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ABSTRACT 
In  ihis paper, least squares and recursizw nreth- 

ods for simultaneous idenlafication of four nonmin- 
imum phase h e a r ,  tame-invariant F I R  systcms are 
presented. The methods utilize the second- and fourth- 
order cumulants of ouiputs of t he  four FIR  sysfems 
whose common input is an indepeiidenl, tdeniically 
distributed (i.i.d.) noii-Gaussian process. The new 
methods can be extended to the general problem of si-  
multaneous identification of three or inor'e FIR sys- 
tems wiih some modijcations. To illustrate the eflec- 
tiveness of our methods, various siinulation examples 
are included. 

1 Introduction 
Nonminimum phase system (or signal) identifica- 

tion is an important problem in many signal process- 
ing applications including data communication, seis- 
mic signal processing, aiid optic.al imaging [ 5 ] ,  [6]. 

In this paper, we address the problem of simult,a- 
neous reconstruction of the impulse responses of four 
minimum or nonminirnum phase FIR systmns using 
the power spectrum and cross-trispectrum of the out- 
put sequences. We present parametric multichannel 
system identification methods. 

Recent work [2],[8],[9] on nonminiinuin phase mul- 
tichannel system identification inc.ludes the work by 
Brooks and Nikias [2] who showed that three nonmin- 
imum phase systems driven by an independent arid 
identically distributed (i.i.d.) non-Gaussian process 
can be reconstructed simultaneously frorrr their output. 
cross-bispectrum. Their method is a nonparametric 
cepstral technique w1iic.h computes the complex cep- 
stra of the impulse response sequences of the rinknown 
systems from the third-order cross-cumulantts of out- 
put sequences. Higher order statistical ident,ification 
schemes which utilize complex cepstrum have been 
widely used in practice. These schemes have some 
disadvanta es when poles and zeros come close to the 
unit circle flol-[121. Our parametric metliocts do not 
suffer from this limitation. However, they require ex- 
act knowledge of systems' orders and yield consistent, 
parameter estimation only i n  a. class of colored Caus- 
sian noise. 

The organization of the paper is as follows. I n  Sec- 
tion 2 we define the problem and introduce the b=ic 
concepts. In Section 3 we develop a least squares type 

tnethod which is based on solving a system of linear 
equations obtained from a relationship derived in Sec- 
tion 2. We prove the uniqueness of the least squares 
solution in Section 4 by devising a recursive method to 
deber n~ i ne the unknown imp u Ise response parameters. 
We investigate the robustness of 1he new methods to 
additive noise in Section 5 .  In Section 6 we present 
sirnulation examples. 

2 Problem Definition 
I n  this section, we describe the multichannel system 

identification problem. Consider the following signal 
model: 

yi(n) = z ~ ( ? I )  + Z O ~ ( T ~ )  

' I 1  

= lli(k);c(n - k) + wj(n)  (1) 
k = O  

for i = 1 , 2 , 3 , 4 ,  where yi(n) is the output of the i-th 
FIR system whose impulse response is l t i  n);  p i  is the 

mean Gaussian noise; and z i ( n )  is the output of the t 
th system in the absence of noise. For convenience, the 
in-ipulse responses, h i ( ? 1 ) ,  i = 1 , 2 , 3 , 4 ,  are numbered 
such that y1 5 92 5 93 5 q?. The input sequence 
{ ~ ( n ) )  is assumed to be an 1.i.d. non-Gaussian pro- 
cess with E { z ( n ) }  = 0, E a:(n)z (n+ 71) = P 2 6 ( q ) ,  
E{Z(Il)X(?l + r,)lc(n + r2) I = 0, and cz 1 T I , ~ z , T ~ )  = 
&6(rl, rz, 73) where r,(q, r ~ ,  73 denotes the fourth- 
order cuniulants of the input, I(!L). 

In  most digital communication applications the sys- 
t.em input, { ~ ( I I ) } ,  is derived from a signal constella- 
t.ion which  is symmetric around the origin. Therefore 
the third-order cumulants of x(n) are. identically zero. 
In such a case we use the fourth-order cumulants of the 
system outputs. The methods developed in this paper 
can be extended to the gmeral problem of simultane- 
ous reconstruction of even number of FIR systems. If 
the input sequence z ( n )  is chosen to be asymmetric 
srouncl the origin, odd number of systems can also be 
identified by using our algorithm. 

