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ABSTRACT

ALLOCATING VACCINES UNDER SCARCE SUPPLY

Onur Kılınç
M.S. in Industrial Engineering

Advisor: Özlem Karsu
August 2023

We consider the vaccine allocation problem under scarce supply. We formulate the
problem as a two stage stochastic programming model, considering the uncertain
factors such as vaccine efficacy, disease spread dynamics and the amount of future
supply. We discuss two variants of the model that could be used under different
preferences. We demonstrate the usability of our formulations on two case study
examples that are generated based on real-life data. The results demonstrate that
incorporating the uncertainty in these factors into the decision making process
would allow the policy makers to use more effective strategies with an adaptive
nature. This is also indicated by the value of stochastic solution, which shows a
significant enhancement in disease control gained by the stochastic programming
solution compared to a plan based on expected figures.

Keywords: Vaccine allocation, Stochastic Programming.
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ÖZET

SINIRLI TEDARIK DURUMUNDA AŞI DAĞITIMI

Onur Kılınç
Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özlem Karsu
Ağustos 2023

Bu çalışmada, sınırlı arz koşulları altındaki aşı dağıtımı problemi ele alınmıştır.
Aşı etkililiği, hastalık yayılma dinamikleri ve gelecekteki arz miktarı gibi belirsiz
faktörleri dikkate alan iki aşamalı stokastik program modeli olarak bu problem
formüle edilmiştir. Farklı tercihler altında kullanılabilecek iki model varyasyonu
incelenmiş ve sonuçları karşılaştırılmıştır. Formülasyonlarımızın kullanılabilirliği,
gerçek yaşam verilerine dayalı olarak oluşturulan iki örnek vaka çalışması üz-
erinde gösterilmiştir. Sonuçlar, bu faktörlerdeki belirsizliğin karar alma sürecine
dahil edilmesinin, politika yapıcıların daha etkili ve adapte olabilen stratejiler kul-
lanmalarına olanak tanıyacağını ortaya koymaktadır. Ayrıca stokastik çözümün
değeri bize parametrelerin sadece beklenen değerleri esas alınarak yapılan aşı
dağıtımına göre salgın kontrolü açısından daha iyi bir çözüm elde edildiğini göster-
mektedir.

Anahtar sözcükler : Aşı dağıtımı, Stokastik programlama.
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Chapter 1

Introduction

In the early days of COVID-19 pandemic, the main strategy to stop or reduce
the spread was implementing lockdowns. A global vaccine development progress
began slightly after these isolation policies. A widespread distribution of vaccines
aimed to reduce the disease spread through herd immunity, which results in fewer
new infections over time. To achieve this, the World Health Organization released
several guidelines for global vaccination strategies [1].

Since 2020, a large number of initiatives for vaccine development have been
started. Nevertheless, only a small number of vaccines have effectively advanced
through all three testing stages to become eligible for use in humans (see details
in [2]).

An important factor slowing down the COVID-19 vaccine mass production was
the availability of raw materials [3]. Shortage of the materials and equipment
caused delays in scaling-up the vaccine production [4]. Such challenges in the
COVID-19 vaccine development and production phases resulted in a scarce supply
of vaccines during the early days of vaccine roll-out campaigns. Moreover, due to
the complexity of the vaccine distribution supply chain there are many challenges
to overcome to effectively distribute vaccines globally. For example, Biontech
vaccine required a cold chain transportation, which leads to higher costs for some
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countries that do not have enough infrastructure [5].

The COVID-19 pandemic has brought the issue of vaccine allocation under
scarce supply to the forefront of public health discussions. With limited supplies
of vaccines available, it is crucial to ensure that these valuable resources are
distributed in a fair and efficient manner. As the vaccines are being distributed,
the question of how to prioritize and allocate the limited supply becomes critical
to ensure that the most vulnerable people are protected while considering the
overall welfare of the society. Moreover, the problem involves uncertain factors
such as the spread dynamics, vaccine efficacy and the amount of supply that will
be available, which makes it even more challenging.

Motivated by this, the current study aims to investigate the challenges and
potential solutions for allocating COVID-19 vaccines under scarce supply. We
propose novel stochastic programming (SP) models to incorporate uncertainty,
especially regarding the mutations, disease spread dynamics and vaccine supply.

The rest of the thesis is organized as follows. In Chapter 2, we review the
relevant studies that address the vaccine allocation problem using Operational
Research (OR) methods. In Chapter 3, we give the problem definition and the
mathematical models that we formulate for the allocation problem. In Chapter
4, we solve our model with real life data and obtain results. Lastly in Chapter 5,
we discuss future extensions of our work.
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Chapter 2

Literature Review

In this Chapter, we review some of the recent literature on different vaccine
allocation problems and the corresponding disease spread models. There is a vast
amount of studies considering different variants of the vaccine allocation problem.
In Table 2.1, we list some recent studies that focus on vaccine allocation decisions
for diseases such as flu, Ebola, and recently, COVID-19. In almost all of these
models, the main decision variables are vaccination rates of different population
subgroups. Most studies assume that a single vaccine type is available while in
some studies, there are different types of vaccines. The majority of the vaccine
allocation models has single objectives in their problem settings while in some of
them equity concerns are also addressed.

We discuss the related literature in two parts. We first discuss the vaccine
allocation models then mention the methodologies used to incorporate disease
spread dynamics into these mathematical models.
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Table 2.1: Recent studies from the literature

Article Objective Vaccine Type Case Disease Model Math. Model Type

[6] Min Cost Single Flu Stochastic SEIR 2 Stage Stochastic

[7] Min total vaccine, equity Single Influenza Next Generation Matrix Non-linear

[8] Max health benefit Single - SIR Diff equation

[9] Min Two/ Multiple Dose - SIR Diff equation

[10] CCNDP Single - Network Graph

[11] Single Flu Agent based vs SEIR Non-linear

[12] Min death Single Smallpox SIR MIP

[13] Min death Single Smallpox SEIR

[14] Min cost Single Influenza Simulation based

[15] Min cost Food distribution Influenza Simulation based MIP

[16] Resource allocation Two type (H,L) COVID-19 SIR

[17] Bi-objective Multi type COVID-19 Non-linear MIP

[18] Multi-objective COVID-19 IP

[19] Min infections, equity , Resource allocation Ebola SIR Stochastic multi stage

[20] Min infections , Resource allocation Ebola SIR MIP

[21] Min infection, risk averse, Resource allocation Ebola SIR Stochastic

Our 2 Stage SP Models Max Health Benefits with equity Single COVID-19 Next Generation Matrix Non-linear

2.1 Vaccine Allocation Problems

The vaccine allocation problem is a special type of resource allocation problem
that arises in disease related settings. The OR literature has offered solutions to
this important planning problem through various optimization frameworks. We
will mention some of the recent examples that are relevant to the problem that
we consider.

[6] construct a two stage stochastic programming problem for vaccine alloca-
tions. In their setting, vaccination is done in two phases aiming to minimize the
vaccination costs in the first stage and expected vaccination costs in the second
stage.

[7] consider a vaccine allocation problem for influenza disease. They minimize
total vaccine distributions subject to disease control in a deterministic setting,
considering equity constraints. They construct sub-population groups based on
age and allow interactions between each other when it comes to disease spread.
Their model has non-linear constraints related to the next generation matrix
disease control mechanism. They apply McCormick envelopes to solve their model
efficiently.

