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ABSTRACT

MINIMIZING COMMUNICATION LATENCIES IN
CONJUGATE GRADIENT TYPE PARALLEL
ITERATIVE SOLVERS

M. Mustafa Ozdal
MS in Computer Engineering
Supervisor: Prof. Cevdet Aykanat
July, 2001

Conjugate Gradient (CG) type iterative solvers are widely used for the solu-
tion of large, sparse, linear system of equations on multicomputers. Typically, the
basic operations performed at each iteration are sparse matrix vector multiplica-
tions (SpMxV), and inner product computations. In the parallel CG algorithm,
SpMxV operations require point-to-point type communications, whereas inner
product computations require all-to-all broadcast (AABC) type communications.
In this thesis, we propose a novel communication scheme in which the point-to-
point communications are embedded into the AABC operations. The purpose
here is to minimize the number messages sent by each processor, so that the com-
munication latencies of a parallel CG program are minimized. However, such a
scheme has the disadvantage that the communication volume requirements might
increase. For this reason, a cost model and a methodology to minimize the over-
head in communication volume is given. Some experiments have been performed
to test the practical validity of the proposed scheme. It is observed that the
execution times for communication operations decrease in this scheme, especially
for the configurations in which the message start-up costs dominate the total

communication times.

Keywords: sparse matrices, parallel iterative solvers, parallel matrix-vector mul-

tiplication, communication minimization, hypergraph partitioning.
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OZET

~ ESLENIK GRADYAN TIPI PARALEL
OZYINELI COZUCULERDE ILETISIM GECIKME
SURELERININ EN AZA INDIRGENMESI

M. Mustafa Ozdal
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Cevdet Aykanat
Temmuz, 2001

Eslenik Gradyan (EG) tipi 6zyineli ¢oziiciiler biiyiik, seyrek, dogrusal denklem
sistemlerinin ¢oziimlerinde sik¢a kullanilmaktadirlar. Genelde, her 6zyinelemede
uygulanan temel iglemler, seyrek matris vektér carpimlar (SyMxV) ve vektor
i¢ carpimlaridir. Paralel EG algoritmalarinda, SyMxV iglemleri noktadan nok-
taya tipinde iletigsim gerektirirken, i¢ carpim islemleri herkesten herkese yayim
(HHY) tipinde iletigim gerektirmektedirler. Bu tezde, noktadan noktaya iletigim
iglemlerinin HHY iglemlerinin i¢ine gomiildiigii yeni bir iletisim metodu Oner-
ilmektedir. Buradaki amac, her bir iglemci tarafindan gonderilen mesaj sayisinin
en aza indirgenmesi ve boylece paralel EG algoritmasindaki iletigim gecikme
siirelerinin azaltilmasidir. Diger yandan, boyle bir metodun iletigim hacmini
arttirma gibi bir dezavantaji vardir. Bu yiizden, iletisim hacmindeki ek yiikleri en
aza indirgemek icin bir yontem maliyet modeli ile birlikte sunulmaktadir. Oner-
ilen yontemlerin pratikteki gegerliliklerini gozlemlemek icin deneyler yapilmigtir.
Ozellikle mesaj baslama maliyetlerinin toplam iletigim zamanlarinda baskin
oldugu durumlarda, iglemci zamanlarinda bir azalma goézlemlenmigtir.

Anahtar sézcikler: seyrek matrisler, paralel 6zyineli ¢oziiciiler, paralel matris-
vektor carpimi, haberlegsme en aza indirme, hipercizge boliimleme.
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Chapter 1

Introduction

Conjugate Gradient (CG) type iterative solvers are widely used for the solution
of large, sparse, linear system of equations on multicomputers. In most cases, the
basic operations performed at each iteration are a sparse matrix vector multipli-
cation (SpMxV) of the form y = Az, followed by linear vector operations on dense
vectors y and z. In the parallel versions of these solvers, sparse matrix A is par-
titioned among different processors, and each processor becomes responsible for
the computation of the data assigned to it. Here, the processors might need data
from other processors to perform their local computations, hence communication
between different processors is required. Specifically, each SpMxV operation re-
quires point to point communication of some vector elements between specific
processors; whereas some of the linear vector operations (e.g. inner product) re-
quire the communication of a single word among all the processors. Note that for
the latter type of operations, a common term reduction, will be used throughout
this thesis.

In SpMxV computations, each nonzero element in a row/column incurs a
multiply-add operation. So, to obtain a balanced computational load, it is nec-
essary to distribute the input matrix among processors such that each processor
has balanced number of nonzeros. Furthermore the amount of data needed to be
communicated between processors depends on the way the matrix is partitioned.

Based on these considerations, there exist different models and algorithms for

1



CHAPTER 1. INTRODUCTION 2

partitioning the input matrix among processors such that the amount of commu-
nication is minimized, and the computational load of each processor is balanced.
However, as also noted in [17], the existing partitioning schemes try to minimize
the total volume of communication, but not the total number of messages. Such
approaches have the disadvantage of ignoring the message start-up costs, which

can be an important factor in the performance of parallel programs.

The message passing time between two processors is determined by three
principal parameters: start-up time (t;), per-hop time (t,), and per-word transfer
time (ty) [28]. The start-up time is defined to be the time required to send a
message of zero length (or of a very small length). It is in fact the time required
to perform initial operations such as preparing the message, executing the routing
algorithm, establishing an interface between the local processor and the router,
etc. The per-hop time is defined as the time taken by the header of a message
to travel between two directly connected processors. However, the per-hop delay
is negligible on most of the current message passing multiprocessor systems due
to wormhole routing techniques and the small diameter of the network [13]. The
per-word transfer time is the time for a word to traverse the link from the source
processor to the destination processor, and it is inversely proportional to the
channel bandwidth. If the per-hop time is to be neglected, the communication
time for a message of m words can be expressed as: t.omm = ts + mt,. In the
work of Dongarra and Dunigan [11], the latency (¢;) and bandwidth (B) values
for various architectures are measured. Assuming that a floating point word is
4 bytes, we calculate t,, values as t,, = 4/B, and give this data in Table 1.1.
Observe in the table that the ratio ts/t, can be in the order of a thousand,
depending on the architecture. Hence it is appropriate to state that start-up
costs can be significant in the total communication time if the number of words

to be communicated is not large enough.

In this thesis, a novel scheme for CG type solvers is proposed to avoid the
communication start-up costs occuring in SpMxV computations. The approach
will be to embed the messages needed to be communicated in the SpMxV oper-
ations into the following reduction operations in the CG algorithm. A reduction

is in fact an AABC (all-to-all broadcast) type operation, in which each processor
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Table 1.1: t, and t,, values for various parallel architectures

Machine 0S ts (psec) tw (psec)
Convex SPP1000(PVM) SPP-UX 3.04.1 76 0.364
Convex SPP1000(sm 1-n) SPP-UX 3.0.4.1 2.5 0.049
Convex SPP1000 (sm m-n) SPP-UX 3.0.4.1 12 0.068
Convex SPP1200 (PVM) SPP-UX 3.0.4.1 63 0.267
Convex SPP1200 (sm 1-n) SPP-UX 3.0.4.1 2.2 0.043
Convex SPP1200 (sm m-n) SPP-UX 3.0.4.1 11 0.056
Cray T3D (sm) MAX 1.2.0.2 3 0.0313
Cray T3D (PVM) MAX 1.2.0.2 21 0.148
Intel Paragon OSF 1.04 29 0.026
Intel Paragon SUNMOS 1.6.2 25 0.023
Intel Delta NX 3.3.10 7 0.500
Intel iPSC/860 NX 3.3.2 65 1.333
Intel iPSC/2 NX 3.3.2 370 1.429
IBM SP-1 MPL 270 0.571
IBM SP-2 MPI 35 0.114
KSR-1 OSF R1.2.2 73 0.500
Meiko CS2 (sm) Solaris 2.3 11 0.100
Meiko CS2 Solaris 2.3 83 0.093
nCUBE 2 Vertex 2.0 154 2.353
nCUBE 1 Vertex 2.3 384 10
NEC Cenju-3 Env. Rel 1.5d 40 0.308
NEC Cenju-3 (sm) Env. Rel 1.5d 34 0.16
SGI IRIX 6.1 10 0.063
TMC CM-5 CMMD 2.0 95 0.444
Ethernet TCP/IP 500 4.444
FDDI TCP/IP 900 0.412
ATM-100 TCP/IP 900 1.143
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has its own message, and it is required that each processor receives the messages
of all the other processors. Assume that in an SpMxV operation, processor px
is required to send a vector element to processor p,. Since it is definite that a
message from p, will reach py in the following reduction operation, it is possible
for p; to embed the vector element it needs to send p, into this message. Such
an approach completely avoids the start-up costs of the messages communicated
in SpMxV computations. However, it requires some redundant linear vector op-
erations as will be explained in Chapter 3, and it increases the total volume of
communication, compared to the original scheme. The reason for the increase in
the communication volume is that, in the reduction operations, a message from
pr does not necessarily reach py in a single step. Hence, the embedded vector ele-
ments needed to be communicated from p; to p, might also require multiple steps
to reach their destinations. However, these vector elements are communicated in

a single step in the original scheme.

In the single port communication model, an efficient AABC algorithm for a
ring network of n processors can be summarized as follows [28]. In the beginning,
each processor sends its own message to one of its neighbors. Then in the subse-
quent n — 2 steps, it forwards the data received from one of its neighbors to its
other neighbor. Based on this, the AABC for 2D mesh is given with a two-phase
approach. In the first phase, each row of the processor mesh performs AABC us-
ing the algorithm for the ring network. Then again the AABC for ring algorithm
is performed in the second phase, but this time on each column of the mesh.
Observe that in these algorithms, multiple steps are required for a message from
a processor to reach another processor. It is possible to define a distance concept
between two processors based on the steps required for the communication of
a message between them. In Chapter 3, a hypergraph theoretical cost function
to model the new version of the communication volume is proposed using this

distance concept.

For the volume of communication incurred in this approach be small, it is also
required that the processors communicating during the SpMxV computations be
close to each other. As will be described in detail in Chapter 4, this is realized

by trying to minimize the cost function mentioned above. For this, a two-phase
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Figure 1.1: An example ring network of processors

approach is used. In the first phase, column-net hypergraph model [8] is used to
partition the input matrix such that the total number of words that are required to
be communicated is minimized regardless of the distance . For this, the multilevel
hypergraph partitioning tool PaToH [8] is used. In the second phase, based on the
distances between processors, each part is mapped to a processor such that the
incurred volume of communication is minimized. Here, the iterative improvement
heuristics given by Kernighan and Lin [27] is used to minimize the cost function
defined.

