
September 3, 2009 15:11 WSPC/INSTRUCTION FILE 06356

International Journal of Modern Physics B
Vol. 23, Nos 20 & 21 (2009) 4414–4421
c© World Scientific Publishing Company

RPA APPROACH TO NON-LINEAR TRANSPORT

IN QUANTUM DOTS

B. TANATAR

Department of Physics, Bilkent University, 06800, Ankara, Turkey

tanatar@fen.bilkent.edu.tr

V. MOLDOVEANU

National Institute of Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele, Romania

valim@celsius.infim.ro

Received 24 July 2009

An accurate theoretical treatment of electron-electron interactions in mesoscopic systems
is available in very few cases and approximation schemes are developed in most of the ap-
plications, especially for many-level quantum dots. Here we present transport calculations
within the random-phase approximation for the Coulomb interaction using the Keldysh
Green’s functions formalism. We describe the quantum dot systems by a tight-binding
Hamiltonian. Our method is similar to the one used by Faleev and Stockman [Phys. Rev.
B 66 085318 (2002)] in their study of the equilibrium properties of a homogeneous 2D
electron gas. The important extension at the formal level is that we combine the RPA
and the Keldysh formalism for studying non-linear transport properties of open quantum
dots. Within the Keldysh formalism the polarization operator becomes a contour-ordered
quantity that should be computed either from the non-interacting Green functions of the
coupled quantum dot (the so-called G0W approximation) either self-consistently (GW

approximation). We performed both non-selfconsistent and self-consistent calculations
and compare the results. In particular we recover the Coulomb diamonds for interacting
quantum dots and we discuss the charge sensing effects in parallel quantum dots.
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1. Introduction

Quantum dot systems are commonly used in transport experiments in order to

explore various effects coexisting at nanoscale: sequential tunneling, coherence or

Coulomb blockade (see Ref. 1 for a review). At the theoretical level the main problem

is to handle a quantum transport formalism that includes and describes as much as

possible from the many-body physics of the electrons passing through a quantum

dot.

The non-linear transport properties of interacting or non-interacting quantum

dot systems have been studied mostly within the non-equilibrium Keldysh Green’s

function formalism. 2 The steady-state current was calculated for small quantum
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dots with a spin-degenerate level and the interacting Green function is usually ob-

tained via the equation of motion method (see e.g. Ref. 3 and the references therein).

Some time ago Henrickson et al. 4 took the challenge of implementing the Green-

Keldysh formalism for few-level quantum dots using a selfconsistent Hartree approx-

imation (SCHA) for the interaction self-energy. This mean-field approach provided

interesting results in the Coulomb blockade regime and allowed for a discussion of

the I-V curves.

Nevertheless, in the context of controlled dephasing in mesoscopic interferom-

eters Coulomb-coupled to charge a detector 5 one is obliged to include inelastic

electron-electron scattering processes in the calculations and therefore to go beyond

the mean-field approximation. A first attempt to compute the dephasing rate of a

quantum dot coupled to a quantum point contact was done by Silva and Levit 6; the

authors computed the interaction self-energy up to the second order in the interac-

tion strength. Later on the ring-dot geometry of the experiment 5 was theoretically

considered in Ref. 7 along the same lines. In order to treat on equal footing the

interdot and intradot interactions we have recently developed a non-selfconsistent

random-phase approximation for computing the Keldysh-Green functions. 8 The

method was used in the study of T-shaped interferometers and clearly emphasized

the role of the intradot interaction in dephasing.

In the present work we improved the RPA method by including a selfconsistent

procedure in computing the polarization operator. In the highly non-linear regime

the self-consistent scheme guarantees the current conservation (see Thyegesen et al.
9). As an application of this method we obtain the Coulomb diamonds of a single

quantum dot and the charge sensing properties of two parallel quantum dots.

The rest od this paper is organized as follows. Section 2 provides the model

we use to treat open quantum systems and theoretical background for the Keldysh

formalism. Numerical results for a number of quantum dot systems are presented

in Section 3. Finally, we give a brief conclusion in Section 4.

2. Model and Theory

The open mesoscopic structure will be described by a lattice Hamiltonian which gen-

erally reads as H(t) = Hsystem + Hleads + χ(t)(Htun + Hint) where Hsystem (Hleads)

are the Hamiltonians of the disconnected subsystems (sample and leads) and the

last time-dependent term contains the transfer Hamiltonian Htun accounting for

the sample-lead coupling and the interaction part Hint. The Hamiltonian Hsystem of

the mesoscopic sample is be quite general and may describe a single quantum dot,

double quantum dots (serially or parallel coupled) and other complex mesoscopic

interferometers. The last two terms are introduced adiabatically through a smooth

switching function χ(t). We shall denote by d†
i (di)the creation (annihilation) op-

erator associated to the i-th site of the lead. Similarly a†
l (al) creates(annihilates)

electrons in the l-th site of the sample. We write explicitly only the last two terms
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from the Hamiltonian:

