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Abstract: This paper presents a procedure for sequencing jobs on a single machine with jobs having a 
common due date and stochastic processing times. The performance measure to be optimized is the 
expected incompletion cost. Job processing times are normally distributed random variables, and the 
variances of the processing times are proportional to their means. The optimal sequences are shown to 
have a W- or V-shape. Based on this property computationally attractive solution methods are presented. 
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1. Introduction 

In this paper we consider the problem of sequencing N jobs on a single machine with jobs having a 
common due data and stochastic processing times. The common due date can also be viewed as the cycle 
time. Consequently, a job, if not completed within the due date, incurs a fixed incompletion cost 
corresponding to the amount required for its completion at some other facility or the penalty to be paid 
for it being late. The incompletion cost is different for different jobs. The objective is to sequence jobs so 
that the expected incompletion cost or the sum of the weighted incompletion probabilities is minimized. 
This problem is like a single-machine sequencing problem with a nonlinear loss function, however, the loss 
function here is defined as the expected incompletion cost. When the incompletion costs of the jobs are all 
equal to unity, then the criterion considered reduces to that of minimizing the expected number of tardy 
jobs. 
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Several studies have been reported in the literature for the single-machine problem with various loss 
functions. One of the earlier attempts for solving the problem was made by McNaughton [5], who 
described a procedure for finding the optimal schedule to the single-machine problem with linear loss 
functions and deterministic job processing times. Panwalker et al. [6] have studied the deterministic 
single-machine problem with linear earliness and tardiness penalties and common due date. They have 
shown that the optimal sequence is v-shaped (lpt-spt  ordering). Lawler [4] extended McNaughton's [5] 
study for nonlinear loss functions by using a dynamic programming (dp) approach. Lawler [4] also 
presented some linear programming formulations for the multiple-machine case with nonlinear loss 
functions and deterministic processing times. Schild and Fredman [9] developed criteria for quadratic loss 
functions to determine the relative order in which two jobs should appear in the optimal sequence. For 
general loss functions, the number of computations required by this algorithm grows exponentially with 
increase in N. Townsend [10] developed a branch-and-bound solution to the single-machine problem with 
quadratic loss function of job flowtimes. The procedure is not practical for large problems, and an 
approximate solution which requires generation of ½N(N + 1) nodes is recommended. Bagga and Kalra [1] 
further suggested a node elimination procedure for Townsend's [10] algorithm. Gupta and Sen [3] curtailed 
the enumeration tree of Townsend's [10] algorithm at the branching stage by recognizing certain conditions 
which give a priori precedence relations among some of the jobs in the optimal sequence. Regarding the 
consideration of stochastic processing times of jobs, one of the earlier attempts was made by Banarjee [2] 
for a single-machine problem. Lately, considerable research has been reported in the area of stochastic 
scheduling. For a review, the reader is referred to papers by Pinedo and Schrage [7] and Weiss [11]. Pinedo 
[8] gives the optimal static and dynamic policies for the single machine problem with exponential 
processing times and common due date, which is a random variable with an arbitrary distribution, for the 
criterion of minimizing expected weighted number of tardy jobs. 

Our main result shows that if the job processing times are normally distributed with certain assump- 
tions about job variance and incompletion cost satisfied, then the optimal sequence, minimizing the total 
expected incompletion cost on a single machine, must be w- or v-shaped. This property substantially 
reduces the number of sequences that must be considered and serves as a basis for a branch and bound 
solution, like Townsend's [10] for the case of quadratic loss functions. 

In the sequel, we first present some notation and the assumptions used in the paper. Section 3 contains 
our main results. The procedure to generate the promising sequences for the optimal solution is presented 
in Section 4, followed by computational experience. Finally, a heuristic, using a truncated version of the 
branching tree, is discussed briefly. 