4



When the types of mathematical models are investigated, we see that [8] and [9]
construct an analytical approach and derive closed-form solutions for the vaccine
allocation problems. [9] consider the minimization of the final size of the outbreak
subject to budget constraint. In their study, there are two vaccines that have
different efficacy levels against the disease. They compare several vaccination
strategies. One vaccine type has more efficacy but is expensive at the same time.
The other one is cheaper but has less efficacy. [8] also study analytical approaches
in their vaccine allocation problem, where they maximize the herd effect of the
vaccination. On the other hand, some studies obtain numerical results for their
problems. A number of studies relied on solving mixed integer programming
problems ([12],[15],[20],[17]). Note that due to the need to incorporate spread
dynamics, most of these models are nonlinear.

[10] work on a generic network problem and they apply it to disease spread
settings. They study cardinality-constrained critical node detection problem (CC-
NDP). They remove critical nodes and obtain disconnected subgraphs. In their
problem formulations, each vertex in the graph has a potential to become infected
and infected vertices spread disease in the network. To minimize disease spread
in the network, the critical nodes are removed while ensuring that disconnected
subgraphs have a cardinality constraint for their vertices.

[11] compare agent based simulation models with compartmental models when
it comes to disease control by vaccination. They consider four performance mea-
sures in their optimization setting, namely total cost, total number of infections,
total number of deaths and total life year lost. They show that when the basic
reproduction number is low and vaccine stocks are not very scarce, agent-based
simulations perform better than compartmental models.

[12] consider smallpox outbreak. They minimize fatalities due to the smallpox
outbreak considering resource constraints. To do so, they formulate a mixed
integer programming problem. To control this disease spread they consider three
different strategies namely isolation, ring vaccination and mass vaccination in
different locations.
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Several recent studies also consider a multi-objective approach to their prob-
lems. For example [17] work on a vaccine distribution problem. They construct a
mixed integer nonlinear programming model with two objectives. One objective
is to minimize total cost and the other one is to minimize total fatalities. They
consider two-dose vaccinations in their study and define three subgroups. Unvac-
cinated, one dose vaccinated and two dose vaccinated people have interactions
between them regarding to disease spread.

[18] also consider a multi objective setting for their vaccine allocation opti-
mization problem. They apply a weighted sum approach for solving their multi-
objective problem. They calculate the price of fairness for decision makers to
assess different vaccination policies. Within the scope of their problem, there
exists a trade-off between fairness and geographic diversity. Lastly, they try to
find a balance considering different fairness and diversity levels to minimize total
fatalities.

[20],[19], [21] consider the Ebola outbreak in their studies. [19] develop
epidemics-logistic optimization model. Their objective is to minimize total deaths
and infections with limited budget over a time horizon. They consider a compart-
mental model for their resource allocation setting. In their disease spread settings,
they consider migration from other regions,which makes the SEIR model linear.
They solve the resulting model using CPLEX. [19] extend [20] by a multi-stage
stochastic programming model. They also add three equity concepts in their
stochastic programming model, infection inequity, capacity inequity and preva-
lence inequity. Lastly, [21] introduce risk aversion in stochastic programming
setting and extend the previous work on the Ebola disease resource allocation
problem.

[15] study a food distribution problem for an influenza outbreak formulating
it as a mixed integer programming. They use an agent-based simulation model
to predict disease patterns and develop a continuous time stochastic model for
their influenza setting. In their simulations, they consider a small number of
people who interact such as householder and coworker. The aim is providing
food distribution for those staying at home. They construct two solution policies,
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namely static and dynamic update for this purpose.

2.2 Disease Spread Models

Main objective of the vaccine allocation is to reduce disease related negative
outcomes (death, hospitalizations etc.) and if possible to control disease spread
completely in the population. Given that the initial supply is scarce, decision-
makers (DM) have to make prioritization decisions when doing so they have to
rely on periodical (daily or weekly) disease statistics such as number of infected
people or recovered people. En route to addressing this problem, researchers
developed epidemic models to predict how the disease may evolve.

One key aspect of any vaccine allocation models is how disease spread is in-
corporated into mathematical model. Various methods have been used in the
literature, which can be categorized into three main groups: compartmental meth-
ods that analyze the spread dynamics over a number of periods, next-generation
matrix method that focuses on controlling the spread in the long run, and lastly
network models that divide the population into nodes and consider disease spread
dynamics in the vertices of the graph.

In compartmental models, the population is divided into several compartments.
Figure 2.1 shows an example in which the population is divided into five com-
partments as Susceptible (S), Exposed (E), Infected (I), Quarantined (Q) and
Recovered (R). Note that depending on the characteristics of the disease, the
total number of compartments may change. Transition rates between compart-
ments are disease specific. In Figure 2.1 we can see these rates (ω, η, α). The
following set of differential equations characterize these transitions
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S
′

i = −ηiSi (2.1)

E
′

i = ηiSi − ωiEi (2.2)

Q
′

i = piωiEi − αiQi (2.3)

I
′

i = (1− pi)ωiEi − αiIi (2.4)

R
′

i = αiQi + αiIi (2.5)

where ηi represents the total occurrence of new infection rate in subgroup i

and it is calculated as follows (see Table 3.1 for explanations of the disease spread
parameters γ, β, λ, δ, p)

η̄ij = γiβij(λjEj + δjIj) (2.6)

ηi =
∑

j∈J

η̄ij (2.7)

where γ and δ are susceptibility and infectiousness rates. α is the recovery
rate and ω is the transition rate of exposed individuals into the infected stage.

S E I R

V

Q

ηS

ftS

pωE

(1− p)ωE αI

αQ

Figure 2.1: Compartments and transition rates.
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Note that some studies consider the discretization of these nonlinear systems
of differential equations, in a way that is similar to inventory-type constraints.
At each time step, the number of people in each compartment is updated by a
random or deterministic transition rate parameter.

Another way to include disease spread in any mathematical model is to con-
struct a next-generation matrix K. The next-generation matrix explains the
long-term behavior of the disease spread. To incorporate this method in the opti-
mization framework we refer to [7] and follow their approach. The method relies
on keeping the reproduction number Rf , which explains the overall secondary
infections, below one. Hence in order to control disease spread while maximiz-
ing total health benefits, one can write a generic vaccine allocation optimization
model as follows:

max
∑

i

bifini (2.8)

s.t.Rf ≤ 1 (2.9)

f ∈ F (2.10)

It is difficult to consider constraint 2.9 directly in an optimization problem. For
example, one can assume that a disease is controlled when the total infected peo-
ple decreases over time, which can be achieved by either increasing the recovery
rate of infected people or decreasing infection rate. In our stochastic program-
ming settings we use an equivalent set of constraints to constraint 2.9 to control
disease spread, based on the results of [22]. This set of constraints are also used
in [7] and they rely on the so called next-generation matrix K. The elements of
Kij’s are calculated as follows

Kij =
γiβijλj
ωj

+
γiβijδj(1− pj)

αj

(2.11)

where β is the contact rate between subgroups.
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Denoting the vaccination rates as fi for group i, let F be a diagonal matrix of
vaccination rates, and ψ be the vaccine efficacy. One can construct the following
matrix and use its spectral radius to control the spread [22]. Let D be a diagonal
matrix, whose elements are equal to 1− ψfi.

(1− ψF )K = DK (2.12)

This method allows us to calculate the distribution of the infected people
after one generation by the following matrix multiplication. Let h be the initial
infectious people in each subgroup, then

(DK)h = h1

h1 represents the infectious people in each subgroup after one generation. If
we write this matrix multiplication several times, we will have the following ex-
pression.

