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Abstract. This paper proposes a constrained nonlinear programming view of generalized autore-
gressive conditional heteroskedasticity (GARCH) volatility estimation models in financial
econometrics. These models are usually presented to the reader as unconstrained opti-
mization models with recursive terms in the literature, whereas they actually fall into the
domain of nonconvex nonlinear programming. Our results demonstrate that constrained
nonlinear programming is a worthwhile exercise for GARCH models, especially for the
bivariate and trivariate cases, as they offer a significant improvement in the quality of the
solution of the optimization problem over the diagonal VECH and the BEKK representa-
tions of the multivariate GARCH model.
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1. Introduction. Volatility plays an important role in several areas of current
finance literature. It is central to portfolio selection models as efficient portfolios are
formed by computing the maximum return for a given level of volatility. Equilib-
rium models like the capital asset pricing model (CAPM) require the estimation of
market variance as well as the covariance of risky assets with the market portfolio.
Prices of options are also expressed as functions of volatility. As a result, volatility
and covariance estimation is an important research area for both academicians and
practitioners.

ARCH (autoregressive conditional heteroskedasticity; Engle (1982)) and GARCH
(generalized ARCH; Bollerslev (1986)) volatility forecasting models have been the
major tool for characterizing volatility, by using past unpredictable changes in the
returns of an asset to predict the future time-varying second-order moments. Volatility
clustering phenomena (Mandelbrot (1963), Fama (1965)) are the driving force for the
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486 ASLIHAN ALTAY-SALIH, MUSTAFA Ç. PINAR, AND SVEN LEYFFER

GARCH family of models. The success of these models in the univariate case for
volatility estimation has inspired an interest in covariance estimation, which is a
harder problem, and has led to the development and application of the multivariate
extensions.1 The major difficulty in the multivariate case stems from the highly
nonlinear and nonconvex nature of the resulting optimization problem.

The first attempt to solve the multivariate GARCHmodel was the diagonal VECH
model of Bollerslev, Engle, and Wooldridge (1988), who assumed constant covariances
for solvability. This extension can be thought of as a trade-off between estimation
intractability and practical applicability. Later, statistical tests were developed to
check the empirical validity of the assumption of constant covariances; see Bera and
Kim (1996) and Tse (2000). Their results for national stock markets show that the
covariances are in fact time varying. Therefore, other solutions that can deal with the
complexity of the multivariate estimation problem need to be developed.

The factor ARCH model of Engle, Ng, and Rothschild (1990) and the BEKK
model of Baba, Engle, Kraft, and Kroner (1989) were attempts to solve the same
problem by ensuring positive definiteness of the variance-covariance matrices in the
process of optimization, which is an important constraint in multivariate GARCH
models. All of these specifications impose very different restrictions on the variance-
covariance matrix for computational tractability. For example, Schoenberg (1998), in
his GAUSS-based commercial software FANPAC, claims to impose constraints on the
eigenvalues of the variance-covariance matrices, although the details are not revealed.

The purpose of the present paper is to solve the multivariate GARCH optimiza-
tion problem in which we follow a more general approach by taking a constrained
nonlinear programming view of GARCH volatility estimation models without impos-
ing artificial restrictions for tractability. This is made possible by recent advances
in numerical optimization algorithms and software. ARCH and GARCH models are
usually presented to the reader as unconstrained optimization models with recursive
terms in econometrics and finance texts (see, e.g., Hamilton (1987) and Gourieroux
(1997)), whereas they actually fall into the domain of nonconvex, nonlinearly con-
strained nonlinear programming. They are usually solved by extensions of Newton
or quasi-Newton methods that take into account the recursive nature of terms defin-
ing the objective function. Against this background a major goal of this paper is to
test the practical solvability (i.e., computing a Karush–Kuhn–Tucker point) of these
models as nonlinearly constrained nonconvex programs using the AMPL modeling
language (Fourer, Gay, and Kernighan (1993)) and the state-of-the-art optimization
packages available through the recently developed NEOS2 interface at the Argonne
National Laboratory.

We believe this research effort is a worthwhile undertaking, as the current fi-
nancial econometrics literature does not use these valuable sources of optimization
software, to the best of our knowledge. Second, we establish through our computa-
tional results that the bivariate and trivariate GARCH volatility estimation models
for which relatively few software systems exist in the market are solved very effectively
by our approach, thus contributing a new tool to the econometric finance literature.

1See Engle (1987); Bollerslev, Engle, and Wooldridge (1988); Giovannini and Jorion (1989);
Engle, Ng, and Rothschild (1990); Bollerslev (1990); Ng, Engle, and Rothschild (1991); Conrad,
Gültekin, and Kaul (1991); Kroner and Claesens (1991); Kroner and Sultan (1993); Lien and Luo
(1994); Karolyi (1995); Park and Switzer (1995); Tse (2000).