2. Notation and Assumptions 

Consider a single facility with N jobs waiting. Assume that the facility is free at the moment, and we 
wish to decide the sequence in which the jobs should be processed on that facility. The performance 
measure to be optimized is the expected incompletion cost. Let 

C,(s) = completion time of job i in sequence s ~ S, for i = 1 . . . . .  N, where S is the set of all permutations 
of the N jobs; 

d = common due date for all jobs; 
IQ  = incompletion cost of job i, for i = 1 . . . . .  N. 

The performance measure can be expressed as 

N 

rain Z IC, Pr[Ci(s ) > d]. 
.v~S i - - I  

We assume that job duration times are distributed normally with known means and variances. This could 
be the case for example when each job consists of a large number of elementary tasks with stochastic 
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Table 1 
Lower bounds on the expected performance times of the jobs 

Lower bound on/t, for all i 

a = 0.1 a = 0.2 a = 0.3 a = 0.5 a = 1.0 

0.20 0.706a 0.071 0.141 0.212 0.353 0.706 
0.10 1.638a 0.164 0.328 0.491 0.819 1.638 
0.05 2.706a 0.271 0.541 0.812 1.353 2.706 
0.03 3.346a 0.353 0.707 1.060 1.767 3.534 
0.01 5.406a 0.541 1.081 1.622 2.037 5.406 

processing times. In  o rder  to ensure that  j o b  process ing  t imes are  nonnegat ive ,  the process ing t ime 
dis t r ibut ions  are t runca ted  at zero. In  addi t ion ,  j o b  process ing  t ime var iances  are expected to be  
p ropor t iona l  to their  means  as, for example ,  a j o b  with a large expec ted  process ing  t ime conta ins  a large 
number  of e lementary  tasks, consequent ly  resul t ing in a large var iance  for the job .  We also assume that  the 
incomple t ion  cost  of  a j o b  is p ropo r t i ona l  to its complexi ty ,  i.e. to its mean  process ing time. Accord ing ly ,  
let oi 2 = a /~i  and  ic i = r ~ti for i = 1 . . . . .  N, where  a and  r are cons tan t s  and  ~i and  Oi 2 a r e  the mean  and 
var iance of  the process ing t ime of  j o b  i, respectively.  Such a re la t ionsh ip  be tween  o~ = and  /~i is not  
uncommon.  The Poisson and b inomia l  d is t r ibut ions ,  for  instance,  fol low this p r o p e r t y  and  are approx i -  
ma ted  by the no rma l  d i s t r ibu t ion  for cer ta in  p a r a m e t e r  values.  

The  t runcat ion  of  the j o b  pe r fo rmance  t ime d is t r ibu t ions  at zero can be  m a d e  if the p robab i l i t y  that  a 
normal ly  d i s t r ibu ted  r a n d o m  var iable  can take  negat ive  values is smal l  enough.  Next ,  we develop some 
condi t ions  under  which this is true. To that  end,  let E represent  the area  to the  left  of  zero under  a no rma l  
d i s t r ibu t ion  with mean  #~ and  var iance  o~ 2. Let  e be  a smal l  quan t i t y  greater  than  zero. I f  ~ ( . )  is the 
cumulat ive  no rma l  d i s t r ibu t ion  funct ion,  then the des i red  cond i t ion  is as fol lows:  

E = ~ ( - > i / o i ) < ~ e  f o r i = l  . . . . .  N.  

The above condi t ion  reduces to the fol lowing express ion:  

/L >~ a [ q ) - ' ( e ) ]  2 for i = 1  . . . .  , N .  

In  other  words,  the t runca t ion  of  the no rma l  d i s t r ibu t ion  can be  ignored  if the expected  pe r fo rmance  t imes 
of the jobs  are larger  than the above  value de t e rmined  as a funct ion  of  ~ and  a. Table  1 depic ts  the lower 
bounds  on the expected pe r fo rmance  t imes for d i f ferent  e and  a values.  N o t e  that  for prac t ica l  j o b  
pe r fo rmance  times, a < 1.0, because  it is highly i m p r o b a b l e  to have the var iance  of  a j o b  pe r fo rmance  t ime 

to be greater  than its expected value. 

