
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023 10603

Scaling Stratified Stochastic Gradient Descent
for Distributed Matrix Completion

Nabil Abubaker , M. Ozan Karsavuran , and Cevdet Aykanat

Abstract—Stratified SGD (SSGD) is the primary approach for
achieving serializable parallel SGD for matrix completion. State-
of-the-art parallelizations of SSGD fail to scale due to large com-
munication overhead. During an SGD epoch, these methods send
data proportional to one of the dimensions of the rating matrix.
We propose a framework for scalable SSGD through significantly
reducing the communication overhead via exchanging point-to-
point messages utilizing the sparsity of the rating matrix. We
provide formulas to represent the essential communication for
correctly performing parallel SSGD and we propose a dynamic
programming algorithm for efficiently computing them to estab-
lish the point-to-point message schedules. This scheme, however,
significantly increases the number of messages sent by a processor
per epoch from O(K) to O(K2) for a K-processor system which
might limit the scalability. To remedy this, we propose a Hold-
and-Combine strategy to limit the upper-bound on the number
of messages sent per processor to O(K lgK). We also propose a
hypergraph partitioning model that correctly encapsulates reduc-
ing the communication volume. Experimental results show that
the framework successfully achieves a scalable distributed SSGD
through significantly reducing the communication overhead. Our
code is publicly available at: github.com/nfabubaker/CESSGD

Index Terms—Bandwidth cost, combinatorial algorithms,
communication cost minimization, collaborative filtering,
HPC, hypergraph partitioning, latency cost, matrix completion,
recommender systems, SGD.

I. INTRODUCTION

R ECOMMENDER systems are omnipresent in
e-commerce as well as social, professional and academic

networks. These systems help businesses improve profit by
targeted advertisements to interested parties, facilitate the
recruitment process by matching more relevant candidates
to jobs, and help academics explore cross-disciplinary
research works as well as expand their collaboration networks.
Recommender systems can involve one or more techniques,

Manuscript received 12 March 2022; revised 19 September 2022; accepted
23 February 2023. Date of publication 7 March 2023; date of current version
15 September 2023. This work was supported by the Scientific and Technolog-
ical Research Council of Türkiye (TÜBITAK) under Grant EEEAG-119E035.
Computing resources used in this work were provided by the National Center for
High Performance Computing of Türkiye (UHeM) under Grant 4009972021.
Recommended for acceptance by G. Wang. (Corresponding author: Cevdet
Aykanat.)

Nabil Abubaker and Cevdet Aykanat are with the Department of Com-
puter Engineering, Bilkent University, 06800 Ankara, Turkey (e-mail:
nabil.abubaker@bilkent.edu.tr; aykanat@cs.bilkent.edu.tr).

M. Ozan Karsavuran is with the Lawrence Berkeley National Laboratory,
Berkeley, CA 94720 USA (e-mail: mokarsavuran@lbl.gov).

Digital Object Identifier 10.1109/TKDE.2023.3253791

among which Collaborative Filtering (CF) is the most widely
used.

CF approaches recommend an item to a target user by using
other users’ ratings given that those other users and the target
user have rated some other items similarly. The rating data
produced nowadays, whether by social networks or e-commerce,
is rather huge and change very often. Recommender systems for
such huge data are usually implemented on distributed-memory
systems that might involve multiple data centers. Therefore,
the CF component should be performant and scalable to utilize
the provided computational resources as well as the high-speed
networks.

Low-rank matrix factorization have been successfully used
in CF via revealing feature vectors that represent the users
and the items (latent factors). In matrix-factorization-based CF
methods, the known ratings are stored as a sparse matrix, rows of
which represent users and columns of which represent items. The
sparse matrix is factorized into two dense matrices representing
the feature vectors of items and users, and these dense matrices
are then used to predict missing ratings in the original rating
matrix. This use of matrix factorization is commonly referred to
as matrix completion. The matrix factorization can be computed
with different methods, including stochastic gradient descent
(SGD), alternating least squares (ALS), cyclic coordinate de-
scent (CCD) and more.

SGD is very efficient and usually achieves high completion
accuracy compared to other methods [1]. However, given its
sequential nature it has been a challenge to efficiently parallelize
while maintaining accuracy and convergence guarantee. For this
reason, serializable parallel SGD algorithms are most desired.
Serializability of parallel SGD refers to the existence of an equiv-
alent serially-executed SGD algorithm with the same update
order. Serializability guarantees the convergence and assures
that no two processors update the same feature vector at the
same time (race condition) thus leading to faster convergence [2].
Stratified SGD [3] is the de-facto algorithm for achieving a
serializable parallel SGD.

The state-of-the-art methods implementing SSGD (such as
DSGD [3], DSGD++ [4], and NOMAD [5]) achieve the inter-
processor communication necessary for the correctness of the
SSGD through sending/receiving feature vectors with sizes pro-
portional to one of the dimensions of the input rating matrix.
In other words, these methods perform dense communications
without exploiting the sparse nature of the rating matrix, leading
to a huge amount of unnecessary communication especially
when the nonzero density of the rating matrix is low. The extra

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-0298-3034
https://orcid.org/0000-0002-4559-1321
mailto:nabil.abubaker@bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
mailto:mokarsavuran@lbl.gov

10604 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

communication did not pose a concern because these methods
are tested on a relatively small number of processors (up to 64)
in distributed setting. At such small scale, the SGD runtime
is expected to be dominated by computation; and investing in
improving the communication component does not drastically
affect the overall running time.

On large scale (hundreds and thousands of processors), the
communication component becomes dominant, and therefore
reducing the communication overhead becomes essential for the
scalability of the SSGD algorithm. The dense communications
of the state-of-the-art methods implementing SSGD prohibit
their scalability. This is empirically confirmed by us (Section VI)
as well as by another work [6] that runs DSGD on thousands of
processors (cf. Fig. 8 in [6]).