2http://www-neos.mcs.anl.gov; see Cyzik, Mesnier, and Moré (1998)
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NONLINEAR PROGRAMMING FOR GARCH ESTIMATION 487

Furthermore, our empirical results for the DAX, FTSE, and S & P 500 indices demon-
strate that this approach tracks the variability in realized volatility better than both
the diagonal VECH and the BEKK representations. However, we should stress that
the major contribution of this paper lies in the proposed general approach and its
documented superior solution quality from an optimization point of view. Although
a visual inspection of the results and mean-square errors of the trivariate application
is promising, a thorough empirical investigation of the forecasting accuracy is a topic
for further research.

We organize the rest of this paper as follows. In section 2, we review the univariate
GARCH model. Section 3 is devoted to a review and discussion of the multivariate
and, in particular, the bivariate and trivariate GARCH models on which we concen-
trate. In section 4, we illustrate our approach by applying it to daily returns of the
S & P 500, FTSE 100, and DAX indices, report our results, and compare them with
the diagonal VECH and BEKK representations. Section 5 concludes the paper.

2. Univariate GARCHModel. The analysis of time series dynamics of economic
data is usually based on observations of relevant processes, e.g., the behavior of short-
and long-term interest rates, rate of inflation, stock prices, etc. In general terms, an
observed time series is viewed as a realization of a stochastic process, i.e., a sequence of
random variables that are defined on some state space Ω. These random variables may
be unidimensional, leading to univariate econometric models, or multidimensional, in
which case multivariate models are appropriate. Furthermore, the random variables
are indexed by time, where we assume that observations are recorded at regularly
spaced intervals, which allows one to consider time indices taking only integer values.
The stochastic process is denoted by

Y = (Yt, t ∈ T ),

where the index set T is the set of nonnegative integers or the set of natural numbers.
In the present paper we consider the following autoregressive process for stock index
returns, which explains the behavior of the random variable in terms of its past values
as

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φmYt−m + εt,

where ε = (εt) is a weak white noise satisfying the martingale difference sequence
condition

E(εt|εt−1) = 0,

where the notation E(.) denotes mathematical expectation and εt−1 = {εt−1, εt−2, . . .}
represents the vector of past values. It is important to model the level of financial time
series {Yt} , but sometimes it might be even more important to model the volatility
of the series to quantify the risks involved in a specific trading strategy, especially
when the empirical evidence suggests that the level process {Yt} shows no particular
time dependence, whereas the volatility process exhibits a certain time dependence.
Instead of assuming that the conditional variance of the noise, i.e., E(ε2t |εt−1), is
time independent, we allow for time dependence through an autoregressive equation
for the squared error terms (innovations) as follows:

E(ε2t |εt−1) ≡ ht = c+
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j .(2.1)D
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488 ASLIHAN ALTAY-SALIH, MUSTAFA Ç. PINAR, AND SVEN LEYFFER

The above model is referred to as GARCH(p,q).3 In the case p = 0, we have the
ARCH(q) model:

E(ε2t |εt−1) ≡ ht = c+
q∑
i=1

αiε
2
t−i.(2.2)

An important consideration in the study of time series is the stationarity properties
of the time series in the interest of forecasting ability. Imposing stationarity is a
vital part of modeling. In particular, if {Yt} is stationary, the mean, variance, and
autocorrelations can usually be well approximated by sufficiently long time averages.
Formally, a stochastic process with a finite mean and variance is called covariance (or
second-order) stationary if for all t , t− s ,

E(Yt) = E(Yt−s) = µ,(2.3)

E[(Yt − µ)2] = E[(Yt−s − µ)2] = σ2
Y ,(2.4)

E[(Yt − µ)(Yt−s − µ)] = E[(Yt−j − µ)(Yt−j−s − µ)] = γs,(2.5)

where µ , σ2
Y , and γs are all constants. Simply put, a time series is covariance

stationary if its mean and all auto-covariances are unaffected by a change of time
origin. In the above models, φ ∈ 	m , α ∈ 	q++ , β ∈ 	

p
++ (the notation 	q++ and

	q++ represent the space of q - and p -dimensional real vectors with strictly positive
components, respectively), c is a positive scalar, and

q∑
i=1

αi +
p∑
i=1

βi < 1(2.6)

is sufficient to ensure second-order stationarity asymptotically. For further details the
reader is referred to Property 3.19 of Gourieroux (1997).

An important tool in the estimation of the above parameters is the technique of
maximum likelihood estimation. Assuming a normal distribution for Yt given the
past observations, application of the maximum likelihood technique in the case of
GARCH(p,q) leads to the following optimization problem:

max−T
2
log 2π − 1

2

T∑
t=1

log ht −
1
2

T∑
t=1

ε2t
ht

(2.7)

subject to the stationarity condition (2.6), the specification of conditional variances
ht given by (2.1), and the nonnegativity condition on c, α, β .