It is expected that, a successful partitioning and mapping of the matrix pro-
vides that the processors that have a large number of words to be communicated
between them are close to each other, and the ones with small number of words
are far away. In accordance with this, consider the example in Figure 1.1, where
the AABC operation is defined to be from left to right on the ring of processors.
Assume that P; is required to send n words to P,, which has a distance of 1
to P;, and P, is to send m words to Ps, which has a distance of 3 to P,, and
assume further that n > 3m. The straightforward approach for communicat-
ing this data is the following: In the first AABC step, P, sends n words to P,
and P, sends m words to P;. In the second step, P forwards these m words to
P,. Finally in the third step P, forwards them to Ps. It is important here to
remember that regardless of the extra data communicated (i.e the packets with
n and m words), each processor sends a message to its right neighbor in each
step to perform the AABC operation. The extra communicated data are simply
embedded into these messages without incurring any additional start-up costs.
Based on this consideration, the extra communication cost becomes (n + 2m)t,,,
since the communication of m and n words are performed concurrently in the
first step. Now assume that the communication pattern for the packet from P, to
P5 is unchanged, but the packet from P; to P, is sent in three steps as subpackets
of size n/3. In this case the extra communication cost reduces to nt, due to the

concurrent communication of n/3 and m words in each of the three steps. This
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example shows that it is also important how to embed the data to be communi-
cated into the AABC operation. In Chapter 4, a simple scheduling algorithm is

proposed for this purpose.

In this thesis, the models and algorithms are given for rowwise decomposition
of a sparse symmetric matrix. The computation model of the sparse matrix vector
multiplication for rowwise decomposition on 2D meshes is outlined in Chapter 2
together with the existing partitioning schemes. In Chapter 3, the new commu-
nication model for CG type solvers is explained. Chapter 4 gives the details of
the algorithms required for such a model. The effect of the new communication
model is observed by the help of experiments in Chapter 5. Finally, the concepts

given for 2D meshes are generalized for multidimensional meshes in Chapter 6.



Chapter 2

Rowwise Decomposition Models
for SpMxV

Matrix vector multiplication that is performed repeatedly on the same sparse
square matrix is common among CG type iterative solvers. Furthermore rowwise
decomposition scheme is assumed for the matrix, and symmetric partitioning
for the input vectors. Specifically, for the sparse matrix vector multiplication

(SpMxV) of the form y = Az, the decomposition for K processors will be as

follows:
Ay I [ (1 ]
A= | A |, r= zp |, and y=1 u
i Ag ] | TK | | Yk |

Here, processor P, owns row stripe A, and vector parts x and y;. It will
be responsible for computing yr = Apr during the SpMxV computations, and
the linear vector operations on z, and y,. Observe that for the local SpMxV
computations, processor Py requires the vector entries z[i] corresponding to all
nonzero columns % of A;. Since P, computes only the x; portion of the x vector, it

has to receive all z[i] values for which x[i| ¢ xj, from the corresponding processors

7
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k(xx \x

Figure 2.1: Communication requirements for rowwise decomposition

before SpMxV computations. Thus rowwise decomposition can be considered as

a pre communication scheme.

The communication requirements for rowwise decomposition can be seen more
clearly by considering Figure 2.1. Here it is again assumed that the row stripe
Ay, is assigned to processor Py, together with the corresponding vector parts
and y,. In the figure, each symbol ’x’ marks a nonzero element in the row stripe
and column stripe k of the matrix. If a processor P, has an ’x’ marked on its row
stripe Ay, it means that P, needs a vector element that has been computed by P;.
Similarly, if A; has an 'x’ marked on the column stripe £, it means that processor
P, needs a vector element that has been computed by P,. Hence, the nonzeros
in column stripe k£ and row stripe k£ indicate send and receive operations to be
performed by P, respectively. Observe that the nonzero elements in the shaded
block of the figure incur no communication, and such blocks are called diagonal
blocks. The number of words P is required to receive is given as the number
of nonzero columns in the off-diagonal blocks of Ay (3 in the figure). Hence it
is possible to make a generalization that the total communication volume for a
rowwise decomposition of a matrix is equal to the sum of the nonzero columns in

each off-diagonal block [8, 18].

Note that during the decomposition of the matrix, each row can be assigned

to each part, that is there is no requirement for contingency of the rows. However,
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(b)

10
13

Figure 2.2: Nonzero pattern of a 16 X 16 matrix (a) before partitioning, and (b)
after partitioning

for the above discussions to hold, the rows and columns of the input matrix are
repermuted after the matrix is partitioned. Figure 2.2 gives such an example.
Observe that after partitioning and repermutation of the matrix, the number of
nonzeros in the off-diagonal blocks is small. In fact this is one of the objective
metrics of the existing partitioning models, i.e. keeping the number of off-diagonal
nonzeros small so that the volume of communication for the parallel SpMxV is
small. In the subsequent sections, such existing partitioning schemes based on

graph and hypergraph models are summarized.

2.1 Graph Model Based Decomposition

An undirected graph G = (V, £) is defined as a set of vertices V and a set of edges
E. Every edge e;; € £ connects a pair of distinct vertices v; and v;. The degree
d; of a vertex v; is equal to the number of edges incident to v;. It is possible to

assign a weight w; for each vertex v; € V and a cost ¢;; for each edge e;; € £.

The computational graph model is widely used in the representations of com-
putational structures of various scientific applications, including repeated Sp-

MxV computations, to decompose the computational domains for parallelization
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[4, 5,22, 26, 31, 34]. The problem of 1D sparse matrix decomposition for minimiz-
ing the communication volume while maintaining the load balance is formulated

in this model as the K-way graph partitioning by edge separator (GPES) problem.

2.1.1 Graph Partitioning by Edge Separator (GPES)

An edge subset £ C £ is a K-way edge separator if its removal disconnects the
graph into at least K connected components. Igprs = {Vi,Va,...,Vk} is a

K-way partition of G by edge separator &g if the following conditions hold:

e each part V, is a nonempty subset of V, i.e., V; C V and V, # ( for
1<k<K,

e parts are pairwise disjoint, i.e., Vi, NV, =0 forall1 <k << K,

e union of K parts is equal to V, i.e., Uf_, Vi = V.

A K-way partition is also called a multiway partition if K > 2 and a bipartition
if K = 2. Here, all edges between the vertices of different parts belong to £s.
Edges in s are called cut or external edges, and all other edges are called uncut
or internal edges. In a partition Illgpgs of G, a vertex is said to be a boundary

vertex if it is incident to a cut edge.

The weight Wy, of a part Vy is defined as the sum of the weights of the vertices
in that part, that is Wy = 32, ¢y, w;. A partition is said to be balanced if each part
V. satisfies the balance criterion: Wy, < Wo,(14¢€). Here, Woyg = (X4 ey wi) /K
denotes the weight of each part under the perfect load balance condition, and ¢

represents the predetermined maximum imbalance ratio allowed.

The cutsize definition for representing the cost x(Ilgprs) of a partition Ilgpps

is defined as follows:

HGPES' Z CZ] (21)

e;;€Es
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Here, observe that each cut edge e;; contributes its cost c¢;; to the cutsize.
Hence, the K-way GPES problem can be defined as the task of dividing a graph
into K parts such that the cutsize is minimized, and each part satisfies the balance
criterion. Note that GPES problem is known to be an NP-hard problem [14].
However, multilevel graph partitioning heuristics [3, 19, 26] have been proposed
leading to fast graph partitioning tools such as Chaco [20], MeTiS [25], and
WGPP [15].

2.1.2 Standard Graph Model for Structurally Symmetric

Matrices

A structurally symmetric sparse matrix A can be represented as an undirected
graph G4 = (V, &), where the sparsity pattern of A corresponds to the adjacency
matrix representation of graph G4. In the rowwise decomposition of the matrix,
each vertex v; € V corresponds to atomic task ¢ of computing the inner product
of row ¢ with column vector z. Since each nonzero entry in a row of A incurs a
multiply-and-add operation during the local SpMxV computations, the compu-
tational load for the atomic task 7 can be defined to be the number of nonzero
entries in row 7. Assume that w; and d; are the weight and degree of vertex v;
respectively. Then, w; = d; if the diagonal entries of A are zero, and w; = d; + 1

otherwise.

Observe that this model displays a bidirectional computational interdepen-
dency view for SpMxV. Since matrix A is assumed to be structurally symmetric,
each edge e;; € £ can be considered as incurring the computations y; = y;+a;; X ;
and y; = y;+aj; Xx;. If rows 7 and j are assigned to the same processor, then edge
ei; does not incur any communication, because the vector elements x; and x; are
also assigned to this processor. However, if rows ¢ and j are assigned to different
processors, then cut edge e;; necessitates the communication of two floating point
words. This is because, atomic task ¢ needs the vector element x;, and atomic
task j needs the vector element x; for the SpMxV computations. Depending on

these considerations, it is possible to reduce the rowwise decomposition of matrix
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Figure 2.3: Two-way rowwise decomposition of a matrix A, and the corresponding
bipartitioning of its associated graph G4

A to the K-way partitioning of its associated graph G4. For this purpose, the
cost ¢;; for each edge e;; € £ is set to 2, and the cutsize metric described in
Section 2.1.1 is used together with the balance condition. Note that minimizing
the cutsize of the graph is an effort towards minimizing the total volume of inter-
processor communication, and maintaining the balance condition corresponds to

maintaining the computational load balance during local SpMxV computations.

An example 10 x 10 symmetric sparse matrix A and its associated graph G4
are illustrated in Figure 2.3. Here, a two-way rowwise decomposition is given for a
two-processor system. The numbers inside the circles indicate the computational
weights of the respective vertices of G4. Here, a perfect load balance is achieved
by assigning 21 nonzero entries to each row stripe. Observe also that the cutsize
of the given graph bipartitioning is 8, which is also equal to the total number of

nonzero entries in the off-diagonal blocks of A.

2.1.3 Alternative Models and Metrics for Graph Parti-

tioning

The standard graph model is not suitable for the partitioning of nonsymmetric
matrices. Catalyurek [7] generalizes the standard graph model to nonsymmetric
square matrices by assigning an appropriate cost value for the edges. Hendrickson
and Kolda proposes a bipartite graph model [18, 16] that enables the partitioning

of rectangular matrices. It is sometimes the case that balancing a single quantity
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such as the number of nonzeros is not enough. Karypis and Kumar proposes the
multi-constraint model [23], where each vertex is assigned a vector of k weights,
and the objective of the graph partitioning is to minimize the communication
costs while keeping each of k& weights balanced. Another approach is the skewed
partitioning proposed by Pellegrini [33] and Hendrickson [21]. Here, each vertex
has a set of k£ preference values for each part k£, and these preference values are
considered together with other partitioning objectives. For further details on
these subjects, the reader may refer to the survey paper by Hendrickson and
Kolda [17].