Htun =
∑

i∈Lγ

∑

l∈C

(V γ
il d

†
i al + h.c), Hint =

U

2

∑

l6=m

n̂ln̂m

|rl − rm|
. (1)

The notation V γ
il stands for the hopping constant between the sites of the lead

γ and the ones in the sample. For simplicity a nearest neighbor form is taken so

the only non-vanishing coupling will imply the endpoint site of the lead and the

nearest site of the sample. U is the interaction strength In the steady-state regime

the current flowing from the lead α towards the sample is given in terms of the

retarded and lesser Green functions through the well-known formula (see Ref. 2):

Jα =
ie

h

∫ 2tL

−2tL

dETr
{

Γα(GR − GA)fα + G<
}

, Γα
lm(E) = 2πV α

il V α
jmρ(E). (2)

The two Green functions should be computed from the Dyson and Keldysh equa-

tions i.e., GR = GR
0 + GR

0 (ΣR
L + ΣR

I )GR, and G< = GR(Σ<
L + Σ<

I )GA, provided the

retarded and lesser interaction self-energies ΣR,<
I are known. We have denoted by

G0 the Green function of the isolated and noninteracting central region. Also, ΣL

stands for the leads’ self-energy and has an analytical expression (see e.g. Ref. 8).

ρ(E) is the density of states at the endpoint of the semiinfinite lead and fα(E) is

the Fermi function of the lead α. The bias across the system is introduced as the

difference between the chemical potentials of the leads. In the case of two leads

(Left and Right) we denote the bias by V = µL − µR. A more useful formula is the

following (see Ref. 8 for a derivation):

Jα =
e

h

∫ 2tL

−2tL

dETr{ΓαGRΓβGA(fα − fβ) − ΓαGRIm(Σ<
I + 2fαΣR

I )GA}. (3)

The scheme that we propose for the calculation of the interacting quantities is sim-

ilar to the one employed by Faleev and Stockman 10 in the study of elementary

excitations in 2DEG, the difference being that we have to treat here an open sys-

tem. Moreover, as the system has no translational invariance we will not perform

the Fourier transform with respect to the position coordinates. We start from the

contour ordered polarization operator which in the energy space has retarded and

lesser components (k, l denote sites from the central region only):

Π<,>
kl (E) = −

1

2i

∫

dE′G<,>
kl (E′)G>,<

lk (E′ − E) (4)

ΠR(E) =
i

2π

∫

dE′Π
>(E′) − Π<(E′)

E − E′ + i0
. (5)

Notice that the Green functions from the above equations are yet to be determined.

The first approximation (sometimes called the G0W method) implies the change

G → Geff where Geff is the Green function of the non-interacting but coupled

system. More precisely, Geff = G0 + G0ΣLGeff being G0 the Green function of the

isolated sample. Since Geff is known the polarization operator can be computed.
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If it is then used to compute the remaining interacting quantities one gets a non-

selfconsistent scheme which is nevertheless useful at least in the low bias regime.

The interaction self-energy acquires a compact form:

ΣI = ΣH + ΣX + ΣC , (6)

where the Hartree, exchange and correlation contributions can be identified easily
11 In a more elaborate approach one should use the above ansatz just as a zeroth

order step in a selfconsistent scheme. This is the approach we have taken here.

The selfconsistent procedure that we have implemented here is more complex

than the one used in Ref. 4 and could pose some problems when applied to bigger

systems. This is because at every iteration step one has to perform double integrals

over energy which are not trivial as they contain Green functions with sharp peaks.

The number of peaks increases with the number of sites and moreover, they get

sharper if the coupling to the leads is small. Then the energy grid should be carefully

chosen such that all the peaks are properly resolved. Below, we have considered a

6-site quantum dot for which 1500 energy steps were required.

3. Results and Discussion

We now present a few illustrative examples underlying the Coulomb effects and the

self-consistent procedure we have set out.

We first consider a 3 × 2-site quantum dot and calculate the current passing

through it. The hopping constant between the leads and the dot will be denoted by τ .

In Fig. 1(a) one notices the six Coulomb peaks for the interacting and noninteracting

case while in Fig. 1(b) we compare the two contributions in the current formula

Eq. (3). The first contribution gives essentially the peak structure and it actually

counts the poles of the retarded Green functions. When the gate potential is such

that one of the renormalized QD levels is brought into the bias window the real

part in the denominator E−En−ΣR
L −ΣR

I of the Green function vanishes for some

value of E. Consequently, a peak appears in the current.

The second term prevents one from casting the current in a Landauer form and

contains the correlation effects. This is because a non-vanishing imaginary part of

the self-energy starts can be obtained only if we compute at least the second order

contribution with respect to the interaction strength. The contribution of this term

turns out to be relevant for the first 3-4 peaks. We remark that in the case of the

first (leftmost) peak the correction to the Landauer formula gives actually half of

its amplitude. This peak corresponds to the tunneling out of one electron from

the highest level of the QD. There are still 5 electrons within the dot so that the

interaction effects turn out to be strong even for U = 0.15.