Therefore, for the GARCH(p,q) case we can formulate the following optimization
problem:

max −1
2

T∑
t=1

log ht −
1
2

T∑
t=1

ε2t
ht

s.t. c+
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j = ht ∀t = 1, . . . , T,

3Excellent references are available on this important topic. The interested reader is referred to
Droesbeke, Fichet, and Tassi (1994); Gourieroux (1997); and Hamilton (1987) for details.
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NONLINEAR PROGRAMMING FOR GARCH ESTIMATION 489

m∑
i=1

φiYt−i + εt = Yt ∀t = 1, . . . , T,

q∑
i=1

αi +
p∑
i=1

βi ≤ 1,

ht ≥ 0 ∀ t = 1, . . . , T,
c ≥ 0,
αi ≥ 0 ∀ i = 1, . . . , q,
βi ≥ 0 ∀ i = 1, . . . , p,

where we have replaced the strict inequality in (2.6) with a nonstrict inequality in the
interest of computational tractability. This modification did not create any problems,
as this constraint turned out to be inactive (satisfied as a strict inequality) at the
reported solution in our computational tests (see values of α1 and β1 in Table 1,
section 4).

Regarding issues of convexity in the above model, we notice that the function
log ht +

ε2t
ht
is a quasi-convex function in (εt, ht). Unfortunately, the sum of quasi-

convex functions is not necessarily quasi-convex. Therefore, we do not expect to
detect hidden convexity in the objective function of the above model. The constraints
are also of a polynomial nature and obviously nonconvex. These observations imply
that any attempt at numerical solution of the above model is bound to yield at best
a Karush–Kuhn–Tucker point (not necessarily a local maximum).

3. Multivariate Model. When the error term εt is a multivariate process of
dimension n , we can introduce the same formulation as in the univariate case for
all the components of the conditional variance-covariance matrix. Now, for all t =
1, . . . , T we have Yt ∈ 	n and εt ∈ 	n with components Ylt and εlt, l = 1, . . . , n ,
respectively. We denote the components of the n×n conditional variance-covariance
matrix Ht = E(εtεTt |εt−1) by hklt . The log-likelihood function to be maximized in
the multivariate case is given as

−1
2

T∑
t=1

(log detHt + εTt H
−1
t εt).

Following Kraft and Engle (1982) and Bollerslev, Engle, and Wooldridge (1988),
a multivariate extension of univariate GARCH (2.1) is as follows:

vech(Ht) = vech(C) +
q∑
i=1

Aivech(εt−iεTt−i) +
p∑
j=1

Bjvech(Ht−j),(3.1)

where vech is the operator that consists in stacking up the lower triangular and the
diagonal portions of the columns of a symmetric matrix into a vector, the matrices
Ai and Bj are of size

n(n+1)
2 × n(n+1)

2 , and C is a symmetric matrix of size n× n .
This general formulation is termed the VECH model by Engle and Kroner (1995).

Now, we consider the following estimation problem that we refer to as the con-
strained nonlinear programming (NLP) formulation:
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490 ASLIHAN ALTAY-SALIH, MUSTAFA Ç. PINAR, AND SVEN LEYFFER

max −1
2

T∑
t=1

(log detHt + εTt H
−1
t εt)

s.t. vech(Ht) = vech(C) +
q∑
i=1

Aivech(εt−iεTt−i) +
p∑
j=1

Bjvech(Ht−j)

∀ t = 1, . . . , T,
m∑
i=1

φliYl,t−i + εlt = Ylt ∀t = 1, . . . , T, l = 1, . . . , n,

Ht � 0 ∀ t = 1, . . . , T,
where the symbol � means “symmetric, positive semidefinite.” The above mathe-
matical program is the most general multivariate GARCH specification model, from
which simplified specifications were obtained by imposing certain restrictions on ma-
trices Ai and Bj . Below we briefly review the most important two from the literature
in sections 3.1 and 3.2, respectively.

We obtained above a nonlinear programming problem with semidefiniteness con-
straints. In this case, the stationarity condition is not easy to incorporate into the
above problem, as it requires that the roots of the determinant of I −

∑q
i=1Aiz

i −∑p
j=1Bjz

j be greater than 1. However, this condition considerably simplifies to an
implementable constraint in the bivariate case. It is easy to verify that for n = 2, the
stationarity condition is equivalent to

I −A−B � 0,(3.2)

which can be incorporated as nonlinear constraint(s) into the model, where we take
A = A1 and B = B1 to be symmetric for tractability.4 Notice also that the function
1
2

∑T
t=1(log detHt + ε

T
t H
−1
t εt) is a difference of convex functions since the second

component function is a convex function in Ht, εt (see Vanderbei and Benson (1999)),
and the negative of the first component function is also known to be convex in Ht .

We now compare the above approach with the diagonal VECH and the BEKK
representations, the two competing models used in the present paper.