2.1.4 Flaws of the Graph Model

Consider the example given in Figure 2.3, and assume that parts P; and P,
are mapped to processors P; and P, respectively. Here, the cut size for this
partitioning is equal to 8, thus the communication volume is estimated to be
8 words. However, observe that the off-block-diagonal nonzeros a,7 and as7 in
processor P; incur the need for the same nonlocal z vector component z7. So,
P, will send z7 only once to P, instead of twice as depicted in the graph model.
Similarly, P, will send x4 only once to P, because of the nonzeros a7 4 and ag 4.
Hence, the actual communication volume is 6, not 8 as estimated by the graph
model. In fact, the edge cut metric of the graph model can not recognize that
two or more edges may represent the same information flow, so it overcounts
the true volume of communication [17]. In matrix theoretical view, the nonzero
entries in the same column of an off-diagonal block incur the communication of
a single = value. However, the graph models try to minimize the total number

of off-block-diagonal nonzeros without considering their relative spatial locations

8].

There are also some other shortcomings of the graph model [17]. First of
all, it does not consider the number of messages to be sent, hence it ignores the
communication start-up costs. However, depending on the machine architecture
and the problem size, number of messages can be as important as the message

volume, as also mentioned in Chapter 1. Another shortcoming of the graph model
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is that it does not try to balance the volume of communications performed by
each processor. It is possible that a processor is assigned most of the communi-
cation load, although the total volume of communication is minimized. In that
case, the parallel performance shall degrade, because the processor with the most

communication load will be the bottleneck.

The hypergraph model proposed by Catalyurek and Aykanat [8] addresses
the principle problem of the edge cut metric of the graph model. In this work,
they model the actual total communication volume exactly using hypergraph

partitioning models. The next section outlines these concepts.

2.2 Hypergraph Model Based Decomposition

A hypergraph H = (V,N) is defined as a set of vertices V and a set of nets
(hyperedges) N among those vertices [2]. Every net n; € N is a subset of
vertices. The vertices in a net n; are called its pins and denoted as pins{n;]. The
size s; of a net n; is equal to the number of its pins, i.e., s; = [pins[n,;||. The
set of nets connected to a vertex v; is denoted as nets[v;]. The degree of a vertex
is equal to the number of nets it is connected to, i.e., d; = |nets[v;]|. Graph is a
special instance of hypergraph such that each net has exactly two pins. Similar to
graphs, w; and ¢; denote the weight of vertex v; € V and the cost of net n; € N,

respectively.

2.2.1 Hypergraph Partitioning

Definition of K-way partitioning of hypergraphs is identical to that of GPES. In
a partition II of H, a net that has at least one pin in a part is said to connect that
part. Connectivity set A; of a net n; is defined as the set of parts connected by
nj. Connectivity A\; = |A;| of a net n; denotes the number of parts connected by
nj. A net n; is said to be cut if it connects more than one part (i.e. A; > 1), and

uncut otherwise (i.e. A; = 1). The cut and uncut nets are also referred to here as
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external and internal nets, respectively. The set of external nets of a partition II
is denoted as Ng. There are various cutsize definitions [10, 35] for representing

the cost x(II) of a partition II. Two relevant definitions are:

(a) x(IT) = Z c; and (b) x(II) = Z ci(Aj—1) (2.2)

njENE njENE

In the first definition, cutsize is equal to the sum of costs of the cut nets,
whereas in the second one, the cost of each net n; is multiplied by (A;—1). Similar
to the graph model, the weight of a part is equal to the sum of vertex weights in
that part. The same balance condition given in Section 2.1.1 also applies here.
Based on these, the definition of hypergraph partitioning problem can be defined
as dividing a hypergraph into two or more parts such that the cutsize is minimized
and a given balance criterion among part weights is maintained. Note that the
hypergraph partitioning problem is known to be NP-hard [29]. However based
on some algorithmic heuristics, fast hypergraph partitioning tools exist such as
PaToH [8, 7] and hMeTiS [24].

2.2.2 Column Net Model for Rowwise Decomposition

Catalyurek and Aykanat [8] propose the column net model for rowwise decompo-
sition of sparse matrices. Here, the input matrix A is represented as a hypergraph
H = (V,N), where each row i of A corresponds to v; € V and each column j
corresponds to n; € N. Net n; contains the vertices corresponding to the rows
which have a nonzero entry in column j (i.e. v; € n; if and only if a;; # 0).
Each vertex v; € V corresponds to atomic task ¢ of computing the inner product
of row ¢ with column vector . Thus, the computational weight w; of a vertex
v; € V is equal to the number of nonzeros in row 7. Each net n; can be consid-
ered as incurring the computations y; = y; + a;; X x; for all ¢ values such that
v; € n;. So, net n; denotes the set of atomic tasks that need ;. Assume that
this hypergraph is partitioned and each part is assigned to a processor. If net

n; is an internal net, then no interprocessor communication is required for this
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Figure 2.4: (a)Nonzero pattern of a 16 x 16 matrix after partitioning, (b) The
corresponding column-net model

net. However, if it is a cut net, the processor that owns z; is required to send
one word (i.e. z;) to each processor that owns at least one v; € n;. Thus, the
communication volume incurred by n; is equal to A,; — 1, where ), denotes the
connectivity of the net n;. So, by assigning unit costs to each net, minimization
of communication volume for the column net model reduces to the problem of
K-way hypergraph partitioning problem according to the cutsize definition given
in 2.2. As an example, the 4-way partitioned matrix given in Figure 2.2(b) is
redrawn in Figure 2.4(a). The corresponding hypergraph is illustrated in Fig-
ure 2.4(b). Observe that the communication volume depicted by this hypergraph
isequal to (Apy — 1)+ (A, = 1)+ My = 1)+ (M, —1) =2+141+2 =6. This
is exactly equal to the number of nonzero columns in the off-diagonal blocks of

matrix A.



Chapter 3

Communication Scheme for
Parallel CG

The Conjugate Gradient method is an optimization technique that is used for the
solution of linear equations of the form Ax = b. Here, the space of x vectors is
searched in such a way that the objective function f(z) = 1/2(x, Ax) — (b, x) is
minimized. If matrix A is a symmelric, positive definite matrix, then this objec-
tive function has a global minimum where its gradient vector vanishes [30], i.e.,
Vf(z) = Ax—b = 0. Figure 3.1 displays a coarse-grain CG algorithm presented
by Aykanat et.al. [1]. The rationale behind this coarse-grain formulation was to
rearrange the computational steps of the original CG algorithm so that two inner
products can be communicated within a single AABC operation at step 2. Note
that the models we will propose in this chapter are also valid for the standard
CG algorithm, which requires two separate AABC operations. However, for the

ease of presentation we will stick to this coarse grain formulation.

17
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Choose initial x, let r = p — Ax, and compute 77 = (r,r).

while not converged

1. calculate q = Ap
2. form (p,q) and (q, q)
3. compute «, # and rr as:
3.1. o= <1:,:1)
3.2. B=a 3 1
3.3. rr=p-rr
4. X=x+ap
5. r=r—oaoq
6. p=r+0p

Figure 3.1: Coarse Grain CG algorithm

3.1 A New Formulation for Parallel CG Algo-

rithm

For the following discussions, we assume that the input matrix A is rowwise
partitioned among K processors based on the discussions in the previous chapter.
Remember that, after the sparse matrix A is partitioned, the rows and columns
of A are repermuted such that most of the nonzeros of a part Ay are on diagonal
blocks (as in Figure 2.2), and they require no communication at all. Figure 3.2(a)
illustrates such a row stripe Ay of an N x N matrix A. Here, Ay has r; rows
and N columns, its diagonal block is shown with the shaded area, and its off-
diagonal nonzero entries are marked with x symbols. Assume that this part
is to be assigned to processor P;. Then, for efficient storage and computations
of the local matrix, it is possible to eliminate the columns in which Ay has
no nonzero entry, and rename the remaining columns such that the format in
Figure 3.2(b) is obtained. Observe that the number of columns in Ay is reduced
to ¢k, which is equal to number of nonzero columns. The vector gy in Figure 3.2(c)
and the vector px in Figure 3.2(d) correspond to the first 7, and ¢, columns of
the reordered Ay, respectively. The shaded areas in these vectors indicate the
elements that are computed locally by processor Py, and the unshaded area in

Px indicate the elements that P, has to receive for the SpMxV operations.
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Figure 3.2: (a) Row stripe Ak of the global matrix, (b) reordered local matrix
Ay, (c) vector gy, (d) vector p.

In the first step of the CG algorithm given in Figure 3.1, processor P, computes
the inner product of each row in Ay with column vector py, and obtains the
vector qx. Then in the second step, two global reduction operations are required
for the inner product computations (p,q) and {q,q). In these operations, each
processor P, first computes the inner products of its local vectors, and then a
global AABC operation is performed for two words. In the local computations,
processor Py is responsible for the inner product of first ry elements of its vectors
Pk and gy, i.e. the shaded areas in Figures 3.2(c) and 3.2(d). The third step of
the algorithm requires computations on local scalar values to find «, 3, and rr
values. Using these values, linear vector operations are performed on local vectors
in steps 4, 5, and 6. Here, x is the solution vector computed until this iteration,
and r is the residual associated with x vector, i.e. r = b — Ax. Note that the
vector operations are performed for the r; elements of the vectors also in these
steps, After the sixth step, each processor P, has the first r; elements of its py
vector, but it needs to receive the remaining ¢ — r elements from the respective
processors, before the next iteration begins. So, point-to-point communications

are performed between processors before the SpMxV of the next iteration begins.

In Figure 3.3, we propose a new formulation for the parallel CG algorithm.
Observe that point-to-point communications are performed in step two, together
with the inner product computations, so that the communication model we will
propose in the subsequent sections is applicable for this application. The main
difference in this algorithm is that the point-to-point communications are per-

formed for the elements of vector q, not vector p. So, a processor P, does not



CHAPTER 3. COMMUNICATION SCHEME FOR PARALLEL CG 20

while not converged

1. calculate qx = Axpx
2. form (p,q) and (q,q) and communicate qj values
3. compute «, # and rr as:
—_ Tr
3.1. a= <p’?> )
— 0 99 _
3.2. B=aldD g
3.3. rr=0-rr
4. Xk = Xk + apx  /* for a number of i elements */
5. ry =Ty — aqx /* for a number of ¢, elements */
6. Pk =Tk + Opx  /* for a number of ¢, elements x/

Figure 3.3: Reformulated Parallel Coarse Grain CG algorithm

directly receive the ¢, — ry elements of vector pyx (the unshaded area in Fig-
ure 3.2(d) ) from the respective processors, but it computes these elements using
the corresponding qi elements it receives (see steps 5 and 6 in Figure 3.2). Note
that for these computations, each of the local vectors qx and ry needs an extra

space of size ¢ — 1.

