
S3-TM: SCALABLE STREAMING SHORT
TEXT MATCHING

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Fuat Basık

December, 2014

S3-TM: Scalable Streaming Short Text Matching

By Fuat Basık

December, 2014

We certify that I have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Hakan Ferhatosmanoğlu (Advisor)

Asst. Prof. Dr. Buğra Gedik (Co-Advisor)

Prof. Dr. Özgür Ulusoy

Asst. Prof. Dr. Tarık Arıcı

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

S3-TM: SCALABLE STREAMING SHORT TEXT
MATCHING

Fuat Basık

M.S. in Computer Engineering

Advisor: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

Co-Advisor: Asst. Prof. Dr. Buğra Gedik

December, 2014

Micro-blogging services have become major venues for information creation, as

well as channels of information dissemination. Accordingly, monitoring them for

relevant information is a critical capability. This is typically achieved by reg-

istering content-based subscriptions with the micro-blogging service. Such sub-

scriptions are long running queries that are evaluated against the stream of posts.

Given the popularity and scale of micro-blogging services like Twitter and Weibo,

building a scalable infrastructure to evaluate these subscriptions is a challenge.

To address this challenge, we present the S3-TM system for streaming short text

matching. S3-TM is organized as a stream processing application, in the form of

a data parallel flow graph designed to be run on a data center environment. It

takes advantage of the structure of the publications (posts) and subscriptions to

perform the matching in a scalable manner, without broadcasting publications or

subscriptions to all of the matcher instances. The basic design of S3-TM uses a

scoped multicast for publications and scoped anycast for subscriptions. To fur-

ther improve throughput, we introduce publication routing algorithms that aim

at minimizing the scope of the multicasts. The first set of algorithms we de-

velop are based on partitioning the word co-occurrence frequency graph, with the

aim of routing posts that include commonly co-occurring words to a small set of

matchers. While effective, these algorithms fell short in balancing the load. To

address this, we develop the SALB algorithm, which provides better load balance

by modeling the load more accurately using the word-to-post bipartite graph. We

also develop a subscription placement algorithm, called LASP, to group together

similar subscriptions, in order to minimize the subscription matching cost. Fur-

thermore, to achieve good scalability for increasing number of nodes, we introduce

simple yet effective techniques to handle workload skew. Finally, we introduce

iii

iv

load shedding techniques for handling unexpected load spikes with small impact

on the accuracy. Our experimental results show that S3-TM is scalable. Further-

more, the SALB algorithm provides more than 2.5× throughput compared to the

baseline multicast and outperforms the graph partitioning based approaches.

Keywords: Scalability, Stream Processing, Publish/Subscribe Systems, Text

Matching.

ÖZET

ÖLÇEKLENEBİLİR AKAN KISA METİN EŞLEME

Fuat Basık

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Doç. Dr. Hakan Ferhatosmanoğlu

Tez Eş Danışmanı: Y. Doç. Dr. Buğra Gedik

Aralık, 2014

Mikroblog hizmetleri bilginin üretilmesi ve yayılmasında temel araçlar haline

gelmiştir. Dolayısıyla, bu hizmetlerin gözlemlenmesi, gerekli bilgiye ulaşmada kri-

tik bir yetenektir. Bu izleme genelde mikroblog hizmetlerine içerik tabanlı abone-

likler kaydedilmesi sayesinde yapılmaktadır. Abonelikler, akan yayınlar üzerinde

sürekli çalışan sorgular olarak düşünülebilinir. Bu aboneliklerin değerlendirilmesi,

Twitter ve Weibo gibi sistemlerin popülerliği ve ölçeği düşünüldüğünde, oldukça

önemli bir sorundur. Bu sorunu aşmak için biz, akan kısa metin eşleme sis-

temi olan S3-TM’i sunuyoruz. S3-TM akan veri işleme uygulaması olarak orga-

nize edilmiş ve veri merkezi ortamında çalışacak şekilde, veri paralelliği sağlayan

bir akış ağı olarak tasarlanmıştır. Yayınların ve aboneliklerin yapısını avan-

taja çevirerek eşlemeyi ölçeklenebilir olarak yapan S3-TM, yayınları ve abone-

likleri tüm uçlara aktarmamakta, yayınları birden fazla uca aktarırken, abonelik-

leri sadece bir uca aktarmaktadır. Ayrıca, sunduğumuz algoritmalar, verimliliği

daha da artırmak için, yayınların aktarıldığı uç sayısını minimuma indirmek-

tedir. Tezde önerdiğimiz ilk algoritmalar, kelimelerin ortak görünme grafik-

lerini bölümlere ayırarak ortak kelimelerin sıkça geçtiği yayınları tüm eşleme op-

eratörlerinin küçük bir kümesine yollamayı hedeflemektedir. Bu algoritmalar ver-

imli olmalarına rağmen yükü eşitlemede yetersiz kalmışlardır. Bu problemi aşmak

için, kelime ve yayınların çift taraflı grafiğini verimli bir şekilde bölümleyerek

modelleme yapan ve daha dengeli yük dağılımı sağlayan SALB algoritmasını

geliştirdik. Aynı zamanda, benzer abonelikleri aynı uçlara yönlendirerek gru-

playan ve eşleme işleminin yükünü minimuma indiren LASP algoritmasını ek-

ledik. Ayrıca, artan uç sayısında daha iyi bir ölçeklenebilirliğe ulaşmak için iş

yükündeki çarpıklıkları çözen basit ama verimli teknikler geliştirdik. Son olarak

eşleme doğruluğu üzerinde çok az bir etki yapan yük azaltma teknikleriyle, bek-

lenmeyen yük artışlarını çözdük. Deneysel sonuçlarımız S3-TM algoritmasının

ölçeklenebilir olduğunu göstermektedir. Buna ek olarak, SALB algoritması temel

v

vi

algoritmadan 2.5 kat olmak üzere, kelimelerin ortak görünme grafiği bölümleme

algoritmalarından da daha yüksek performanslı olduğu gözlemlenmektedir.

Anahtar sözcükler : Ölçeklenebilirlik, Akan veri işleme, Yayın/Abone Sistemleri,

Metin eşleme.

Acknowledgement

First and foremost, I owe my deepest gratitude to my supervisors, Assoc. Prof.

Dr. Hakan Ferhatosmanoğlu, and Asst. Prof. Dr. Buğra Gedik for their encour-

agement, motivation, guidance and support throughout my studies.

Special thanks to Prof. Dr. Özgür Ulusoy, and Asst. Prof. Dr. Tarık Arıcı for

kindly accepting to be in my committee. I owe them my appreciation for their

support and helpful suggestions.

I would like to thank to my brother and his lovely wife Uğur and Seda for always

being cheerful and supportive. None of this would have been possible without

their love. I am tremendously grateful for all the selflessness and the sacrifices

you have made on my behalf.

I consider myself to be very lucky to have the most valuable friends İrem, Anıl,

Didem, Arif, Fatih and Caner. I would also like to thank to my special office

mates Elif, Abdurrahman, Doğukan, Mehmet and Kaan for sharing their knowl-

edge and supporting me all the time.

I would like to thank TÜBİTAK for supporting me in this thesis.

Lastly, I would like to thank my mother, for all her support, love and devotion.

I am sure that, she is proud of me for this work.

vii

Contents

1 Introduction 1

2 Architecture 6

3 Publication Routing 10

3.1 Formalization . 10

3.2 Word Network Partitioning . 13

3.3 SALB: Spread-Aware Load Balancing 16

4 Subscription Matching and Placement 19

4.1 Matching . 19

4.2 Load-Aware Subscription Placement 20

5 Extensions 23

5.1 Skew Handling . 23

5.2 Load Shedding . 25

5.2.1 What load to shed . 25

viii

CONTENTS ix

5.2.2 How much load to shed . 26

6 Experimental Evaluation 28

6.1 Datasets . 29

6.2 Scalability . 30

6.3 Subscription Awareness . 34

6.4 Concept Drift . 37

6.5 Load Shedding . 38

6.6 Learning Time . 40

7 Related Work 41

8 Conclusion 44

List of Figures

2.1 Overall architecture of the S3-TM system 7

3.1 Word network partitioning algorithms: (a) Cut minimizing (gC),

(b) Co-frequency cut minimizing (gFC), (c) Co-frequency cut min-

imizing, frequency load balancing (gFCL), (d) Co-frequency cut

minimizing, normalized frequency and co-frequency load balanc-

ing (gNFCL). 13

4.1 Number of lookup ops. 21

6.1 Word frequencies. 29

6.2 Relative throughput, tweet based subscriptions. 31

6.3 Relative throughput, topic based subscriptions. 31

6.4 Throughput, tweet based subscriptions. 31

6.5 Throughput, topic based subscriptions. 31

6.6 Spread, tweet based subscriptions. 32

6.7 Spread, topic based subscriptions. 32

6.8 Load imbalance, tweet based subscriptions. 33

x

LIST OF FIGURES xi

6.9 Load imbalance, topic based subscriptions. 33

6.10 Relative throughput, tweet based subscriptions. 34

6.11 Relative throughput, topic based subscriptions. 34

6.12 Throughput, tweet based subscriptions. 35

6.13 Throughput, topic based subscriptions. 35

6.14 Spread, tweet based subscriptions. 36

6.15 Spread, topic based subscriptions. 36

6.16 Load imbalance, tweet based subscriptions. 36

6.17 Load imbalance, topic based subscriptions. 36

6.18 Throughput, topic based subscriptions. 37

6.19 Relative throughput, topic based subscriptions. 37

6.20 Spread, topic-based subscriptions. 38

6.21 Load imbalance, topic-based subscriptions. 38

6.22 Accuracy, shed load. 39

6.23 Input rate, shed. level . 39

6.24 Learning time. 40

List of Tables

6.1 Properties of the attributes in the datasets. 29

xii

Chapter 1

Introduction

Micro-blogging has enjoyed wide adoption among Internet users and became a

popular form of communication. Services like Twitter and Weibo enable users to

create and share short updates to the public or to a selected group of contacts.