In this work, we propose a communication-efficient frame-
work for the SSGD algorithm. Our framework starts with ex-
ploiting the sparsity of the rating matrix by performing sparse
communications instead of dense communications. This is
achieved with efficiently finding the essential feature vectors
to be communicated between processors and communicating
them through point-to-point (P2P) messages. This approach,
although invaluable for reducing the volume of communication
performed, has the down side of increasing the number of mes-
sages sent per processor from O(K) (as in DSGD) to O(K2).

Inter-processor communication cost ideally consists of la-
tency term and bandwidth term. The latency term is proportional
to the number of messages sent, whereas the bandwidth term is
proportional to the volume of data transferred. If the number of
messages is high, the latency cost might dominate the overall
communication component since each message’s startup time
might be higher than that of sending a few kilobytes of data [7].
The O(K2) bound of the new sparse communication method
has the potential to increase the latency overhead and possibly
affecting the scalability as K increases, which makes it latency-
unsafe. To remedy this, we propose a novel approach called
hold and combine that reduces the upper bound on the number
of messages from O(K2) to O(K lgK) which renders the new
sparse communication method latency-safe.

The volume of the sparse communication in parallel SSGD
is also affected by how the ratings are distributed to different
processors. This property indicates that there is a room for reduc-
ing the volume of communication combinatorialy via intelligent
partitioning methods. We propose a partitioning method utiliz-
ing a hypergraph partitioning model that correctly encapsulates
the total volume of communication between processors. In this
method, the objective of reducing the cutsize of the hypergraph
model partition also corresponds to reducing the total volume of
communication in an SSGD epoch.

The rest of the paper is organized as follows: Section II gives
the essentials of using and parallelizing SGD for matrix comple-
tion. In Section III, the communication requirement in parallel
SSGD is studied in detail. In Section IV, the proposed frame-
work for scaling P2P SSGD, including the hold-and-combine
scheme, is presented. In Section V, the proposed hypergraph
partitioning (HP) method is presented. Section VI contains the
experiments conducted on an HPC system along with the results

and discussions. Related works are discussed in Section VII and
the paper is concluded in Section VIII.

II. BACKGROUND

A. Matrix Completion With SGD

We define the matrix completion problem in the context of
collaborative filtering as follows: Given a setU ofN users, a setI
ofM items, and a setΩ of ratings as the known entries of a sparse
rating matrix R ∈ RN×M . The problem is to find two dense
factor matrices W ∈ RN×F and H ∈ RM×F such that a low-
rank approximation R ≈WH� is achieved. Here, F �M,N
is called the dimension or the rank of the factorization. The
approximation r̂ij of rating rij can then be calculated as

r̂ij = wih
�
j , (1)

where wi and hj respectively denote the ith row of W and
the jth row of H. The quality of the approximation is usually
measured by an application-dependent loss function L, thus the
problem becomes argminW,H L(R,W,H). For collaborative
filtering,L is usually the eculedian distance and thus the problem
becomes

argmin
W,H

∑
(i,j)� rij∈Ω

(
(rij − r̂ij)

2 + γ(‖wi‖2 + ‖hj‖2
)
, (2)

where γ is a regularization parameter to avoid over-fitting, and
r̂ij is computed with (1).

Since the minimization problem in (2) has two unknowns
W and H, L is a non-convex function [1]. SGD has been
widely used to optimize (minimize) such functions due to its
ability to escape local minimas. At an SGD epoch, each rating
rij ∈ Ω is used to update the objective function’s parameters.
The gradient of the objective function at point rij is calculated
(∇rijLrij (R,W,H)) and the corresponding wi and hj rows
are updated as

wi = wi − ε[(rij − r̂ij)hj + γwi], (3)

hj = hj − ε[(rij − r̂ij)wi + γhj] (4)

where ε is the step size.
It is clear from (3) and (4) that SGD is sequential in nature,

thus parallelizing it requires communicating up-to-date W-
and H-matrix rows. Trivially, the up-to-date W- and H-matrix
rows should be communicated after each SGD update which
enforces very high communication and synchronization over-
heads. Otherwise, some SGD updates will be performed on
stale versions of W- and H-matrix rows which may drastically
affect the learning process and the convergence guarantee. The
parallel SGD methods that allow updating on stale W- and
H-matrix rows (i.e., allow staleness) are called asynchronous.
These methods are usually non-serializable. Simple paralleliza-
tions of the SGD-based matrix completion, such as row-wise or
column-wise partitioning of the rating matrix, are examples of
asynchronous SGD (see Fig. 1).

ABUBAKER et al.: SCALING STRATIFIED STOCHASTIC GRADIENT DESCENT FOR DISTRIBUTED MATRIX COMPLETION 10605

Fig. 1. Stale updates in simple row- or column-wise partitions (upper part)
versus stale-free DSGD (bottom). In the row-wise partition of R, the rows of
W are partitioned conformably and thus each W-matrix row is accessed by one
processor. However, this is not the case for H-matrix rows. For instance, ratings
ril and rjl are respectively assigned to p1 and p2 and both used to update hl

possibly at the same time thus either p1 or p2 will update on a stale hl. A similar
discussion holds for column-wise partition in a dual manner regarding rjl, rjn
and wj . Black starts are known ratings.