Such a reformulation of the parallel CG algorithm requires redundant compu-
tations for ¢, — ry elements in steps 5 and 6. However in the current technology,
these computational costs are negligible compared to the costs due to commu-
nication of these elements. So the cost models we will propose in the following

sections will be based only on the communication costs.

3.2 Communication Model Based on AABC

Operations

The all-to-all broadcast operation (AABC) for a ring of n processors is given as
follows [28]. In the beginning, each processor sends its own message to one of its
neighbors. Then in the subsequent n — 2 steps, it forwards the data received from
one of its neighbors to its other neighbor. It is possible to extend this method to
processor networks of 2-D meshes. For this, the given ring algorithm is used to

perform AABC on each row of the mesh. Then, each processor consolidates the
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Figure 3.4: Four phases in AABC operation for a 4 x 4 processor mesh. Each
phase corresponds to one direction.

messages it received into a single message. After that, the AABC algorithm is

performed for each column of the mesh to broadcast these consolidated messages.

For the communication model we propose, we assume that the AABC oper-
ation for a ring is performed in two phases. For a ring of n processors, the first
|(n — 1)/2] steps will be performed in one direction in the first phase, and the
remaining [(n — 1)/2] steps will be performed in the opposite direction in the
second phase. If we extend this method for 2D meshes, there will be four phases
in the AABC algorithm, one for each direction: left, right, up, down. Figure 3.4
illustrates these phases for an example 4 x 4 mesh. Since n = 4 both for the
horizontal and the vertical rings, there exist one step in phase 1, two steps in

phase 2, one step in phase 3, and two steps in phase 4.

3.2.1 Embedding Point-to-Point Communications into
A ABC Operations

Assume that processors P, and P, have the coordinates (zy,yx) and (zg,ye)
respectively, for a mesh of n x m size. If these processors are not on the
same row of the mesh (i.e. yx # y¢), then the message from P, to P, will
first reach a processor P, with coordinates (z,,¥m), such that y,, = y, and
Tm = Zk. This will occur in the phase corresponding to the left direction if
(xg — ) mod n < |(n—1)/2], and to the right direction otherwise. After that,
P,, will forward this message towards Py in the vertical direction. This direction

will be up if (Y, —yx) mod m < |(m—1)/2], and down otherwise. Based on these
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considerations, the direction of P, with respect to P, and the distance between

these processors are defined as follows.

Definition 3.1 For an n x m mesh network, Pj is defined to be to the left of P,
if it is the case that (zy — zx) mod n < |(n — 1)/2], and to the right otherwise.
Similarly, Py is defined to be to the up of P if (y, — yx) mod m < |(m — 1)/2],

and to the down otherwise.

Definition 3.2 The distance from Py to Py, d(Py, P;), is defined to be the num-
ber of steps required for a message originating from P, to reach Py in the AABC
operation. It is possible to define distance in the z-coordinate, d,(Py, P;), and dis-
tance in the y-coordinate, dy (P, P;), such that d(Py, P;) = dy(Pg, Po)+dy (P, Pr).

For a mesh of nxm processors, d, and d, between processors P, and P, are defined

as:
dy(Pp P) = (x¢ — x1) mod n, if Py is to the left of Py (3.1)
(zr, — x¢) mod n, otherwise
_ dm, if P, is to the up of P,
dy(Pr, Pr) = (we = u) mod m, if By IS. o e On T (3.2)
(yr — y¢) mod m, otherwise

It is obvious that in an AABC operation, there is a regular communication
pattern among the processors of the mesh. If processor F; is required to send a
vector element to processor Py, it can simply embed this data into this pattern,
instead of sending it in a point-to-point fashion. For this purpose, the data is
forwarded from P, to P, by the intermediate processors in the appropriate phases
of the AABC operation (i.e. in accordance with the direction of Py with respect
to ).

Figure 3.5 illustrates such an example for a 6 x4 mesh. According to the given
definitions, Py is to the left and to the down of P,. Furthermore, d,(Py, P;) = 2
and dy(Py, Pr) = 1, hence d(Py, P;) = 3. The arrows in the figure indicate the
route for the data to be communicated from P, to P,. Note that in the AABC
operations, the direction of communication will be left for 2 steps, right for 3

steps, up for 1 step, and down for 2 steps. The indicated route from P, to P
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Figure 3.5: Communication of data from P, to Py for a 6 x 4 mesh

can be realized somehow in the phases corresponding to these directions (e.g. the
arrow entering Py can be realized in one of the 2 steps in the phase corresponding

to down direction).

Such a communication scheme has the advantage of avoiding start-up costs of
the point-to-point communications, because no extra communication is initiated
here. However, it has the disadvantage that a data item occurs more than once
in the total communication volume. Namely, a single word to be communicated
from P, to Py incurs a cost of d(Py, P;) instead of 1, for the total communication
volume. So, it is possible to argue intuitively that the processors that are com-
municating vector elements should be close to each other as much as possible to
minimize the overhead in terms of communication volume. The following section

gives a cost model to formalize this concept.

3.3 Cost Model for Communication Volume

Minimization

Assume that the input matrix A has been modeled as a hypergraph H 4 based
on the column net model, as explained in Chapter 2. Assume further that, a
K-way partitioning II has been given for H 4, and each part has been mapped to
a processor on the mesh. In this section, we give a cost function to model the
communication volume for such a configuration, if the communication scheme

proposed in the previous sections is to be used.
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Figure 3.6: (a)Compressed hypergraph He = (Ve, N¢), (b) Communication re-
quirements for each net in N¢ on a 4-processor ring

For this purpose, we first define a compressed hypergraph He = Ve, N¢)
using the original hypergraph H4 = (V4,N4) and the partitioning information
II. For each external net n, € Ny, a net n, is created in H¢ such that pins{n,]
contains the corresponding parts of the vertices in pins[n,|, and size of n. is
equal to connectivity of n,. So, the vertex set Vs has K vertices in it, each one

corresponding to a part in II.

Observe that H¢ models the communication requirements among the given
parts in a more concise way compared to H 4. Here, each net n. € N corresponds
to a single vector element to be communicated among the parts in pins[n.|.
However for the cost model we are to propose, we need to know the source part
in pins|n.|, i.e. the processor that will send the vector element to the remaining
parts in pins[n.|. For this reason, the source part associated with each net is also

indicated in our hypergraph model.

Figure 3.6(a) gives the compressed hypergraph H¢ corresponding to the hy-
pergraph H 4 given in Figure 2.4. Note that v;-v4 in H¢ correspond to the parts
P-P; in H,. Also, for the external nets ns, ny, ni1, and niy in H,4, the nets
ni, Ng, ng, and ny are created respectively in Ho. Assume that these parts are
mapped to a ring of processors in the order: P;-P3;-P5-P;. Assume further that
the source vertices of ni-ny are vy, vs, v4, and vy respectively. Figure 3.6(b) il-

lustrates the communications incurred by each net in such a configuration. For
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instance, the vector element corresponding to n; is required to be sent twice in
the right direction. Note that Pj is not only a destination for this net, but also
a midway in the route from P; to P,. So, when P; receives the data, it should
both copy it into its local vector, and forward it to the right. In this scheme, the
communication volume incurred by n; is equal to 2 words. Although n, seems
to incur a different case (i.e. data is sent once to the left, once to the right), the
incurred communication volume is again 2 words. The following lemma gives a

formal way to express the cost of a net for a ring of processors.

Lemma 3.1 For a given compressed hypergraph H¢ = (Vg, N¢), assume that
the parts corresponding to the vertices in V¢ are mapped to a rowwise (column-
wise) ring of processors. Then the cost of a net n € Mg in terms of communication
volume is equal to the distance between the leftmost (upmost) and the rightmost
(downmost) parts that are in pins[n|. Note that here, the directions are with

respect to the source part.

Observe that, the position of the source vertex is not important for cost calcu-
lations. The reason is that, the distance between the leftmost (upmost) and the
rightmost (downmost) parts is equal to the number of leftwise (upwise) steps plus
the number of rightwise (downwise) steps. Another point to note about is that the
intermediate (i.e. neither the leftmost (upmost) nor the rightmost(downmost))
parts do not have an effect on the cost. This is because, they simply keep a copy

of the vector element while they are forwarding them to their neighbors.

We can extend this cost definition for 2D meshes as follows.

Lemma 3.2 For a given compressed hypergraph H¢ = (Vgo, N¢), assume that
the parts corresponding to the vertices in V¢ are mapped to a 2D mesh such that
each vy, has the coordinates (xy, yx). Assume further that the coordinates for the
source vertex of net n is given as (zs,ys). Then it is possible to find the cost of

n in terms of communication volume as follows:

1. Ignore the y coordinates (i.e. treat all parts as if on the same row), and

find the cost for the rowwise ring.
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Figure 3.7: Cost calculation for a net on a 5 x 5 mesh. The dark circles indicate
pins of n, and the source is the one with an ’s’ mark in it.

2. For each column j in which there exists at least one vertex vy € pins[n]

(i.e. mx = j), assume that there is a source at (j,ys), and calculate the cost

for the columnwise ring x = j.

3. Add all the costs in steps 1 and 2, and find the total cost for net n.

Intuitively, this method is based on the AABC operation for 2D meshes.

Remember that in the beginning, AABC algorithm is performed for each row of

the mesh. Then, each processor consolidates the messages it received into a single

message and broadcasts it to the processors in the same column. Similarly, the

vector element corresponding to net n is first distributed in the row y = ys. Then

each vertex vy € pins[n] receives the vector element in the columnwise direction

from the processor that has the coordinates (zx, ys). Figure 3.7 shows an example

of cost calculation for a net n on a 5 X 5 processor mesh. Here assume that pins

of n are indicated with dark circles, and the source part is marked with ’s’. The

cost for n can be found with the method given in Lemma 3.2 as: 3+14+2+2 =38.