Microblog posts, known as tweets, are up to 140 characters in length and short

in comparison to regular blog posts. Users of these services can subscribe to

the posts of other users, which is known as following a user. The content of a

post is irrelevant to the subscription event and that means a user receives all the

posts from the users it follows, no matter what the content is. In this respect,

micro-blogging services resemble the traditional topic-based publish/subscribe

(pub/sub) systems [1], in which tweets correspond to publications and user ids

are analogous to topics.

Micro-blogging services also provide APIs for subscribing to streams of posts,

where the matching is based on the content. For instance, Twitter has a Streaming

API [2], which takes subscriptions in the form of conjunctions of words and

delivers matching tweets in a streaming manner. This model of service resembles

the content-based pub/sub systems [1]. However, the backbone for this kind of

service is typically implemented within a data center [3], and not using brokers

over a wide-area network as in pub/sub systems [4, 5, 6]. Considering that the

popular micro-blogging services receive hundreds of millions of posts per day,

implementing this matching in a scalable manner is a key requirement. In this

1

work, we present S3-TM — a stream processing based solution to scalable short

text matching under the content-based subscription model. We develop effective

techniques and algorithms for publication routing and subscription placement,

which yield an overall scalable solution.

While current services are typically targeted towards a user-centric flow of in-

formation, S3-TM provides the ability to filter messages based on their content.

An example usage scenario would be subscribing to all microblog posts that con-

tain the words white and house together, rather than following the official White

House microblog account. This model can capture a broader range of relevant

information, with less effort on the part of the subscriber.

S3-TM is organized as a stream processing application in the form of a data paral-

lel flow graph designed to be run on a data center environment. The system aims

at parallelizing the task of matching publications against the subscriptions. For

this purpose, it creates multiple instances of the matcher module and performs

smart routing to avoid broadcasting publications or subscriptions to the match-

ers, so that scalability can be achieved as the number of replicas is increased in

response to increasing volume of publications.

There are a number of challenges faced by S3-TM:

Publication Routing. The core issue in achieving scalability for streaming

short text matching within a data center environment is the routing of publi-

cations and placement of subscriptions to the machines where the matching is

to be performed. Previous attempts at this have been limited to publication

unicast – subscription broadcast, publication broadcast – subscription unicast,

or a combination of these two fundamental approaches [3]. However, in order

to achieve good scalability as the workload (and thus the number of machines)

increases, we need to avoid any kind of broadcast. To address this challenge, we

take advantage of the problem domain. In particular, the word based publica-

tions and subscriptions in micro-blogging enable us to apply hashing to multicast

(as opposed to broadcast) publications to the machines responsible for matching

the words they contain. This way, subscriptions can be placed on any one of

the machines that are responsible for one of the words forming the subscription.

2

However, this brings an additional challenge, which is to minimize the number

of machines a publication is multicast to, which we refer to as the spread. To

address this challenge, we develop effective word partitioning algorithms (which

replace the hashing based partitioning) that keep the spread low.

Load Balancing. Another major obstacle to scalability is load imbalance. At

one extreme, one way to minimize spread is to assign all words to a single ma-

chine. Obviously, this is the worst case scenario for load balance. In general, there

is a trade-off between reduced spread and better load balance. To address this

challenge, we integrate load-awareness into our word partitioning algorithms. We

develop several graph partitioning based solutions that work on the co-occurrence

frequency graph of words, where vertex and edge weights are used to create bal-

anced partitions (words to be assigned to machines). However, graph partition-

ing based approaches fell short, as they cannot accurately represent the load of a

partition as the sum of edge or vertex weights. Therefore, we develop the SALB

algorithm, which works on the word-to-post bipartite graph, rather than the word

co-occurrence graph. SALB incorporates mechanisms to create a spread-aware

load-balanced word partitioning.

Subscription Placement & Matching. The word partitioning based routing

leaves open the problem of placing subscriptions to machines, as a subscription

can be placed on any one of the machines that is responsible for at least one

of the words in it. Furthermore, given a number of subscriptions assigned to a

machine, publications need to be matched efficiently against them. To solve the

subscription placement problem we first model the load imposed on a machine for

handling the subscriptions placed on it, using a trie-based subscription matching

technique. We then use this model to develop a placement algorithm that at-

tempts to minimize the load, while at the same time keeping the load imbalance

under control. Importantly, the subscription placement algorithm is incremental

by nature, making it easy to admit streaming subscriptions.

Skew Handling. While the SALB algorithm we introduce strives to balance

the load, as the number of machines keeps increasing, the skew in the word fre-

quencies starts inhibiting scalability. For instance, when the the load due to a

particular hot word exceeds the average load on a machine (average load reduces

as the number of machines increases), it becomes increasingly difficult to achieve

3

good load balance. We solve this problem by detecting hot words and applying a

word splitting mechanism, which is adaptive to the number of machines, to break

the hot words apart.

Overload & Load Shedding. Finally, under unexpected spikes in load, such

as during rare events causing significant increase in post traffic, the streaming

text matching service can experience overload. To address this, we develop sim-

ple yet effective techniques to limit the load, with little impact on the matching

accuracy. We achieve this by putting a hard limit on the spread, and selectively

multicasting posts based on the expected value of their words in terms of the

matching accuracy and the amount of load shed.

We evaluate S3-TM through an extensive experimental study using real-world

datasets. Our evaluation showcases the system’s scalability, as well as the ef-

fectiveness of the publication routing and subscription placement algorithms it

employs. We provide insights about the behavior of the system at different scales,

under different kinds of subscription workloads, and for changing publication con-

tents (concept drift). Our results show that the SALB algorithm is the most

effective among all and can increase throughput by a factor of 2.5 times or more

compared to a baseline multicast approach.

In summary, we make the following contributions:

•We present the S3-TM system for scalable streaming short text matching, which

relies on a distributed stream processing architecture to run at scale in a data

center environment.

• We present algorithms for smart publication routing, including variants based

on partitioning of the word co-occurrence graph and a novel algorithm called

SALB that uses the word-to-post bipartite graph to perform spread-aware load-

balanced word partitioning.

• We develop a subscription placement algorithm, called LASP, that takes into

account the trie-based matching to minimize load, while at the same time pre-

serving load balance.

• We develop simple yet effective techniques to handle skew in the publication

workload, as well as load shedding techniques to handle overload situations.

4

The rest of this thesis is organized as follows. In Section 2, the system architecture

of S3-TM is described. Section 3 introduces the publication routing algorithms

and Section 4 introduces the subscription placement and matching algorithms.

Section 5 introduces extensions to the S3-TM system, such as handling skew and

load shedding. Section 6 presents our evaluation. Section 7 discusses the related

work and Section 8 concludes this thesis.

5

Chapter 2

Architecture

In this section, we present the general architecture of the S3-TM system, which is

illustrated in Figure 2.1. We mainly focus on the scalable matching infrastructure

that receives publications and subscriptions, and performs the matching between

the two. Publications are the micro-blogging posts, which are treated as sets of

words. An example is a tweet. Subscriptions are continuous queries [7] that are

long running requests to receive all publications that match a given monitoring

condition. Specifically, the monitoring condition is a conjunction of words. For

instance, if a subscription is [“Obama” ∧ “health”], then any post that contains

both of the words “Obama” and “health” will be considered a match for this

subscription. The results for a subscription constitute a stream, and this stream is

delivered to the subscriber client that owns the subscription, as new matches take

place. We assume that the publications arrive at a much higher rate compared

to subscriptions, which is typical in practice for micro-blogging applications. As

such, the system aims at maximizing the publication processing throughput.

S3-TM is organized as a distributed data stream processing application that runs

on a data center with multiple machines. The main flow of the application consists

of two unique stages, namely the Router & Placer stage and the Matcher &

Dispatcher stage. These are shown in the middle of Figure 2.1. The system is

designed to scale via data parallel execution, thus there will be many copies of

these stages, depending on the scale of the deployment (depicted via dashed lines

6

subscriptions
are anycast to

matchers

publications
are multicast to

matchers

Figure 2.1: Overall architecture of the S3-TM system

in the figure).

On the left hand side of the figure, we see the publishers and subscribers. These

are the clients of the system. We assume that each client sends its publications

and subscriptions to one of the Router & Placer stages. This assignment can

change at any time, as any stage instance can handle any client request. This

kind of load balancing is typical for all large-scale Internet services. Note that

publications flow through the system and are discarded once they are fully pro-

cessed. The subscriptions, on the other hand, are stored for performing matches

against future publications, and are only removed upon explicit request by the

subscribers. On the right hand side of the figure, we see the subscribers again,

which receive their matching publications as a stream.

In what follows, we detail the two stages that constitute the core of the scalable

matching logic.

Router & Placer. This stage contains three operators within. The first one

is called the Receiver, which recieves publications and subscriptions from the

clients. Recall that both publications and subscriptions consist of words. The

Receiver operator performs stemming and stop word removal on both publications

7

and subscriptions. Publications are then forwarded to the Publication Routing

operator, whereas the subscriptions are forwarded to the Subscription Placement

operator.

The Publication Routing operator is responsible for multicasting each publication

to a set of Matcher & Dispatcher stages. It routes a publication to those stages

that are responsible for one or more of the words contained in the publication.

As an optimization, only subscribed words, that is words contained in at least

one subscription, are used for the multicast. For the purpose of routing, words

are partitioned over the Matcher & Dispatcher stages, such that for a given word,

there is one stage responsible for it. The default partitioning policy is to hash

words to stages. This default scheme has two undesirable properties. First,

the spread of a hashing based approach can be high, as it does not take into

account the co-occurrence frequency of words. Ideally, words that commonly

appear together should be assigned to the same stage. Second, the words might

exhibit high skew, as some words are highly popular. Under skew, it becomes

difficult for hashing to maintain load balance. As a result, we develop several

alternative techniques for partitioning words over stages. The partitioning of

words is kept as a mapping in memory as part of the Router & Placer stage

and is used by the Publication Routing operator to quickly determine the target

stages of a multicast for a given publication. This mapping is computed off-line

and is kept as a read-only replicated copy in memory.