B. Stratified SGD (SSGD) and its Parallelization

1) SSGD: The SSGD method is proposed by Gemulla et
al. [3] in order to mitigate the staleness problem. In SSGD,
the rating matrix is divided into K2 2D blocks using K-way
mutually exclusive and exhaustive partitions on the rows ΠR =
{R1, . . . , RK} and columns ΠC = {C1, . . . , CK} of R. The
rows of the dense matrices W and H are partitioned con-
formably with ΠR and ΠC , respectively. We denote the row
blocks of W and H that respectively conform with Rα and Cβ

as Wα and Hβ . We denote a block of R with rows in Rα and
columns in Cβ as Rαβ .

In SSGD, a set of K 2D non-overlapping sub-matrix blocks
are called a stratum (denoted byS hereafter). Two 2D sub-matrix
blocks are said to be non-overlapping if they do not share any
row or column. A set of K stratums S = {S1, . . . ,SK} that
exhausts all of the K2 sub-matrix blocks is called correct strata.
Fig. 2 shows the strata S=〈S1={R1,1,R2,2, . . . ,R8,8},S2=
{R1,2,R2,3, . . . ,R8,1}, . . . ,S8={R1,8,R2,1, . . . ,R8,7}〉.

Given correct strata to be used in an SSGD epoch, each stratum
is processed in a separate mini epoch (called sub-epoch), and the
order in which these sub-epochs are executed can be random.
Although the SSGD algorithm is serial, its distinguishing prop-
erty is that no ratings in different blocks of a stratum can update
the same row of the factor matrices W and H, which makes it
suitable for stale-free parallelization.

2) Parallel SSGD: In [3], the parallel algorithm that utilizes
SSGD is called the Distributed Stochastic Gradient Descent

Fig. 2. The numbers identify the sub-matrix blocks that constitute a stratum
in a ring strata with seed=1. Stratum S2 is highlighted. Side arrows show the
processor update order of hi and hj in H�1 .

(DSGD) algorithm. In DSGD, each stratum is executed in
parallel in one sub-epoch, where the W- and H-matrix rows
are updated with the ratings in the stratum according to (3)
and (4). Then, inter-processor communications are performed to
synchronize all updated rows of factor matrices. If a row-parallel
execution is chosen, that is the R matrix is partitioned row-wise
such that each row block is executed by a single processor, then
communication is restricted to the H-matrix rows. Row-parallel
execution is usually preferred because the number of items is
generally much less than the number of users which means the
amount of data to be communicated (H) is small compared to
W. In row-parallel execution, we abuse the stratum notation S
to also be viewed as a mapping function S : [K]→ [K] (where
[K] is used to denote the set {1, . . . ,K} hereafter) from a
processor pk to the index β of a column block Cβ . For instance,
S2(p4)=5 means that during sub-epoch 2, processor p4 will
exclusively update the rows of the H5 sub-matrix. We also use
S−1β (px) to retrieve the sub-epoch at which px updates Hβ . As
mentioned previously in the introduction, DSGD performs dense
communications. We will utilize the parallelization style of
DSGD in our methods while changing how the communication
is performed. Hereafter, we will refer to the parallelization style
of DSGD as “parallel SSGD,” and we will use the name “DSGD”
to distinguish the algorithm that performs dense communication.

3) Generating Correct Strata: There are several ways to gen-
erate a correct strata that covers the whole dataset and schedule
the strata to sub-epochs. For simplicity, we consider a simple
form of scheduling as follows: at sub-epoch 1, processor px,
for x = 1, 2, . . . ,K, processes the ratings in Rxx to update the
rows in Wx and Hx; at sub-epoch k, processor px processes
the ratings in Rxβ to update the rows in Wx and Hβ , where
β = 1 + (x+ k − 2) mod K. We refer to this scheduling as
“ring scheduling” or “ring strata” hereafter. A general form of
the ring scheduling consists of a seed, where 1 ≤seed≤ K. At

10606 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

sub-epoch k, the processor pseed processes the ratings inRseed,k

to update the rows in Wseed and Hk. At sub-epoch k, processor
px processes the ratings in Rxβ to update the rows in Wx and
Hβ , where

β =1 +(k+(seed+ x− 1) mod K−2) mod K. (5)

III. COMMUNICATION IN PARALLEL SSGD

In this section, we analyze the communication requirement of
parallel SSGD. We define the essential required communication
in an SSGD epoch that utilizes the data sparsity, and compare it
with the dense communication of DSGD.

Given strata S where each stratum is to be processed in a
sub-epoch in row-parallel execution. For anH-matrix row block
Hβ , we define the sequence

Υβ = 〈pi1 , pi2 , . . . , piK 〉,
of processors that compute the gradient using ratings in the
column block Cβ according to S. That is, pi1 updates the rows
of Hβ in the first sub-epoch, pi2 in the second sub-epoch and
so forth. Furthermore, we define a distance metric dxyβ between
two processors px and py updating Hβ as

dxyβ = S−1β (px)− S−1β (py). (6)

This distance quantifies the number of sub-epochs elapsed after
px updates rows in Hβ and before py does so.

A. Defining Essential Required Communication

The communication of H-matrix rows required for correctly
executing SSGD in a distributed fashion is described according
to the following definition:

Definition 1 (d-gap rows): During parallel SSGD, if a row
hj ∈ Hβ is updated by both pix and pix+1

, then hj is called
a zero-gap row. If hj is updated by both pix and pix+2

but not
pix+1

, then hj is called a one-gap row. Then for the general case,
consider two nonadjacent processors inΥβ : pix and piy such that
x < y. hj is called a d-gap row if it is updated by both pix and
piy but not any of the d=dxyβ processors in-between (that is, in
〈pix+1

, . . . , piy−1〉). The set of all such d-gap rows between pix
and piy in Hβ is given by

H
ixiy
β = {hj | (∃rij)[rij ∈ Rxβ ∩Ryβ

∧rij /∈ R(x+1)β ∪ · · · ∪R(y−1)β]}. (7)

Communicating H
ixiy
β from pix to piy after pix processes

the ratings in 2D block Rixβ and before piy starts processing
the ratings in Riyβ guarantees a correct distributed row-parallel
SSGD execution.