Chapter 4

Minimization of Communication

Volume

In the previous chapter, we have given a novel cost model for the communication
volume requirements of the CG type iterative algorithms. In this chapter, we give
algorithms that can be used to minimize these costs. For the purpose of assigning
matrix partitions to processors effectively, a two-phase approach is used. In the
first phase, the hypergraph partitioning tool PaToH[8] is used to partition the
input matrix such that the total number of vector elements that are required to
be communicated is minimized. In the second phase, each part is mapped to
a processor based on the distances between processors, such that the volume of
communications embedded into the reduction operations is tried to be minimized.
For this, the iterative improvement heuristics given by Kernighan and Lin [27] is
used to minimize the function 3, ¢(n;), where c(n;) denotes the cost of net n; as
defined in Section 3.3.

After partitioning the input matrix and assigning them to processors, it is
possible to schedule the embedded communications such that they are performed
concurrently among different processors. Such a scheduling is important mainly
because of the following expectation: A successful partitioning and mapping of

the matriz provides that the processors that have a large number of words to be

27
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communicated between them are close to each other, and the ones with small
number of words are far away. In other words, small packets are expected to
require more steps to reach their destinations than the large packets. So, instead
of sending a large packet as a whole in one step, it is possible to divide it and
send it in multiple steps so that it can be communicated concurrently with other
packets. For the aim of such a scheduling, we give a simple algorithm based on a

greedy heuristic.

In the subsequent sections, we outline the concepts used in PaToH for hyper-
graph partitioning, then we briefly explain the KL based iterative improvement

heuristics, then finally we give the heuristics we use for scheduling.

4.1 Hypergraph Partitioning

PaToH is a multilevel hypergraph partitioning tool developed by Catalyurek and
Aykanat [8]. Here, the K-way hypergraph partitioning problem is solved by re-
cursive bisection method. That is, first a 2-way partition of the input hypergraph
is obtained, and then this bipartition is further partitioned in a recursive man-
ner. The multilevel hypergraph bisection algorithm used in PaToH consists of 3

phases: coarsening, initial partitioning, and uncoarsening.

In the coarsening phase, the given hypergraph H = Hy = (V,, Ny) is coars-
ened into a sequence of smaller hypergraphs H; = (V1,N1), Ha = Vo, N2), ..,
M = (Vim, Nim) satisfying [Vo| > [Vi| > V4| > ... > |Vy|. This coarsening is
achieved by coalescing disjoint subsets of vertices of hypergraph H; into multin-
odes such that each multinode in H; forms a single vertex of H;;;. The weight
of each vertex in H;,; becomes equal to the sum of its constituent vertices of the
respective multinode in H;. The net set of each vertex in H;,; becomes equal to
the union of the net sets of the constituent vertices of the respective multinode
in H;. Here, multiple pins of a net n € N; in a multinode cluster of H; are

contracted to a single pin of the respective net n' € Ny, of ;1. Furthermore,



CHAPTER 4. MINIMIZATION OF COMMUNICATION VOLUME 29

the single-pin nets obtained during this contraction are discarded. The coarsen-
ing phase terminates when the number of vertices in the coarsened hypergraph
reduces below 100 (i.e. |V,,,| <100 ).

After the coarsest hypergraph H,, is obtained, the initial partitioning phase
is applied. The aim of this phase is to find a bipartition II,, on the coarsest
hypergraph H,,. After that, the multilevel uncoarsening phase starts for H,,.
Here, at each level i (for i = m,m — 1,...,1), bipartition II; found on H; is
projected back to a bipartition II,_; on H;_;. The constituent vertices of each
multinode in H; ; is assigned to the part of the respective vertex in H;. Note
that, at this point II;_; has the same cutsize with II;. Then, before the next level
of the uncoarsening phase, II;_; is refined by running a Boundary FM hypergraph
partitioning algorithm on H; ; starting from the initial bipartition I1; ;. These

steps continue until a bipartitioning for the fine-grain hypergraph H, is obtained.

4.2 Mapping Parts to Processors

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph par-
titioning problems because of their short run-times and good quality results. The
KL algorithm is an iterative improvement heuristic originally proposed for graph
bipartitioning [27]. The KL algorithm starts from an initial bipartition, then
performs a number of passes until it finds a bipartitioning for which a given cost

function (e.g. cutsize) has a local minimum.

Here, each pass consists of a sequence of vertex swaps. In the beginning of
a pass, the swap gains for each pair of vertices are computed. Note that the
swap gain corresponding to the vertices v, and v, is equal to the decrease in
the global cost function if these two vertices are to be swapped. After that, the
vertices for which the swap gain is maximum are swapped, and the swap gains of
the remaining vertices are updated. These operations continue until each vertex
has been swapped once, so that a sequence 1...n of vertex swaps is obtained.

Then, an m value (m < n) is found such that G = 1" ¢; is maximum, where g;
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denotes the swap gain value in step 7 of the sequence. At the end of the pass,
only the swaps in the sequence 1...m are accepted (i.e. the swaps m+1...n
are restored); so the net gain of the pass becomes equal to G. Then, a new pass

is performed if the net gain GG of the current pass is positive.

For part-to-processor mapping problem, we use this heuristic algorithm. For
this, we define the cost function as 3>, c(n;), where c(n;) denotes the cost of
net n; as defined in Section 3.3. We also define a different semantics for the
vertex swap operations described above. In our case, the swap of vertices v, and
vy corresponds to swapping the parts assigned to processors P, and FP,. In the
beginning of the algorithm, we choose a random one-to-one mapping of parts to
processors. Then a number of passes are performed based on the definitions we

have given.

4.3 Communication Scheduling

After the parts are assigned to processors, each processor finds a scheduling of
the communications that it shall perform during the CG iterations. Recall that,
for 2D meshes there will be four communication phases, one for each direction.
In Figure 4.1, a scheduling procedure is given for the phase corresponding to the
left direction. It is straightforward to extend this procedure also for the other
directions. Note that, these operations are performed only once, before the CG
algorithm starts. The purpose here is to determine the communication pattern
that will be used in each iteration of the CG.

Initially, each processor creates a data structure PACKETS, which stores the
information of the vector elements to be sent to each processor. Here, the data
contents are stored together with the information of source and destination pro-
cessors. Note that, a vector element might have multiple destination processors if
its corresponding net is connected to more than two parts. After the initialization,
the communication pattern is determined for each step of the AABC operation.

For this, the number of words to be sent at each step is determined globally,
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Initialize PACKETS based on the communication requirements
for each step 7 of the AABC operation
Globally determine S; /* S; is the maz no. of words to be sent at step i */
si = min(S;, |PACKETS|) /+ |[PACKETS] is the no. of words in PACKETS x/
Starting from the packets that have the leftmost destinations
extract s; words from PACKETS and put into SENDBUF
Send SENDBUF to the left neighbour
Receive RECVBUF from the right neighbour
for each pckt € RECVBUF
if a destination of pckt is this processor
copy data contents of pckt into the local vector
if there exists a destination of pckt that is not this processor
insert pckt into PACKETS

Figure 4.1: The pseudo code for scheduling the communications in the left direc-
tion

with the aim of high degree of concurrency. Here, each processor computes an s;
value that indicates the number of vector elements that it will send to its neigh-
bor. While selecting the vector elements, the packets are prioritized according
to the rowwise distances of their destination processors. Here, the packets with
leftmost destinations are assigned the highest priorities, the reason of which will
be described in the subsequent paragraphs. Then s; number of words are sent
to the left neighbour, together with the relevant packet information. Once the
information for packets is received from the right processor, the communication
pattern is determined according to the destinations of the received packets (i.e.

whether to copy into the local vector, or continue transmission).

We determine the maximum number of words S; to be sent at step %, based on

the following considerations. For each processor Py, there exists a lower bound

min

mn(Py) for the number of words it must send at step i. That is because, the

S
number of steps required to send a packet to a distant processor might exceed the

number of remaining steps if it is not sent in time. So, a lower bound S¥ for the

min

7" (Py)). Furthermore, there is an upper

globally determined S; becomes max, (s
bound s"**(Py) for the number of words that processor Py can send at step i.
This is due to the number of available packets in the data structure PACKETS
at step 7. So, ming (s7**(P;)) becomes the upper bound S for the global S;, if

3

all the processors are to send the same amount of data at step i (i.e. highest level
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of concurrency is to be obtained). Note that, if S; is assigned a value smaller
than S*°| the highest degree of concurrency among processors can be obtained.
However, S¥ is a strict lower bound for S;, and it is possible that S > S¥*. In
that case, S; must be assigned a value larger than S*°, so the degree of concurrency
is reduced among communicating processors. Our approach to assign a value for
S; is greedy in nature: S; = max (Sfb,Si“b). Here, the number of words to be
sent at each step 7 is selected as large as possible, as long as the highest degree of
concurrency is obtained. However, in the situations that the highest degree is not
possible, the deviation among the number of words to be sent by each processor

at step i is kept as small as possible (i.e. by selecting S; = S).

In fact, for this greedy approach be successful, the packets that are to be
inserted (via communications) into the local data structures PACKETS should
be done so as early as possible. It is obvious that such an approach provides
higher degrees of freedom while trying to balance the communications at each
step. For this purpose, in the procedure given in Figure 4.1, the leftmost pro-
cessors are given the highest priorities while selecting the packets to be sent.
The intuition behind this can be understood by the following example. As-
sume that leftwise communications are to be scheduled for the ring of processors:
co.— Py — Pyyy — Pryo — ... Assume further that Py 5 is required to send two
separate packets with destinations Pyy; and Py. Here, if it chooses to send the
packet with destination Py; in the first AABC step, then Py ; will simply copy
contents of this packet into its local vector, without adding it to its PACKETS.
However, if Py, o chooses to send the packet with destination Py, then Py; shall
insert this packet into its PACKETS before the second iteration. So, Py, will
have a higher degree of freedom starting from the second iteration, since it has
more number of available packets. Observe that, sending the packets with farther
destinations in the earlier AABC steps provides that more packets are available

in the processors, starting from the early AABC steps.

Note that the procedure we have given for communication scheduling problem
depends on greedy heuristics and does not claim to be optimal. It is possible to
devise more complex algorithms for this problem, however we show in Chapter 5

that even this simple heuristic based algorithm gives good results.



Chapter 5

Experimental Results

We have performed experiments to test the validity of the models we have pro-
posed. For this, we have used PaToH [8] as the hypergraph partitioning tool, and
implemented the part-to-processor mapping and scheduling algorithms explained
in Chapter 4 as preprocessing tools. We have also implemented the parallel
coarse grain CG algorithm given in Figure 3.3 using the proposed communica-
tion scheme, in which the point-to-point communication operations are embedded

into the reduction operations.

