoint implementation on both models.
The algorithm options were provided as online, forward, and minimum distance,
among all of the figures in that section. In Figure 6.1, the simulated models
positional results were illustrated, according to a provided array of horizontal
positions. The model successfully reach all of the provided array distance with
less than 1% error (The specified error is actually smaller than that, but in order
to acquire more realistic results, the error indication value is selected as 1%).
Additionally, for the Figure 6.2, another randomly selected distance array was
provided. Similarly with the first one, the algorithm successfully reached all of
the waypoints with an error value smaller than 1%. Finally, the waypoint count

has increased to 5, and the final waypoint distance has doubled. Not surprisingly,

83

the algorithm achieved the reach all of the positions with a very small deviation

rate.

In addition to this, comparison between the online and offline execution type
has a similar distance error, but huge time characteristics. The figures provided in
Section 6.1.2 and 6.2.1 illustrate the comparison results. Among all of the results,
the waypoint count is selected as 1. This implies that, the analysis of each distinct
leg position can be achieved in a better way. According to the randomly selected
distance positions, both of the methods succeeded to reach their goal distances.
However, as all of the paths were constructed before the simulation for the offline
case, the amount of time it takes to find the best path is enormously smaller
than the online one. Constructing the paths before the simulation seems to be
an important advantage, but unfortunately it has a fundamental problem, which
is the size of the constructed mat file. Although, the size differs according to the
recursion level (step count) in the Equation 5.10, for a 5 step case, the size of the
mat file was 12GB. Therefore, generation the mat file requires a high amount of

RAM, and the loading part takes few minutes.

Comparison between the forward and backwards algorithm type is also imple-
mented for SLIP and TD-SLIP models. Other options were selected as online
and minimum distance. Forward construction and backwards construction can
be considered as very close to each other. According to the obtained results, they
can both reach the goal distance, (the error rates of forward planning is a little bit
better), and their time constraints are also very similar (forward is approximately
1.3 times faster). Additionally, selecting the policy type as based on minimum
step count contributes similar results, when it compares it with the minimum
distance. If energy is a constraint for the system, then outputting according to

minimum step count becomes a very logical option.

Starting with different initial touchdown states are another important aspect of
the obtained results. Previous results were consisted of the same initial touchdown
states, so that the comparisons become much more informative. The different ini-
tial touchdown states in Sections 6.1.5 and 6.2.3 are selected from the constructed

cloud domains. Same algorithm options are used and the same target positions

84

are selected, for all cases. In the light of these, the results contained very small
error values, and demonstrated that the algorithm also provides satisfactory and

acceptable results, regardless from the initial state.

Possible future extensions of the work done can start with increasing the cloud
domain size. Among this thesis, the sample count of certain number is used. In-
vestigating the results of increasing this count, by providing and checking identical
test cases, would be an efficient analysis. After that, analysing the effect of en-
larging the safe guard and outer cloud goal domain regions would also contribute
the work to a different level. Additionally, changing the simulation environment
from MATLAB, which is a JAVA based application to another C or C++ based
application should decrease the time constraint in a better way. Also, the ground
was selected as a flat surface across among of the simulation results. Changing
the ground type from flat to another ones (most probably rough terrains) affect
on the results is also seemed like a great extension. Last but not least, for the of-
fline phase, the gathering all possible paths procedure takes an enormous amount
of space on PC. Therefore, trying to find ways to decrease the size would also be
a solid development so that greater step levels can be achieved on smaller disk,
or may even be faster. Finally, another extension of the work would be trying
everything on a 3D-SLIP environment. As the algorithm works on a 2D one,
some of the real life scenarios are neglected. Including these to this work can be

a satisfactory and immense effort.

85

Bibliography

1]
2]

M. H. Raibert, Legged robots that balance. MIT press, 1986.

R. Blickhan and R. Full, “Similarity in multilegged locomotion: bouncing
like a monopode,” Journal of Comparative Physiology A, vol. 173, no. 5,
pp. 509-517, 1993.

C. T. Farley, J. Glasheen, and T. A. McMahon, “Running springs: speed
and animal size,” Journal of experimental Biology, vol. 185, no. 1, pp. 71-86,
1993.