B. Communication in DSGD

In the original DSGD algorithm [3], after processorpx updates
row block Hβ in sub-epoch k, it sends the rows in Hβ to the the
processor that will update Hβ in sub-epoch k + 1. Therefore,
at each sub-epoch, each processor sends a whole row block of
H to exactly one processor. For instance, assuming the DSGD
is executed according to the ring strata given in Fig. 2, after

Fig. 3. Illustrating the extra communication of DSGD. The figure shows two
blocks of R that belong to processors px and px+1 such that px+1 updates
column block Hβ right after px. A row hj ∈Hβ shas to be sent from px
to px+1 if both processors contain a nonzero with column index equal to hj

because px+1 has to know the up-to-date version of hj after px updates it.
When either only one of px or px+1 has such nonzero, or neither of them, the
communication of hj at this stage is considered extra and can be avoided.

sub-epoch 1 is completed p1 sends H1 to p8, p8 sends H8 to p7
and so forth.

The communication scheme of DSGD guarantees the cor-
rectness of the SSGD algorithm since up-to-date hj ∈ H

ixiy
β

will eventually reach piy from pix , assuming x < y in Υβ , via
forwarding through 〈pix+1

, . . . , piy−1〉. Furthermore, the com-
munication scheme of the DSGD has the nice property of very
low latency overhead since it restricts the number of messages
sent by any processor at any sub-epoch to one. However, this
scheme suffers from increasing the bandwidth overhead (com-
munication volume) due to forwarding the H-matrix rows. For
each epoch, the communication volume sent by all processors
is equal to F×M×K words as each processor sends approxi-
mately M/K dense H-matrix rows each of size F words during
each of the K sub-epochs. Especially for highly sparse rating
matrices, it is clear that the volume of communication performed
is much more than the required, and the increased bandwidth
overhead due to forwarding can be prohibitive as K increases,
see Fig. 3.

In Fig. 2, the update sequence for row block H1 is Υ1 =
〈p1, p8, p7, p6, p5, p4, p3, p2〉. The communication of hi ∈ H1

through the subsequence/subchain p1 → p8 → p7 → p6 does
not incur any extra volume since each of these processors
update hi. However, p5 does not update hi but still p5 needs
to receive the up-to-date hi from p6 and forward it to p4 in the
next sub-epoch. In this case, hi incurs F words of forwarding
overhead. In the case of hj ∈ H1, the first processor to update it
after p1 is p4. Therefore, four forwarding communications, each
of size F , are incurred due to hj in p1 → p8 → p7 → p6 → p5.

Let λ(hj) denote the number of processors that update hj ∈
Hβ , then the amount of forwarding overhead of hj in DSGD
is F (K − λ(hj)). The total amount of forwarding overhead per
epoch then becomes F (MK −∑

hj∈H λ(hj)). The clear dif-
ference between the communication in DSGD and the essential
required communication is that the former is a direct factor of
K and M , whereas the latter is upper bounded by the number
of nonzeros (nnz) of the rating matrix. This can be shown as
follows: at sub-epoch k, processor px sends nnz(Rx,Sk(px))
H-matrix rows at the worst case. This means that, at worst case,

ABUBAKER et al.: SCALING STRATIFIED STOCHASTIC GRADIENT DESCENT FOR DISTRIBUTED MATRIX COMPLETION 10607

Algorithm 1: Point-to-Point Parallel SSGD on Processor
px.

Require:Rating matrix R, Processor count K
1: Initialize local factor matrices W and H randomly
2: repeat
3: Receive strata S from p1 through Bcast.
4: Construct P2P communication according to S
5: for k = 1 to K do �For each sub-epoch
6: βprev ← Sk−1(px)
7: βcurr ← Sk(px);
8: for each py ∈ SendSetk(px) do
9: Send Hxy

βprev
to py

10: end for
11: for each pz ∈ RecvSetk(px) do
12: Receive Hzx

βcurr
from pz

13: end for
14: for each rij ∈ Rxβcurr do
15: wi = wi − ε[(rij − r̂ij)hj + γwi]
16: hj = hj − ε[(rij − r̂ij)wi + γhj]
17: end for
18: end for
19: until convergence or max. number of epochs reached

the total volume of communication sent by all processors per an
SSGD epoch is equal to F

∑
x∈[K]

∑
k∈[K] nnz(Rx,Sk(px)) =

F × nnz(R).

IV. A FRAMEWORK FOR SCALING SSGD

A. Communicating d-Gap Rows Through P2P Messages

We propose to avoid the forwarding overhead by sending
an updated H-matrix row to the processor that updates it next
directly through P2P communications. At the beginning of sub-
epoch k, processor px sends P2P messages to a set of processors
SendSetk(px) and receives from RecvSetk(px). These two
sets can be respectively constructed as

SendSetk(px) = {py | Hxy
Sk−1(px)

�= ∅}, (8)

RecvSetk(px) = {py | Hyx
Sk(px)

�= ∅}. (9)

For example, in Fig. 2, at the beginning of the second sub-epoch
p1 sends hi to p8 and hj to p4.

Algorithm 1 presents the P2P-based parallel SSGD algorithm
for processor px. At line 3, processor p1 picks strata S and
broadcasts to all other processors. At line 4, px determines the
communication requirement according to (7) and constructs the
send/receive information of the P2P messages according to (8)
and (9). Then, the up-to-date rows required in the current sub-
epoch are communicated at lines 8-13 through P2P messages.
The SGD updates are performed at lines 15 and 16 respectively
according to (3) and (4).