The Subscription Placement operator is responsible for anycasting each subscrip-

tion to a set of Matcher & Dispatcher stages. A given subscription can be sent

to any one of the stages that are responsible for at least one of the words in

the subscription. For example, if a subscription is [x ∧ y], then the stage that is

responsible for x, say S, would receive all the publications that contain the word

x. Since the subscription is interested publications that contain both x and y, S

is capable of evaluating the subscription. Similarly, if stage P is responsible for

word y, it is also capable of evaluating the subscription. As a result, anycasting

the subscription to one of the eligible stages is sufficient. The default anycast

policy is to send the subscription to one of the eligible Matcher & Dispatcher

stages at random. However, this policy suffers from two problems as well. First,

8

it may not balance the load properly, as the set of eligible downstream stages is

often a subset of the entire set of Matcher & Dispatcher stages and it is possible

that this eligible set is skewed. Second, to reduce load, we should group together

similar subscriptions as much as possible [3, 8, 9].

To address these issues we develop subscription placement algorithms that run

as part of the Subscription Placement operator. These algorithms use the word

partitioning information kept within the Router & Placer stage (as it was used

for publication routing as well), in addition to the list of currently subscribed

words for each one of the Matcher & Dispatcher stages. This latter information

is updated as a result of each subscription placement made, and the changes are

sent to all other Router & Placer stages. This is not a performance bottleneck, as

the subscription rate is expected to be much lower compared to the publication

rate.

Matcher & Dispatcher. This stage contains two operators within. These are

the Matcher and the Dispatcher operators. The Matcher operator is responsi-

ble for matching streaming publications against the subscriptions placed at the

stage. For this purpose, we use a trie-based subscription organization, which

takes advantage of similar subscriptions assigned to the same stage to reduce the

overall matching load. Finally, the dispatcher stage is responsible for sending the

matching publications to the subscribers.

In a typical deployment, each stage corresponds to a process that can be dis-

tributed over machines. Multiple stages can be placed on a single machine as

well, such as having one stage per processor core. In what remains, we introduce

the techniques and algorithms used in publication routing, subscription place-

ment, and matching in more detail.

9

Chapter 3

Publication Routing

In this section, we formalize the problem of publication routing and present our

solutions. The goal is to come up with routing strategies that reduce spread

and improve load balance. Reducing spread results in less load on the matchers,

whereas improving load balance results in better utilizing the available resources.

Both factors directly impact the throughput that can be achieved.

3.1 Formalization

Let P ∈ P be a publication, which is a set of words. Here, P denotes the set

of all publications. Each word w ∈ P comes from a domain of words W , where

W =
⋃

P∈P P . We don’t make assumptions about the subscriptions until later in

Section 4, but we denote the set of subscribed words as s(W). In other words,

a word w ∈ W appears in a subscription iff w ∈ s(W). We denote the number

of matcher stage instances in the system as N . Our goal is to learn a mapping

M : W 7→ [1..N] that maximizes the throughput. This mapping maps each word

to one of the matchers. The throughput, denoted by T (M) for a given mapping,

depends on the spread and the load imbalance. We formalize these first, and

define throughput as a function of them later.

Spread. Let R(M) denote the spread for a given mapping M . The spread can be

informally defined as the average number of times a publication will be routed,

10

that is the average size of a publication multicast. Recall that a publication

is routed to a matcher iff the mapping M maps a subscribed word w ∈ s(W)

contained in the publication P to matcher i, i.e., the publication P is routed to

matcher i iff ∃w ∈ (P ∩ s(W)) s.t. M(w) = i. We denote the set of matchers a

publication P is routed to as K(P,M). Formally:

K(P,M) =
⋃

w∈P ∩ s(W)

{M(w)} (3.1)

Given this definition, we can formally define spread, R(M), as follows:

R(M) =
∑
P∈P

|K(P,M)|/|P | (3.2)

Imbalance. We denote load imbalance as B(M) for a mapping M and define it

as the ratio of the maximum load on a matcher to the average load. In a perfectly

load balanced system, the imbalance will be 1. The worst case is when all the

load is on a single matcher, in which case the imbalance will be N , that is the

number of matcher stage instances. Let us denote the load imposed on a matcher

i as L(i,M). Formally, we have:

L(i,M) =
∑
P∈P

∑
w∈P

[w ∈ s(W) ∧M(w) = i] (3.3)

Here, [...] is the Iverson bracket that evaluates to 1 when the Boolean condition

it encloses is true, to 0 otherwise. It is important to note that here we make

a simplifying assumption, that is, all publications impose an equivalent load of

cost 1 unit on a matcher. We will revise this assumption when we introduce

subscriptions into the picture in Section 4.

With the definition of load imposed on a matcher at hand, load imbalance, B(M),

is easily formalized as:

B(M) =
maxi∈[1..N](L(i,M))∑

i∈[1..N] L(i,M)/N
(3.4)

Throughput. We can define throughput T simply as being proportional to the

inverse of the maximum load:

T (M) ∝ (maxi∈[1..N]L(i,M))−1 (3.5)

11

This is because in a data parallel streaming system with a split, the throughput

is bounded by the slowest branch due to backpressure [10]. Let pi be the fraction

of the publications sent to matcher i and let C be the capacity of each matcher.

Assuming a unit cost of 1 for publication processing, the throughput is bounded

by C/(pi · 1). We have pi = L(i,M)/|P|, and thus we have:

T (M) = mini∈[1..N](C · |P|/L(i,M)) (3.6)

Equation 3.5 follows directly from Equation 3.6 after removing the constant terms.

While Equation 3.6 is useful to estimate the throughput of a matching M , during

the learning of a mapping, as we will see later in this section, a more flexible

throughput estimation method is required to avoid getting stuck at local maximas.

Intuitively, throughput can also be expressed in terms of spread and imbalance.

In particular, throughput is inversely proportional to spread, since the load on

the system increases linearly with the spread. If we consider load imbalance,

we see that maximum load appears as the nominator, so the throughput is also

inversely proportional to the load imbalance. Thus, we can formulate an estimate

throughput, denoted by T̂ (M), as follows:

T̂ (M) ∝ (R(M) ·B(M))−1 (3.7)

The final problem can be formalized as finding the best mapping M∗ that

maximizes the throughput, that is M∗ = argminMT (M) or, alternatively, as

argminM T̂ (M).

In the remaining of this section, we develop techniques to learn an effective map-

ping M . First, we introduce several alternatives based on partitioning the word

co-occurrence graph. Then we introduce the greedy SALB algorithm that makes

use of the word-to-publication bipartite graph. In all approaches, we assume

that the system starts with the simple hash based routing. After an initial train-

ing period, the publications data collected so far is anlysed to generate the new

mapping M , and the routing is updated to use it.

It is worth mentioning that the mapping M may not contain mappings for every

possible word we may see in the future. Even though we have W =
⋃

P∈P P , a

12

Figure 3.1: Word network partitioning algorithms: (a) Cut minimizing (gC), (b)
Co-frequency cut minimizing (gFC), (c) Co-frequency cut minimizing, frequency load

balancing (gFCL), (d) Co-frequency cut minimizing, normalized frequency and
co-frequency load balancing (gNFCL).

new publication that arrives to the system after M has been learned may contain

a new word. For such words, we fallback to the default policy of hash based

multicast.

3.2 Word Network Partitioning

The word network partitioning algorithms construct a mapping M by partitioning

the set of words W over the N matchers. The main intuition is to place words

that frequently appear together in publications into the same partition, while

at the same time balancing the load incurred on each partition. We map this

problem to a traditional graph partitioning one, where the words are the vertices

and the edges are the co-occurring words. Let us represent this undirected graph

as G(W,E) and refer to it as the word network. We define the edge set as

E = {(w1, w2) | w1, w2 ∈ W∧f(w1, w2) > 0}. Here, f(w1, w2) is the co-occurrence

13

frequency of the words w1 and w2. Thus, any two words that appear together in

at least one publication is represented as an edge in the word network. We have:

f(w1, w2) = |{P | {w1, w2} ⊆ P ∧ P ∈ P}|/|P|.
The co-occurrence frequencies serve as the edge weights. We also define the

frequency of a word as f(w) = |{P | w ∈ P ∈ P}|/|P|. The word frequencies

serve as the vertex weights.

Graph partitioning algorithms are well studied in the literature [11] with well-

established implementations, such as Metis [12]. These algorithms aim at min-

imizing the edge cut, defined as the total weight of the edges that go across

partitions. This matches our goal of co-locating commonly co-occurring words

within the same partition. It is easy to see that such a partitioning will reduce

the spread, as several words within a publication will be mapped to the same

matcher, reducing the size of the multicast. However, we also need to maintain

the load balance. Graph partitioners like Metis are able take into account load

balance as well. Yet, they can balance load expressed as vertex or edge weight

sums. Unfortunately, it is not possible to express the load, as defined in Equa-

tion 3.3, using such a sum. Thus, we investigate several alternative partitionings

that differ in how load balancing is formulated, all of them being heuristics. We

also look at simple partitionings that serve as baselines. In all alternatives we use

Metis [12] . Figure 3.1 gives an overview of these alternatives, which are further

detailed below:

Cut minimization (gC), Figure 3.1(a). This is a baseline partitioning that does

not consider load balancing. It aims at minimizing the cut, using an unweighted

word network. Thus, any pair of words that appear at least once together would

contribute the same amount towards the total cut.

Co-frequency cut minimization (gFC), Figure 3.1(b). This is another base-

line approach that does not perform load balancing. However, it considers the

co-occurrence frequencies when minimizing the cut. Thus, words that appear

commonly together are expected to be placed within the same partitions as much

as possible. Since this baseline does not consider load balance, and since load

balance and spread are at odds, we expect gFC to provide a very low (good)

spread and a high imbalance.

14

Co-frequency cut minimization, frequency load balancing (gFCL), Fig-

ure 3.1(c). This is one of the two graph partitioning based algorithms that are

contenders. Similar to gFC, it minimizes the co-occurrence frequency based cut.