(DK)ℓh = hℓ

where hℓ represents the infectious people in subgroups after ℓ generations. An
infectious disease is controlled when hℓ becomes smaller in the long run. To ensure
this, one can use eigenvalues of the DK matrix (See [22] for further details.).

hℓ = (DK)ℓh (2.13)

= (DK)ℓ
∑

j

cjχj (2.14)

=
∑

j

cjξ
ℓ
jχj (2.15)

In our models, we also make use of these spread models, as will be detailed in
the next Chapter.
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Chapter 3

Problem Definition and

Mathematical Models

We consider the vaccine allocation problem, in which a policy maker decides on
the amounts to be allocated to various population groups, demanding a scarce
supply. These population groups (or subgroups) could be defined with respect
to various factors such as location, age or occupation. We assume that the deci-
sion maker has multiple concerns with different priorities: controlling the disease
spread and if this is not possible for a community, maximizing benefit received
from the vaccination. Meanwhile, as is the case in real life, we also consider fair-
ness across the recipients. The stochastic programming models we constructed
in this work aim to provide vaccine allocation solutions, considering the uncer-
tainty in vaccine efficacy and disease spread factors due to the virus mutations.
These models provide two-phase vaccination strategies, in which the first and sec-
ond phase allocations are made before and after uncertain factors are revealed,
respectively.

New variants of the disease may occur, which may lead to changes in the
efficacy of the vaccines as well as the disease spread parameters. Motivated by
this, we treat vaccine efficacy ψ as a random parameter and assume a two-stage
decision-making setting, associated with first and second-stage variables fij and
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yωij, respectively. These variables indicate the coverage in subgroups (i) of different
regions (j).

In the following models, we consider vaccine allocation decisions that are made
in two periods. The first period decisions aim to maximize disease control, which
we quantify by utilizing the next generation matrix, as in [7], under uncertainty.
In the second stage, the model allocates vaccines based on how the disease control
is realized. We consider two variants of the model with respect to the objective
of the second stage decisions. In the first one, we maximize benefits coming from
vaccine allocations, while in the second one, we again maximize disease control.

A similar problem has been addressed in [6], which considered the vaccine al-
location problem for the flu epidemic in two phases in geographically different
regions. In their model, they minimize the vaccination cost at both stages. Note
that our model is different than that of [6] in several ways. Their scenario genera-
tions are based on the disease status of the cities. They define a binomial random
variable for each city to indicate whether in that city the disease is controlled or
not. The probability distribution of this random variable is estimated by running
simulations. In these simulations, they consider a minimum vaccination rate for
each city and attack rate threshold (ART) for the disease. They perform 200 runs
and calculate the percentage of the runs where number of infected individuals is
less than ART, which they take as the probability of disease containment of a
city given a minimum vaccination rate and ART. Unlike this study, we utilize
the next generation matrix approach used in [7] to incorporate disease control
into the optimization problem. The next-generation matrix method controls the
long-term spread of the disease, i.e. ensures R0 ≤ 1. We extend the approach
in [7] by incorporating uncertainty and allowing this constraint to be unsatisfied
for some cities in some scenarios. The bilinear terms in this constraint make the
mathematical model non-convex [7]. Hence, we use Gurobi Optimizer.

In the upcoming sections, we provide the formulations of our two stage stochas-
tic programming models. Table 3.1 summarizes the notation we use in these
models.

12



Table 3.1: Notation

Symbol Definition

Sets
I set of subgroups
J set of regions
Ω set of scenarios

Indexes
i subgroup
j region
ω scenario

Parameters

N1 available vaccine doses in first stage
N2 available vaccine doses in second stage
b vaccine benefits
n subgroup populations
γ relative susceptibility of subgroups
δ relative infectiousness of infected individuals in subgroups
β contact rate between subgroups
ψ vaccine efficacy
λ infectiousness of exposed individuals in subgroups
α recovery rate
p quarantined proportion of exposed people
M a large number

Decision variables

f first stage vaccine coverage
v eigenvector elements of the K matrix
y second stage vaccine coverage

3.1 Control-Benefit Model

Control-Benefit (CB) model aims to minimize disease spread in the first stage
and then allocates vaccines to subgroups according to their welfare contributions
in the second stage. Hence, the objective is to minimize total number of people
in regions where the disease is not controlled and maximize health benefits.

We discuss this setting for a case, where the allocations are done across multiple
geographical regions (cities) and across different age groups within these regions.
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Note that this is without loss of generality, one can easily modify the formulation
for different subgroup definitions. A simpler variant for example would consider
groups defined based on age only for a single region, which could be a special
case of our formulation.

In Figure 3.1 we can see the decision process. In the first stage, decision maker
only knows available vaccine doses at the beginning for the first period. Accord-
ingly they make vaccine allocation decisions fij, denoting the fraction of subgroup
i of region j receiving vaccine. Then, we observe resolution of uncertainties ψω,
Nω

2 and Kω
ij, which correspond to the efficacy, second period supply and the next

generation matrix parameters, i.e. the spread dynamics. The binary variable zωj ,
shows disease control in region j under scenario ω as a result of the first stage
decisions. It is realized based on the efficacy and disease spread realizations and
hence is known before the second stage allocations are made. Lastly, the deci-
sion maker decides which subgroups to vaccinate in the second stage, which is
a recourse action denoted by the decision variable yωij. If disease is controlled in
region j then there will be no vaccine allocations to this region. Our scenario set
is Ω and probability of realization of each scenario is pω.

1st stage decisions 2nd stage decisions End of horizon

N1 vaccine doses
with benefits

bi

Period 1 Period 2

(N1 +Nω
2 −

∑
i

∑
j
fijnij)

vaccine doses
with benefits bir

Realization of Kω, ψω, Nω
2

∑
i

∑
j
fijnijbi

∑
j

∑
ω
pωzωj Pj

∑
j

∑
ω

∑
i
pωyωijnijbir

Figure 3.1: Two stage stochastic programming CB model.
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min
∑

j∈J

∑

ω∈Ω

pωzωj Pj (3.1)

max
∑

j∈J

∑

i∈I

fijbinij (3.2)

max
∑

j∈J

∑

ω∈Ω

∑

i∈I

pωyωijbirnij (3.3)

s.t
∑

j∈J

∑

i∈I

fijnij ≤ N1 (3.4)

(1− ψωfij)
∑

k∈I

Kω,j
ik v

ω,j
k −Mzωj ≤ vω,ji ∀ω ∈ Ω,∀i ∈ I, j ∈ J (3.5)

∑

j∈J

∑

i∈I

nijy
ω
ij ≤ N1 +Nω

2 −
∑

j∈J

∑

i∈I

fijnij ∀ω ∈ Ω (3.6)

zωj fij + yωij ≤ zωj ∀ω ∈ Ω,∀i ∈ I,∀j ∈ J (3.7)
∑

i∈I

vω,ji = 1 ∀ω ∈ Ω,∀j ∈ J (3.8)

0 ≤ fij ≤ 1 ∀i ∈ I (3.9)

0 ≤ yωij ∀ω ∈ Ω, ∀i ∈ I (3.10)

0 ≤ vω,ji ≤ 1 ∀ω ∈ Ω, ∀i ∈ I (3.11)

The first objective minimizes sum of the product of city population (Pj =
∑

i∈I nij) and its corresponding binary variable. CB model tries to minimize
this sum by allocating first stage vaccines to the cities. The second objective
maximizes the total health benefits for all groups. The third objective aims to
maximize benefit in regions where the disease is uncontrolled. We assume that
the benefit received late is of less value; hence multiply the benefit parameter bi
with a constant r.