Let us define c1?:34(q1 ~ 2 ~ 7 3 )  as the fourth-order 
cross-ciimulant, sequence of the processes {yi(n)}:=l, 

Cl234(Tl ,r22rr3)  = E { y ~ ( n  + r I ) y z ( n + ~ 2 ) Y 3 ( n + T 3 ) Y , ( l L ) )  

order of the Cth system; {wi(n)} is an a a ditive zero- 

I . ? . ,  

- E { Y I ( ~  + TI - rz)yz(n))  . E { y 3 ( n  + n ) y 4 ( n ) }  
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- E { y l ( n  + TI - T 3 ) Y 3 ( 7 L ) }  ' E { Y 2 ( 7 L  + T2)Y4(11) )  

-E{y1 (n  + TI)Y*(1L)} . E { Y 2 ( 7 L  + T2 - T R ) Y R ( ? ) ) J .  

By using the fact that  the fourth-order c.urnulants of 
zero mean Gaussian noise processes are ident,ically 
zero, c 1 2 3 4 ( 7 1 , ~ 2 , 7 3 )  can be related to the unknown 
impulse responses { h i ( n ) } f = l  as shown below: 

9 4  

C1234(T1iT2rT3) p 4  E h l ( l c  + Tl)li?(lc + T 2 )  

k = O  

.h3(lc + 73)'14(k). (2) 

The cross-trispectrum, c1234(w1 ,  wg ,  w 3 ) ,  of the out- 
put processes, { ~ , ( n ) } : = ~ ,  is defined as the three- 
dimensional Fourier transforrn of the cross- cu rn U 1 ant. 
sequence, c1234(71, 72, 73). From (a), it follows t,hat. 

c1234(Wl ,  w2 ,  W3) = p4 HI (U I H2 ( U ? )  H.'%(W3)  

'H4(-W1 - i d ?  - W g )  (:I) 

where H i ( w )  is the Fourier transform of the systserri 
impulse response lz;(n).  

We also need the second-order curniilant sequence, 
S ( T )  = E [ z 4 ( n ) z 4 ( n  + T ) ] ,  of the noise free output se- 
quence, 24(n) .  The power spectrum, .S(w), of ~ ( 7 1 )  

is 

s ( W )  = h H 4 ( W )  H4(-W). (4 )  

2.1 A Fundamental Relationship 
In this subsection, we derive a relationship between 

the second- and fourth-order cumulants. This rela- 
tionship is the basis of our multichannel system iden- 
tification method. 

By multiplying bot>h sides of Equation (3)  by 
H 4 ( ~ 1  + w2 + ~ 3 )  and using (4) we get 

H4(W1 + W 2  + w3)C1234(wl ,WZ,w3) = CHI ( U )  

.H2(W)H3(W).S(Wl + w2 + w3) ( 5 )  

where 6 = p 4 / / 3 2 .  By taking the inverse Fourier Trans- 
form of both sides of (5) we obtain the following rela- 
tionship; 

0. 01 

1=0 t = O  

.h2(T2 - 7 1  + i ) h 3 ( 7 3  - 71 + 2)S(TI - i )  (6)  

which relates the impulse responses, { / ~ ~ ( i i ) } f , ~ ,  to the 
second order cumulants, s (n ) ,  of the sequence zq(iz)  
and the fourth-order cross-cumulants, c1234(71, 7 2 ,  rs), 
of the output sequences, { ~ ~ ( n ) } : = ~ .  This relation- 
ship is the four-channel version of an equation used 
in some parametric system identification techniques 
[1],[7]. Equation (6) is very important becanse it. al- 
lows us to estimate the impulse responses, {/i t(n)}f, l ,  
by solving an overdetermined system of linear equa- 
tions. 