We turn our attention now to a 3-site quantum dot and look at the so called

Coulomb diamonds which are actually 3D plots of the current or the conductance

as a function of the plunger gate voltage and of the applied bias. Usually these plots

are obtained by imposing some relations between the chemical potential of the leads

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
9.

23
:4

41
4-

44
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

12
/2

2/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 3, 2009 15:11 WSPC/INSTRUCTION FILE 06356

4418 B. Tanatar & V. Moldoveanu

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-3 -2 -1  0  1  2  3

C
ur

re
nt

Gate potential

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-3 -2 -1  0  1  2  3

C
ur

re
nt

Gate potential

(b)

Fig. 1. (Color on line) (a) The steady state current for U = 0.15 (solid line) and U = 0 (dashed
line). The interaction shifts the peaks to the left and broadens them. Note that the Hartree
shift decreases as the quantum dot empties. (b) The separate contributions of the two terms in
Eq. (3). Solid line (first term), dashed line (second term). Other parameters are τ = 0.5, V = 0.2,
kT = 10−4.

and of the dot 1 and very few calculations based on a quantum transport formalism

are available. In the present approach we are able to compare the interacting and

non-interacting Coulomb diamonds for the steady-state current. The bias is varied

as follows: we start by taking µL = −1 and µR = 1, that is we start with a negative

bias and the current will flow from the right lead to the left one. For the clarity

of the figure we choose to represent the absolute value of the current. Then we

increase/decrease the chemical potentials i.e µL → µL + δ/2 and µR → µR − δ/2

until we reach the situation µL = 1 and µR = −1.
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Fig. 2. (Color on line) Interacting (a) and non-interacting (b) self-consistent Coulomb diamonds
for a 3-site dot. The interaction strength is set to U = 0.15 and the bias is V = 0.2. Other
parameters are τ = 0.5, kT = 10−4 .

In Figs. 2(a) and (b) we show the Coulomb diamonds in the interacting and

non-interacting case. The dark regions correspond to the Coulomb blockade regime,

where no level of the dot lies within the bias window. In this situation the number of

electrons in the dot is a well defined integer. The crossing points around V = 0 (also

called vertex points) correspond to tunneling processes, as the gate potential is such

that one level of the dot enters the bias window. We note that in the interacting

case the Coulomb diamonds are not symmetric with respect to the value Vg = 0

and that they are shifted toward lower values of Vg . This happens because the

Coulomb interaction pushes the quantum dot levels upwards and then they could

enter the bias window at even lower values of the gate potential. We note also that
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Fig. 3. (Color on line) (a) The current through QD1 as a function of the gate potential Vg for
U = 0.25 (solid line) and U = 0 (dashed line). (b) The current through QD1 exhibits dips that
correspond to the resonant peaks in Fig.2(a). Other parameters are τ1 = 0.35, τ2 = 1, kT = 10−4 .

in the presence of the interaction the ‘length’ of the diamonds is not the same as in

the noninteracting case.

As a last application of the RPA-Keldysh method we have considered two par-

allel quantum dots in a four lead geometry, that is, each dot is coupled to two

leads and therefore can be individually biased. In this case the coupling to the leads

are denoted by τ1 and τ2. In order to include both the interdot and the intradot

interactions one needs at leads two levels in each dot. A plunger gate potential ap-

plied on QD1 tunes it on resonance and the steady-state current exhibits two peaks

(see Fig. 3(a)). The similar current through QD2 shows two dips that correspond

to the tunneling processes in QD1. Evidently this behavior is entirely due to the
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interdot interaction. We stress that an accurate correspondence between the dips

and the peaks in Figs. 3(a),(b) is obtained only if we perform the selfconsistent cal-

culation. In the G0W approach the polarization operator is constructed with the

non-interacting Green functions whose pole structure misses the Hartree shift.

4. Conclusion

We have studied several interaction effects in open quantum dot systems in the

non-linear transport regime within a selfconsistent random-phase approximation.

The method relies upon the Keldysh Greens’ function formalism and reproduces

qualitatively the Coulomb diamond structure for a many-level quantum dot, as well

as the charge sensing effect for a parallel quantum dot in a four lead geometry. The

method goes beyond the usual selfconsistent mean-field approach and treats on

equal footing the intradot and interdot Coulomb interaction. Further developments

should include the spin-degree of freedom which was neglected in the present work.
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7. V. Moldoveanu, M. Ţolea, and B. Tanatar, Phys. Rev. B 75, 045309 (2007).
8. V. Moldoveanu and B. Tanatar, Phys. Rev. B 77, 195302 (2008).
9. K. S. Thygesen and A. Rubio, Phys. Rev. B 77, 115333 (2008).

10. S. V. Faleev and M. I. Stockman, Phys. Rev. B 66, 085318 (2002); 62, 16707 (2000).
11. The explicit expression can be traced from Ref. 8: ΣC is given in Eqs. (21)-(24), while

the exchange and Hartree contributions are given by Eqs. (25) and (26).

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
9.

23
:4

41
4-

44
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

12
/2

2/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