Algorithm 2: Find d-gap H-matrix Rows on Processor px
Require:Rating matrix R, Processor count K, Strata S
1: for each Hβ ∈ H do
2: Compute Υpx

β

3: mask ← B
Υpx

β [2]

β

4: for k = 2 to K do
5: py ← Υpx

β [k]

6: Ψ
px,py

β ← Bx
β ∧By

β ⊕ (Bx
β ∧By

β ∧mask)

7: Hxy
β ← {hi ∈ Hβ | Ψpx,py

β [i] = 1}
8: mask ← mask ∨By

β

9: end for
10: end for

B. Efficiently Constructing d-Gap Row Sets

Computing d-gap H-matrix rows using (7) has recurring
computations for different instances. For example, comput-
ing H

ixiy
β and H

ixiy+1

β would require computing the same
R(x+1)β ∪ · · · ∪R(y−1)β term twice. For an efficient compu-
tation, we devise an algorithm that utilizes a dynamic program-
ming formulation leveraging efficient bulk bit-wise operations.

Consider a binary stringBix
β ∈ {0, 1}nβ of lengthnβ = |Hβ |,

such that the bth entry of Bix
β is set to ‘1’ if pix updates the bth

row in Hβ , and set to ‘0’ otherwise. Then, the indices of the
rows to be communicated between pix and piy are the indices
of the 1-bits in

Ψ
ix,iy
β = Bix

β ∧B
iy
β ⊕ (Bix

β ∧B
iy
β ∧ (B

ix+1

β ∨ · · · ∨B
iy−1
β)),

(10)
where ⊕, ∧ and ∨ respectively denote logical exclusive OR
(XOR), logical AND and logical OR operations. The term
(B

ix+1

β ∨ · · · ∨B
iy−1
β) in (10) can be computed incrementally

thanks to the associativity property of the ∨ operation.
Given Hβ and Υβ , we define Υpx

β as the sequence of proces-
sors updating Hβ starting from px. Υpx

β can be obtained from
Υβ by left-rotating the sequence until px is at the first index.
Algorithm 2 presents the efficient dynamic-programming-based
computation of the d-gap H-matrix rows between px and the
other K−1 processors. For each Hβ , the order of processors
updatingHβ starting from px according to strataS is maintained
in Υpx

β (line 3). Then, in lines 4-9, px constructs the d-gap rows
one by one according to this order leveraging the bottom-up
construction of the term (B

ix+1

β ∨ · · · ∨B
iy−1
β).

C. Hold & Combine Strategy for Reducing Latency

Using P2P messages to communicate the updated rows with-
out forwarding is indispensable for reducing the bandwidth
overhead of the communication. However, it has a high potential
of increasing the latency overhead via increasing the number of
messages performed per epoch compared to DSGD. In DSGD,
a processor sends K messages per epoch (one message to one
processor at each sub-epoch), whereas using the P2P requires
sending at most K × (K−1) messages per epoch (up to K−1
messages from each of the K processors at each sub-epoch).

10608 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

We propose the hold and combine (H&C) strategy to reduce
the upper-bound on the number of messages sent per epoch to
O(K lgK).

Definition 2: Fixed-distance strata is any strata that satisfies

dxyα = dxyβ for any pair of H-matrix rows α and β. (11)

That is, the fixed-distance strata have the property of constant
distance between any two processors regardless of the H-matrix
row block they are updating. We refer to the distance between
two processors px and py in a fixed-distance strata as dxy . Any
ring strata scheduled with (5) is a fixed-distance strata.

During an SGD epoch, the communication of Hxy
β should

be performed after px updates Hβ in sub-epoch k and before
py starts updating Hβ . This means that Hxy

β can be sent at the
beginning of any sub-epoch between k + 1 and k + dxyβ . Now
consider the communication of Hxy

β at sub-epoch k in a fixed-
distance strata. Observe that when sub-epochk + dxy is reached,
all the rows in Hxy

Sk+1(px)
,Hxy
Sk+2(px)

, . . . ,Hxy
Sk+dxy−1(px)

are
already updated by px and ready to be sent to py . So, these
rows can be held by px and sent all at once in one message to
py in sub-epoch k + dxy along with Hxy

β .
Utilizing fixed-distance strata, we propose to hold P2P mes-

sages and combine them as follows: If dxy ≥ K/2, then the
messages between px and py in an epoch can be combined
into two or more P2P messages. This is because if dxy = K−1
then one message is needed for K−1 H-matrix row blocks
and another message needed for the last block. Otherwise if
dxy < K/2, then the messages between px and py can be
combined in �K/dxy� P2P messages. Therefore, the number
of messages sent per processor per epoch can be computed by

K
2∑

i=1

2 +

K−1
2∑

i=1

K

i
.

The second summation is a harmonic series which can be
approximated by ln(K − 1)/2 + 1, thus

K
2∑

i=1

2 +

K−1
2∑

i=1

K

i
≈ K +K ln(K − 1)/2 ≤ K lgK. (12)

is the upper bound on the number of messages sent per processor
per epoch.

To facilitate the presentation of the H&C strategy, we assume
that each processor constructs a tabular-shaped message sched-
ule (TSMS). In the TSMS of px, rows are the K−1 proces-
sors that px communicates with during an epoch, and columns
represent sub-epochs as well as the corresponding H-matrix
row blocks updated by px. Each table entry TSMS(py , Hβ)
represents the sub-epoch S−1β (py).