3 Least Squares (LS) Solution 
In t,his section, we develop a least squares method 

for reconstructing the impulse response sequences, 
{ lii(n)}4,1 , from the second-order cumulants and 
t,he fourth-order cross-cumulants by using Equation 
(6). First, we assume without loss of generality that 
{hi(n)}9=l 's  are scaled such that h i ( 0 )  = 1, i = 
1 2 ,3 ,4 .  Then, Equation (6) can be arranged as fol- 
lows: 

Q 1  

C 1 2 3 4 ( T 1 1 T Z r 7 3 ) = ( C h l ( i ) ' L Z ( r 2 - 7 1  + i )  
i = O  

d'S(T3 - 71 + - 2 )  - 

h4(i)c1234(Tl  - i, 72 - i, 73 - 2 ) .  

YS 

(7) 
! = I  

By concatenat.ing (7) for (71, r?, 73)  E S where S is a 
rclgiori which is described below, we obtain the follow- 
ing overtleterrriineti syst,em of linear equations: 

d = M r  (8) 

c'1l((1l)'i?(rl2)/23(rl3)IT is a (44(41 + 1 ) ( ~ 2  + 1)(q3 + 1)) 
colutnn vector, d = [ ~ 1 2 3 4 ( ~ 1 ,  TZ, ~ 3 )  : (q, ~ 2 ~ 7 3 )  E 
S]' is a N ( q l , q 2 , 4 3 , q 4 )  column vector, and M is a 
rnatrlx o f ~ l z e  N(ql 4Zr43 ,  44) x (44 (41  + I ) ( @ +  1) (93+  
1 ) )  whose entries are determined according to (7). 
N(41,42, 43, q4) is the number of points in the region 
.S which is determined as follows. It follows from (2) 
t,hat Cl2:34(Tl, ~ 2 ,  ~ 3 )  is nonzero for -44 5 r1 5 41, 
-44 5 T:! 5 and -q4 5 g I 93.. Hence, left hand 
side of ( 6 ) ,  h 4 ( ~ . ) ~ 1 2 3 4 ( ~ 1  - 2 ,  ~2 - i, r3 - i), is 

and -44 5 ~3 5 q3 + 44 .  In addition, we should main- 
tain that, ~ ? ( T ~ - T I  + i ) h 3 ( 7 3 - ~ 1  + i )  term at  the right 
hand side of (6) is nonzero; yielding 0 5 72-71 +i < 42, 
0 I. TS - TI  + i 5 43 for i = 0,  1 , 2 ,  ..., 41. This lea& to 
- q ~  5 72 .- TI 5 '12 and -41 5 r3 - 71 5 93.  Thus, the 
region .S IS defined by t,he following set, 

'' 
nonzero for -94 I 71 I. q1 + 94 ,  -94 L 72 I. '12 + q4, 

= { ( T I ,  e, 73) : -44  5 71 L: Q I  + q 4 ,  

-111 5 T? - 71 5 q??-qL L: 73 - TI 5 4 3 ) .  

-(14 5 7 2  5 (I? + (14 I -(I4 5 T3 5 (13 + 4 4 ,  

(9)  
By counting the number of points in this region, we 
obtain the size of t,he column vector d, N(q1 , 4 2 ,  43,  q4) ,  
as 

N ( q 1 ,  q 2 ,  43 ,441  = Q l ( 4 l  + 1)(241 + 1)/3 
+ ( 4 2  + 43 + 0 2 1  (41 + 1 )  

+(%4 - 41 - 1x41 + 42 + 1 ) ( q 1  + 43 + 1) .  

+2(41 I)('?? + 1) (43  + 1) 
(10) 

The least squares solution of the overdetermined sys- 
tem of linear equations given by (8) is 

r = (MTM)-' MTd. (11 )  
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h4( l ) ,  h 4 \ 2 ) ,  . . , , h4(44)  can then be determined as the 
first 44 eements of the vector r. Other impulse re- 
sponse coefficients { h i ( ~ t ) } : = ~  can be directly obtained 
by dividing the corresponding element of r by r (44+  l ) ,  
which is c. However, directly obtained results could be 
inaccurate due to measurement noise and stimation 
errors. In that case, we identify {hi(n)}j=l by us- 
ing a method [I which is based on the singular value 
decomposition {SVD). This method exploits all the 
available information provided by the vector r.  We 
form three matrices R[hl, 1121, R[h1, h 3 ,  R[h2, h3] 
from the elements of the vector r; such &at,  the ma- 
trix, R[h- h-], is of rank one and can be written in 
the following form: 

f 

1%' J 

1 hiiqi) J 
where i, j = 1 , 2 , 3  and i # j .  The unknown impulse 
response sequences / t i (n)  and h j ( n )  can be identified 
from Rfh. 11.1 using the singular value decomposition, 
i.e., 