3. Main Results 

Consider  the incomple t ion  p robab i l i t y  funct ion  

p ( x )  = 1 -  

Note  that p ( x  = d ) =  0.5 since qb[0.0] = 0.5, and  p ( x )  approaches  one as x goes to infinity.  Firs t ,  we 
prove  an impor t an t  p rope r ty  of the incomple t ion  p robab i l i t y  funct ion,  which will be used in the r ema inde r  

of  the paper .  

Theorem 1. The incompletion probability function, p ( x )  is monotonically increasing and convex over the 
interval 0 <~ x <~ d '  and monotonically increasing and concave for x >1 d ', for some d '  < d. 
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Proof. The incompletion probability function, p(x) ,  can be represented as follows: 

t p(~)=  1 - ~  

alp( x - d 
= t ~ - S ; )  

_ 1 f °  (x)~-z2/2 dz 

where b(x)  = (x - d ) / ~ / ~ .  Let f ( z )  = e -~2/2. 

d p ( x )  1 db 
dx - 2~ f ( b )  dx 

_ 1 e_b2/2 ( x + d )  
2¢U4 2¢~x 3/2 " 

Hence, d p ( x ) / d x  > 0, for x > 0. Next consider d Z p ( x ) / d x  2. 

dZp(x) 1 [ , db 2 dZb] 

dx ~ ~ / t  ( b ) ( ~ ) + / ( b ) ~ x ~  ], 
where 

f ' ( b )  = - b  e -b2/2 = - b f ( b ) .  

Substituting equation (2) into equation (1) yields 

dZp(x) f ( b ) [ d Z b  _ b ( d b ] 2  ] 
dx 2 2 ~ -  [ dx 2 ~ dx / ]" 

Moreover, 

and 

db)z  (x + d)  2 

4ax 3 ' 

d2b x + 3d 
dx 2 4vraxS/2" 

Therefore, substituting equations (4) and (5) into equation (3) yields 

d2p (x)  e - b 2 / 2 [ a x ( x + 3 d ) _ + ( x - - d ) ( x + d )  2 ] 
d x 2 2~ 4 a 3/2x7/2 • 

Let 

(1) 

(2) 

(3) 

(4) 

(5) 

a ( x )  = ax(x + 3d)  + (x  - d ) ( x  + d)  2 

Note that the signs of d 2 p ( x ) / d x  2 and A(x) are opposite of each other. To determine the nature of A(x), 
consider 

dZl ( x ) / d x  = 3x z + 2x(  a + d)  + 3ad - d 2. 

As x approaches zero, d A ( x ) / d x  >1 0 if a > d/3,  and d A ( x ) / d x  ~< 0.0 if a <~ d/3.  On the other hand, for 
x >1 d, dZ l ( x ) /dx  >~ 0.0. Thus, for the case a <~ d/3,  the slope of A(x) changes sign as x moves from d to 
zero. For this case, let 0.0 ~<y* ~< d be such that d A ( y * ) / d x  = 0.0. Since 

d 2 A ( y * ) / d x 2 = 6 y  * + 2(a + d )  >/0.0, 
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A(x 

Ib 

X i 
X 

Figure 1. /~(x) for a > d/3 Figure 2. A(x) for a < d/3 

then y*  is a local minimum of A(x). In addition, for x = 0 . 0 ,  A ( x ) < 0  and for x >1 d, A ( x ) >  0; 
therefore, it follows that A(x) ~< 0 over the interval 0 ~< x ~< d ' ,  for some d '  ~< d, and za(x) >/0 for x >~ d ' .  
A(x) is depicted in Figure 1 for the case where a >1 d / 3 ,  and in Figure 2 for the case where a <~ d /3 .  
Consequently, d : p ( x ) / d x  2 >/0.0 for 0 ~< x ~< d ' ,  and d Z p ( x ) / d x  2 ~< 0.0 for x >/d ' .  This proves that the 
incompletion probability function, p ( x )  is monotonically increasing and convex over the interval 0 ~< x ~< 
d ' ,  and monotonically increasing and concave for x >/d ' ,  where d '  < d. This completes the proof. [] 