R. M. N. Alexander, “Principles of animal locomotion,” Princeton University
Press, NJ, 2006.

P. Gregorio, M. Ahmadi, and M. Buehler, “Design, control, and energetics of
an electrically actuated legged robot,” IEEFE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 27, no. 4, pp. 626-634, 1997.

M. H. Raibert, “Legged robots,” Communications of the ACM, vol. 29, no. 6,
pp- 499-514, 1986.

U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and highly
mobile hexapod robot,” The International Journal of Robotics Research,

vol. 20, no. 7, pp. 616-631, 2001.

R. Alexander et al., “Three uses for springs in legged locomotion,” Interna-
tional Journal of Robotics Research, vol. 9, no. 2, pp. 53-61, 1990.

W. J. Schwind, Spring loaded inverted pendulum running: A plant model.
PhD thesis, University of Michigan, 1998.

86

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Srinivasan and P. Holmes, “How well can spring-mass-like telescoping leg
models fit multi-pedal sagittal-plane locomotion data?,” Journal of theoret-
1cal biology, vol. 255, no. 1, pp. 1-7, 2008.

B. Brown and G. Zeglin, “The bow leg hopping robot,” in Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat. No.
98CHS36146), vol. 1, pp. 781-786, IEEE, 1998.

M. M. Ankarali and U. Saranli, “Stride-to-stride energy regulation for robust
self-stability of a torque-actuated dissipative spring-mass hopper,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 20, no. 3, p. 033121,
2010.

U. Saranl, O. Arslan, M. M. Ankaral, and O. Morgiil, “Approximate ana-
lytic solutions to non-symmetric stance trajectories of the passive spring-

7

loaded inverted pendulum with damping,” Nonlinear Dynamics, vol. 62,

no. 4, pp. 729-742, 2010.

H. Fang, C. Wang, S. Li, K. Wang, and J. Xu, “A comprehensive study on the
locomotion characteristics of a metameric earthworm-like robot,” Multibody
System Dynamics, vol. 35, no. 2, pp. 153-177, 2015.

H. Yu, M. Li, P. Wang, and H. Cai, “Approximate perturbation stance map
of the slip runner and application to locomotion control,” Journal of Bionic
Engineering, vol. 9, no. 4, pp. 411-422, 2012.

I. Uyanik, “Identification of legged locomotion via model-based and data-

driven approaches,” arXiw preprint arXiv:1710.04275, 2017.

W. C. Martin, A. Wu, and H. Geyer, “Experimental evaluation of deadbeat
running on the atrias biped,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, pp. 1085-1092, 2017.

A. Wu, The theory, implementation, and evaluation of spring mass running
on ATRIAS, a bipedal robot. PhD thesis, Carnegie Mellon University, 2017.

87

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L Uyanik, U. Saranli, M. M. Ankarali, N. J. Cowan, and 0. Morgiil,
“Frequency-domain subspace identification of linear time-periodic (Itp) sys-
tems,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2529
2536, 2018.

I. Uyanik, U. Saranh, O. Morgiil, and M. M. Ankarali, “Parametric identifi-
cation of hybrid linear-time-periodic systems,” IFAC-PapersOnLine, vol. 49,
no. 9, pp. 7-12, 2016.

I. Uyamk, M. M. Ankarali, N. J. Cowan, O. Morgiil, and U. Saranli, “Toward
data-driven models of legged locomotion using harmonic transfer functions,”
in 2015 International Conference on Advanced Robotics (ICAR), pp. 357
362, IEEE, 2015.

I. Uyanik, M. M. Ankarali, N. J. Cowan, U. Saranl, and O. Morgiil, “Identi-
fication of a vertical hopping robot model via harmonic transfer functions,”
Transactions of the Institute of Measurement and Control, vol. 38, no. 5,
pp. 501-511, 2016,

S. A. Burden and S. S. Sastry, “Reduction and identification for hybrid
dynamical models of terrestrial locomotion,” in Micro-and Nanotechnology
Sensors, Systems, and Applications V, vol. 8725, p. 87251B, International
Society for Optics and Photonics, 2013.

D. Logan, T. Kiemel, and J. J. Jeka, “Using a system identification ap-
proach to investigate subtask control during human locomotion,” Frontiers

i computational neuroscience, vol. 10, p. 146, 2017.