For our experiments, we have used the structurally symmetric test matrices
given in Table 5.1. As the parallel system, we have used a cluster of personal
computers. Each node in the system has Intel Pentium II 400 MHz CPU, 64 MB
PC100 RAM, 6GB UDMA IDE hard drive and Intel EtherExpress Pro 10/100
NIC. The interconnection network is a 3COM SuperStack II 3900 smart switch.
The operating system used in this system is Debian GNU /Linux distribution. We

have used the MPI message passing library to implement the parallel programs.

For the test matrices, the execution times of the serial CG algorithm are given
in Table 5.2, together with the execution times of the preprocessing steps. Ob-
serve that the FM-based algorithm we have implemented for the part-to-processor

mapping problem takes much longer time than the hypergraph partitioning tool

33



CHAPTER 5. EXPERIMENTAL RESULTS 34

PaToH. The reason is that our main aim here was not to develop a general pur-
pose software tool like PaToH, but only to examine the validity of our models.
So, our main concern here was the execution times for the parallel program, not
the execution times of the preprocessing steps. However, it is possible to develop
a more efficient program for the mapping problem, if it is to be used in real world

applications.

To find the average communication requirements given in Table 5.3, we have
executed the preprocessing steps 20 times, each with the same parameter values,
but with different random seeds. Note that, the communication requirements for
the reduction operations are not included in this table. The results are given
for each test matrix and each mesh configuration (with different number of pro-
cessors). Here, point-to-point communication scheme indicates the conventional
algorithm, and the embedded communication scheme indicates the proposed al-

gorithm.

Assuming that the computational loads of the processors are balanced, two
main factors effect the communication times in the conventional algorithm: the
mazximum number of messages sent by a processor and the mazimum volume of
communication handled (sent or received) by a processor. Note that these two
costs are not necessarily cumulative, because it is possible that the processor that
sends the maximum number of messages might be different from the processor
that handles the maximum volume. Furthermore, even in the same processor, the
operation of preparing a message can be performed concurrently with handling
a communication that is already started. However, we assume that a processor
can not prepare more than one message concurrently, and we assume a single
port communication model for the network (i.e. a processor can not send/receive
more than one words at the same time). So, we can say that the dominant
one of these two factors determines a (not so tight) lower bound for the overall
communication cost. For instance, for the test matrix 71138 BUS and the mesh
configuration 6 x 6, the maximum communication volume is less than twice the
maximum number of messages. Assuming that ¢;/t,, >> 2, the communication
time will be dominated by the message start-up costs. So, it is possible to argue

that an average lower bound for the overall communication time will be 10.4 ¢,
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for this configuration.

In the embedded communication scheme, remember that no separate point-
to-point communication operation is performed for the transmission of vector
elements. Instead, each processor sends the relevant vector elements to its neigh-
bor processors in the appropriate steps of the AABC operation. By using the
scheduling algorithm given in Chapter 4, each processor determines which vec-
tor elements to send in each step, before the CG algorithm starts. We assume
that, the communications performed during one step of the AABC operation are
done concurrently by different processors. So the extra communication cost for
one step of the AABC operation is determined by the processor that handles the
maximum communication volume in that step. The overall extra communication
cost due to the transmission of vector elements is assumed to be the sum of costs
for each step. Based on this consideration, the overall communication cost for
this scheme can be modeled as t,, Y ; m;, where m; is the maximum communi-
cation volume handled by a processor at step i. The “concurrent” column in
Table 5.3 gives the corresponding values of >, m; for each test matrix and each

mesh configuration.

To test the practical validity of these considerations, we have executed the
conventional and the reformulated parallel CG algorithms for each test matrix.
However, since only 24 processors were available for our experiments in the par-
allel system, we could obtain timing statistics for only the mesh configurations
4 x 4 and 6 x 4. The average results obtained by executing the parallel pro-
grams 20 times, each for 2500 iterations, are reported in Table 5.4. Here observe
that, the execution times for different parts (i.e. reduction, p-p communications,
etc.) of each program are reported. The methodology we have used to obtain
such data was to execute the programs for only one part (e.g. p-p communi-
cations) in all iterations. Since the communication patterns are the same in all
iterations, eliminating the computations for measuring the execution times of
communication operations does not pose an important problem. However, such
an approach eliminates the communication synchronization costs that would have
been incurred due to the imbalance of the computational loads among different

processors. In fact, such a methodology has the advantage that the effect of
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our models can be observed more clearly, independent of other factors such as
computational imbalance. Note that in reality, the synchronization costs will be
effective in the communication times of both the conventional and the proposed

schemes.

For the execution times given in Table 5.4, we have performed the prepro-
cessing steps only once for each matrix and mesh, to obtain the communication
requirements in Table 5.5. The “p-p lbnd” column in Table 5.4 denotes the lower
bound estimated for the communication times of the conventional scheme due to
the start-up costs. That is, each entry in this column is equal to n,,.,ts, Wwhere
Nmaz 1S the maximum number of messages handled by a processor, given in the
corresponding entry of Table 5.5. To determine a suitable ¢, value for the paral-
lel system, we assumed that the p-p communication times for the matrices GR
30 30, 1138 BUS, and NOS7 are completely determined by the start-up costs,
because the maximum communication volumes are too small compared to the
maximum number of messages. Based on this assumption, we divided the com-
munication time measured for each matrix and mesh by the maximum number
of messages reported for this configuration. We have obtained values very close
to each other for each case, which is in accordance with our assumption. As
the t; value to be used for the calculations of lower bounds, we have chosen the
minimum one among these values, which is for matrix NOS7 and mesh 6 x 4.
That is, we have taken ¢, = 1.193/14 = 0.0852msec. It is possible to observe the
values in the columns “p-p comm” and “p-p lbnd” of Table 5.4, and see that the
point-to-point communication times are very close to the estimated lower bound
values in most cases. So, we can argue that the communication times are mainly
dominated by the message start-up costs. Observe that this is the case especially
for the matrices with small communication volume requirements (see Table 5.5).
However, for the matrices such as CRE-B and CRE-D, the large communication
volume requirements might make the actual communication times deviate from

the estimated lower bound values.

It can be observed from Table 5.4 that the reduction operations in the con-
ventional scheme require nearly the same amount of time for different matrices, if

the mesh configurations are the same. We can say that the times required for the
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AABC of two floating-point words on mesh configurations 4 x4 and 6 x4 are 0.746
and 1.016 respectively, on the average. However for the model we propose, the
time requirements for the reduction operations are larger than these values due
to the extra volume of communications embedded into the reduction operations.
The “total” column under “OVHD CALCULATED” in Table 5.4 gives the amount
of increase in the execution times of these reduction operations. Recall that, we
have modeled the extra communication cost in a reduction operation as t,, >_; m;,
where m; is the maximum communication volume handled by a processor at step
1 of the reduction operation. To show the validity of this cost model, we calculate
a t,, value for each matrix and mesh, by dividing the corresponding value in the
“total” column of Table 5.4 by the value in the “concurrent” column of Table 5.5.
These values are reported in the column “per word” of Table 5.4. Observe that,
except for the matrices that have very small 3, m; values (i.e. GR 30 30, 1138
BUS, and NOS7), the calculated t,, values are close to the given ¢,, value of the
parallel system: 0.5usec. This shows that the cost model we have given can be

used effectively to estimate the costs of the embedded communications.

Since the number of processors available for our experiments was 24, we could
not obtain timing statistics for the mesh configurations 6 x 6 and 8 x 8. However,
our experiments on the 4 X 4 and 6 x 4 meshes have shown that the following two

arguments are valid:

e The time requirement for point-to-point communications in the conven-
tional scheme is at least equal to n,,4,ts, where n,,,, is the maximum num-

ber of messages sent by a processor.

e The increase in the execution time of the reduction operations in the em-
bedded communications scheme is approximately equal to ., >; m;, where
m; is the maximum communication volume handled by a processor at step

1 of the reduction operation.

Based on these arguments, we can estimate the average communication costs

of the conventional and the proposed schemes by using the average statistics
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reported in Table 5.3. Each graph in Figures 5.1, 5.2, and 5.3 illustrates a com-
parison of the communication costs for a test matrix and for different mesh con-
figurations. Here, the costs for the point-to-point communications are given as
lower bound values. The previous discussions have indicated that the actual com-
munication costs might be larger than these lower bound values, depending on the
volume of communications handled. For the embedded communications scheme,
we give the estimated communication costs due to the extra communicated vector

elements in the reduction operations.

Observe in Table 5.3 that, as the number of processors increases, the maxi-
mum volume of communications handled by a single processor decreases in most
cases. The reason for this is that, typically the total volume of communications
does not increase as much as the increase in the number of processors. So, as
the number of processors increases, the volume of communications handled by
each processor tend to decrease. This results in a tendency of decreasing in the
communication costs of our proposed scheme. A similar tendency is also expected
for the volume of communications in the point-to-point communications scheme.
However observe in Table 5.3 that, the maximum number of messages to be sent
by a processor increases with increasing number of processors in nearly all cases.
So, the lower bounds due to the message start-up costs increase, although the
communication volumes tend to decrease. This means that, as the number of
processors increase, the start-up costs become more and more dominant in the

communication costs.

The effect of the embedded communications scheme can be observed in the
graphs of Figures 5.1, 5.2, and 5.3. Note that in most cases, the embedded
communication costs are smaller than even the lower bound values of point-to-
point communications. However, for the matrices that have high communication
volume requirements (e.g. CRE-B, CRE-D, KEN-13), the conventional scheme
seems to perform better than the proposed scheme on small meshes. Despite
this, as the mesh sizes increase for these matrices, the start-up costs increase
considerably while the embedded communication costs tend to decrease. We can
say that the proposed scheme outperforms the conventional scheme in terms of

scalability characteristics even for these matrices.
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Table 5.1: Properties of test matrices.

number number of nonzeros
matrix name | description of total avg. per | min. per | max. per | std. dev

rows/cols row/col | row/col row /col
SHERMANS3 | [12] 3D finite difference grid 5005 20033 4.00 1 7 2.66
KEN-11 [6] linear programming 14694 82454 5.61 2 243 14.54
NL [9] linear programming 7039 | 105089 14.93 1 361 28.48
KEN-13 [6] linear programming 28632 | 161804 5.65 2 339 16.84
CQ9 [9] linear programming 9278 | 221590 23.88 1 702 54.46
CcO9 [9] linear programming 10789 | 249205 23.10 1 707 52.17
CRE-D [6] linear programming 8926 | 372266 41.71 1 845 76.46
CRE-B [6] linear programming 9648 | 398806 41.34 1 904 74.69
BCSSTK17 [32] static analyses in structural eng. 10974 | 208838 39.00 1 150 15.00
BCSSTK24 [32] dynamic analyses in structural eng. 3562 81736 45.00 15 57 11.00
GR 30 30 [32] partial differential equations 900 4322 8.60 4 9 1.00
1138 BUS [32] power system networks 1138 2596 3.60 2 18 1.80
NOS7 [32] linear equations in structural eng. 729 2673 6.30 4 7 0.72
S3RMT3M3 | [32] structural mechanics 5357 | 106526 39.00 7 48 7.10

Table 5.2: Serial execution times for one iteration of the
the execution times of the preprocessing steps.