Differently, it tries to maintain load balance as well. Load for a partition is de-

fined as the sum of the vertex loads, where the vertex load is defined as the word

frequency. The downside of this approach is that, it overestimates the partition

load. As a simple scenario, consider a small partition that contains three words

that always appear together in publications. In this case, the overall partition

load will be three times the correct value. The real load depends on the number

of publications routed to the partition, which is lower than the sum of the word

frequencies for that partition, due to co-occurrences.

Co-frequency cut minimization, normalized frequency and co-

frequency load balancing (gNFCL), Figure 3.1(d). This partitioning ap-

proach improves upon gFCL by trying to compensate for the overestimation of

the partition load. Since using the word frequency as the vertex load results in

overestimation, it uses a normalized vertex load for computing the overall par-

tition load. Specifically, it uses the vertex load formulation l(w) = f(w)
1+fn(w)/f(w)

,

where fn(w) is the sum of co-occurrence frequencies for the word w. That is,

fn(w) =
∑

(w,w′)∈E f(w,w′). To understand the logic behind this normalization,

let us consider two extreme cases. In one extreme case, a word may always appear

by itself in publications. In this case, we have fn(w) = 0, and thus l(w) = f(w).

This is the correct load contribution to the partition for word w. As another

extreme, we can consider a similar example from the gFCL discussion, that is

k words that always appear together in all publications. In this case, we have

l(w) = f(w)/k, since we have fn(w) = (k − 1) · f(w). The total load of the k

words would be f(w), which is again correct. Despite these nice features, there

are many scenarios for which the partition load is not exact. As a result, this is

just a heuristic too, albeit one that is more accurate than gFCL.

Once the word network partitioning is performed, the results are easily converted

into a global mapping M by mapping each word in a partition to the matcher

associated with that partition.

15

Alg. 1: SALB, Spread-Aware Load Balancing
Data: P, set of publications
Data: N , number of matchers
Result: M , word to matcher mapping
M ← {} . Initialize the mapping
R← 0 . Initialize the spread
∀i∈[1..N], Li ← 0 . Initialize loads

W ←
⋃

P∈P P . Collect words
. Form the word-to-publication bipartite graph
G(W,P, E) s.t. E = {(w,P) | w ∈W ∧ P ∈ P ∧ w ∈ P}
for w ∈W in desc. order of f(w) do . For each word

u∗ ← −∞ . Initialize utility for the best mapping
l∗ ← 0 . Initialize delta load for the best mapping
k ← 0 . Initialize the best mapping index
for i ∈ [1..N] do . For each matcher

. Compute the extra load w brings to matcher i
l←

∑
P∈nbrG(w) [@w′∈P s.t. M(w′) = i]

r ← R+ l/|P| . Compute spread
L ←

⋃
j∈[1..N]\{i}{Lj} ∪ {Li + l} . Union loads

b←
√
var(L)/avg(L) . Compute imbalance

u← −r · b . Compute utility
if u > u∗ then . If a better mapping

u∗ ← u . Update the best utility
l∗ ← l . Update the delta load
k ← i . Update the best mapping

Lk ← Lk + l∗ . Update the load of the matcher
R← R+ l∗/|P| . Update the spread
M(w)← k . Add the new mapping

return M . Return the constructed mapping

3.3 SALB: Spread-Aware Load Balancing

The SALB algorithm aims at explicitly modeling the notion of load, rather than

relying on some approximation of it as done by the word network partitioning

based approaches. With a more accurate model of load, it better balances it across

matchers. However, a good load balance does not necessarily imply a low overall

load, since words are not independent and to achieve low average load one needs

to co-locate commonly co-occurring words. This latter can be achieved by trying

to minimize spread. Accordingly, SALB tries to minimize both imbalance and

spread. Note that this also matches with our intuition of approximate throughput

as expressed in Equation 3.7.

16

The SALB algorithm is given in Algorithm 1. It is a greedy algorithm that

assigns words to matchers one-by-one. It considers words in decreasing order of

appearance frequency (f(w) for w ∈ W). Frequent words are assigned a mapping

first, as this provides additional flexibility to balance the load later. For each

word, each matcher is considered as a candidate mapping and the one with the

highest utility is picked as the one to be added to the mapping. The process

continues until all words are assigned a mapping. The utility used for picking

the best among all matchers is defined as spread times load imbalance times -1

(making higher values better), where spread and imbalance are computed as if

the candidate mapping is already applied.

To compute the spread and load imbalance incrementally as words are assigned

to matchers, we first build a bipartite graph G(W,P , E), where W is the set of

words and P is the set of publications. There is an edge (w,P) in E if and only if

the word w is contained in the publication P , that is w ∈ P . We use the notation

nbrG(w) to denote the set of neighbors of the word w in graph G, i.e., the set of

publications that contain the word w.

Consider a candidate mapping of word w to matcher i. In order to compute the

new spread and imbalance incrementally, a key quantity we need to compute is

the additional load this mapping will introduce on the matcher. This amount is

denoted via l in the algorithm. We have l =
∑

P∈nbrG(w) [@w′∈P s.t. M(w′) = i].

That is, we find all publications that contain the word w (i.e., P ∈ nbrG(w))

and for each such publication P , we add 1 to the load if the publication

does not contain any other word that is already mapped to matcher i (i.e.,

@w′∈P s.t. M(w′) = i). Given this quantity, we can incrementally compute the

new spread by adding l/|P| to the existing spread, as l gives the increase in the

number of publications that are routed as a result of adding a new mapping.

Recall that we define utility in terms of spread times imbalance. We already

discussed how spread is incrementally updated. Similarly, we update the load

imbalance incrementally. For imbalance, we use a slightly different formulation

than the ratio of maximum load to average load. Using the maximum term in

the formulation results in a highly insensitive metric during the initial iterations

17

of the algorithm, as mappings to matchers other than the one that changes the

maximum load makes a very small impact. Thus, as an imbalance metric, we use

coefficient of variance of the matcher loads. Since we have computed the extra

load brought by the new mapping, that is l, we can easily come up with the new

set of loads on the matchers. This is denoted as the set L in the algorithm. Then

the imbalance is given by
√

var(L)/avg(L), which is the standard deviation of

the loads divided by the average load (aka. coefficient of variance). The nor-

malization via the average load is included in the formulation (the denominator),

since different candidate mappings may result in different total loads.

Complexity. The outer loop of the algorithm iterates |W | times and the inner

loop iterates |N | times. Assuming there are k words per publication on aver-

age and there are d publications containing a word on average, the inner loop

performs O(d · k + N) operations. The N part comes from the computation of

the imbalance. In practice, both variance and average can be computed incre-

mentally, yet for brevity we have not shown that in the algorithm. So the inner

loop’s body can complete in O(d · k) time. This results in an overall complexity

of O(d · k ·N · |W |). We know that k is a small constant irrespective of dataset

size, so we can represent the complexity simply as O(d · N · |W |). The average

number of publications a word appears in is bounded by |P|, so an even simpler

time complexity formula can be given by O(N · |P| · |W |), even though this bound

will be rather loose. Also note that we can add the log |W | · |W | term that comes

from the sorting, but this is not necessary as the other multiplicative terms in

front of |W | are larger than log |W | in practice.

Our experimental results show that SALB algorithm performs favorably in terms

of the running time compared to graph partitioners on large datasets.

18

Chapter 4

Subscription Matching and

Placement

The default policy used for placing subscriptions on matchers is to anycast them

to one of the eligible matchers. Let S be a subscription, which is a set of words.

We denote the set of eligible matchers as B(P,M) under a given mapping M and

define it as B(P,M) = {i | ∃w ∈ S s.t. M(w) = i}. This policy is sub-optimal

as it does not attempt to group together similar subscriptions and doing so can

significantly reduce the load. However, in order to do such a grouping, we need

a better understanding of the matching process.

4.1 Matching

We perform the matching using a trie data structure. We sort each subscription

before it is inserted into the trie, so that its words are in lexicographic order. The

trie data structure takes advantage of common prefixes within the subscriptions.

Each trie node has zero or more children nodes, each associated with a word, and

a potentially empty list of subscriptions. For trie nodes that have large number

of children, the child nodes are kept in a hash table. We make use of these hash

tables for fast search. For instance, the root node has as many children as there

are unique start words in sorted subscriptions.

19

Alg. 2: LASP, Load-Aware Subscription Placement
Data: S, subscription to be placed
Data: N , number of matchers
Data: M , word to matcher mapping
Data: H, subscription word map
Result: k, the matcher where the subscription is placed
u∗ ← −∞ . Initialize utility for the best placement
k ← 0 . Initialize the matcher for the best placement
B(P,M) = {i | ∃w ∈ S s.t. M(w) = i} . Eligible ones
for i ∈ B(P,M) do . For each eligible matcher

l← f(|S \H(i)|) . Compute subs. delta load
. Union all load lists

L ←
⋃

j∈{1..N}\{i}{f(|H(j)|)} ∪ {f(|S ∪H(i)|)} b←
√
var(L)/avg(L) . Compute

imbalance
u← −l · b . Compute utility
if u > u∗ then . If a better mapping

u∗ ← u . Update the best utility
k ← i . Update the best placement

H(i)← H(i) ∪ S . Update subscription word map
return k . The matcher for the best placement

When a publication is to be matched against the set of subscriptions stored in

a trie, we do a scoped traversal of the trie. During the traversal, a child node

is visited if and only if its associated word is in the publication. To check this

condition, we probe the child hash map using the set of words in the publica-

tion. Since our publications are short, this is quite efficient. Note that, during

the traversal, for any visited trie node we are guaranteed that all the words up

to the root are in the publication. Thus, whenever a trie node is visited, any

subscriptions associated with it are added to the result.

4.2 Load-Aware Subscription Placement

For placing subscriptions we introduce an algorithm called Load-Aware Subscrip-

tion Placement, LASP for short. The LASP algorithm is executed within the

Subscription Placement operator as part of the Router & Placer stage instances.