3.1. The Diagonal VECH Model. The diagonal VECH representation was pro-
posed by Bollerslev, Engle, and Wooldridge (1988), who took the matrices Ai and Bj
to be diagonal. For a GARCH(1,1) process the entries hijt of the matrix are specified
according to the recursion

hijt = ωij + βijhij,t−1 + αijεi,t−1εj,t−1,(3.3)

where εt is a multivariate process of dimension n .
In matrix notation, we can cast the associated log-likelihood maximization model

as follows:

max −1
2

T∑
t=1

(log detHt + εTt H
−1
t εt)

s.t. Ht = C +A� εt−1ε
T
t−1 +B �Ht−1 ∀ t = 1, . . . , T,

m∑
i=1

φliYl,t−i + εlt = Ylt ∀t = 1, . . . , T, l = 1, . . . , n,

Ht � 0 ∀ t = 1, . . . , T,
4This is to be able to conveniently decompose I −A−B into LDLT factors. However, we also

have computational results where this constraint was omitted. The results are similar to the results
obtained when using the constraint, and they are available to the interested reader upon request.
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NONLINEAR PROGRAMMING FOR GARCH ESTIMATION 491

where the notation � is used to represent the componentwise product (Hadamard
product) of two matrices of conformable dimensions, and C , A , and B are n × n
symmetric matrices.

3.2. The BEKKModel. As the positive semidefiniteness conditions of the general
VECH model were found hard to handle, Engle and Kroner (1995) proposed to model
the variance and covariance functions with quadratic forms, which is called the BEKK
representation. Now, the conditional variance-covariance matrices are represented in
the form

Ht = CTC +BTHt−1B +AT εt−1ε
′
t−1A,(3.4)

where A , B , and C are n × n (not necessarily symmetric) matrices. Clearly, this
model ensures positive semidefiniteness of Ht at the expense of increasing the number
of parameters to be estimated in comparison to the diagonal VECH model. From a
numerical optimization point of view, the BEKK model also increases the nonlinearity
of the constraints by utilizing a higher order polynomial representation in comparison
to specification (3.1).

3.3. Bivariate and Trivariate Examples. The bivariate case is of special interest
since we can give an explicit NLP formulation in this case using a simple formula
for the determinant or a Cholesky-type decomposition. The trivariate case is also
amenable to solution using an LDLT representation that we discuss below. For ease
of exposition let us consider the simpler ARCH(1) process. We have three distinct
conditional variance-covariance components:

h11,t = E(ε21t|εt−1),

h12,t = E(ε1tε2t|εt−1),

h22,t = E(ε22t|εt−1).

The recurrence relation (3.1) becomes
 h11,t
h12,t
h22,t


 =


 c11
c12
c22


+


 a11 a12 a13
a21 a22 a23
a31 a32 a33




 ε21,t−1
ε1,t−1ε2,t−1
ε22,t−1


 .

Hence, we have the following optimization problem:

max −1
2

T∑
t=1

(
log(h11,th22,t − h2

12,t) +
ε21th22,t + ε22th11,t − 2ε1tε2th12,t

h11,th22,t − h2
12,t

)

s.t. h11,t = c11 + a11ε
2
1,t−1 + a12ε1,t−1ε2,t−1 + a13ε

2
2,t−1

∀ t = 1, . . . , T,
h12,t = c12 + a21ε

2
1,t−1 + a22ε1,t−1ε2,t−1 + a23ε

2
2,t−1

∀ t = 1, . . . , T,
h22,t = c22 + a31ε

2
1,t−1 + a32ε1,t−1ε2,t−1 + a33ε

2
2,t−1

∀ t = 1, . . . , T,
m∑
i=1

φ1iY1,t−i + ε1t = Y1t ∀t = 1, . . . , T,D
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492 ASLIHAN ALTAY-SALIH, MUSTAFA Ç. PINAR, AND SVEN LEYFFER

m∑
i=1

φ2iY2,t−i + ε2t = Y2t ∀t = 1, . . . , T,

h11,th22,t − h2
12,t ≥ 0 ∀ t = 1, . . . , T,
h11,t ≥ 0 ∀ t = 1, . . . , T.

We refer to the above formulation as the determinant-constrained NLP formula-
tion.

Note that the constraints can be rewritten as

h11,t = c11 + ( ε1,t−1 ε2,t−1 )
(
a11

a12
2

a12
2 a13

)(
ε1,t−1
ε2,t−1

)
,

h12,t = c12 + ( ε1,t−1 ε2,t−1 )
(
a21

a22
2

a22
2 a23

)(
ε1,t−1
ε2,t−1

)
,

h11,t = c11 + ( ε1,t−1 ε2,t−1 )
(
a31

a32
2

a32
2 a33

)(
ε1,t−1
ε2,t−1

)
.

More succinctly, the above constraints can be put as

Ht = C+
(
ε1,t−1 ε2,t−1 0 0
0 0 ε1,t−1 ε2,t−1

) a11
a12
2 a12

a22
2a12

2 a13
a22
2 a23

a21
a22
2 a31

a32
2a22

2 a23
a32
2 a33




 ε1,t−1 0

ε2,t−1 0
0 ε1,t−1
0 ε2,t−1


 .