Fig. 4 shows a TSMS for p3 using strata with seed = 5.
In the figure, the circled TSMS entries denote the messages
(H-matrix row blocks) that can be combined. For instance,
the communication requirement between p3 and p7 during an
SGD epoch can be done with two messages. The first mes-
sage, required at the beginning of sub-epoch 5, consists of
H3,7

7 ∪H3,7
8 ∪H3,7

1 ∪H3,7
2 . The second message, required at

the beginning of sub-epoch 1 of the next SGD epoch, consists

Fig. 4. An example TSMS for p3. The rows are the processors that p3
communicates with sorted according to their distance from p3. The columns
represent both the sub-epochs and the H-matrix blocks to be updated at each
sub-epoch. An entry (py , Hβ) gives the sub-epoch at which py updates Hβ

after p3 does (note that this sub-epoch might be in the next epoch). The circles
show the messages that can be combined.

Algorithm 3: Message Combining Strategy on Processor
px.

Require:SendSetk(px), Hxy ∀k, y ∈ [K] ∧ y �= x, S
1: for k = 1 to K do
2: for each py ∈ SendSetk(px) do
3: mid ← � k

dxy � �get the message ID
//get the H-matrix block that px updates at SE k

4: β ← Sk(px)
//add the d-gap rows Hxy

β
to Msg mid

5: Mxy

mid ←Mxy

mid ∪Hxy
β

// When does px update the first block of mid ?
6: t← (mid − 1) ∗ dxy + 1

// get the H-matrix block that px updates at
SE t

7: η ← St(px)
// get the sub-epoch s at which py updates Hη

8: s← S−1η (py)
9: cSendSets(px)← cSendSets(px) ∪ {py}

10: end for
11: end for

of H3,7
3 ∪H3,7

4 ∪H3,7
5 ∪H3,7

6 . Observe that the sub-epoch at
which the combined message should be sent is decided by the
first H-matrix block of the combined message. For instance, the
first message to p7 must arrive before p7 starts updating rows in
H7 which is sub-epoch 5.

Algorithm 3 shows the procedure to construct combined mes-
sages from P2P messages at px. Given the SendSetk(px) ∀k ∈
{1, . . . ,K} and the d-gap rows between px and {py | y �= x},
the combined messages are constructed as follows: There are
�K/dxy� possible messages to py each of which is identified by
mid. For each py ∈ SendSetk(px) the rows inHxy

β are assigned
to a combined message Mxy

mid (lines 3 and 4). Then, py is added
to the new send set of the sub-epoch at which message mid is
sent (lines 5-9).

ABUBAKER et al.: SCALING STRATIFIED STOCHASTIC GRADIENT DESCENT FOR DISTRIBUTED MATRIX COMPLETION 10609

Algorithm 1 can be modified to accommodate the H&C strat-
egy as follows: After constructing the P2P communication (line
4), Algorithm 3 is used to combine the messages. Then, lines
8-13 can be replaced with the sending/receiving of combined
messages; for each py in cSendSetk(px) a combined message
is identified using mid = �k/dxy� and sent to py , and similarly
so for receiving from each pz in cRecvSetk(px).

It is important to make sure that the K lgK messages sent per
epoch are uniformly distributed over K sub-epochs. Otherwise,
some sub-epochs will constitute a performance bottleneck due
to high number of messages. We show that utilizing Algorithm 3
for combining the messages has the nice property of limiting the
expected number of messages sent by each processor at each
sub-epoch to O(lgK).

Theorem 1: Using the H&C strategy, the expected number of
messages sent by each processor at each sub-epoch is O(lgK).

Proof: Consider a set �
xy that consists of all sub-epochs

wherein a message is sent from px to py . For each sub-epoch k,
the function

σ(k, px, py) =

{
1 k ∈ �

xy

0 otherwise
,

defines if there is a message to be sent from px to py in k.
We can prove thatO(lgK) messages are sent by each proces-

sor at each sub-epoch as follows. The number of messages sent
by px per sub-epoch is equal to the number of occurrences of
that sub-epoch in

⊎
y∈[K]∧y �=x �

xy. For each processor py with
distance dxy , the probability that k is one of the sub-epochs in
which a message is sent to py is equal to 1/dxy . In other words,
given K sub-epochs, the probability that sub-epoch k will be
used to send one of the �K/dxy� messages is 1/dxy . Then, the
expected number of messages from px to py at sub-epoch k is

E[σ(k, px, py)] = Pr(σ(k, px, py) = 1)× 1

+Pr(σ(k, px, py) = 0)× 0 =
1

dxy
.

Using linearity of expectation, the expected total number of
messages sent by px at sub-epoch k is

E

⎡
⎣ ∑
py �=px

σ(k, px, py)

⎤
⎦ =

K∑
i=1

1

i
≈ lnK + 1 ≤ lgK + 1.

(13)

V. HP MODEL FOR REDUCING BANDWIDTH COST

There exists two hypergraph models for 1D partition-
ing of sparse matrices for SpMV-like kernels; namely the
column-net model for rowwise partitioning and the row-net
model for columnwise partitioning [8]. In these models, the
“connectivity−1” metric [8] is utilized for partitioning objective
of reducing the communication volume in SpMV-like kernels,
whereas the partitioning constraint is maintaining computational
balance among processors. As mentioned earlier, rating matrices
usually have larger number of rows than columns, hence we
mainly focus on rowwise partitioning of rating matrix R. The
hypergraph model discussed here is topologically similar to the

column-net model, however the cutsize metric utilized in the
partitioning objective is different.

In the hypergraph modelHR = (V,N), there exists a vertex
vi ∈ V for each row ri of R and a net (hyperedge) nj ∈ N for
each column cj of R. Each net nj connects the vertices corre-
sponding to the R-matrix rows that contain nonzeros in column
cj . That is, Pins(nj) = {vi ∈ V | rij �= 0}. Each vertex vi is
associated with a weight equals to the number of nonzeros in
row ri. Each net is associated with a cost F .