Constraint 3.4 is the capacity constraint, ensuring that the total amount of
vaccines allocated in the first phase does not exceed the supply (N1). Constraints
3.5 and 3.8 are the disease control constraints. They ensure that zωj = 0 when dis-
ease controlled in region j in scenario ω. Constraint 3.6 is the capacity constraint
for the second stage allocations.
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Note that, we use zωj variables in constraint 3.7 to place an upper bound on
our second stage decision variables. If disease is controlled in the first stage, we
do not allocate any vaccines in the second stage. If disease is not controlled then
we have the following upper bound yωij ≤ 1− fij.

3.5 and 3.7 are nonlinear expressions due to the multiplication of fij’s and vω,jk ’s
and multiplication of fij’s and zωj . We use Gurobi Optimization to deal with non-
linearity in 3.5. We can easily linearize 3.7 by adding following constraints in the
CB model. Let Aω

ij = zωj fij, then we will have the following constraints in the
model instead of 3.7

Aω
ij ≤ zωj ∀i, j, ω (3.12)

Aω
ij ≤ fij ∀i, j (3.13)

Aω
ij ≥ fij − 2(1− zωj ) ∀i, j (3.14)

Aω
ij + yωij ≤ zωj ∀i, j, ω (3.15)

We use the lexicographic method. By doing so, we order the objective functions
according to their importance level. In our case, minimization of

∑
j

∑
ω z

ω
j Pj is

prioritized. We first solve the problem L1 and obtain the best value for the first
objective, denoted as ∆opt

1 .

(L1)min
∑

j∈J

∑

ω∈Ω

zωj Pj (3.16)

s.t3.4− 3.11 (3.17)

Next we solve the following problem L2. Again, we denote the optimal objec-
tive function value as ∆opt

2 .
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(L2)max
∑

j∈J

∑

i∈I

fijbinij (3.18)

s.t3.4− 3.11 (3.19)
∑

j∈J

∑

ω∈Ω

zωj Pj ≤ ∆opt
1 (3.20)

Finally, we solve the following problem L3 and obtain the final solution.

(L3)max
∑

j∈J

∑

ω∈Ω

∑

i∈I

pωyωijbirnij (3.21)

s.t3.4− 3.11 (3.22)
∑

j∈J

∑

ω∈Ω

zωj Pj ≤ ∆opt
1 (3.23)

∑

j∈J

∑

i∈I

fijbinij ≥ ∆opt
2 (3.24)

To obtain equitable solutions across different geographical regions where the
disease is uncontrolled after first stage decisions, we add the following constraint
to the model

mω =
∑

j∈J

zωj

Gω =

∑
j∈J |

∑
i∈I z

ω
j y

ω
ij −

∑
k∈I z

ω
j y

ω
kj|

2mω
∑

j∈J
∑

i∈I z
ω
j y

ω
ij

≤ ϵ

where Gω is the Gini index for each scenario and mω is the sum of controlled
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regions in that scenario. We linearize this constraint as follows

∑

i∈I

zωj y
ω
ij −

∑

k∈I

zωj y
ω
kj ≤ dωikj

∑

k∈I

zωj y
ω
kj −

∑

i∈I

zωj y
ω
ij ≤ dωikj

dωikj = dωkij∑

i∈I

∑

k∈I

∑

j∈J

dωikj ≤ 2mωϵ
∑

j∈J

∑

i∈I

zωj y
ω
ij

Since we multiply yωij and zωj we define an auxiliary variable F ω
ij for this mul-

tiplication to make it linear 1

∑

i∈I

F ω
i,j −

∑

k∈I

F ω
k,j ≤ dωikj

∑

i∈I

F ω
i,j −

∑

k∈I

F ω
k,j ≤ dωikj

3.2 Control-Control Model

1st stage decisions 2nd stage decisions End of horizon

N1 vaccine doses
with disease parameter estimates

K1,ψ1

Period 1 Period 2

(N1 +Nω
2 −

∑
i

∑
j
fijnij)

vaccine doses

Realization of Kω
2 , ψ

ω, Nω
2

∑
j
z1jPj

∑
j

∑
ω
pωzω2jPj

Figure 3.2: Two stage stochastic programming CC model.

Different from the previous model, we consider disease control mechanism in both
stages. In Figure 3.2, we can see the general setting for this model. Initially, we

1Note that we still have multiplicative terms in the formulation due to mω being a decision
variable. Nevertheless, as we already use the Gurobi solver setting the "NonConvex" parameter
to 2, this does not cause an issue.
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assume deterministic disease spread dynamics, K1, and available vaccine doses
N1. We make our first stage allocation decisions fij and as a result disease
control variables z1j’s take their values. In the second stage, uncertainties about
second stage vaccine availability, vaccine efficacy and disease spread realize. Then,
we make our second stage decisions yωij. We aim to control disease spread in
this model, hence use control maximization objective functions for both stages,
measured by multiplying city populations with z1j and zω2j variables.

In the Control-Control (CC) model, we have first stage and second stage dis-
ease control constraints and hence have both z1j, zω2j variables. We assume a
deterministic first stage next generation matrix (K1) and stochastic second stage
next generation matrix (K2). Similar to Control-Benefit model, we solve the
bi-objective model using lexicographic optimization.

min
∑

j

z1jPj (3.25)

min
∑

j

∑

ω

zω2jPj (3.26)

s.t3.4, 3.9, 3.6, 3.10 (3.27)

(1− ψ1fij)
∑

k

Kj
ikv

j
k −Mz1j ≤ vji ∀ω ∈ Ω,∀i ∈ I, j ∈ J

(3.28)

z1jfij + yωij ≤ z1j ∀ω ∈ Ω,∀i ∈ I,∀j ∈ J

(3.29)

z1j((1− ψω(fij + yωij)))
∑

k

Kω,j
2ikv

ω,j
2k −Mzω2j ≤ vω,j2i ∀ω ∈ Ω,∀i ∈ I, j ∈ J

(3.30)
∑

i

vji = 1 ∀j ∈ J

(3.31)
∑

i

vω,j2i = 1 ∀ω ∈ Ω,∀j ∈ J

(3.32)
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Instead of previous constraints 3.5 and 3.7, we use 3.28 and 3.30. By doing so,
first we try to control disease spread in the first stage then we allocate second stage
vaccines to the regions where disease is not controlled yet. Since the objective
functions minimize the total population residing in regions where the disease is
uncontrolled, the model allocates vaccines in both stages to reduce the disease
spread.

We need to linearize 3.29 as well. Let Aij = z1jfij. We replace 3.29 by the
following

Aij ≤ z1j ∀i, j (3.33)

Aij ≤ fij ∀i, j (3.34)

Aij ≥ fij − 2(1− z1j) ∀i, j (3.35)

Aij + yωij ≤ z1j ∀i, j, ω (3.36)

Similar to constraint 3.29, we make the following linearization in 3.30, where
A2

ijω = z1jy
ω
ij.