1' J 

R[hi,hj] = ZVUT (12) 

where V is a diagonal matrix, the diagonal 
elements of which are the singular values of 
R[h;,hj]. The columns of the orthogonal matrix 
Z,  z 1 , ~  ,..., zqi+l ,  are the left singular vectors of 
R[h., ha], and the columns of the orthogonal matrix 
U, u1,u2, ,  . . ,uqj+l ,  are the right singular vectors 

of R[h., 11.1. Since R[h;, 11.1 is of rank one, it has only 
one nonzero singular value whose corresponding sin- 
gular vectors determine the impulse responses hi ( n )  
and h,(n). From the properties of the SVD, it can be 
shown that [4] 

1 J  

1 J  J 

hi(n) = k1r1(n) 0 5 n 5 qi (13) 

hj(.) = k 2 u 1 ( n )  0 5 71 5 q j  ( 1 4 )  

and 

where kl and k2 are constants chosen to scale the sin- 
gular vectors, z1 and U , so that hi(0 - h (0) = 1. 

We should mention t i a t  theoreticallykfy one sin- 
gular value of R[h. 11.1 is nonzero. In practice, due 
to noise and estimation errors, there may be many 
nonzero sin ular values, but only a single dominant 
one. In s u i  a case we keep the dominant singular 
value and its corresponding singular vectors. 

4 Uniqueness of the LS Solution and 
the Recursive Method 

1' . J  

The least squares method described in the previous 
section yields a unique (least squares) solution if the 

matrix M has full rank. In order to show that the 
matrix M is of full rank we first show that elements 
of the unknown vector, r, can be uniquely determined 
from (6) using a recursive algorithm. By setting 7-1 = 
7-2 = 73 = -94 in (6) and by using the fact that hi(0)  = 
1, i = 1 , 2 , 3 , 4 ,  we obtain 

c1234(-44, -441 -44)  c =  
4 - - Q 4 )  

Similarly, by setting 7-1 = -44 only, we obtain 

(15 

We can recover h 2 ( n )  and h 3 ( n )  by setting 7-3 = -44 
and 7-2 = -94 in the above equation, i.e., 

for 
yields 

7-3 = - 4 4 , .  . . , 4 3  - 44. Setting 7-3 = -44 in (6) 

for 71 = -44 ,  . . . , qi - 44,  7-2 = - 4 4 , .  . . , 42 - 44,  and 

We can recover h ~ ( n )  by setting 7-2 = -44 in the above 
equation, as 

(22) h ( 7 - 1  + 44) = 

for 71 = -174,. . . , Q I  - 44.  Similarly, we set 7-2 = -q4 
in (6) and we obtain 

c1234(71 I -44,  -44) 

C1234(-44r -441 -44 )  

for 7-1 = - 4 4 , .  - ' 1  41 - 4 4 ,  7-3 = - 4 4 , .  . . , 4 3  - 44. At 
this point, we compute h 4 ( n ) ,  1 5 n 5 4 ,  as follows. 
We start with the assumption that h4tO) = 1. For 
n = 1 to 144/2J ,  we set 71 = -44 + n, 7 2  = 42 - q4 + n, 
and 73 = 43 - 44 + n in (6) and we recursively obtain 

/14(lt) = (C1234(-q4r 4 2  - 94943 - 4 4 ) ) - l  [ € h 2 ( Q 2 )  
n-1 

J ~ 3 ( ~ 3 ) ~ ( - 4 4  + n )  - h 4 ( i )  

i = O  

* ~ 1 2 3 4 ( n  - q 4  - i ,  qz - q 4  + n - i ,  q3 - q 4  + n - i)] (24) 
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By setting T~ = q1 + q 4 ,  TZ = 44,  73 = '14 in ( 6 ) ,  

Then, for n = 1 to Lq4/21, we set TI = q l  + 44 - n ,  
72 = q4 - n ,  73 = 44 - 11 in (6) and we recursively 

26) 

We note that Lq4/2] = q4/2  if 44 is even, antl [q4/2 = 
(94 7 1)/2 if 44 is odd. 