A K-way partition Π(HR) = {V1,V2, . . . ,VK} is decoded
as a K-way rowwise partition of R, where the rows correspond-
ing to the vertices in part Vα constitute the row block Rα, for
α=1, 2, . . . ,K. Without loss of generality, row block Rα is as-
signed to processor pα for α=1, 2, . . . ,K. The W-matrix rows
are partitioned conformably with the R-matrix row partition.
That is, W-matrix rows in Wα correspond to the R-matrix
rows in Rα.

In partitionΠ(HR), the weight of each part is equal to the sum
of the weights of the vertices in that part. Hence, the partitioning
constraint of maintaining balance on the part weights encodes
maintaining balance on the nonzero counts of the R-matrix row
blocks. This in turn corresponds to maintaining balance on the
computational loads of the processors.

In partition Π(HR), a net nj is said to connect a part Vα if
it connects at least one vertex in part Vα, that is, Pins(nj) ∩
Vα �= ∅. The connectivity set Λ(nj) of a net nj is defined as the
set of the parts that net nj connects, whereas the connectivity
λ(nj) denotes the number of parts connected by net nj , that is
λ(nj) = |Λ(nj)|. A net nj is said to be cut if λ(nj) > 1 and
uncut otherwise. The partitioning objective is to minimize the
cutsize which is defined over the cut nets.

In this model, Λ(nj) also represents the set of R-matrix row
blocks that has at least one nonzero in column cj of R. Hence,
the connectivity set of net nj denotes the set of processors that
update the H-matrix row hj . Consider the H-matrix row hj

corresponding to a cut netnj in the P2P communication scheme.
Also considerhj update sequence defined using the connectivity
set and strata. For each epoch, each processor except the last
processor in the sequence should send its updated hj value once
to the next processor in the sequence. The last processor sends
its updated hj value to the first processor for the next iteration.
Hence, each cut net nj incurs a communication volume of
Fλ(nj). On the other hand, uncut nets incurs no communication.
Therefore, cutsize which encapsulates the total communication
volume during an SSGD epoch can be computed as

∑
nj�λ(nj)>1

Fλ(nj). (14)

Among the various cutsize metrics in the literature, cutsize (14)
is called as the sum of external degrees (SOED) [9].

There exists several successful hypergraph partitioning tools
that utilize multilevel recursive bipartitioning (RB) algo-
rithms. Among these partitioning tools, to our knowledge, only
hMETIS [9] supports the SOED metric via direct multi-way par-
titioning [10]. In fact Karypis and Kumar [10] clearly indicates
that RB framework does not allow directly optimizing the SOED

10610 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

metric. Here, we propose an RB framework that encodes the
minimization of the SOED metric correctly.

In the RB framework, a given hypergraph H is recursively
bipartitioned until K parts are obtained, assuming K is a power
of two without loss of generality. At each RB step, a bipartition
Π2 = {VL,VR} on the current hypergraph forms two vertex-
induced subhypergraphsHL = (VL,NL) andHR = (VR,NR).
Here,VL andVR are respectively used to refer to the left and right
parts of the bipartition. The net setsNL andNR are constructed
through cut net splitting method [8] as follows: Internal nets of
VL and VR are respectively included in NL and NR. A cut net
nj in Π2 is split into two subnets n′j and n′′j , where Pins(n′j) =
Pins(nj) ∩ VL and Pins(n′′j) = Pins(nj) ∩ VR.

In order to encode the SOED metric (14), we propose the
following strategy during the RB framework. We assign a cost
of 2F to each net of the initial hypergraph. Then, after each RB
step, internal nets inherit their cost, whereas splitted nets are
assigned a cost of F . That is, a net holds its cost of 2F until it
becomes cut for the first time, then a cost of F is assigned to
each of split subnets and they inherit their cost of F through the
further RB steps until the end of the partitioning. Hence, when a
net becomes cut for the first time it incurs 2F to the cutsize, then
whenever its subnets become cut they incur F to the cutsize. In
this way, the sum of all cut net costs encountered during the
overall RB algorithm becomes equal to the SOED metric (14).

VI. EXPERIMENTAL EVALUATIONS

A. Experimental Framework

We evaluate the contributions proposed in this work through
comparing three methods implementing parallel SSGD using
six real-world rating matrices. The first method, DSGD, is the
algorithm proposed in the original work of Gemulla et al. [3].
DSGD performs block-wise communication of H-matrix row
blocks in each sub-epoch. The second method, P2P, uses P2P
messages as in Algorithm 1. The third, H&C, uses combined
P2P messages (Algorithm 3) for communication.

In all three methods, column-to-stratum assignments are done
randomly in such a way that the number of columns per stra-
tum differs by at most one. Row-to-processor assignments are
obtained either randomly in a way similar to that of column-
to-stratum assignments, or using the HP method discussed in
Section V. Whenever the former is used, the method will be
prefixed by RAND, whereas if the latter is used the method will
be prefixed by HP. The HP method is implemented according
to the RB framework described in Section V to encapsulate
the SOED metric. In order to obtain two-way partitions on the
(sub)hypergraphs at each RB level, we use the HP tool PaToH [8]
with default parameters in SPEED mode.

We implemented the parallel SSGD code that includes DSGD,
P2P and H&C in C and used MPI for inter-process communi-
cations. We perform our experiments on an HPC system with
AMD EPYC 7742 processors and a high-speed HDR InfiniBand
network with 200 Gb/s bandwidth.