A2
ijω ≤ z1j ∀i, j (3.37)

A2
ijω ≤ yωij ∀i, j, ω (3.38)

A2
ijω ≥ yωij − 2(1− z1j) ∀i, j, ω (3.39)
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Chapter 4

Case Study

4.1 Data

Our case study focuses on Turkey demographics. We gathered population data
from the Turkish Statistical Institute. In Table 4.2, we can see the populations of
subgroups that we used in our problem settings. We divide the total population
into subgroups considering their age (15-24, 25-34, 35-44, 45-64 and 65+). We
constructed our age groups, the contact matrix and next generation matrix as in
[7]. For the disease related parameters we rely on recent literature. For example,
a similar subgroup setting is used in [23] and we use their disease parameters in
our study. We use the parameter values used in [24] to calculate next generation
matrix.

To obtain health benefits for each subgroup we do the following steps. Fol-
lowing the work of [25], we obtain health benefits for specific subgroups based
on their corresponding COVID-19 risk levels. This approach involves considering
risk classifications for mortality and hospitalization across different age groups,
utilizing data from the Centers for Disease Control and Prevention (CDC) [26].

In Table A.1, we can see these risk factors of COVID-19 for different age
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groups. We can also use the Hospitalization column of Table A.1. Following the
same steps we obtain balt values in Table A.2. Our age groups slightly differ from
theirs so we did a weighted average for age groups to obtain the benefit values for
our model. The impact of the disease varies asymmetrically across the popula-
tion, which leads decision makers to implement diverse vaccination strategies that
prioritize specific age groups. As a result, segmenting the population becomes
essential, particularly in situations of limited vaccine availability. Governments
applied various vaccine rollout plans. For example in Turkey, the health minister
announced a priority list, according to which vaccines were allocated during the
early phase of the vaccination campaign (see [27]).

4.2 Instances

We consider two different problem instances (cases) for testing our stochastic
programming models. The nature of the problem is similar in both instances,
we only construct subgroups differently. In the first case, population is divided
into age based subgroups and we allocate vaccines to subgroups living in different
cities. In the second case, we divide the population into subgroups according to
their age and consider only one geographic region. We consider Ankara for our
one-city age groups case.

Table 4.2 shows the population data that we used for Case 1. According to
Turkish Statistical Institute, 67.9% , 14.8% and 17.3% of total population live in
large cities, medium sized cities and urban areas, respectively. To come up with
a representative example, we scaled the populations accordingly for the sample
of cities we considered.

For disease spread related parameters we use the following values in Table
4.1. The contact matrix β is also a disease parameter when calculating the next
generation matrix (K), which we set as in [7]. For our scenario generations, we
consider three different K matrices (denoted as Kh, Km and Kl), five levels of
second stage vaccinations and three levels of vaccine efficacy.
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Table 4.1: Parameters used to generate matrix K

Kh Km Kl

γ 1.80 1.40 1
δ 1.50 1 0.50
α 0.15 0.35 0.45
p 0.50 0.50 0.50

Table 4.2: City and age group populations for case 1

Age Groups İstanbul Ankara İzmir Bursa Antalya

15-24 2350951 852618 577161 432151 367308

25-34 2689746 895706 654191 479208 402383

35-44 2764998 933837 719703 519782 450324

45-64 3627568 1406509 1164290 777773 669124

65+ 1210866 555385 553378 321334 251256

Total 12644129 4644055 3668723 2530248 2140395

In our numerical analysis we assume that all scenarios are equally likely, i.e.
pω’s are equal. We present our results of 2 Stage SP models for two cases. We
used three K matrices, three levels of efficacy (ψ) values and lastly five levels of
the second stage supply (N2) to construct our scenarios. We also assume that
total vaccines available in the first stage is 40 % of the total population.

• Case 1 Multiple Cities-Age Subgroups

• Case 2 Single City-Age Subgroups
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4.3 Case 1: Multiple Regions-Age Subgroups

4.3.1 Control Benefit Model Results

We first solve Control-Benefit model and obtain first and second stage decisions
for this problem. Figure 4.1a summarizes the first stage allocations, showing the
amount of vaccines allocated to each city. It is seen that first stage vaccines
are allocated to Istanbul, Bursa and Antalya. Istanbul is expected to receive
the largest share due to its higher population. Our CB model gives priority
to densely populated cities, as it aims to maximize the population in disease-
controlled regions.

In Figure 4.1b we can observe the age groups that receive vaccine doses in
the first stage. It is noticeable that relatively higher age groups (45-64 and 65+)
receive a smaller proportion of the vaccines. This allocation is attributed to the
CB model’s focus on controlling disease spread in the first stage, followed by con-
sidering total health benefit received in the second stage. Disease transmission
among younger people is more prominent than among the elderly in our context,
which is consistent with the dynamics of the COVID-19. So in the first stage, vac-
cine allocation in Istanbul leads to complete vaccine coverage for 15-24 age group,
35-44 age group and 65+ age group. Then, about half of the 25-34 age group in
Istanbul is vaccinated. In total, 61.5 % of Istanbul’s population is vaccinated in
the first stage. Figure 4.1b illustrates similar results for Bursa and Antalya. In
Bursa the 15-24 age group is fully vaccinated, followed by almost everyone 25-34
age group. For 35-44 age group, approximately 410 thousand vaccines are allo-
cated, covering around 80 % of this subgroup residing in Bursa. Lastly, the model
allocates 320 thousand vaccines to 65+ age group, which corresponds to nearly
the whole group. In Antalya, 330 , 240 and 250 thousand doses are allocated for
the 15-24 and the 25-34 and 65+ age groups, resulting in vaccination coverage of
90 %, 60 %, and 100 %, respectively.

We observe that the first-stage vaccinations are allocated in a manner that
results in Bursa and Antalya becoming controlled in optimistic scenario. Ankara
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and Izmir receive no vaccine doses, since the model prioritizes disease control. In
other words, the model emphasizes the importance of effectively controlling the
spread in one city rather than allocating vaccines to another city if that will not
be sufficient to control the disease.

Istanbul
75.87%

Bursa
16.06%

Antalya
8.07%

(a) First stage vaccine shares per
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Figure 4.1: First stage allocations case 1 CB model.

We then examine the second stage allocations for some sample scenarios.
In Appendix B we provide the first and second stage results for an optimistic
scenario. Figures 4.2-4.3 illustrate the second-stage allocations corresponding
to medium and pessimistic scenarios, respectively. We provide information on
whether the disease is controlled or not (C: Controlled, NC: Not controlled).

First Stage

61.5%

Second Stage

28.69%

Not Vaccinated

9.81%

(a) Istanbul

(NC).

Second Stage

58.98%

Not Vaccinated

41.02%

(b) Ankara

(NC).

Second Stage

66.44%

Not Vaccinated

33.56%

(c) Izmir

(NC).

First Stage

65%

Second Stage

30.74%

Not Vaccinated
4.21%

(d) Bursa

(NC).

First Stage

38.7%

Second Stage

31.26%

Not Vaccinated

30.07%

(e) Antalya

(NC).

Figure 4.2: First and second stage allocations: case 1 CB, medium scenario (Km,
ψ =0.7, N2=0.3).
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38.67%
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31.26%

Not Vaccinated

30.07%
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Figure 4.3: First and second stage allocations: case 1 CB, pessimistic scenario
(Kh, ψ =0.5, N2=0.2).