Any stage instance can place any subscription. To facilitate this, we keep a repli-

cated data structure called the subscription word map, denoted as H. For each

20

matcher i, the subscription word map contains the set of unique words that ap-

pear in subscriptions assigned to that matcher, denoted as H(i). This structure is

potentially updated every time a new subscription is placed. Since the subscrip-

tion rate is much lower than the publication rate, propagating updates regarding

the changes on this structure is cheap. Alternatively, this structure can be kept

centralized.

The LASP algorithm, given in Algorithm 2, is structured similar to the SALB

algorithm’s inner loop. It iterates over all possible placements, each corresponding

to placing the subscription on one of the eligible matchers. For each eligible

matcher (i ∈ B(P,M)), it computes a utility metric and picks the one with the

highest utility as the matcher to place the publication on. The utility is defined

as the increase in the subscription load of the matcher times the load imbalance

times -1 (making higher values better).

Subscription load is proportional to the cost of matching a publication against

the set of subscribers placed on the matcher. We make a simplifying assumption

here: we assume that the matching cost (represented via the f function in the

algorithm) is linear in the number of unique words in the trie. This assumption is

motivated by the observation that the higher amount of overlap in the subscrip-

tions reduces the size of the trie, which is equal to the number of unique words

in it (|H(i)| for matcher i).

0 5K 10K 15K 20K 25K 30K 35K
number of unique words

0

1M

2M

3M

4M

5M

6M

n
u
m
b
e
r
o
f
o
p
e
ra
ti
o
n
s

y=171*x+344959

Figure 4.1: Number of lookup ops.

Figure 4.1 plots the number of operations performed in our trie implementation

as a function of the number of unique words, using the workload setup described

in Section 6. We fit a linear line on this graph and employ it as the f function

21

used by the LASB algorithm.

22

Chapter 5

Extensions

In this section, we present extensions to the base S3-TM system to solve two prob-

lems commonly encountered in practice, namely: skew in publication workload

and unexpected spikes in load.

Skew in word frequencies causes high load imbalance and results in limited scal-

ability. The skew becomes more pronounced when the number of machines in-

creases, as the load brought by a single word on a matcher may exceed the average

load per machine. By handling skew via the help of a word splitting mechanism

that is adaptive to the number of machines used, we reach near-linear scalability.

A micro-blogging service may experience unexpected load spikes, often due to

a sudden mass reaction from the user base. Without any special mechanism,

these spikes may result in randomly dropping incoming publications, significantly

reducing the match quality. We develop load shedding techniques that aim at

minimizing the impact of load spikes on match quality.

5.1 Skew Handling

When scaling up to larger number of nodes, load imposed by some of the words

might exceed the average load of a node. Such hot words cause skew, since pro-

posed algorithms have the limitation that any given word can be assigned to only

23

a single matcher. Our initial experiments showed that the base version of SALB

scales linearly up to 64 nodes with many of the real-world tweet datasets. After

64 nodes, linear scalability is lost, and after 128 nodes, no additional speedup can

be achieved.

To handle skew, we first find the average total word frequency a node should

handle in an ideal word frequency distribution (normally distributed). Since

SALB tries to balance load between nodes while keeping the spread low, having

a word with frequency higher than the average frequency causes increased load

imbalance. Therefore, we limit each word to have at most frequency equal to the

half of the total frequency a node should handle. As a result, a single word can

only account for half of a node’s even share of load. If a word does not satisfy

this condition due to high frequency, we split the word into versions, until the

frequency condition is satisfied. If a word is split into k versions, then that word

is replaced with a random version in range [0..k) when it is encountered within

a publication. This effectively reduces the load a single word can incur on a

matcher.

This leaves us one last problem, that is, how to place subscriptions that contain

one of the hot words. There are three types of subscriptions with respect to the

hot words: (i) those that do not contain any of the hot words, (ii) those that

contain both hot and regular words, and (iii) those that contain only hot words.

For the first category (no hot words), no change is required during subscription

placement. For the second category (both hot and regular words), since the

LASP algorithm already selects the least frequent words during placement, hot

words are eliminated already and subscription is anycast to one of the nodes

that are responsible for a regular word from the subscription. Finally, for the

last category (all hot words), the hot word with the least frequency is selected

and the subscription is multicast to all nodes that are responsible for a version

of the selected hot word. The multicast is needed, because multiple nodes may

be handling the different versions of the selected hot word. Luckily, the third

category of subscriptions is small in size.

24

5.2 Load Shedding

Micro-blogging services may experience unexpected spikes in load due to mass

reaction from the users of the system to rare and noteworthy world events. In

such scenarios, the input publication rate may exceed the maximum throughput

that can be handled by the system. This requires shedding some load to avoid

lengthy delays and eventual random dropping of the publications.

There are two aspects to load shedding in streaming systems [13]: how much load

to shed and and what load to shed. The former typically changes as the workload

and resource availability varies, and as such, requires an adaptive solution. In

what follows, we first describe how we resolve the ‘what’ question, and then we

describe the adaptive load shedding technique we use to handle the spikes in load

(the ‘how’ question).

5.2.1 What load to shed

The most straightforward way to shed load is to randomly drop publications. An

alternative and more effective way is to limit the number of matchers they are

multicast to. This reduces the spread, and thus load. We perform load shedding

by limiting the maximum number of matchers a publication is routed to, say m.

If the publication at hand has more than m target matchers it ideally should be

routed to, then we only route it to the m matchers that have the highest utility

metric. We use two such metrics:

• Consensus shedding : Forward to the matchers with the highest number of

publication words mapping to them. The main idea is to reduce the number of

publication words for which forwarding is not performed, as this may improve

the overall match quality.

• Subscription shedding : Forward to the matchers that contain the highest num-

ber of subscriptions for the words in the publication. The main idea is to minimize

the impact of load shedding on the match quality, as the publication is routed to

mathcers that are more likely to produce matches.

25

5.2.2 How much load to shed

The Publication Routing operator keeps a buffer of publications. When a new

publication is received, it is enqueued into this buffer. A separate thread pulls

publications from this buffer and routes them to the matchers. The overload is

detected when the buffer is full. The size of the buffer, say b, can be adjusted

based on the latency requirements of the system.

We perform dynamic load shedding by making use of this buffer. In particular,

we extend it with two additional segments, resulting in a total of three segments.

The front of the buffer is called the ideal segment, which represents the ideal

mode of operation in terms of the buffer fullness. The next segment is called the

stable segment, and the one following it is called the overload segment. The idea

is that the system will increase the level of load shedding when the buffer fullness

is in the overload segment, and reduce the level of load shedding when the buffer

is in the ideal segment. No changes will be made when in the stable segment.

The goal of the stable segment is to avoid oscillation.

We define lowest shedding level as l = 0, which corresponds to m = ∞. Level

l = 1 corresponds to m = k, where k is 7 based on our experimentation (see

Section 6). Each successive level has m decreased by ∆, such as m = k −∆ and

m = k − 2 · ∆ for l = 2 and l = 3, respectively. ∆ could be less than 1, which

corresponds to probabilistic forwarding for the last word selected for forwarding.

Let bi and bs be the sizes of the ideal and the stable segments. We have b = bs+bi

and we ensure that the system operates such that the overload segment is avoided

via increasing the shedding level. One important point is that, we need to avoid

oscillation in the system. In particular, the system should not jump from the

ideal segment into the overload segment as a result of a single level reduction

in the shedding level. We achieve this by adjusting the ratio r = bi/bs. Let

us represent the load in the system for shedding level l as L(l). Modeling the

system as a queueing one and applying Little’s Law, we say that the queue length

is proportional to the input rate times the processing time (roughly inverse of the

26

load level). This gives the following inequality:

(bs + bi)/bs > L(l −∆)/L(l), ∀l (5.1)

This ensures that reducing the load shedding level never takes the buffer fullness

from the ideal segment to the overload segment. We have:

r = 1−max
l

L(l)/L(l −∆) (5.2)

We also need to ensure that the system does not move from the overload segment

to the ideal segment when the shedding level is increased. That condition is

already satisfied by Equation 5.2. Finally, the L function is easily computed

experimentally, as we will show in Section 6.5.

It is important to note that we may increase (decrease) the load shedding level

due to being in the overload (ideal) segment, yet when the next adaptation time

comes, we might still be in the same segment. In this situation, we continue to

decrease (increase) the load shedding level if and only if the buffer fullness level

has not went down (up) since the last adaptation time. Given this, we can set

the adaptation period low, conservatively. In our system, we set the adaptation

period to 1 second.

27

Chapter 6

Experimental Evaluation

In this section, we evaluate the scalability and performance of the S3-TM sys-

tem, with a particular focus on the effectiveness of our publication routing and

subscription placement algorithms. The evaluation includes five sets of experi-

ments. The first set of experiments studies scalability, presenting performance as

a function of the number of nodes. The second set studies subscription-awareness,

presenting performance as a function of the number of subscriptions. The third

set studies concept drift, that is how the performance of the system is impacted by

the temporal changes in the contents of the publications. The fourth set studies

the efficacy of the load shedding algorithms. Finally, the last set of experiments

study the learning time of alternative algorithms used for learning the word to

matcher mapping. In most of our experiments, we make use of the spread, load

imbalance, and throughput metrics. All experiments are performed using 10-fold

cross validation and error bars showing the standard deviation are included in

the plots.

The word network partitioning based algorithms make use of Metis 5.1.0 [12]

for graph partitioning. Mallet [14] implementation of Latent Dirichlet Allocation

(LDA) [15] is used for creating topic-based subscriptions, as we will detail later.

The S3-TM system is implemented in Python. We use CPython 2.7 series for

learning the word to matcher mapping and PyPy 2.7 series for runtime subscrip-

tion matching. All experiments are executed on Linux systems with 3 Intel Xeon

28

Datasets ⇒ April-2013 Sparse

of tweets 979,442 979,442
of words 100,310 198,887

total word freq. 3,874,826 10,190,479
of word pairs 5,507,437 7,559,671

Table 6.1: Properties of the attributes in the datasets.

100 101 102 103 104

frequency

100
101
102
103
104
105

#
o
f
w
o
rd
s April 2013

(a) April 2013

100 101 102 103 104

frequency

100
101
102
103
104
105
106

#
o
f
w
o
rd
s Sparse

(b) Sparse

Figure 6.1: Word frequencies.