CGCG algorithm, and

serial exec. serial exec.
name per iter. mesh | PaToH | mapping name per iter. mesh | PaToH | mapping
(msec) (sec) (sec) (msec) (sec) (sec)
4x4 0.38 0.79 4x4 1.24 4.08
6 x4 0.43 1.77 6 x4 1.37 11.03
SHERMAN3 3.63 6 x6 0.46 2.79 KEN-11 15.60 6 x6 1.50 27.13
8x8 0.52 20.21 8x8 1.70 58.32
4x4 2.64 10.77 4x4 5.74 2.24
6 x4 2.89 21.47 6 x4 6.27 3.92
KEN-13 32.57 6 x6 3.23 49.01 BCSSTK17 53.99 6 x6 6.88 10.84
8x8 3.62 106.60 8 x8 7.80 64.06
4x4 2.11 1.06 4 x4 0.10 0.22
6 x4 2.12 1.76 6 x4 0.11 0.53
BCSSTK24 20.05 6 x6 2.32 10.17 GR 30 30 1.06 6 X6 0.12 3.39
8x8 2.65 37.03 8x8 0.15 5.73
4x4 0.06 0.11 4x4 0.08 0.51
6 x4 0.10 0.18 6 x4 0.08 1.24
1138 BUS 0.74 6 x6 0.08 0.50 NOS7 0.69 6 x6 0.10 2.65
8x8 0.09 1.64 8x8 0.10 8.71
4x4 2.22 1.07 4 x4 1.57 7.63
6 x4 2.50 2.41 6 x4 1.55 18.50
S3RMT3M3 26.18 6 x6 2.78 6.43 NL 15.61 6 x6 1.70 24.74
8x8 3.14 35.37 8x8 1.94 62.09
4x4 3.37 5.72 4x4 2.54 3.47
6 x4 3.46 16.85 6 x4 3.02 11.86
CO9 33.87 6 x6 3.65 39.15 CQ9 30.00 6 x6 3.06 34.40
8 x8 4.14 151.25 8x8 3.45 132.33
4x4 7.10 12.40 4 x4 6.43 10.82
6 x4 7.14 26.67 6 x4 6.79 37.20
CRE-B 51.23 6 x6 7.55 81.05 CRE-D 47.28 6 x6 7.16 42.01
8x8 8.42 209.40 8x8 8.26 153.84
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Table 5.3: Average communication requirements for parallel CGCG algorithm

POINT-TO-POINT COMM. EMBEDDED COMM.
SCHEME SCHEME

# of mesgs comm. comm.

name mesh per proc. volume volume
avg max total max total concurrent
4x4 4.6 7.5 1256.2 122.8 1645.4 247.1
6 x4 5.5 9.3 1601.2 110.2 2273.4 235.6
SHERMAN3 | 6 X 6 6.3 11.4 2019.7 92.4 3058.9 224.4
8x8 7.1 13.1 2663.7 68.6 4537.9 191.4
4x4 || 13.6 15.0 9337.2 1715.8 || 16549.8 2348.8
6 x4 18.0 23.0 10182.0 1438.4 || 21071.2 2067.9
KEN-11 6 X6 23.1 34.9 11250.6 1214.0 || 26208.7 1875.8
8 x 8 29.7 59.2 13471.5 795.8 || 36650.6 1519.7
4x4 [ 14.1 15.0 16626.2 3837.5 || 31258.7 4737.1
6x4 || 19.2 23.0 17867.0 2867.9 || 39310.8 3974.8
KEN-13 6 X6 24.8 35.0 19732.0 2184.8 || 48880.8 3605.7
8x8 || 36.2 63.0 23133.9 1489.1 || 67563.9 2907.6
4x4 3.8 6.8 3579.2 376.5 4517.1 740.0
6 x4 4.3 7.9 4884.5 339.3 6683.6 750.3
BCSSTK17 6 x6 4.9 8.9 6513.4 285.2 9679.5 728.5
8 X8 5.4 9.9 9483.2 230.0 || 15849.6 671.5
4x4 4.3 7.6 2129.2 191.2 2681.1 376.0
6 x4 4.7 7.7 2909.9 186.6 3907.2 393.1
BCSSTK24 6 x6 5.0 8.6 3906.6 165.1 5594.1 401.6
8x8 5.5 9.6 5965.2 148.6 9077.7 401.9
4x4 4.4 7.1 437.1 39.0 536.8 71.6
6 x4 4.6 7.8 596.0 37.1 819.2 82.3
GR 30 30 6x6 4.9 7.9 778.8 32.0 1146.2 80.3
8x8 5.4 8.1 1104.8 25.0 1767.1 73.8
4x4 3.9 7.9 167.4 21.5 218.0 37.8
6 x4 4.1 10.3 218.4 20.1 315.4 37.8
1138 BUS 6 X6 4.1 10.4 281.8 17.7 431.9 37.1
8x8 3.9 9.7 409.5 17.5 688.0 36.5
4x4 7.0 10.9 695.3 59.0 934.7 111.8
6 x4 7.8 13.3 862.8 51.3 1246.7 106.9
NOS7 6 %6 8.4 14.3 1070.5 42.7 1695.9 99.8
8x8 8.9 15.1 1416.3 32.7 2524.1 88.2
4x4 4.0 6.8 2211.6 204.6 2722.8 384.6
6 x4 4.3 7.2 2948.1 184.1 4049.4 420.2
S3RMT3M3 | 6 X 6 4.5 7.4 3888.3 156.6 5672.5 421.2
8x8 5.0 8.6 5884.2 145.2 9455.2 412.8
4x4 13.6 15.0 8169.5 897.1 || 12281.2 1417.6
6x4 || 182 22.3 9980.2 765.2 || 16517.7 1408.2
NL 6 X6 22.0 31.0 11744.2 717.0 || 21321.0 1230.3
8x8 || 27.0 45.4 12956.1 497.5 || 26285.4 937.9
4x4 [ 12.9 15.0 10905.0 1619.8 [[ 17279.0 2556.8
6 x4 16.7 21.9 13466.0 1446.2 || 23121.2 2467.4
CO9 6 X6 19.0 29.5 16702.4 1187.3 || 30714.6 2194.6
8 x 8 23.1 42.2 23473.3 1004.9 || 46148.7 2074.1
4 x4 12.2 14.9 9721.6 1513.9 || 15246.8 2245.0
6 x4 16.2 21.5 12341.8 1350.6 || 21080.8 2257.4
CQ9 6x6 || 19.2 30.0 14982.2 1072.8 || 27502.0 2003.1
8x8 || 23.6 43.5 21576.5 951.5 || 41275.1 1933.6
4x4 || 12.8 15.0 19855.2 4383.9 || 26374.1 5057.6
6x4 || 17.0 23.0 24142.8 3890.1 || 34846.0 4785.8
CRE-B 6x6 || 21.4 34.9 29537.1 3531.2 || 46623.0 4730.5
8 x 8 28.9 60.3 38610.8 2643.3 || 69977.5 4133.2
4x4 12.4 15.0 18089.4 4043.8 || 24517.2 4589.1
6 x4 16.7 23.0 22292.4 3746.8 || 32499.1 4447.5
CRE-D 6x6 || 21.0 35.0 27053.2 3172.0 || 43431.0 4281.0
8x8 || 29.4 60.9 36166.1 2450.0 || 67035.1 3637.1

In the “# of mssgs” column, “avg” and “max” denote the average and maximum num-
ber of messages, respectively, sent by a single processor. In the first “comm. volume”
column, “total” denotes the total communication volume, whereas “max” denotes the
maximum communication volume handled (sent/received) by a single processor. In the
“concurrent” column, it is assumed that communications are performed concurrently
among different processors, and the actual communication volumes are calculated ac-
cording to the schedulings of the communications.
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Table 5.4: Average execution times of the parallel CGCG algorithms for one

iteration
POINT-TO-POINT COMM. EMBEDDED COMM. OVHD CALCULATED
SCHEME SCHEME
name mesh || rdctn  p-p comm p-p lbnd overall || rdctn overall total per word
SHERMAN3 | 4 x4 || 0.745 0.605 0.597 1.462 || 0.896 1.178 0.150 5.47x10~*%
6 x4 1.018 0.884 0.852 1.935 1.145 1.457 0.129 5.51x1074
KEN-11 4x4 || 0.746 1.524 1.278 2.977 1.830 2.693 1.084 4.83x10~ 4%
6x4 || 1.014 2.179 1.960 3.609 || 2.002 2.634 0.986 5.06x1074
KEN-13 4x4 0.746 1.705 1.278 4.559 3.171 4.887 2.425 4.81x107%
6 x4 1.016 2.302 1.960 4.305 3.042 4.250 2.026 4.86x10~4
BCSSTK17 4x4 || 0.745 0.649 0.597 4.622 1.050 4.480 0.304 4.84x104
6x4 || 1.015 0.857 0.767 3.844 1.388 3.634 0.373 5.14x104
BCSSTK24 4x4 || 0.746 0.738 0.682 2.514 || 0.985 2.197 0.239 5.98x10~%
6x4 || 1.016 0.659 0.597 2.359 1.260 2.099 0.244 6.10x104
GR 30 30 4x4 0.747 0.638 0.597 1.354 0.809 0.892 0.063 7.00x10~4%
6 x4 1.015 0.623 0.597 1.596 1.074 1.133 0.058 6.67x10"4
1138 BUS 4x4 || 0.745 0.778 0.767 1.447 || 0.779 0.836 0.033 8.46x10~7
6x4 || 1.016 1.031 1.023 1.891 1.051 1.095 0.035 8.54x1074
NOS7 4x4 || 0.747 0.951 0.937 1.665 || 0.826 0.884 0.080 7.41x1077
6x4 || 1.018 1.193 1.193 2.068 1.097 1.137 0.081 8.27x104
S3BRMT3M3 | 4x4 || 0.745 0.571 0.511 2.725 1.004 2.547 0.258 6.01x10~7
6 x4 || 1.015 0.627 0.597 2.575 1.239 2.358 0.223 5.52x1074
NL 4 x4 || 0.747 1.372 1.278 2.972 1.559 2.405 0.813 5.54x10—4
6x4 || 1.016 1.995 1.875 3.435 1.850 2.465 0.834 5.18x1074
CO9 4x4 || 0.746 1.506 1.278 4.361 1.947 3.974 1.201 4.37x107%
6x4 || 1.016 1.933 1.790 4.260 || 2.085 3.490 1.069 4.43x10~4
CQ9 4x4 0.745 1.445 1.278 3.929 1.927 3.733 1.181 4.49x10~42
6 x4 1.016 1.946 1.875 4.036 2.012 3.265 0.996 5.00x104
CRE-B 4x4 || 0.745 1.839 1.278 5.796 || 3.126 6.515 2.380 5.16x1074
6x4 || 1.014 2.502 1.960 5.583 || 3.346 5.628 2.330 4.97x10~4
CRE-D 4x4 || 0.745 1.850 1.278 5.499 || 2.926 5.869 2.180 5.24x10~4
6 x4 || 1.017 2.513 1.960 5.416 || 3.324 5.665 2.308 5.32x1074