In the medium and pessimistic scenarios, slight changes can be observed in
the allocation of second-stage vaccines, as depicted in Figures 4.2 and 4.3. The
medium scenario sees a higher allocation of vaccines to Ankara and Izmir. In this
case, first-stage vaccinations are unable to control the disease in any of the cities,
leading to the allocation of second-stage vaccines across all of them. The coverage
levels for each city are as follows: Istanbul at 29%, Ankara at 59%, Izmir at 66%,
Bursa at 31%, and Antalya at 31%. In this scenario, the prioritization of second-
stage vaccinations starts with elderly individuals and progresses to younger ones,
guided by their elevated health benefits. As the disease persists beyond the first
stage, the model allocates vaccines to the most vulnerable population in the
second stage.

Similarly, in the pessimistic scenario, the effectiveness of first-stage vaccina-
tions is insufficient to curb disease spread, owing to the lowest level of vaccine
efficacy and a scenario of heightened disease transmission. Consequently, second-
stage vaccinations are directed towards the elderly populations residing in Ankara,
İzmir, Bursa, and Antalya. In this case, since the 65+ age group is already cov-
ered in the first stage for Bursa and Antalya, the second stage targets the 45-64
age groups in these cities. The coverage levels achieved through second-stage
vaccinations are 42.21% for Ankara, 46.82% for İzmir, 30.74% for Bursa, and
31.26% for Antalya. Notably, Bursa achieves an overall coverage level of 95%,
while Antalya reaches 70% coverage. In Table 4.3 and 4.4 we can see the coverage
levels of age groups in the first stage and in the second stage.
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Table 4.3: First stage coverage CB model case 1 (%)

Istanbul Bursa Antalya

15-24 100 100 90

25-34 53 98 60

35-44 100 80 0

45-64 0 0 0

65+ 100 100 100

Total 61.5 65 39

Table 4.4: Second stage coverage CB model case 1 (%)

Istanbul Ankara Izmir Bursa Antalya

P M P M P M P M P M

15-24 0 0 0 0 0 0 0 0 0 0

25-34 0 0 0 0 0 0 0 0 0 0

35-44 0 0 0 83 0 100 0 0 0 0

45-64 0 100 100 100 100 100 100 100 100 100

65+ 0 0 100 100 100 100 0 0 0 0

Total 61.5 90 42 59 47 66 31 31 31 31

The main difference between medium scenario and pessimistic one is that Is-
tanbul does not receive any second stage vaccinations in the pessimistic scenario
as there is less vaccine supply. The model allocates the same amount of vaccines
to Bursa and Antalya but fewer vaccines to Ankara and Izmir. This can be ex-
plained by the fact that health benefits for each subgroup in different cities are
the same.

Overall, these observations highlight the dynamic adjustments the model
makes in response to different scenarios, showing its adaptive nature in opti-
mizing vaccine allocation and disease control outcomes. Decision makers can
make the first stage allocations then observe the nature of the disease spread.
Accordingly, they can make further allocations. This approach allows for a more
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tailored and effective distribution strategy, ensuring that limited vaccine resources
are maximally utilized.
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Figure 4.4: Second stage allocations CB case 1.

Figure 4.4a and 4.4b illustrate second stage allocations with respect to age
groups for pessimistic and medium scenarios. While in the optimistic scenario
the spread is controlled in all cities, rendering the second stage vaccinations un-
necessary (see Appendix B); in medium (and hence the pessimistic) ones it is
impossible to control disease spread in the first stage. Since the model allocates
vaccines according to health benefits of the subgroups in the second stage, prior-
ity is given to elderly people who live in the uncontrolled cities. The CB model
allocates same amount of vaccines to 45-64 and 65+ age groups in Ankara, Izmir,
Bursa and Antalya in both scenarios. Since the 65+ age group in Istanbul is
vaccinated in the first stage, CB model does not allocate vaccines to Istanbul
in pessimistic scenario. Note that the health benefits for the 45-64 age group is
same among the 5 cities. Therefore, our allocation strategy is to cover fully 45-64
age group in Bursa and Antalya instead of implementing further vaccination in
Istanbul.

It is important to note that only 20 % of the total population receives second
stage vaccinations in the pessimistic scenario. If the disease cannot be controlled
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through the first stage allocations, then vaccines are allocated starting from the
65+ age group to younger subgroups. Moreover vaccines are allocated to fully
cover one subgroup instead of partially covering the same age population in dif-
ferent cities.

As we can observe from Figure 4.4b, in the medium scenario, we observe
Istanbul receiving second-stage vaccinations due to the greater vaccine supply
available, as assumed for this scenario. These additional vaccines are allocated,
beginning with the 45-64 age group in Istanbul, ensuring full coverage for this
subgroup. Subsequently, CB model directs second-stage vaccines towards the 35-
44 age group in Ankara and Izmir. Given the vaccination of the 35-44 age group
in Istanbul, our second-stage strategy prioritizes the vaccination of the same age
group in the most densely populated cities, rather than distributing them between
Bursa and Antalya.

Value of Stochastic Solution: In order to obtain Value of Stochastic Solu-
tion (VSS), we solve the so called Expected Value (EV) problem using expected
values of the random parameters. Then, we solve the stochastic programming
(SP) model fixing the first stage allocations obtained from EV (L2) and obtain
expected result of using the EV solution (EEV). VSS is the difference between
objective function values of SP model (RP) and EEV.

In the next Table 4.5 we see the objective function values for the CB model for
Case 1 instance. We also add the EEV solution to assess the value of stochastic
solution (VSS) of the CB model. Additionally, we compare the total number of
uncontrolled regions (without considering their populations) in all scenarios. For
the primary objective of minimizing the number of people in uncontrolled regions,
the CB 2 Stage SP model is preferable as it takes into account the uncertainty
for both stages as opposed to EEV model, where the first stage decisions are
made with respect to expected values of random parameters. It is seen that the
SP model makes decisions that are better with respect to the primary objective,
i.e. controls the disease better. For our primary objective the value of stochastic
solution VSS=EEV-RP is 3,891,043 which is approximately 33 % of RP.
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Note that we only maximize first stage benefits for the regions in which the
disease can not be controlled given the first stage vaccinations. Since such uncon-
trolled cases is more in the EEV solution, the first stage benefits are higher. For
the last objective where we calculate second stage benefits, the stochastic model
also outperforms the EEV solution. Overall, the results verify that if we do not
include randomness and solve only the EEV problem, we will have an inferior so-
lution compared to the that of the SP model. The total number of uncontrolled
regions is also less in the RP solution than the EEV solution. Again, it is due
to considering uncertainty instead of taking only mean values for the random
parameters. This shows the benefit of using the 2 stage stochastic programming
model.

Table 4.5: Objective function values for control benefit model case 1

Criterion RP EEV

# of people in uncontrolled regions 11,551,265 15,442,308

Total first stage benefit in regions uncontrolled 154,054,622 291,787,923

Total second stage benefit in regions uncontrolled 54,387,155 26,843,317
∑

ω

∑
j z

ω
j (out of 225) 110 140

Incorporating Equity: Next, we present the results considering equity con-
straints for the CB model for Case 1. For Case 1, we define an equity constraint
to allocate vaccines to subgroups who live in cities in the uncontrolled scenarios.
Note that these equity constraints are related with the second stage allocations,
hence first stage decisions stay the same. Moreover, in optimistic and medium
scenarios, the allocations are similar with equity and without equity constraints.
We put these results in Appendix B. In the optimistic scenario, we observe the
same second stage results when we consider equity; because in this scenario, the
disease is already controlled with first stage vaccine decisions. For the medium
scenario, we also observe similar results. As the second stage vaccine allocation
is not scarce and the model allocates vaccines in a balanced manner across cities.
Lastly, in the pessimistic scenario second stage vaccine availability is very limited;
hence solutions with and without equity considerations are significantly different.
For this reason, we only discuss pessimistic scenario results, which are seen in
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Figure 4.5.
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Figure 4.5: First and second stage allocations, case 1 CB, pessimistic scenario
with fairness constraint (Kh, ψ =0.5, N2=0.2,ϵ = 0.3).