E5520 2.27GHz CPUs and 48GB of RAM per machine.

6.1 Datasets

Experiments are performed using two different datasets, details of which are

shown in Table 6.1. Both datasets contain public tweets in the English language,

collected using the Twitter Streaming API [2]. These tweets are used for learning

the word-to-matcher mapping. Before learning we perform pre-processing in the

form of stop word removal and stemming (using Porter’s algorithm [16]).

The first dataset consists of tweets we collected in April, 2013. There are approx-

imately 1 million tweets. They contain about 100 thousand unique words after

pre-processing. Counting multiple occurrences of those words, there are around

3.8 million word occurrences and those words create 5.5 million pairs.

The second dataset also has 1 million tweets, randomly sampled from Sparse [17]

with about 200 thousand unique words, 10.2 million total word occurrences, and

7.6 million word pairs. Figure 6.1 shows the word frequency distributions of the

two datasets.

29

We generated the subscriptions using two alternative methods. The first one

is called tweet-based subscriptions and the second one is called topic-based sub-

scriptions. To create tweet-based subscriptions, we pick random tweets from the

dataset and register them as subscriptions to the system. This way, each word in

the tweet becomes a predicate in the conjunctive subscription. To create topic-

based subscriptions, we model the interests of the users. Specifically, we created

a topic extractor using LDA [15] implementation of the Mallet library. We ex-

tracted 100 topics from each dataset. For each topic we selected 5 words related

to it. Alpha and Beta parameters of LDA are set to 0.1, which is the Mallet

default. Since the length of the subscriptions may show variability, we used a

Zipf distribution to decide how many predicates a subscription contains. Each

subscription selects one topic, decides its length using a Zipf distribution with a

skew parameter of 0.5, and gets that number of words from the topic at random.

Shortest publication contains a single word and the longest contains 5 words.

In the remaining of this section we present our experimental results. For brevity,

we use the April 2013 dataset for the throughput, spread, and load imbalance

experiments, as the results from the other dataset are very similar. For the

relative throughput experiments, we use the average values computed using both

datasets.

6.2 Scalability

We look at the spread, load imbalance, and throughput as a function of the

number of nodes in the system. Here, the number of nodes corresponds to the

number of matcher instances, which is the number of cores in our system. We

also plot the relative throughput, where we take the throughput achieved using

the matching learned via the SALB algorithm as 1 and report the throughput of

the alternative approaches relative to that. The geometric mean of the relative

throughputs from both datasets is used. The number of subscriptions used for

this set of experiments is 100 thousand.

30

21 22 23 24 25 26 27 28

number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.2: Relative throughput, tweet
based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.3: Relative throughput, topic
based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

210

211

212

213

214

215

216

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.4: Throughput, tweet based
subscriptions.

21 22 23 24 25 26 27 28

number of nodes

213

214

215

216

217

218

219

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.5: Throughput, topic based
subscriptions.

Figures 6.2 and 6.3 plot the relative throughput tweet- and topic-based subscrip-

tions, respectively. We observe that SALB performs up to 130% and 150% better

than the baseline hash based routing, for tweet- and topic-based subscriptions,

respectively. Overall, for topic-based subscriptions the improvement relative to

hashing is more lasting as the number of nodes increases.

Our main concern is the throughput of the system and Figure 6.4 plots it as

a function of the number of nodes, which ranges from 2 to 256. We observe

that gC and gFC perform more than an order of magnitude worse than the best

approach, so they are not contenders. For the remaining algorithms, we see close

to linear scalability up to 128 nodes. After 128 nodes the throughput starts to

decrease, except for SALB. We observe that SALB provides the best throughput

and scalability, where gFCL and gNFCL are second, with the former being slightly

31

21 22 23 24 25 26 27 28

number of nodes

20

21

22

23
sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.6: Spread, tweet based
subscriptions.

21 22 23 24 25 26 27 28

number of nodes

20

21

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.7: Spread, topic based
subscriptions.

better than the latter, and hash based routing is the last. The results for the

topic-based subscriptions, shown in Figure 6.5, are even more pronounced. In

particular, for a 256 node system, SALB provides 2.56 times better throughput

than the baseline hash based routing, and 2.2 times better throughput than the

gFCL and gNFCL approaches.

Figure 6.6 plots the spread of the routed publications using the tweet-based sub-

scription model. Note that the minimal spread value that can be achieved is

1. We observe that as the number of nodes increases, the spread increases as

well, but the rate of increase decreases and eventually the line flattens. This is

expected, as we know that the spread is bounded by the maximum number of

words in a publication. We also observe that the cut-based graph partitioning

algorithms that do not care about load balance (gC and gFC) provide the lowest

spread. This is because these algorithms place frequently co-occurring words to

the same matchers. But as we will see soon, the load imbalance of these algo-

rithms will result in poor throughput, which is the ultimate metric we care about.

The graph partitioning approaches that consider load (gFCL and gNFCL) pro-

vide lower spread than the hashing based routing and SALB algorithms. SALB

provides slightly lower spread than hashing, but higher than that of gFCL and

gNFCL. Interestingly, as the number of nodes in the system increases, the spread

converges to the same number for gFCL and gNFCL, yet hashing and SALB

converge to a slightly higher spread.

Figure 6.7 plots the spread for the topic-based subscription model. The results are

32

21 22 23 24 25 26 27 28

number of nodes

2-13
2-11
2-9
2-7
2-5
2-3
2-1
21
23
25
27

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.8: Load imbalance, tweet based
subscriptions.

21 22 23 24 25 26 27 28

number of nodes

2-7
2-6
2-5
2-4
2-3
2-2
2-1
20
21
22
23
24
25
26
27

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.9: Load imbalance, topic based
subscriptions.

similar, with a few notable differences. First, the spread is much lower in general,

not crossing 2. Second, the spread difference between the hashing based routing

and SALB is much smaller. Since non-subscribed words are not forwarded to

matcher nodes, we observe that spread of the topic based subscriptions are much

lower than the tweet based ones. As we will see shortly, the story is quite different

for load imbalance.

Figure 6.8 plots the load imbalance using the tweet-based subscription model.

We observe that gC and gFC approaches suffer a very high load imbalance, and

as we will later observe in throughput experiments, this imbalance causes their

throughput to be non-competitive. The SALB algorithm provides the best load

imbalance among all. The hash based routing has imbalance values that are

mostly between those of gFCL/gNFCL and SALB. As the number of nodes in

the system increases, the imbalance of hashing gets closer to that of gFCL/gNFCL

and eventually passes it. This is because for a skewed workload, load balancing

becomes increasingly difficult with more nodes. We also observe that gNFCL has

slightly higher imbalance than gFCL. Despite considering load balance explicitly,

both of these algorithms still fall short in balancing the load and SALB has 6 and

4 times better lower imbalance in an 8 node configuration compared to gNFCL

and gFCL, respectively. As the number of nodes reach higher values, like 256, the

difference between load imbalance values gets smaller, but SALB still performs

the best.

Figure 6.9 plots the load imbalance for the topic-based subscription model. The

33

102 103 104 105 106 107

number of subscriptions

0.0

0.2

0.4

0.6

0.8

1.0

1.2
re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.10: Relative throughput, tweet
based subscriptions.

102 103 104 105 106 107

number of subscriptions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.11: Relative throughput, topic
based subscriptions.

results are very similar. It is worth mentioning that the load imbalance is higher

in general for topic-based subscriptions, but its rate of increase with increasing

number of nodes is lower. Also, for topic-based subscriptions, gFCL has slightly

higher imbalance than gNFCL (reversed from tweet-based subscriptions).

6.3 Subscription Awareness

We look at the spread, load imbalance, and throughput as a function of the num-

ber of subscriptions in the system. We experiment with number of subscriptions

that range from 100 to 10 million. The number of nodes is fixed to 16 for this set

of experiments. We perform experiments with both tweet-based and topic-based

subscriptions. It is important to note that for tweet-based subscriptions, register-

ing 107 random tweets gets close to an all-words-subscribed system, which is the

worst case scenario for the S3-TM architecture. This is a highly unlikely scenario

in a real-world system, and we use it as a stretch test.

Figures 6.10 and 6.11 plot the relative throughput, for tweet- and topic-based sub-

scriptions, respectively. For the tweet-based subscriptions SALB provides 15%

better throughput compared to gFCL and gNFCL, and 10% better throughput

compared to gFCL, until 10 thousand and 100 thousand tweet-based subscrip-

tions, respectively. Scaling to 10 million tweet-based subscriptions, SALB still

outperforms other approaches. As we mentioned earlier, at this point the sys-

tem converges to an all-words-subscribed system and minimizing spread becomes

34

102 103 104 105 106 107

number of subscriptions

29
210
211
212
213
214
215
216

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.12: Throughput, tweet based
subscriptions.

102 103 104 105 106 107

number of subscriptions

213

214

215

216

217

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.13: Throughput, topic based
subscriptions.

critically important. As we have seen from most of the experiments so far, SALB

is better at minimizing load imbalance than minimizing spread. That being said,

the all-words-subscribed scenario is highly unlikely to be encountered in practice.

We also observe that with increasing number of tweet-based subscriptions, the

performance of the hash based routing degrades. For topic-based subscriptions,

SALB provides 22% and 18% better throughput compared to gNFCL and gFCL,

and 42% better throughput compared to hashing, respectively.

Figures 6.12 and 6.13 plot the throughput for tweet- and topic-based subscrip-

tions, respectively. For tweet-based subscriptions, there is an almost linear de-

crease in the throughput until 1 million subscriptions, whereas for topic-based

subscriptions, the rate of throughput reduction quickly diminishes after 10 thou-

sand subscriptions. The latter can be easily explained by the high amount of

overlap across the subscriptions for the topic-based model. The former can be

explained by the reverse, that is low overlap among the tweet-based subscrip-

tions. This effect shows the importance of the LASP algorithm used for grouping

together similar subscriptions.