Finally, we are ready to recover the unknown pa- 
rameters { c h l ( i ) h 2 ( ~ 2  - 71 + i ) h 3 ( ~ 3  - r1 + i ) } .  For 

= 0 to Lq1/2],  we set T I  = -q4 + n i n  (6 )  antl recur- 
sively compute 

71 

Then, we start from c h l  ( q l ) h 2 ( q 2 ) / ~ 3 ( ~ 3 )  by setking 
T~ = q1 + q4 - n in (6) for n = 0 to [q1 /21 ,  antl 
we recursively compute 

h2(72 - 71 + i )h3 (73  - TI + i ) S ( T l  - i))) ('29) 
for 72 = q 4 ,  .,., q 2  + 44 and 73 = q4 ,  ..., q3 + 114. The re- 
cursive algorithm described above uses Equat.ion (6) 
only for certain values of p q ,  72 ,  ~3 tfo uniquely tlet,er- 
mine the unknown vector I'. Therefore, it is equivalent. 
to choosing linearly independent rows of the mathix M 
and solving the system of linear equatioiis formed by 
these independent rows. I t  follows then that, t h r e  are 
44 + (1 + q1) (  1 + q 2 ) (  1 + q 3 )  linearly independent rows 
of M where this number is the number of unknowns 
in the system of linear equations given by (8). Hence 
the number of linearly independentr rows equals to t,he 
number of columns, and the rank of the matrix M is 
94 + (1 + ql),( 1 + q 2 ) ( 1  + 0). Since M has full column 
rank, there IS a unique least squares solution. 

5 Robustness to Additive Gaussian 

In practical applications, the received signals, 
{y l (n)} f=l ,  are usoally the noise corrupted version of 
the system outputs, {.zi(n)}4=,. In this section, we 
consider the case where the noise terms { ~ , ( n ) } ~ , ~  are 
Gaussian noise processes, independent of each other 

Noise 

and { ~ i ( i i ) } q , ~ .  
For zero mean Gaussian processes, cumulants of or- 

der greater than two are identically zero. Hence the 
fourt,li-order cumulants of {yi(n)}:=l are not affected 
by additive Gaussian noise. However, the second- 
order cumulants are affected by the presence of Gaus- 
sian noise. The methods described in previous sec- 
tions use the second-orcler cumulant, sequence s( T )  of 
t,he noiseless case system out,put z 4 ( n  , instead of the 
second-order c,umulant sequence cy4(7  1 of y 4 ( n ) .  They 
are related to each other as follows: 

ry,(T) = 4 ~ )  + c t i , . , ( ~ )  (30) 

where r w 4 (  7) is the second-order cumulant sequence 
of 7 i i q ( n ) .  I n  practice we can  only estimate c y 4 ( 7 ) ,  
not ~ ( 7 ) .  I t .  follows from (23)-(29) t,hat the recursive 
method described i n  Section 4 uses samples of S ( T )  for 
which 44 - [q4/2 5 171 5 q4. If  the second-order cu- 

lags i n  the range 171 5 q where 4 = 44 - [q4/21 - 1 the 
recursive method will not be affected by the presence 
of noise as cy,(7) = s ( 7 )  for q < [ T I  5 q4.  Conse- 
quently, uniqueness and consistency of the LS solu- 
tion will remain unaffected if the rows of the matrix 
M which contain the samples of c,,(r) are removed. 
Bot,h the least squares and recursive solutions are ro- 
bust t.o additive white Gaussian noise because cw,(7)  
is nonzero only for T = 0. 