The derivation of d '  gets quite complicated. However, when the values of d and a are known, its 
computation is straightforward. Note that d '  is the root of A(x) which is cubic in X and hence its root 
can be determined using the standard expression. To that end, let 

h = - (a  + d ) 2 / 3  + 3 a d -  d 2, 

and 

[ 13 q = 2  - 3 

If V=  [h/3] 3 + [q/2] 2, then 

We computed d '  values for different d and a values. Table 2 depicts d '  values for the values of d in the 
range from 1.0 to 20.0, and for a values of 0.2, 0.5 and 1.0. The ratios of d '  and d are also depicted in the 
table. As it is seen, for d >/10, d '  gets quite close to d. In addition, the ratio of d '  and d is inversely 
proportional to the value of a; in fact, as a approaches zero, the difference between d and d '  goes to zero. 
Thus, the value of a = 1.0 results in the smallest d ' / d  values; while those for a = 0.2 result in the largest 
values; by assumption a ~< 1.0. Hence, based on the above analysis, the difference between d '  and d for 
practical problem parameters with d > 10 and a < 0.5 can be ignored; the error involved will be negligible. 

Consider an arbitrary sequence R in which a pair of adjacent jobs, i and j ,  with j following i, exists 
such that IC, >/IC 2. In the sequence R',  the jobs i and j are interchanged. Let Z represent all the jobs 
preceding job i and y represents the set of jobs following j i n  R. Let #z  and o 2 be the sum of means and 
variances of the jobs in Z, respectively, and let cost(R) and cost (R ' )  be the total expected incompletion 
costs of the two sequences. 

Theorem 2. 
(i) I f  # z  + #i + I% <~ d '  and IC~ >/ICj then cost(R) ~< cost(R') .  

(ii) I f  # z  >1 d '  and IC/>~ ICj then cost(R) >/cost(R') .  
(iii) I f  ~ z  <- d '  < # z  + #j  and ICi >/ICj then cost(R) >/cost(R') .  

Proof. Let 



S.C. Sarin et al. / Sequencing jobs on a single machine 193 

Table 2 
Variation in the ratio of d '  and d for different a and d values 

a d d '  d ' / d  

0.2 1.0 0.815 0.815 
2.0 1.806 0.903 
3.0 2.804 0.935 
4.0 3.802 0.951 
5.0 4.802 0.960 

10.0 9.801 0.980 
15.0 14.801 0.987 
20.0 19.800 0.990 

0.5 1.0 0.585 0.585 
2.0 1.536 0.768 
3.0 2.524 0.841 
4.0 3.517 0.879 
5.0 4.513 0.903 

10.0 9.507 0.951 
15.0 14.505 0.967 
20.0 19.503 0.975 

1.0 1.0 0.352 0.352 
2.0 1.167 0.584 
3.0 2.103 0.701 
4.0 3.074 0.769 
5.0 4.057 0.811 

10.0 9.027 0.903 
15.0 14.018 0.925 
20.0 19.013 0.951 

be the incompletion probability of job i in sequence R; 

be the incompletion probability of job j in sequence R'; 

p z  = 1 - 

be the incompletion probability of the job preceding job i in sequence R or job j in sequence R'; 

be the incompletion probability of job j in sequence R or that of job i in sequence R'. From the definition 
of the expected incompletion cost function we get that 

cos t (R)  ~< cost (R')  iff piIC, + p l C j  ~<pjICj +pIC, .  (6) 

After substituting for IC i and ICj and rearranging, this is equivalent to 

( P  - P j ) / l ~ i  ~ ( P  - p ~ ) / t ~ j .  (7) 

In order to prove the theorem we use simple geometric arguments instead of a much more complicated 
algebraic derivation of the results. For case (i) note that the left side of the above inequality is tan a in 
Figure 3 while the fight side is tan fl and tan a ~< tan fl follows directly from the fact that p(x) is 
monotone increasing and convex when t~z + t~ + ~j ~< d' .  