For both subscription models, SALB algorithm outperforms the alternatives. The

gap between the SALB algorithm and hashing initially increases as the number

of subscriptions increases. Interestingly, for tweet-based subscriptions the gap

continues to widen, whereas for topic-based ones it stabilizes. SALB outperforms

hashing by more than 4.2 times and 1.42 times for tweet- and topic-based sub-

scriptions, respectively. For tweet-based subscriptions, SALB is only marginally

35

102 103 104 105 106 107

number of subscriptions

20

21

22

23
sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.14: Spread, tweet based
subscriptions.

102 103 104 105 106 107

number of subscriptions

20

21

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.15: Spread, topic based
subscriptions.

102 103 104 105 106 107

number of subscriptions

2-4
2-3
2-2
2-1
20
21
22
23
24

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.16: Load imbalance, tweet based
subscriptions.

102 103 104 105 106 107

number of subscriptions

2-1

20

21

22

23

24

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.17: Load imbalance, topic based
subscriptions.

better than gFCL and gNFCL, whereas for topic-based subscriptions the differ-

ence is more pronounced.

Figures 6.14 and 6.15 plot the spread for the tweet- and topic-based subscriptions,

respectively.

Likewise, Figures 6.16 and 6.17 plot the load imbalance for the tweet- and topic-

based subscriptions, respectively. In general, we observe relationships between the

different alternatives as before. SALB has markedly better load imbalance than

other alternatives, whereas gFCL and gNFCL have better spread than SALB.

SALB’s spread is slightly better than hashing for tweet-based subscriptions, but

for topic-based subscriptions their spread is the same (lines overlap in the fig-

ure). The spread increases with increasing number of subscriptions, but with a

36

0 5 10 15 20 25
of weeks from learning

215

216

217

218

219
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.18: Throughput, topic based

subscriptions.

0 5 10 15 20 25
of weeks from learning

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.19: Relative throughput, topic

based subscriptions.

decreasing rate that diminishes quickly. The load imbalance increases with in-

creasing number of subscriptions, but again with a decreasing rate that diminishes

eventually. SALB keeps its load imbalance advantage across the range, having

up to 3.3 times lower imbalance than the hashing approach for the tweet-based

subscriptions and 1.7 times lower for the topic-based subscriptions.

6.4 Concept Drift

Figures 6.19, 6.18, 6.21, and 6.20 plot relative throughput, throughput. load im-

balance, , and spread as a function of time. Here, time corresponds to the number

of weeks passed since the learning was performed using the word to matcher map-

ping. We use the tweets from week 0 to build the word to matcher mapping, and

use it for evaluating the performance for the following weeks. We report aver-

age metrics for 5 week intervals to reduce noise. For this set of experiments 100

thousand topic-based subscriptions were used. To be able to track the concept

drift of subscriptions as well, for each week we extracted new topics and created

a new subscription set.

We observe that the throughput is markedly higher for week 0. This is expected,

as the model is specifically built for the that week, and certain amount of over-

fitting exists. The throughput decreases by a factor of 2 after the first week and

Figures 6.20 and 6.21 show that this is due to both the increase in the spread as

well as the load imbalance. However, the increase in load imbalance is sharper

37

0 5 10 15 20 25
of weeks from learning

20

21
sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.20: Spread, topic-based

subscriptions.

0 5 10 15 20 25
of weeks from learning

2-3

2-2

2-1

20

21

22

23

lo
a
d
im

b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Figure 6.21: Load imbalance, topic-based

subscriptions.

for all contender approaches. Even though the increase in imbalance is most

steep for SALB, it still has better imbalance compared to all others, and we ob-

serve from Figures 6.18 and 6.19 that it maintains the throughput advantage over

other approaches across the entire time range. Importantly, while there is an ini-

tial decrease in throughput after week 0, there is no decreasing trend afterwords.

This can be explained by the nature of the spoken languages. Irrespective of the

current topics of interest, there is a common structure of the spoken language

that makes certain words appear together and that structure is sufficient to take

advantage of in order to achieve better scalability and throughput.

6.5 Load Shedding

Figure 6.22 plots the accuracy of matching (on the left y-axis using solid lines)

as well as the percentage of load shed (on the right y-axis using dashed lines),

as a function of the load shedding threshold (the maximum number of matcher

instances a publication is forwarded to). Accuracy is defined as the fraction of

the correct matches produced by the system. Note that performing load shedding

cannot result in superfluous matches, but only missing matches. As we decrease

the shedding threshold, the accuracy initially decreases by a small amount.

But as the shedding threshold gets smaller, the rate of decrease in the quality

increases. In general, the shape of the quality curve is friendly to load shedding.

However, the curve for the percent of load shed is not as friendly. This is because

38

0 1 2 3 4 5 6 7
shedding threshold

0.0

0.2

0.4

0.6

0.8

1.0
Ac
cu
ra
cy consensusShedding

subscriptionShedding
randomShedding

10

20

30

40

50

60

70

80

90

100

%
of
Lo
ad

Sh
ed

Figure 6.22: Accuracy, shed load.

200 400 600 800 1K 1.2K1.4K1.6K1.8K2K
time

5K

10K

15K

20K

25K

30K

th
ro
u
g
h
p
u
t

tweet/sec

shedding level

0

2

4

6

8

sh
e
d
d
in
g
le
v
e
l

Figure 6.23: Input rate, shed. level

the amount of load shed is low for large thresholds and the rate of increase is

initially slow when the threshold is high and increases later as the threshold gets

smaller. Still, the load shedding is effective. For instance, it is possible to shed

close to 25% of the load, while still maintaining 90% accuracy. Among the two

load shedding approaches we have proposed, that is subscription shedding and

consensus shedding, the former is more effective, as it can provide higher accuracy

for the same amount of load shed.

Figure 6.23 plots the input throughput (tweets/sec, on the left y-axis using solid

lines) as well as the load shedding levels (on the right y-axis using dashed lines),

as a function of time. Increased load shedding level implies a lower shedding

threshold. Note that, this experiment does not start from time 0, since we wait

at the beginning for the buffer that holds the publications to stabilize. Also,

in this experiment, we display the throughput and load shedding values of for

a single Router & Placer machine. Starting with 16000 publications per second

input rate, at time 500 we increase the input throughput to 32000, and at time

1000 we decrease it down to 2000. After time 1500, we again go back to 16000

publications per second. Using this setup, we show how the shedding level adapts

to the changes in the input throughput.

We observe that the change in the shedding level shows a similar pattern with

the changes in the input rate, but it is often shifted towards right. This delayed

reaction is due to the buffering effect, and is more pronounced when the buffer

is full (overloaded scenario). For instance, at time 500, the buffer is not full, and

the sudden increase in throughput quickly fills up the buffer and takes us to the

39

overload segment. As a result, the algorithm quickly adapts and increases the

shedding level to 7 (one below the maximum of 8). However, when there is a very

sharp decrease in input rate at time 1000, it takes a longer time for the shedding

level to come down. This is because of the large buffer size we use. It takes time

for the already buffered publications to be processed. Eventually we get to the

ideal region, and the shedding level is lowered. The buffer size can be adjusted

based on the latency that could be tolerated. For small buffer sizes, the time it

will take for us to lower the shedding level will be shorter.

6.6 Learning Time

102 103 104 105 106 107

number of tweets

2-6
2-4
2-2
20
22
24
26
28
210
212
214

se
co

n
d
s

gCM

gWCM

gFCF

gIFCF

SALB

Figure 6.24: Learning time.

Figure 6.24 plots the time it takes to build the word to matcher mapping from

the training dataset, as a function of the number of publications in the dataset.

It is important to note that the graph partitioning based algorithms make use

of the Metis library, which is a highly optimised C implementation. The SALB

algorithm, on the other hand, is a Python implementation. As a result, here we

want to focus more on the trend, rather than the absolute numbers. We observe

that the rate of increase in the amount of time it takes for SALB to create the

mapping is lower compared to graph partitioning based approaches and after 1

million tweets, SALB starts to take less time. For 1 million tweets, which is the

number we have used in all our experiments, it takes around a minute for graph

partitioning approaches to compute the mapping, and around two minutes for

SALB. For 10 million tweets the number raises to around 4 hours for SALB and

slightly higher for the graph partitioning based approaches.

40

Chapter 7

Related Work

We discuss prior work related to S3-TM with an emphasis on pub/sub systems as

well as matching and filtering techniques. S3-TM is relevant to content-based pub-

lish/subscribe systems, as it evaluates monitoring queries (subscriptions) against

micro-blog posts (publications). Matching and filtering is relevant as well, since

one of the core components of S3-TM is the comparison of publications and sub-

scriptions to detect matches.

Publish/subscribe (pub/sub) systems. Pub/sub systems can be classified

into topic-based and content-based, depending on the matching model. Much

early work on pub/sub was topic-based, wherein the messages are filtered based

on a single topic string (e.g., TIBCO [18], Scribe [19]). Content-based pub/sub

systems are more expressive. They use subscriptions in the form of a set of pred-

icates and evaluate them against the entire contents of the publications [1, 20].

In this work we use a variation of the content-based matching model. The key

difference from the classical pub/sub work is that, our predicates in the subscrip-

tions are just words. We take advantage of this structure by making intelligent

content-based routing and placement decisions in order to achieve scalability.

Wide-area network pub/sub systems. PADRES [4], SIENA [5],

CORONA [21], HERMES [20], and GRYPHON[6] are well-known examples of

distributed content-based pub/sub middleware that use broker overlays. For in-

stance, PADRES employs a network of brokers and clients to implement pub/sub

41

functionality. Similarly, SIENA is developed as a distributed general-purpose

event notification system that is composed of interconnected servers over a wide-

area network. Apart from these systems, there also exist systems performing

content-based data dissemination in the context of data streams, such as Sem-

Cast [22] and [23]. Compared to these works, we focus on pub/sub within a

data center environment. Our system does not use brokers, and instead contains

multiple router and matcher operators, organized into a pipeline of data paral-

lel stages. However, the fundamental idea behind content-based routing is valid

in our approach as well. Different than the classical pub/sub problem, we have

knowledge about the characteristics of the publication data and exploit it to op-

timize the routing.