It suffices that the matrices C and

A1 =



a11

a12
2 a12

a22
2

a12
2 a13

a22
2 a23

a21
a22
2 a31

a32
2

a22
2 a23

a32
2 a33




be positive semidefinite to guarantee positive semidefiniteness of Ht .
An alternative formulation to the determinant-VECH formulation is obtained by

parameterizing the matrices Ht as Ht = LtDtLTt , t = 1, . . . , T , where Lt is a unit-
lower triangular matrix, and Dt is a diagonal matrix. Clearly, the requirement that
Ht be positive (semi)definite is equivalent to the requirement that the entries of the
diagonal matrix Dt be positive (nonnegative). More precisely, within the context of
the above example, the LDLT model would translate into

max −1
2

T∑
t=1

(log(d1t) + log(d2t) + ε1tw1t + ε2tw2,t)

s.t. d1t = c11 + a11ε
2
1,t−1 + a12ε1,t−1ε2,t−1 + a13ε

2
2,t−1

∀ t = 1, . . . , T,
d1tl21t = c12 + a21ε

2
1,t−1 + a22ε1,t−1ε2,t−1 + a23ε

2
2,t−1

∀ t = 1, . . . , T,
d1tl

2
21t + d2,t = c22 + a31ε

2
1,t−1 + a32ε1,t−1ε2,t−1 + a33ε

2
2,t−1

∀ t = 1, . . . , T,
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m∑
i=1

φ1iY1,t−i + ε1t = Y1t ∀t = 1, . . . , T,

m∑
i=1

φ2iY2,t−i + ε2t = Y2t ∀t = 1, . . . , T,

d1t, d2t ≥ 0 ∀ t = 1, . . . , T,
where w1t and w2t , t = 1, . . . , T , are “implied” variables used to simplify the ob-
jective function that involves the inverse H−1

t of Ht , t = 1, . . . , T . These variables
are incorporated into the model as definition-type AMPL constraints which simply
implement the forward substitution, diagonal solve, and backward substitution steps
to compute the term H−1

t εt in the objective function: u1t = −
∑m
i=1 φ1iY1,t−i + Y1t,

u2t = −
∑m
i=1 φ2iY2,t−i + Y2t − l21tu1t, v1t = u1t/d1t, v2t = u2t/d2t, w2t = v2t, and

w1t = v1t − l21tw2t for all t = 1, . . . , T .
We utilize both the LDLT model and the determinantal model in our tests,

wherever computationally appropriate. All our bivariate formulations also include
the stationarity condition (3.2) as a constraint similar to the LDLT decomposition
of Ht ’s.

For the above example, the diagonal VECH representation takes the following
form:[

h11,t h12,t
h12,t h22,t

]
=
[
c11 c12
c12 c22

]
+
[
a11 a12
a12 a22

]
�
[

ε21,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε22,t−1

]
.

The BEKK model yields the following recursion for the bivariate example:[
h11,t h12,t
h12,t h22,t

]
=
[
c11 c21
c12 c22

] [
c11 c12
c21 c22

]

+
[
a11 a21
a12 a22

] [
ε21,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε22,t−1

]
.

[
a11 a12
a21 a22

]
.

Notice that A and C no longer need to be symmetric.
When we have a trivariate model, we use the following mathematical program,

which is a direct extension of the bivariate LDLT representation to the trivariate
case:

max −1
2

T∑
t=1

(log(d1t) + log(d2t) + log(d3t) + ε1tw1t + ε2tw2,t + ε3tw3,t)

s.t. d1t = c11 + a11ε
2
1,t−1 + a12ε1,t−1ε2,t−1 + a13ε3,t−1ε1,t−1

+a14ε
2
2,t−1 + a15ε3,t−1ε2,t−1 + a16ε

2
3,t−1,

d1tl21t = c21 + a21ε
2
1,t−1 + a22ε1,t−1ε2,t−1 + a23ε3,t−1ε1,t−1

+a24ε
2
2,t−1 + a25ε3,t−1ε2,t−1 + a26ε

2
3,t−1,

d1tl31t = c31 + a31ε
2
1,t−1 + a32ε1,t−1ε2,t−1 + a33ε3,t−1ε1,t−1

+a34ε
2
2,t−1 + a35ε3,t−1ε2,t−1 + a36ε

2
3,t−1,

d1tl
2
21t + d2,t = c22 + a41ε

2
1,t−1 + a42ε1,t−1ε2,t−1

+a43ε3,t−1ε1,t−1 + a44ε
2
2,t−1 + a45ε3,t−1ε2,t−1 + a46ε

2
3,t−1,

d1tl21tl31t + d2,tl32t = c32 + a51ε
2
1,t−1 + a52ε1,t−1ε2,t−1

+a53ε3,t−1ε1,t−1 + a54ε
2
2,t−1 + a55ε3,t−1ε2,t−1 + a56ε

2
3,t−1,

d1tl
2
31t + d2,tl

2
32t + d3t = c33 + a61ε

2
1,t−1 + a62ε1,t−1ε2,t−1

+a63ε3,t−1ε1,t−1 + a64ε
2
2,t−1 + a65ε3,t−1ε2,t−1 + a66ε

2
3,t−1

∀ t = 1, . . . , T,D
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494 ASLIHAN ALTAY-SALIH, MUSTAFA Ç. PINAR, AND SVEN LEYFFER