In the columns labeled “rdctn”, the execution times of the reduction operations in
the original and reformulated schemes are given respectively. Similarly, the columns
labeled “overall” denote the total execution times for one iteration. In the column “p-p
comm”, the execution times required for point to point communications are given. The
“p-p Ibnd” column gives the estimated lower bounds due to the message start-up costs.
In the column “OVHD CALCULATED?”, the increase in the execution times of the
reduction operations, due to the embeded communications are given. All the entries in
the table are in terms of msec values.
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Table 5.5: Actual communication requirements for the configuration used to col-
lect the statistics of Table 5.4

POINT-TO-POINT COMM. EMBEDDED COMM.
SCHEME SCHEME

# of mesgs comm. comm.

name mesh per proc. volume volume
avg max total max total concurrent
SHERMAN3 | 4 x4 4.2 7 1258 130 1566 274
6 x4 5.6 10 1622 111 2366 234
KEN-11 4x4 13.6 15 8464 1904 || 15802 2243
6 x4 16.6 23 9887 1506 || 20419 1948
KEN-13 4x4 || 13.6 15 16714 4010 || 31005 5038
6x4 | 194 23 17585 2949 || 38402 4173
BCSSTK17 4x4 3.9 7 3336 318 4074 628
6 x4 4.2 9 4708 318 6807 725
BCSSTK24 4x4 4.0 8 2142 232 2838 400
6 x4 4.7 7 2914 186 3828 400
GR 30 30 4x4 4.0 7 447 44 606 90
6 x4 4.6 7 590 37 811 87
1138 BUS 4x4 4.1 9 163 22 214 39
6 x4 4.0 12 222 23 299 41
NOS7 4x4 6.9 11 723 64 950 108
6 x4 8.1 14 878 52 1256 98
S3RMT3M3 4 x4 4.0 6 2196 192 2904 429
6 x4 4.1 7 3009 202 4080 404
NL 4x4 14.5 15 8261 828 || 12303 1467
6x4 || 17.8 22 10242 899 || 16761 1609
CO9 4x4 14.1 15 11946 1824 || 18347 2746
6 x4 17.3 21 12440 1434 || 22164 2412
CQ9 4x4 12.9 15 11148 1703 || 16411 2630
6 x4 15.7 22 11415 991 || 19654 1993
CRE-B 4x4 || 13.8 15 19686 3586 || 25991 4616
6x4 || 17.1 23 24933 3922 || 36534 4688
CRE-D 4x4 12.5 15 18052 3720 || 24044 4158
6x4 || 14.9 23 20927 3729 || 30844 4336

In the “# of mssgs” column, “avg” and “max” denote the average and maximum num-
ber of messages, respectively, sent by a single processor. In the first “comm. volume”
column, “total” denotes the total communication volume, whereas “max” denotes the
maximum communication volume handled (sent/received) by a single processor. In the
“concurrent” column, it is assumed that communications are performed concurrently
among different processors, and the actual communication volumes are calculated ac-
cording to the schedulings of the communications.
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Chapter 6

Scalability for Multidimensional
Meshes

In this thesis, we have given models and algorithms for 2D meshes. However, there
exist other network topologies for which the basic communication operations such
as AABC require less number of communications. For instance, it is given in [28§]
that the AABC operation for square 2D meshes with a number of p processors
require 2 X (,/p — 1) number of communications. However, for the hypercube
topology with the same number of processors, this number is equal to logp.
Especially for the parallel systems with very large number of processors, the 2D
meshes might be impractical for such operations. In this chapter, we give a
generalization of the embedded communication model so that it is also applicable
to d-dimensional meshes. Note that a hypercube is a special case of d-dimensional

meshes, for which there exist 2 processors in each dimension.

46
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Figure 6.1: (a) 1-dimensional mesh with size 3, (b) 2-dimensional mesh with size

3 x 3, (¢) 3-dimensional mesh with size 3 x 3 x 3. The wrap around connections
are not shown for simplicity.

Figure 6.1 gives example multidimensional meshes up to 3 dimensions. Note
that, a 1D mesh with size n is assumed to be defined as the ring network that con-
sists of n processors. For d > 1, a d-dimensional mesh of size nq X ... X ng_1 X nyg

can be created by applying the following recursive steps:

e Create ng number of (d—1)-dimensional meshes, each with size

Ny X ... XMNg—1.

e Group the processors that have the same coordinates in the (d—1)-dimensional
space; and create links between the processors in the same groups such that

each group forms a ring topology.

For instance, for the 3D mesh illustrated in Figure 6.1(c), three 2D meshes are
created first (the solid lines indicate these meshes). Then, the processors with the
same coordinates in the 2D space are connected with each other with the dashed
lines. Note that the wrap around connections are not displayed in this figure for

the purpose of simplicity.

Based on the steps given above to construct a multidimensional mesh, an
AABC operation can be performed recursively on a d-dimensional mesh (d > 1)

as follows:

e The dimension d of the mesh is ignored, and each processor performs AABC

on the (d—1)-dimensional mesh that it belongs to.
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e The first (d—1) dimensions of the mesh are ignored, and each processor
performs AABC for the consolidated message it has obtained in the previous
step. Here, each AABC is on the ring that corresponds to dimension d of
the mesh.

Observe that, the AABC algorithm we have described in Section 3.2 is the
special case of this method for 2D meshes. In fact, this recursive AABC method
corresponds to applying the AABC for ring algorithm for each dimension d; of
the mesh in order. So we can state that, the number of communications required

for an AABC operation on a d-dimensional mesh of size nq X ... X ng is equal to

Z?:l (nz - 1)-

In Section 3.3, we have given a cost model for embedding communications into
the AABC operations for 2D meshes. Lemma 3.2 has proposed a cost calculation
method for this model. We can generalize this method for d-dimensional meshes

based on the AABC operation given above.

For a given compressed hypergraph H¢o = (Vo, N¢), assume that the parti-
tions corresponding to the vertices in Vs are mapped to a d-dimensional mesh
(d > 1) such that each vy has the coordinates (ki,...,kq 1,kq). Assume further
that the coordinates for the source vertex vs of net n is given as (s1, ..., 54 1, Sq)-
Then it is possible to find the cost of net n in terms of communication volume as

follows:

1. Ignore dimension d (i.e.  treat all partitions as if on the same
(d—1)-dimensional space), and find the cost for the (d—1)-dimensional

mesh.

2. For each vertex v, € pins[n], assume that there is a source vertex at

(k1, ..., kn_1,8n), and calculate the cost for the ring in dimension d.

3. Add all the costs in steps 1 and 2, and find the total cost for net n.
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Note that, for a message originating from v, and ending at vy, step 1 corre-
sponds to the route from (s1,...,S4-1,8a) to (k1,-..,kq_1,8q), and step 2 corre-

sponds to the route from (k1,...,kq 1,Sq4) to (ki,..., ka1, kq)-

Now that we have given methods to extend the models for 2D meshes to d-
dimensional meshes, it is possible to use the embedded communication scheme

for the conjugate gradient type iterative solvers on any d-dimensional mesh.



Chapter 7

Conclusions

In this thesis, we have proposed a novel communication scheme for CG type
parallel iterative solvers. The purpose here was to avoid the message start-up
costs due to the point-to-point communications required in SpMxV computations,
through embedding them into the following reduction operations. However, the
trade off here was the increase in communication volume. For this reason, we
have given a cost model and a methodology to minimize this overhead. We have
performed experiments using various test matrices. In the parallel system, the
number of available processors was not large enough to observe the effect of our
scheme on large processor meshes. For this reason, we have first shown that
the cost model we have proposed was practically valid, by using the available
processors. Then based on this model, we have estimated the communication

costs of the conventional and the proposed schemes on different meshes.

In these experiments we have seen that, the communication costs were domi-
nated by the message start-up costs for the matrices with small communication
volume requirements. In these cases, the proposed scheme performed better than
the conventional scheme, because it avoided these start-up costs. However, for
the matrices with very large communication volume requirements and the meshes
with small number of processors, the communication volume overhead introduced
by the proposed scheme did not compensate for the decrease in the message start-

up costs. On the other hand, we have observed for such matrices that, as the

20
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number of processors increases, the communication costs for the proposed scheme
tend to decrease, whereas the costs for the conventional scheme tend to increase.
So we can say that, the proposed scheme performs better than the conventional

one even for these matrices, if the number of processors is large enough.

It is clear that, the scheme we propose does not perform better than the con-
ventional one in all cases (i.e. for large communication volumes and small number
of processors). However, the important point here is that, it is possible to predict
its performance before the CG algorithm starts, based on the given cost models
and the machine specific parameters: t; and t,. So, for an efficient implemen-
tation of a CG type parallel iterative algorithm, the scheme to be used can be
chosen according to the prediction made in the preprocessing steps. Namely, for
the cases in which the message start-up costs are the dominant factors in the

communication times, the proposed scheme can be used, and vice versa.

In fact, this thesis proposes an idea and then shows its practical validity for
various test matrices. It is also possible to conduct more research on it to obtain
better results. For example, a one phase algorithm can be developed instead
of the two-phase approach for partitioning and mapping the input matrix to
processors. Also, the simple heuristics for the communication scheduling problem
can be replaced by more advanced algorithms. We have given a methodology
to extend the models given for 2D meshes to multidimensional meshes. Based
on this, another research subject might be to devise part-to-processor mapping
algorithms for multidimensional meshes and compare the experimental results
with 2D meshes.
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