Tightly coupled pub/sub systems. StreamHub [3], Cobra [24], and S3-TM

are pub/sub systems that are designed to be run within a data center. We refer to

them as tightly coupled pub/sub systems, where scalability and high throughput

are the main concerns. StreamHub resembles to our work in terms of its archi-

tectural design. However, it treats publications as black boxes during routing,

and as a result, are limited to publication broadcast and subscription unicast,

vice versa, or a two-level system where the broadcast/unicast roles are switched

between the publications and subscriptions at successive levels. Just like the

StreamHub, Cobra is also designed to be run within a data center. Cobra resem-

bles our work in terms of the goal of the matching, as they match subscriptions to

RSS feeds, enabling users to make content based filtering and aggregation. While

application-level goals of Cobra are similar to our work, the architectural design

is different in terms of data parallelism. Cobra has a three tiered architecture

with crawlers, filters, and reflectors. Subscriptions are assigned to filters and

matched data are polled by the users via reflectors. Crawlers collect RSS feeds

and send those to filters. However, since Cobra assumes publications as black

box like StreamHub, crawlers are limited to broadcasting feeds to all filters. In

contrast to StreamHub and Cobra, we take advantage of the short text matching

problem domain to avoid the broadcast. Most importantly, our work focuses on

optimization of the routing and placement decisions based on the contents of the

publications and subscriptions, which is not covered by earlier work.

Filtering and matching. The processing heavy core of pub/sub systems involve

42

the filtering and matching of publications against subscriptions. State-of-the-art

matching algorithms for pub/sub systems fall into one of two main categories,

namely counting-based algorithms [5, 25] and tree-based algorithms [6, 26, 27]. A

counting-based algorithm maintains the number of predicates satisfied for each

subscription. A tree-based algorithm organizes subscriptions as a search tree,

where each node contains a predicate and each leaf has a set of subscriptions.

S3-TM uses a tree-based subscription matching algorithm as well. In our case,

the search tree is a trie structure in which subscriptions can be placed within

internal nodes as well.

In a recent work on matching, Shraer et al. proposed an architecture to main-

tain the top-k tweets relevant to a news story [28]. In their architecture, the

matching between a subscription and a publication is achieved by computing a

score between the contents of the two with respect to relevance and recency. This

architecture limits the subscriptions to a small set of news stories. We have a dif-

ferent model, where subscriptions are set of words queries and matching is based

on strict containment, rather than similarity.

Delta [8] is a pub/sub system where subscriptions are reorganized and rewritten

to achieve low latency in matching, and low resource utilization for scaling up to

large numbers of subscriptions. The subscriptions are conjunctives as in our work,

but they take the form of more general predicates. The system is designed consid-

ering the fact that subscriptions often overlap partially or completely. This is an

assumption we also make use of. However, the authors focus mainly on reorganiz-

ing the subscriptions for efficient processing via linear programming techniques,

and not on optimizing routing or placement. Our work is focused on the lat-

ter challenges, and relies on a mostly traditional trie-based matching algorithm,

which can be easily replaced with more advanced alternatives like Delta.

43

Chapter 8

Conclusion

In this paper, we presented S3-TM — a system for scalable streaming short text

matching. S3-TM is designed to be run in a data center environment to evaluate

high-throughput, streaming publications in the form of short posts against large

number of standing subscriptions in the form of conjunctive query terms. S3-TM

is organized as a data parallel streaming application that contains many instances

of routing and matching stages. A core insight of our work is that, the matching

can be parallelized by using a partitioning of words over matchers. This way,

publications can be multicast to a subset of relevant matchers and subscriptions

can be anycast to a subset of eligible matchers. We developed several algorithms

to learn a mapping that can minimize the size of the multicasts and balance the

load across the matchers. Among these, the SALB algorithm that relies on the

word-to-post bipartite graph has proven to be the most effective in practice. Our

experimental results show that the co-occurrence relationship between words can

indeed make the word partitioning based routing a scalable and effective solu-

tion, resulting in more than 2.5 times higher throughput compared to a baseline

approach. S3-TM also showcases good scalability. As part of this work, we have

also developed a load-aware subscription placement algorithm called LASP and

experimentally showed its effectiveness in taking advantage of overlap structure

among subscriptions. Finally, we have introduced extensions of the base system

to handle skew in the publication workload to achive better scalability, and simple

44

yet effective techniques for load shedding to handle unexpected spikes in load.

45

Bibliography

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many

faces of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2,

pp. 114–131, 2003.

[2] “Twitter Streaming API.” http://dev.twitter.com/docs/streaming-apis. retrieved

Dec, 2013.

[3] R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J.-F. Pineau, M. Pasin,

E. Rivière, and S. Weigert, “Streamhub: A massively parallel architecture for

high-performance content-based publish/subscribe,” in ACM International

Conference on Distributed Event-based Systems (DEBS), pp. 63–74, 2013.

[4] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski, “The padres distributed

publish/subscribe system.,” in International Conference on Feature Interac-

tions in Telecommunications and Software Systems (FIW), 2005.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation

of a wide-area event notification service,” ACM Transactions on Computer

Systems (TOCS), vol. 19, no. 3, pp. 332–383, 2001.

[6] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra,

“Matching events in a content-based subscription system,” in ACM Sympo-

sium on Principles of Distributed Computing (PODC), 1999.

[7] L. Liu, C. Pu, and W. Tang, “Continual queries for internet scale event-

driven information delivery,” IEEE Transactions on Knowledge and Data

Engineering (TKDE), vol. 11, no. 4, pp. 610–628, 1999.

46

http://dev.twitter.com/docs/streaming-apis

[8] K. Karanasos, A. Katsifodimos, and I. Manolescu, “Delta: Scalable data

dissemination under capacity constraints,” VLDB Endowment (PVLDB),

vol. 7, no. 4, pp. 217–228, 2013.

[9] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “Bluedove: A scalable and elas-

tic publish/subscribe service,” in IEEE International Parallel & Distributed

Processing Symposium (IPDPS), pp. 1254–1265, 2011.

[10] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu, “Safe data parallelism for

general streaming,” IEEE Transactions on Computers (TC), 2013.

[11] S. E. Schaeffer, “Survey: Graph clustering,” Computer Science Reviews,

vol. 1, no. 1, pp. 27–64, 2007.

[12] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for par-

titioning irregular graphs,” SIAM Journal on Scientific Computing (SISC),

vol. 20, no. 1, pp. 359–392, 1998.

[13] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,

“Load shedding in a data stream manager,” in Very Large Databases Con-

ference (VLDB), pp. 309–320, 2003.

[14] A. K. McCallum, “MALLET: A machine learning for language toolkit.”

http://mallet.cs.umass.edu, 2002.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal

of Machine Learning Research (JMLR), vol. 3, pp. 993–1022, 2003.

[16] M. F. Porter, “An algorithm for suffix stripping,” Program: Electronic library

and information systems, pp. 313–316, 1997.

[17] M. D. Choudhury, Y.-R. Lin, H. Sundaram, K. S. Candan, L. Xie, and

A. Kelliher, “How does the data sampling strategy impact the discovery of

information diffusion in social media?,” in AAAI Conference on Weblogs and

Social Media (ICWSM), 2010.

[18] “TIBCO Inc., Tib/rendezvous.” White Paper, 1999.

47

http://mallet.cs.umass.edu

[19] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. Rowstron, “Scribe:

A large-scale and decentralized application-level multicast infrastructure,”

IEEE Journal on Selected Areas in Communications (JSAC), vol. 20, no. 8,

pp. 1489–1499, 2006.

[20] P. R. Pietzuch and J. M. Bacon, “Hermes: A distributed event-based middle-

ware architecture,” in IEEE International Conference on Distributed Com-

puting Systems (ICDCS), pp. 611–618, 2002.

[21] V. Ramasubramanian, R. Peterson, and E. G. Sirer, “Corona: A high per-

formance publish-subscribe system for the world wide web,” in USENIX

Conference on Networked Systems Design & Implementation (NSDI), 2006.

[22] O. Papaemmanouil and U. Çetintemel, “SemCast: Semantic multicast for

content-based stream dissemination,” in IEEE International Conference on

Data Engineering (ICDE), pp. 37–42, 2004.

[23] B. Gedik and L. Liu, “Quality-aware distributed data delivery for continuous

query services,” in ACM International Conference on Management of Data

(SIGMOD), 2006.

[24] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M. Roussopoulos, and M. Welsh,

“Cobra: Contentbased filtering and aggregation of blogs and rss feeds,”

in USENIX Conference on Networked Systems Design & Implementation

(NSDI), pp. 3–3, 2007.

[25] T. Yan and H. Garcia-Molina, “Index structures for selective dissemination

of information under the boolean model,” ACM Transactions on Database

Systems (TODS), vol. 19, no. 2, 1994.

[26] S. Kale, E. Hazan, F. Cao, and J. P. Singh, “Analysis and algorithms for

content-based event matching,” in International Workshop on Distributed

Event-Based Systems (DEBS), pp. 363–369, 2005.

[27] M. Sadoghi and H.-A. Jacobsen, “Be-tree: An index structure to efficiently

match boolean expressions over high-dimensional discrete space,” in ACM

International Conference on Management of Data (SIGMOD), pp. 637–648,

2011.

48

[28] A. Shraer, M. Gurevich, M. Fontoura, and V. Josifovski, “Top-k publish-

subscribe for social annotation of news,” VLDB Endowment (PVLDB),

vol. 6, no. 6, pp. 385–396, 2013.

49

	Introduction
	Architecture
	Publication Routing
	Formalization
	Word Network Partitioning
	SALB: Spread-Aware Load Balancing

	Subscription Matching and Placement
	Matching
	Load-Aware Subscription Placement

	Extensions
	Skew Handling
	Load Shedding
	What load to shed
	How much load to shed

	Experimental Evaluation
	Datasets
	Scalability
	Subscription Awareness
	Concept Drift
	Load Shedding
	Learning Time

	Related Work
	Conclusion