m∑
i=1

φ1iY1,t−i + ε1t = Y1t ∀t = 1, . . . , T,

m∑
i=1

φ2iY2,t−i + ε2t = Y2t ∀t = 1, . . . , T,

m∑
i=1

φ3iY3,t−i + ε3t = Y3t ∀t = 1, . . . , T,

d1t, d2t, d3t ≥ 0 ∀ t = 1, . . . , T,

where w1t , w2t , w3t , t = 1, . . . , T , are “implied” variables used to simplify the
objective function that involves the inverse H−1

t of Ht , t = 1, . . . , T : u1t = −
∑m
i=1

φ1iY1,t−i + Y1t, u2t = −
∑m
i=1 φ2iY2,t−i + Y2t − l21tu1t, u3t = −

∑m
i=1 φ2iY2,t−i +

Y2t − l31tu1t − l32tu2t, v1t = u1t/d1t, v2t = u2t/d2t, v3t = u3t/d3t, w3t = v3t,
w2t = v2t − l32tw3t, and w1t = v1t − l31tw3t − l21tw2t for all t = 1, . . . , T .

4. Estimation and Empirical Results. To test our approach first we apply the
constrained NLP formulation to the univariate case. In the univariate case our
data consist of daily returns of the S & P 500 index with 2000 data points.5 The
data set covers the period from 25.4.1988 to 13.3.1996. Table 1 reports the coef-
ficients, standard errors, and the log-likelihood values for the GARCH(1,1) model
with the traditional univariate GARCH formulation and the constrained NLP for-
mulation proposed in the present paper. The standard errors in this context refer
to the variance-covariance matrix of the maximum likelihood estimates of the coef-
ficients and are computed approximately using the second derivative matrix of the
log-likelihood function. The traditional GARCH estimation is carried out using the
S-PLUS GARCH module implementing the BHHH algorithm (see Hamilton (1987)
for a discussion of the BHHH algorithm), and the NLP estimation is carried out us-
ing the FILTER software (see Fletcher and Leyffer (1998)) for constrained NLP. The
results demonstrate that the coefficient values obtained by the two models are very
close to each other with comparable standard errors. There is a slight improvement
in the log-likelihood function for the constrained NLP approach. The value of this
exercise is that it validates our formulation prior to an application to the multivariate
setting.

For the multivariate application we start with the bivariate case. Our data consist
of daily returns of two stock indices, the S & P 500 and the FTSE 100 with 1500
data points covering the period from 18.5.1990 to 12.3.1996. The time period was
chosen using the Ljung–Box test, which is used to diagnose the presence of GARCH
effects. We compare the constrained NLP approach with the most popular bivariate
specifications available in the S-PLUS GARCH module, namely diagonal VECH and
the BEKK specifications. To solve the constrained NLP for the bivariate case we
use the SNOPT software (see Gill, Murray, and Saunders (1997)). The nonlinear
programs resulting from this exercise have 4506 constraints and 4525 variables.

Table 2 reports the coefficients, standard errors, and log-likelihood values for
these three specifications. As in the univariate case, the standard errors represent
the variance-covariance matrix of the maximum likelihood estimates of the model
coefficients. We would like to note here that the coefficients are not very easy to in-
terpret intuitively for either constrained NLP or BEKK, compared to diagonal VECH.

5For GARCH diagnosis, autocorrelation functions and Ljung–Box statistics were checked. The
data can be supplied upon request. All data were obtained from Salomon Brothers’ database.
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Table 1 Results with the univariate model on S & P 500 data.

Method c α1 β1 Log-likelihood value
Constrained NLP 0.00201931 0.978463 0.0180615 −2179.67
(St. Err.) (0.0015) (0.00784) (0.00103)
SPLUS 0.00285 0.97250 0.02204 −2181.8
(St. Err.) (0.000762) (0.003177) (0.0034232)

Table 2 Results with the bivariate model on S & P 500 and FTSE 100 data (numbers in parentheses
are standard errors).