C. M. Pinto, “Stability of quadruped robots’ trajectories subjected to dis-
crete perturbations,” Nonlinear Dynamics, vol. 70, no. 3, pp. 2089-2094,
2012.

M. Golubitsky, I. Stewart, P.-L. Buono, and J. Collins, “Symmetry in lo-
comotor central pattern generators and animal gaits,” Nature, vol. 401,
no. 6754, pp. 693-695, 1999.

88

[27]

28]

[30]

[31]

[32]

[33]

[34]

J. J. Collins and I. N. Stewart, “Coupled nonlinear oscillators and the sym-
metries of animal gaits,” Journal of Nonlinear Science, vol. 3, no. 1, pp. 349—
392, 1993.

A. Sato and M. Buehler, “A planar hopping robot with one actuator: de-
sign, simulation, and experimental results,” in 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 4, pp. 3540-3545, IEEE, 2004.

I. Uyanik, O. Morgiil, and U. Saranli, “Experimental validation of a feed-
forward predictor for the spring-loaded inverted pendulum template,” IEEE
Transactions on robotics, vol. 31, no. 1, pp. 208-216, 2015.

R. Altendorfer, U. Saranli, H. Komsuoglu, D. Koditschek, H. B. Brown,
M. Buehler, N. Moore, D. McMordie, and R. Full, “Evidence for spring
loaded inverted pendulum running in a hexapod robot,” in Ezperimental
Robotics VII, pp. 291-302, Springer, 2001.

I. Poulakakis and J. W. Grizzle, “The spring loaded inverted pendulum as
the hybrid zero dynamics of an asymmetric hopper,” IEEE Transactions on
Automatic Control, vol. 54, no. 8, pp. 1779-1793, 2009.

G. Piovan and K. Byl, “Enforced symmetry of the stance phase for the
spring-loaded inverted pendulum,” in 2012 IEEFE International Conference
on Robotics and Automation, pp. 19081914, IEEE, 2012.

G. Secer and U. Saranli, “Control of hopping through active virtual tuning
of leg damping for serially actuated legged robots,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 4556-4561,
IEEE, 2014.

J. Schmitt and J. Clark, “Modeling posture-dependent leg actuation in sagit-
tal plane locomotion,” Bioinspiration & biomimetics, vol. 4, no. 4, p. 046005,
20009.

F. Peuker, A. Seyfarth, and S. Grimmer, “Inheritance of slip running stability
to a single-legged and bipedal model with leg mass and damping,” in 2012

89

[36]

[38]

[42]

[43]

[44]

4th IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob), pp. 395-400, IEEE, 2012.

O. Arslan and U. Saranli, “Reactive planning and control of planar spring—
mass running on rough terrain,” IEEFE Transactions on Robotics, vol. 28,
no. 3, pp. 567-579, 2011.

O. Arslan, U. Saranli, and O. Morgiil, “Reactive footstep planning for a
planar spring mass hopper,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 160-166, IEEE, 2009.

D. E. Koditschek and M. Buehler, “Analysis of a simplified hopping robot,”
The International Journal of Robotics Research, vol. 10, no. 6, pp. 587605,
1991.

H. Geyer, A. Seyfarth, and R. Blickhan, “Spring-mass running: simple ap-
proximate solution and application to gait stability,” Journal of theoretical
biology, vol. 232, no. 3, pp. 315-328, 2005.

W. J. Schwind and D. E. Koditschek, “Approximating the stance map of a
2-dof monoped runner,” Journal of Nonlinear Science, vol. 10, no. 5, pp. 533—
568, 2000.

J. D’Errico, “fminsearchbnd, fminsearchcon.” https:
//www.mathworks.com/matlabcentral/fileexchange/
8277-fminsearchbnd-fminsearchcon, Sept. 2020. MATLAB File
Exchange.

H. Hamzacebi, Analysis and control of periodic gaits in legged robots. PhD
thesis, Bilkent University, 2017.

O. Arslan, “Model based methods for the control and planning of running
robots,” Master’s thesis, Bilkent University, 2009.

The Mathworks, Inc., Natick, Massachusetts, MATLAB wversion
9.8.0.13961536 (R2020a) Update 3, 2020.

90