6 Simulation Examples 

mulants of the ac i tlitive noise, C~,(T), are nonzero for 

Consider the following set of systems 
y l ( ? t )  = ~ ( 1 1 )  - 0 . 6 ~ ( ? 1  - 1) + w ~ ( ? z )  

?/?(72) = Z ( ? t )  + 0 . 7 5 ~ ( ? 1  - 1)  + U ) z ( ? t )  (31)  
ya(?/) = Z(V) + 0 . 5 ~ ( ~  - 1 )  - 1 . 2 5 ~ ( ~ t  - 2) + w ~ ( R )  

: / S ( V , )  = ~ ( 7 1 )  - 0 . 3 7 5 ~ ( , 1 . -  1 ) + 0 . 8 ~ ( n - 2 ) + ~ 4 ( 1 i )  

where the i n p u t  signal, ~ ( n ) ,  is a zero mean, i.i.d., se- 
quence with [j? = 5, /l:, = 0 and /l4 = -34; The noise 
krrns, { w z ( ? L ) } ! = l ,  are zero mean, white Gaussian pro- 
cesses wi t ,h  variance 1, and they are uncorrelated with 
ea.ch ot,lier. 

In our simulation examples the data records 
(N=2048), { y i ( n ) } ~ , l l  (11 = O , l ,  ..., 2047), were gen- 
erat,ed by the above set of systems. The impulse re- 
sponse coefficientss of the unknown systems were esti- 
rnatletl by using the LS method for 100 output real- 
izations for the noise-free case where noise processes, 
{iui(n)}4,, , are eliminated in the signal model, as well 
as the noisy case. The mean value and the standard 
deviation for each irnpulse response coefficient were 
coinput~etl over 100 realizations. For tlhe noisy case, 
rows of the coefficient matrix M which contain the 
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value, cy (0), were rernoved. Experimental results are 
presented in Table 1. It is observed that the mean val- 
ues are not significantly different for the noise-free and 
noisy cases. However, standard deviations are slightly 
larger for the noisy case. 

Complex-cepstra based multichannel system iden- 
tification methods produce poor results when sys- 
tem zeros are close to the unit circle 21. Our para- 

For example, in (31) ha(n) and h 4 ( n )  have zeros at 
-1.3956, 0.8956 and 0.1875 f i0.8746, respectively. 
Although the last three zeros are close to the unit cir- 
cle, our LS method produced good estimates of them. 

The new methods require exact knowledge of sys- 
tems’ orders. In [l] an efficient system order deterrni- 
nation scheme was  developed for single channel sys- 
tem identification. This scheme is based on the single 
channel version of our fundemental Equation (6).  A 
reliable multichannel system order estimation scheme 
can be developed as in [ 13. 

A consistent behaviour of the new methods have 
been observed in all the simulation examples tried. 

metric methods do not suffer from t L is limitation 

7 Conclusion 
In this paper new methods for simultaneous identi- 

fication of four minimum or nonminimum phase LTI 
FIR systems driveq by an i.i.d. non-Gaussian pro- 
cess are presented. Our methods, a Least Squares 
(LS) method and a recursive method, are paramet- 
ric and utilize the second- and fourth-order cumulants 
of the system outputs in an appropriate domain of 
support. The recursive method is developed to prove 
the uniqueness of the least squares solution. The new 
methods can be extended to the more general probleni 
of simultaneous identification of three or niore systeiiis 
by using second-order cumulants and systrrn outpiit 
cumulants of order being equal to the nurnher of sys- 
tems to be identified. 

We experimentally observed that the LS method 
yields consistent parameter estimation i n  a class of 
colored Gaussian noise including the w h i k  Gaussian 
noise. 
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Table 1: Reconstructed Impulse Response 
Coefficients for the Noise-Free and Noisy Cases. 

I I I Noase- free I I  Noasu 1 
True I Mean I St.Dev. I] M ean I St.Dev. 

h l ( l )  I -0.6 I -0.6121 I 0.0422 II -0.6096 I 0 .0614 I ltt[lj 1 0.: 1 0.7307 0.0380 11 0.7319 1 0.0586 I 
1 1 4 0  0.7863 0.0173 0.7851 0.0281 

0.4866 0.0366 0.4863 0.0552 
ha(2) -1.25 -1.2340 0.0421 -1.2391 0.0641 
hd(1) -0.375 -0.3931 0.0358 -0.3970 0.0456 
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