Coefficients Constrained NLP D-VECH BEKK
c11 −0.198775 0.021812 0.126516

(0.00597) (0.07542) (0.026245)
c12 1.24346 0.016743 0.005078

(0.00471) (0.010096) (0.018835)
c22 −0.121942 0.005688 0.059896

(0.00211) (0.001437) (0.009138)
a11 0.20436 0.04509 0.196017

(0.00036) (0.009925) (0.024318)
a12 −0.384304 0.026886 −0.013858

(1.27× 10−9) (0.011565) (0.024476)
a21 −0.003001

(0.016084)
a13 0.17964

(0.000106)
a13 0.17964

(0.000106)
a22 0.959926 0.033912 0.171552

(0.000824) (0.005841) (0.017128)
a23 −0.382031

(0.000346)
a33 0.248888

(0.0001308)
b11 0.396459 0.930056 0.971880

(0.01033) (0.016520) (0.007864)
b12 2.11141 0.885738 0.001883

(0.01133) (0.062685) (0.005981)
b21 0.003817

(0.004755)
b13 −0.446092

(0.002658)
b22 −8.53698 0.954386 0.980089

(0.11985) (0.007181) (0.004033)
b23 1.62468

(0.007876)
b33 0.509248

(0.004097)
Log-likelihood −2572.48 −3453.05 −3461.91
AIC 5176.96 6924.1 6945.82
SIC 5261.01 6971.91 7004.26

However, log-likelihood values show that constrained NLP brings a substantial im-
provement over the diagonal VECH and BEKK representations in the solution of
the multivariate GARCH formulation. One might be led to think that comparing
likelihood values for different models with differing number of parameters may not
be fair. Therefore, to make a fair comparison, we use the AIC and SIC statistics,

D
ow

nl
oa

de
d 

02
/1

1/
19

 to
 1

39
.1

79
.7

2.
10

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



496 ASLIHAN ALTAY-SALIH, MUSTAFA Ç. PINAR, AND SVEN LEYFFER

which are standard tests of comparison between GARCH models in the literature.
AIC and SIC statistics are used for model selection purposes and enable us to com-
pare models with different numbers of coefficients and different numbers of observa-
tions. They are calculated as AIC = −2 log-likelihood + 2 number of coefficients,
and SIC = −2 log-likelihood + 2 ln (number of observations) number of coefficients.6
Based on the AIC and SIC tests, we can say that constrained NLP parameter esti-
mates are superior to both diagonal VECH and BEKK specifications, although all
three provide a solution to the same multivariate GARCH estimation problem. Fur-
thermore, the diagonal VECH model seems to do slightly better than the BEKK
representation. As explained in previous sections the log-likelihood function to be
maximized is identical in all three approaches compared in the present paper. We
believe this result is due to the following three factors: 1. The constrained NLP
approach uses a more general representation compared to its competitors. 2. It incor-
porates the stationarity condition as a side constraint. 3. It employs state-of-the-art
optimization software.

Although an empirical investigation of the forecasting accuracy of the so-called
GARCH representations is beyond the scope of this paper, we include visual compar-
isons of our approach to the competing estimations of the same model. To this end, we
plot conventional comparison measures of realized volatility7 versus estimated volatil-
ities from three different specifications. We use annualized volatility, as practitioners
quote volatilities in annualized terms using 252 trading days. In Figures 1 and 2 we
plot the annualized realized volatility, which is defined as

√
daily-returns2 × 252, and

the conditional annualized volatility obtained from GARCH specifications, defined as
√
conditional variances obtained from the estimations× 252

for the last 500 data points. The solid lines in the figures are the model’s conditional
annualized volatilities, whereas the dotted lines represent the benchmark annualized
realized volatility. In Figure 3 we plot realized covariances defined as daily return
S & P 500 × daily return FTSE 100 and the conditional covariances obtained from the
three different specifications. The better estimation should approximate the dotted
lines more closely. A visual inspection of the figures shows that constrained NLP has
higher variability, which seems to follow the variability of the realized volatility.

We observe from the figures that the diagonal VECH and BEKK results exhibit
rather similar behavior in that the series tend to follow a certain mean value with
very small variations. A possible explanation for this behavior can be given as fol-
lows. It is highly likely that the numerical optimization algorithm used in S-PLUS
diagonal VECH and BEKK implementations (BHHH algorithm) lands on very close
Karush–Kuhn–Tucker points. On the other hand, the constrained NLP results display
series which seem to follow more closely the trends in realized volatility and covari-
ances, although it has a tendency to overestimate at times. It is conceivable that the
sequential quadratic programming algorithm used in SNOPT lands at a completely
different Karush–Kuhn–Tucker point compared to the diagonal VECH and BEKK
representations.

6Geweke and Meese (1981) report that asymptotically, SIC correctly identifies an ARMA model,
whereas AIC tends to overfit the model. For completeness, we report both. The smaller the statistic,
the better the model fit.

7There is still ongoing academic debate about the definition and proper calculation of realized
volatility, as the observed daily return is just one realization out of many, and volatility is not an
observed quantity in the market, but rather estimated. Therefore, the true volatility is unknown.
However, we employ the most conventional realized volatility definition in our comparisons.
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Fig. 1 Volatility for the FTSE.

In Figures 4–6 we report the results of our trivariate tests, where we used 500
data points from the S & P 500, FTSE, and DAX8 indices for the period 5.7.1988 to

8The results we obtained for the DAX were very similar to the results for the S & P 500.
Therefore, to keep the paper a reasonable length, we do not report the DAX results here. They can
be found at http://www.ie.bilkent.edu.tr/˜mustafap/pubs/dax.gz.
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Fig. 2 Volatility for the S & P 500 .