For case (ii) we use Figure 4. Here tan a = ( p - p j ) / ~ i  and tan fl = ( p - P,) /I~j  again and tan a >i tan B 
follows from the fact that p ( x )  is monotone increasing and concave when ~z  >/d'.  Finally for case (iii) 
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p ( x )  

Pi _ 

PZ ¢ I I I I I .. 
X 

~Z y.z+,U.j y.z+/J.i /~z+/~i+/J-j d' 

Figure 3. Incompletion probability function for the case when x < d '  

consider Figure 5. Here again tan a = ( p - p j ) / / ~  i and tan B = ( p - p i ) / t ~ j  and tan a>~ tan B is a 
consequence of the fact that p(x)  is monotone increasing and concave for x >~/~z+/~j>~d '. This 
completes the proof. [] 

Theorem 2 implies that if s = (s(1), s(2) . . . .  , s(N))  is a sequence of the N jobs in which the kth job, 
s(k), has the property that 

k - 1  k 

/Zs( 0 ~< d' and ~ ~,(i) > d' ,  
i = 1  i = 1  

then the sequence s is dominated by a sequence s' (i.e. the expected incompletion cost of s' is less than or 
equal to the expected incompletion cost of s), where s' has the same jobs in the first k -  1 positions as s 
ordered in a nonascending order of their incompletion costs, and s' also has the same jobs in the last 
N - k positions as s, ordered in a nondescending order of their incompletion costs. The job in position k 
can be any job, which means that it is possible to have the following four cases for the shape of the 
optimal sequence t = (t(1), t(2)) . . . . .  t(N)), where k always denotes the position for which 

k - 1  k 

E ~ , ( i )  ~ d '  a n d  ~ /L,(i)  > d ' :  
i = 1  i=l 

(a) ]Lt(1) >~ /Lt(2) >/ " " " >/ / L t ( k - 1 )  ~'< ]£t(k) ~ ~ t ( k + l )  ~-< / £ t ( k + 2 )  ~ " " " ~-< I£t(N) • 

(b) / t t (1)  >~ /£t(2) >~ " " " >/ ~ L t ( k - l )  ~ ~t(k) < / £ t ( k + l )  ~ / L t ( k + 2 )  ~ " " " ~ ~t(N)" 

( C )  /Lt( l)  >/ / t t (2)  >~ " " " > ~ / £ t ( k - l )  > ~t(k) >1 / L t ( k + l )  ~.< / £ t ( k + 2 )  ~ " " " ~ ~t(N)" 

(d) gin) ~ gt (2)  ~ " ° " ~ g t ( k - - 1 )  > gt(k) < g t ( k + l )  ~ / 'Lt(k+2) "~ * " " ~ gt(N)* 

Thus we have the following result: 

p ( x )  ~ 

P .r... ~ _ . , ~ , ,  -~-  

p~ 

d' ktz /Zz+ktj /Zz+/./. i p.z+/Zi+ktj x 

Figure 4. lncomplet ion  p r o b a b i ~ t y f u n c t i o n f o r  the case when 
x > d '  

p ( x ~  

Pi 

Pj, 

~ r J 

Figure 5. Incompletion probability function for case (iii) of 
Theorem 2 
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Corollary 3. The optimal sequence is always W-shaped (case (a)) or V-shaped (cases (b), (c), (d)), 
considering the shape of the function t~t(~). 

The above result helps to tremendously cut down the number of sequences that need to be considered. 
Such sequences will hereafter be called 'promising sequences'. In the next section, a procedure to generate 
the promising sequences is described, followed by a numerical example. 

4. Procedure to generate promising sequences 

The proposed procedure to generate the promising sequences is a special enumeration tree whose nodes 
represent arrangements of jobs in the sequence. These nodes are pruned, further branched from or are 
evaluated depending upon the outcome of a fathoming step based on the results developed above. 

Step 1 (Initialization step). Order the jobs in the nonascending order of their incompletion costs. Let the 
first job in the sequence be numbered 1, the second job as 2, and so on. 