Recall that we use the ϵ parameter to control Gini coefficient level. The prob-
lem becomes infeasible when ϵ is very low (when ϵ = 0.2). As we can see from
Figure 4.5,as opposed to CB model without considering equity, Istanbul receives
second stage vaccinations to cover 16 % of its population, which results in the
others receiving less when there is equity concern between cities. This is also seen
in detail in Figure 4.4a.
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Figure 4.6: Second stage allocations CB model with and without fairness con-
straint, case 1.

From the perspective of policy makers, the results with equity constraints can
serve as a valuable tool to guide vaccine allocation strategies in instances where
a pessimistic scenario materializes during the second stage. In such cases, the
equity constraint encourages partial vaccination of age groups across different

31



cities. In Table 4.6, we can observe the age coverage of five cities for the CB
model with equity constraint.

Table 4.6: Second stage coverage CB with fairness case 1 (%)

Istanbul Ankara Izmir Bursa Antalya

2nd Stage (P) 2nd Stage (P) 2nd Stage (P) 2nd Stage (P) 2nd Stage (P)

15-24 0 0 0 0 0

25-34 0 0 0 0 0

35-44 0 0 0 0 0

45-64 56 28 30 82 82

65+ 0 100 100 0 0

Total 16 21 25 25 26

As expected, ensuring fairness results in a decrease in the overall total benefit.
Table 4.7 shows the objective function values of CB model with equity constraints
for Case 1 and without equity consideration, in which we see the decline in the
total second stage benefit. The difference between the two can be considered as
the price of equity in this case.

Table 4.7: Comparison of CB results with and without fairness constraints

Criterion RP (Gini) RP

# of people in uncontrolled regions 11,551,265 11,551,265

Total first stage benefit in regions uncontrolled 154,054,622 154,054,622

Total second stage benefit in regions uncontrolled 30,714,685 54,387,155
∑

ω

∑
j z

ω
j (out of 225) 110 110

4.3.2 Control Control Model Results

We then solve the Control-Control (CC) model for Case 1 with same parameter
values. Recall that the main difference between the two models (CB - CC) is
that the latter has disease control variables in both stages and aims to minimize
the total number of people in disease uncontrolled regions both in the first and
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second stages. Hence the CC model makes first stage allocations considering an
additional next generation matrix K1, which is deterministic.

Figure 4.7a illustrates the first stage vaccine shares per city obtained in the
CC model. Istanbul receives the largest allocation at 48%, followed by Izmir
at 17%, and Ankara at 15%. Bursa gets 11% of the allocation, while Antalya
receives the smallest portion at 8%. In Figure 4.7b and Table 4.8 we see the first
stage vaccinations and coverage of age groups, respectively. As the first stage
allocations are done so as to control disease spread given K1, we observe that
CC model prioritizes young groups more compared to CB model. For the same
reason, we also see that the first stage vaccines are more evenly allocated between
cities.
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Figure 4.7: First stage allocations CC case 1.

Table 4.8: First stage coverage CC case 1 (%)

Istanbul Ankara Izmir Bursa Antalya

15-24 100 0 100 100 100

25-34 52 5 100 71 51

35-44 0 99 31 0 0

45-64 0 0 0 0 0

65+ 100 100 100 100 100

Total 39 33 49 43 39
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We can see from Figure 4.7b and Table 4.8, that compared to CB model (see
Figure 4.1b) the CC model does not allocate vaccines to 35-44 age group in
Istanbul and Bursa. Moreover, as 25-34 age group has the highest transmission
rate, vaccines are allocated to this subgroup in every city to control disease spread.
Again, due to the its higher population, most of the vaccines in the first stage is
allocated to Istanbul.

In the second stage, vaccines are allocated to the cities where disease control
is not achieved after first stage vaccinations. In this setting, only Ankara stays
uncontrolled after the first stage allocation. Figure 4.8, illustrates results per
cities for medium scenario. We provide the optimistic scenario results in Appendix
C.
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Figure 4.8: First and second stage allocations case 1 CC medium scenario (Km,
ψ =0.7, N2=0.3).
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Figure 4.9: First and second stage allocations case 1 CC pessimistic scenario (Kh,
ψ = 0.5, N2=0.2).
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Figure 4.10: Second stage vaccinations for pessimistic and medium scenarios CC
case 1.

In Figures 4.10a and 4.10b, we see the second stage solution for the pessimistic
scenario and medium scenarios, respectively. Table 4.9 shows the age group
coverage levels achieved with these allocations.

Table 4.9: CC model case 1 second stage coverage (%)

Ankara

2nd Stage (P) 2nd Stage (M)

15-24 100 100

25-34 93 95

35-44 0 80

45-64 10 7

65+ 20 20

Total 41 61

In both pessimistic and medium scenario, priority is given to young people
as this decision will lead to disease free state at the end of the second stage.
Although in medium case 35-44 age group receive a very large proportion of the
vaccines, in the pessimistic scenario vaccines are not allocated to 35-44 age group.
The model prefers to allocate vaccines to the same cities and same age groups if
other possible allocation would not change the disease control status at the end
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of the second stage.

Value of Stochastic Solution: In Table 4.10 we see the objective function
values of the Control-Control (CC) model (RP) and the EEV model. We observe
that the CC model objective values are better than the EEV results, which indi-
cates that CC model control disease in first and second stage better than EEV
model. For our primary objective the value of stochastic solution VSS=EEV-RP
is 20,983,495 which is 450 % of RP.

Note that CC model focuses on disease control rather than considering health
care benefits. Nevertheless, we also report the total benefit values of the RP and
EEV solutions. We see that RP solution leads to lower health benefits. This
is because young subgroups have more contact and transmission but the health
benefits from vaccination are less compared to those of the elderly.

Table 4.10: Objective function values for CC case 1

Criterion RP EEV

# of people in uncontrolled regions 1st stage 4,644,055 25,627,550

# of people in uncontrolled regions 2nd stage 69,660,825 332,038,911

Total first stage benefit 188,593,299 219,750,738

Total second stage benefit in regions uncontrolled 11,073,302 12,964,208
∑

ω

∑
2j z

ω
j (out of 225) 15 67

4.4 Case 2: Single Region- Age Subgroups

4.4.1 Control Benefit Model Results

We now discuss the results for Case 2 whose population data is shown in Table
4.2. We consider a single city (Ankara) and the age groups in this city. As we
have only one city in this setting, if the disease is controlled in a scenario, there
will be no need for second stage vaccinations in that scenario. Figure 4.11 shows
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the allocations per age groups in the Control Benefit model for Case 2. With
these allocations, 11% of 35-44, 85% of 45-64 and 100% of 65+ subgroups can be
vaccinated.

35-44 years old

6%

45-64 years old

64%

65+ years old

30%

Figure 4.11: First stage allocations age groups case 2 CB model.