14.6.1990. As in the bivariate case the data were chosen using the Ljung–Box test.
The constrained NLP approach (4575 variables and 4491 constraints) with the SNOPT
solver in NEOS yields a log-likelihood objective function value of −437.02, while the
competing diagonal VECH and the BEKK representations in the package S-PLUS
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Fig. 3 Conditional covariances of the S & P 500 and the FTSE.

give the values −1910.51 and −1949.95. The AIC statistic is equal to 958.04 for
constrained NLP, whereas it is equal to 3862.78 and 3953.9 for diagonal VECH and
BEKK, respectively. The SIC statistic has a value equal to 1396.1 for constrained
NLP, whereas it is equal to 4343.0 and 4421.9 for diagonal VECH and BEKK, re-
spectively. According to log-likelihood, AIC, and SIC criteria, the constrained NLP
approach performs far better than the other specifications. In Figures 4 and 5 the
solid lines represent as usual the model’s conditional annualized volatilities, whereas
the dotted lines represent the annualized realized volatility. In Figure 6, the solid
lines represent the model’s conditional covariances, while the dotted lines are used to
plot realized conditional covariances. We observe that the constrained NLP results
follow the dotted lines more closely, especially in the case of the S & P 500 index,
compared to competitive specifications, the diagonal VECH and BEKK.

In addition to visual inspection we also report in Table 3 the mean-square errors
associated with the above figures. The mean-square error is calculated as the average
of the squared differences of daily forecast volatility and realized volatility values for
each figure. Table 3 shows that in the bivariate case constrained NLP mean-square
errors are higher for volatilities and covariances. This could be due to the upward
bias also observed in the figures. For the trivariate case, constrained NLP has smaller
mean-square errors except for FTSE volatility, where all models are comparable. By
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Fig. 4 Volatility for the FTSE in the trivariate case.

itself, the mean-square error is only a summary measure for forecasting accuracy.
Moreover, there exists a variety of more sophisticated methods, both parametric and
nonparametric, to judge the forecasting ability of a particular model. On the other
hand, the forecasting ability of the multivariate GARCH models is an important
empirical research question, and it should be addressed in a more elaborate fashion
with different data sets for various time periods. This is obviously a topic for further
research.

As a final remark, the computing times using SNOPT on NEOS platforms tend
to be rather long for bivariate and trivariate examples, reaching as much as 21

2 hours
for the bivariate tests and 23 hours for the trivariate tests (SNOPT uses four times
as many iterations in the trivariate case as in the bivariate example), while the S-
PLUS results were usually obtained within a few minutes, although the diagonal
VECH model failed to converge to a solution and computation was stopped after 100
iterations. However, the purpose of our tests was not so much computational efficiency
as the quality of the solution, which seems to be clearly superior in the constrained
NLP approach to the competing specifications. Furthermore, the constrained NLP
results were obtained on NEOS over the World Wide Web, whereas the S-PLUS
solvers were available on our personal desktop. Therefore, the times are not directly
comparable, and thus should give only a rough indication to the reader.
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Fig. 5 Volatility for the S & P 500 in the trivariate case.

In summary, the present paper shows that the early simplifications in the estima-
tion of the multivariate GARCH model (e.g., diagonal VECH and BEKK specifica-
tions) proposed in the literature in the interest of solvability are unnecessary from an
optimization point of view given the current state-of-the-art in optimization technol-
ogy. Therefore, the additional investment in the constrained NLP approach seems to
be paying off in terms of solution quality. However, there is certainly a need for further
research to ascertain the comparative advantage of the constrained NLP approach,
especially from a forecasting accuracy point of view.

5. Conclusions. This paper proposed a constrained nonlinear programming view
of multivariate generalized autoregressive conditional heteroskedasticity (GARCH)
volatility estimation models in financial econometrics. These models are usually pre-
sented to the reader as unconstrained optimization models consisting of the maximiza-
tion of a nonconvex, nonlinear likelihood function defined through recursive terms in
the literature, whereas they actually fall into the domain of nonconvex constrained
NLP. Our results showed that constrained NLP is a worthwhile exercise for GARCH
estimation problems as demonstrated by examples of bivariate and trivariate data,
and that it is a significant competitor to the diagonal VECH and the BEKK repre-
sentations popular in the literature.
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Fig. 6 Conditional covariances for the S & P 500 and the FTSE in the trivariate case.

Table 3 Mean-square errors in bivariate (last 500 observations) and trivariate tests (last 100 ob-
servations).

Index Diag. VECH BEKK CNLP
Panel A: Bivariate
FTSE 0.3064 0.3094 0.6706
S & P 500 0.1816 0.1826 0.4528
FTSE and S & P 500 0.3451 0.3495 0.4650
Panel B: Trivariate
FTSE 0.3541 0.3708 0.3804
S & P 500 0.2551 0.2554 0.0783
FTSE and S & P 500 0.4769 0.4993 0.3741
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