Step 2 (Check of the trivial case). If the sum of the expected processing times of all the jobs is less than 
or equal to d ' ,  then the order obtained in the initialization step is optimal. 

Step 3 (Branching step). A node with ' g '  number of jobs is branched into N - g  nodes depending on 
which one of the N - g unsequenced jobs comes next in the partial solution corresponding to the branch. 

Step 4 (Fathoming step). Suppose the current node considered corresponds to the partial sequence 
s = (s(1), s(2) . . . . .  s(m)). 

(i) If E~=l/~so) ~< d '  and ICs(m_a) < ICs(,,), then prune this node because it violates Theorem 2(i). 
m >-d' (ii) If Es= ]/~w) -_/ then following Theorem 2(ii), complete s by arranging the remaining N - m jobs 

in nondescending order of their incompletion costs. This is a promising sequence and is therefore 
evaluated for its cost. 

(iii) If 

~.~ P's(i) ~< d '  
i=1 

and 
m 

/~s(,) + min /~j> d ' ,  
i=1 J ~ Y  

where Y denotes the remaining jobs (not in s), then following Theorem 2(iii), complete the sequence by 
arranging the jobs in Y in nondescending order of their incompletion costs. This is a promising sequence 
and is therefore evaluated for its cost. 

Step 5. Go back to Step 3. 

Next, we illustrate this procedure on an example problem. This example problem consists of 6 jobs. The 
other relevant data are shown in Table 3 with d '  = 10. 

Table 3 
Parameters of the example problem 

Job (i) Mean (t~) Incompletion cost (ICi) 

1 10.0 5.0 
2 8.0 4.0 
3 6.0 3.0 
4 4.0 2.0 
5 2.0 1.0 
6 1.0 0.5 
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I 
(ii)or ( i i i )  

(ii) (ii) (ii) (ii) (i i i) 

(ii) (ii) (i i) . , " ~  I ~ / / ~  

351352354356361362364365  
(i i) (ii) (ii) (i i i) (ii) (ii) (i i) (i) 

(i i) (i i) (i) . , " ' ~  I ~ / /  ~ 
451 452 453 456 461 462 463 46.5 
(i i) ( i i )  (i i) (iii) (i i) ( i i) { i i) (i) 

5 

. i l  

561 562563564 
( i i )  ( i i )  ( i )  ( i )  

6 1 ~ 6 ~ 6 5  
(ii) ( i )  ( i )  ( i )  ( i )  

Figure 6. Enumeration tree of the example problem. Legend: 
(i) Means that the partial sequence satisfies condition (i) of Step 4, thus it can be pruned. 

• (ii) The partial sequence satisfies conditions (ii) of Step 4, thus it can be completed by sequencing the remaining jobs in 
nondescending order and this sequence should be evaluated. 

(iii) The partial sequence satisfies conditions (iii) of Step 4, thus it can be completed by sequencing the remaining jobs in 
nondescending order and this sequence should be evaluated. 

The enumeration tree is shown in Figure 6. The nodes that are pruned without evaluation are labelled 
"(i)" and those that are obtained by completing the sequence and evaluating it are labelled "(ii)" a n d / o r  
"(iii)". Note that the status of a node is indicated by the condition number  of Step 4 of the generating 
procedure. For example, node (21) generates the sequence { 2 - 1 - 6 - 5 - 4 - 3 )  which is a promising sequence 
(it satisfies condition (ii)); so it is evaluated and labelled "(ii)". On the other hand, node {43} violates 
condition (i) and the node is pruned without evaluation. Note  that the tree has only 41 leaves, substantially 
less than 6! = 720. 