In Figures 4.14a and Figure 4.14b , we show the second stage vaccinations per
age groups in the pessimistic (N2 = 20% of the population, ψ = 0.5, Kh) and
medium (N2 = 30% of the population and ψ = 0.7, Km ) scenarios, respectively.
This model becomes a continuous knapsack problem in the second stage when
there is only one city and disease is not controlled in the first stage. Hence,
it allocates second stage vaccines in an order, starting from older people as the
vaccine related benefits are higher for these groups. Note that since 65+ group is
totally vaccinated in the first stage, the allocation starts from the next age group
of 45-64. In the medium scenario, as we can see from the Figure 4.14b that 25-34
group also gets vaccines as there is more supply.

35-44 years old

70%

45-64 years old

30%

(a) Second stage allocations per

city CB case 2 pessimistic scenario

25-34 years old

25%

35-44 years old

60%

45-64 years old
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(b) Second stage allocations per

city CB case 2 medium scenario

Figure 4.12: Second stage allocations CB case 2.
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Value of Stochastic Solution: In Table 4.11, we see objective values of
the lexicographic solution to the corresponding CB model. Similar to Case 1,
we observe that CB model finds better results compared to the EEV model,
where we obtain first stage solutions considering only expected values of the
random parameters. First stage and second stage benefits are better in the EEV
solution. However, according to our multi objective setting, objective functions
are hierarchically important for us, hence the stochastic programming solution
outperforms the EEV solution.

Table 4.11: Objective function values for CB case 2

Criterion RP EEV

# of people in disease-controlling scenarios 116,101,375 139,321,650

Total first stage benefit in regions uncontrolled 52,974,056 53,817,796

Total second stage benefit in regions uncontrolled 4,690,233 5,347,032
∑

ω z
ω (out of 45) 25 30

4.4.2 Control Control Model Results

Lastly, we solve the CC model for Case 2 vaccine allocations. Figure 4.13 shows
the first stage vaccine allocations per age group. As opposed to CB model, for
Case 1, CC model allocates vaccines 15-24 years old, 45-64 and 65+ years old.

15-24 years old

40%

45-64 years old

43%

65+ years old

17%

Figure 4.13: First stage allocation per age groups case 2 - CC model.
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Figure 4.14: Second stage allocations CC case 2.

Figure 4.14b illustrates the second stage allocations for pessimistic and medium
scenarios. As expected, the CC model prioritizes younger groups to control dis-
ease spread in the second stage as much as possible. The difference between the
pessimistic scenario and the medium one is that in the pessimistic scenario, 15-24
age group receives second stage vaccines however in the medium one this group
does not receive any vaccine. This is due to the disease transmission dynamics.
In the pessimistic scenario, since disease spread is assumed to be at its maximum
level, 15-24 age group is prioritized due to their high interaction rate between
other groups.

So, in the first stage, the model allocates vaccines in such a way that with
additional second stage vaccinations the disease is under control in more scenarios.

For CB model, if disease spread can be controlled through the first stage allo-
cations in all scenarios, then vaccines are allocated to age groups that have higher
disease transmission rates in the first stage. If first stage allocations do not lead
to disease control in all scenarios, then vaccines are allocated to the elderly people
as well in the first stage. Because by doing so, the model reaches more second
stage benefits for the second objective.

In the CC model, we focus on giving vaccines first to age groups that tend
to spread the disease more. If we manage to control the disease effectively with
the first batch of vaccines across all scenarios, we then direct more vaccines to
younger age groups. But when the disease remains a challenge in all scenarios,

39



we mix up how we initially allocate vaccines. If we also focus on disease control
in the second stage, then according to our results it is better to allocate vaccines
to younger individuals.
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Chapter 5

Conclusion

For diseases like COVID-19 that spread very quickly, vaccination is an effective
strategy to control spread. As of August 2023 COVID-19 has been under control
thanks to the world wide mass vaccination efforts. However, as seen in this
recent pandemic, in the early phases of vaccination, additional strategies such as
lockdown may also be necessary. In these phases, effective allocation strategies
are key to avoid such undesired policies as much as possible. Motivated by this,
we study the vaccine allocation problem under scarce supply.

This problem boils down to policy makers’ deciding on the coverage of various
population subgroups under various uncertain factors such as supply amount,
disease spread dynamics and the vaccine efficacy. We formulate this problem using
two two-stage stochastic programming models, which we call control-benefit and
control-control based on the criteria used. We demonstrate usability our models
on representative case studies that we constructed using population data. Our
results show that both models have positive value of stochastic solutions. This
indicates incorporating randomness in the model is significantly beneficial for
vaccine allocations. Note that we use disease related data from COVID-19 for
exemplary purposes but the framework can be easily adopted for other diseases.

The significance of this study lies in its potential to inform the development
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of more effective vaccine allocation policies through providing valuable insights
for policymakers and health officials. There are, however, some limitations to
our work. The disease spread can be much complicated than we assumed in the
models. We assume in the second model that once a region is controlled with
respect to the corresponding next generation matrix, it will stay as controlled;
i.e. the mutations will not increase the reproduction rate above the threshold.

We assumed a risk-neutral approach while a risk-averse one could also be used.
An example would be extending the formulations using conditional value at risk
(CVaR).Widely used health metrics such as quality-adjusted life years (QALY)
could be incorporated into our models. Depending on the nature of the problem
and the preferences of the policy makers, the objectives of the models can also
be modified.
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Appendix A

Disease Spread Parameters

The contact rates between subgroups are given in the following equation. These
subgroups are categorized as follows: 15-24, 25-34, 35-44, 45-64 and 65+ age
groups. We refer to [7] for this contact matrix. When the contact rates are
higher between subgroups, the disease tends to spread more among them. Our
calculations of the next generation is based on the contact matrix, which affects
the constraints on disease control.

β =




0.305 0.132 0.205 0.099 0.041

0.032 0.923 0.158 0.074 0.028

0.042 0.132 0.183 0.099 0.041

0.032 0.101 0.158 0.067 0.029

0.032 0.101 0.158 0.074 0.032




The impact of COVID-19 varies asymmetrically among individuals of different
age groups, leading to distinct health outcomes for each subgroup. We refer
to [26] for these risk factors of age groups. Table A.1 presents the risk factors
associated with infection, hospitalization, and fatality rates across various age
groups. Because our age groups are different than what is used in the literature,
we adjusted these risk factors using the the population sizes. In our case studies,
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we use vaccine benefits column of the Table A.2, which is the weighted average
of hospitalization column of the A.1.

Table A.1: Risk for COVID-19 infection, hospitalization, and death by age group,
CDC

Infection Hospitalization Death
0-4 years old < 1 2 1
5-17 years old 1 1 1
18-29 years old 2 6 1
30-39 years old 2 10 4
40-49 years old 2 15 10
50-64 years old 2 25 25
65-74 years old 1 40 60
75-84 years old 1 65 140
85+ years old 2 95 340

Table A.2: Benefit values for different age groups

Age Groups Vaccine Benefits
15-24 3
25-34 8
35-44 12
45-64 20
65+ 50

48



Appendix B

Detailed Results CB
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Figure B.1: Allocations in an optimistic scenario case 1 CB model (Kl, ψ =0.9,
N2=0.4).
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Figure B.2: First and second stage allocations Case 1 CB medium scenario (Km,
ψ =0.7, N2=0.3,ϵ = 0.3)
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Appendix C

Detailed Results CC
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Figure C.1: First and second stage allocations case 1 CC scenario (Kl, ψ =0.9,
N2=0.4).
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Figure C.2: First and second stage allocations case 1 CC scenario (Kh, ψ = 0.5,
N2=0.2).
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