5. Computational experience 

Although the number of sequences generated is cut down tremendously by the fathoming step of the 
procedure, it still reaches quite a large value for problems with N > 20. The situation worsens if d '  is in 

1 N the neighborhood of 7~,= 1/~. To further investigate the performance of the algorithm, the ratio of the best 
solution obtained by exploring the first 100 nodes generated by the procedure to the optimal solution was 
computed. In the experimentation, three sets of problems with 10, 15 and 20 jobs were created, each set 
containing 10 problems, d '  was computed as d '  N = bE~=l/~ g, and for each set three different values of b, 
namely, 0.25, 0.5 and 0.75 were used. Thus, a total of 90 problems were created and solved. In the test 
problems, /~ i -U[0 ;  20] with o ~ =  RAN 1 -/x i and IC~= RAN2-/~ ~ where RAN 1 - N [ 0 . 3 ;  0.067] and 
RAN 2 -N[0 .05 ;  0.01]. The maximum, minimum and average ratio values for the problems solved are 
summarized in Table 4. If  the ratio value is 1.00, then the solution obtained at the end of the 100-th node 
is either optimal or very close to the optimal value. As it is seen from the table, the procedure always 
generated a solution that is within 2.5% of the optimal solution during the evaluation of the first 100 
nodes, thus it is quite robust as a heuristic. To put this in perspective, Table 5 depicts the maximum, 
minimum and average number of nodes, evaluated in order to obtain the optimal solution for different 
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Table 4 
Ratios of the values of the solutions obtained at the end of the 100-th promising sequence to that of the optimal solution 

197 

No. of No. of N 
jobs problems d '  = b × ~ ~t i 

i = l  

Ratio 

Average Minimum Maximum 

b = 0.25 
10 10 1.001 1.000 1.006 
15 10 1.002 1.000 1.005 
20 10 1.005 1.001 1.017 

b = 0.50 
10 10 1.001 1.000 1.007 
15 10 1.005 1.001 1.015 
20 10 1.016 1.005 1.025 

b = 0.75 
10 10 1.002 1.000 1.006 
15 10 1.006 1.002 1.013 
20 10 1.006 1.002 1.012 

Table 5 
Number of promising sequences generated to obtain the optimal solutions of the example problems 

No. of No. of N 
jobs problems d '  = b × y" p,, 

i = 1  

Number of promising sequences 

Average Minimum Maximum 

b = 0.25 
10 10 323 229 424 
15 10 7824 9050 5772 
20 10 203 590 158009 260845 

b = 0.50 
10 10 881 641 957 
15 10 34712 31479 36819 
20 10 1392685 1228380 1484019 

b = 0.75 
10 10 379 326 455 
15 10 10154 8213 11026 
20 10 188515 112238 247308 

p r o b l e m s .  I t  s h o u l d  b e  n o t e d  t h a t ,  to  g e n e r a t e  t he  f i r s t  100 n o d e s ,  i t  r e q u i r e s  n e g l i g i b l e  c o m p u t a t i o n  t i m e  

as  c o m p a r e d  to  t h e  l a rge  c o m p u t a t i o n  t i m e  r e q u i r e d  to  o b t a i n  t he  o p t i m a l  s o l u t i o n .  H e n c e ,  t he  p r o p o s e d  

p r o c e d u r e  was  v e r y  e f f ec t ive  as  a h e u r i s t i c  a n d  g e n e r a t e d  a l m o s t  o p t i m a l  s o l u t i o n s  v e r y  fast .  

6. Conclusions 

F o r  the  p r o b l e m  of  s e q u e n c i n g  j o b s  o n  a s ing le  p r o c e s s o r  w i t h  a c o m m o n  d u e  d a t e  a n d  n o r m a l l y  

d i s t r i b u t e d  p r o c e s s i n g  t imes ,  we  h a v e  d e v e l o p e d  s o m e  c o n d i t i o n s  to  o r d e r  j o b s  so  as  to  m i n i m i z e  the  
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expected incomple t ion  cost. These  condi t ions  are i m p l e m e n t e d  in a tree search p rocedure  and  they help  in 
cut t ing down the number  of  sequences genera ted  t remendous ly .  F o r  large p rob lems ,  an app rox ima te  
Solution p rocedure  has genera ted  a lmost  op t ima l  sequences.  
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