We compare the three methods in terms of communication
cost metrics as well as SGD iteration time. The communication
cost metrics consist of bandwidth-oriented metrics: sum-max vol

TABLE I
PROPERTIES OF MATRICES IN THE DATASET

and tot vol, and latency-oriented metrics: sum-max msgs and
tot msgs. sum-max msgs is calculated as follows: at each sub-
epoch, the number of messages sent by the bottleneck processor
(the processor that sends highest number of messages) is ob-
tained. Then, the summation is taken over all K sub-epochs.
That is,

sum-max msgs =
K∑

k=1

max
x∈[K]

(|SendSetk(px)|).

In a similar way, sum-max vol is computed as

sum-max vol =
K∑

k=1

max
x∈[K]

(SendV olk(px)).

tot msgs and tot vol are respectively computed as

tot msgs =
K∑

k=1

∑
x∈[K]

(|SendSetk(px)|),

tot vol =

K∑
k=1

∑
x∈[K]

(SendV olk(px)).

Here, SendV olk(px) = |HSk−1(px)| if DSGD is used, and
SendV olk(px) =

∑
py
|Hxy
Sk−1(px)

| if P2P or H&C are used.
Whenever the values for the volume of communication are
presented, these values are normalized with respect to F . This
uncoupling of F from the volume values helps evaluate the
proposed methods and model for any F value.

Table I shows the real-world matrices used to evaluate the
proposed methods and their properties. Amz Items contains
product reviews from Amazon between May 1996 - July
2014 [11] with aggressive duplicate removal. The other two ama-
zon datasets, Books and Clothing, are category-based subsets
of the original comprehensive reviews. Goodread Reviews
contains user ratings of books from the Goodreads website [12].
Google Reviews contains user ratings/reviews of local busi-
nesses from the Google Maps website [13], [14]. Twitch
contains ratings relative to how much time a user spent on a
stream in the Twitch streaming website [15]. The original data
does not contain any explicit ratings. We modified the dataset
to represent (user, stream, rating) such that the rating value is
proportional to the amount of time the user spent in the specific
stream.

ABUBAKER et al.: SCALING STRATIFIED STOCHASTIC GRADIENT DESCENT FOR DISTRIBUTED MATRIX COMPLETION 10611

Fig. 5. Comparing RAND- and HP-based P2P and H&C methods against RAND-based DSGD using communication cost metrics (a to c) and SGD iteration
time (d and e) using all dataset matrices on K = 1024 processors.

10612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 6. Showcasing the upper bound of the max-max messages and sum-max messages sent per sub-epoch using the H&C method compared to P2P on
K = {64, . . . , 1024} processors.

Fig. 7. Strong scaling curves of DSGD, P2P and H&C on K = {64, 128, 256, 512, 1024} processors using all dataset matrices with two F values.

B. Evaluations With Communication Cost Metrics

Fig. 5(a), (b) and (c) compare DSGD, P2P and H&C in terms
of communication cost metrics tot vol, sum-max vol and tot msgs
on K=1024 processors. In the figures, the red bars denote
RAND-based methods whereas light blue bars denote HP-based
methods. HP does not affect DSGD’s communication which
is why HP is not applicable for DSGD and hence DSGD has

only red bars. Comparison in terms of sum-max msgs will be
discussed in Fig. 6 .

1) Bandwidth-Oriented Communication Cost Metrics: As
seen in Fig. 5(a), both P2P and H&C incur the essential amount
of communication volume as defined in (10), without any
forwarding overhead. Compared to DSGD, both RAND- and
HP-based P2P and H&C methods incur significantly reduced

ABUBAKER et al.: SCALING STRATIFIED STOCHASTIC GRADIENT DESCENT FOR DISTRIBUTED MATRIX COMPLETION 10613

amount of communication volume per epoch (more than 10x).
Compared to RAND, the HP-based P2P and H&C methods incur
significantly reduced volume (between 1.4x and 5x).

Fig. 5(b) shows that in all matrix instances P2P and H&C have
a significantly reduced sum-max vol compared to DSGD (more
than 10x). H&C has slightly higher sum-max vol compared to
P2P. This is because combining the messages disturbs the ran-
dom volume balancing of P2P. As expected, HP-based P2P in-
curs less sum-max vol compared to RAND-based P2P. HP-based
H&C shows a decrease in sum-max vol on two matrices (Amz
Books and Amz Clothing & Jewelry), and an increase
in other four matrices. This is because the HP method, when
used for H&C, does not encapsulate reducing the sum-max vol
metric.

2) Latency-Oriented Communication Cost Metrics: Fig. 5(c)
shows that the H&C method significantly reduces tot msgs on
all dataset matrices. DSGD always incurs a constant number
of messages for each K value, thus tot msgs is always equal
to K2 = (1024)2 = 1048576. tot msgs of P2P can go up to
K2 × (K−1). On the other hand, H&C keeps tot msgs limited
toO(K2 lgK). Depending on the sparsity pattern of the matrix,
tot msgs of P2P can be very high (e.g., Amz Books, Amz
Items andTwitch) or relatively close to the lower bound (e.g.,
Amz Clothing & Jewelry). The H&C method success-
fully controls the fluctuation in the number of messages thanks
to the lgK factor. The significant reduction in tot vol of HP-based
P2P and H&C methods compared to those of RAND-based is
expected to reflect on the total number of messages, which is the
case as shown in the figure.

Fig. 6 showcases the H&C method’s regularization of mes-
sages sent per epoch over K sub-epochs. In order to experimen-
tally verify theO(lgK) bound given in Theorem 1, we introduce
the max-max msgs metric as the maximum number of messages
sent per sub-epoch among all sub-epochs. That is,

max−max msgs=max

{
max
x∈[K]

(|SendSetk(px)|) | k ∈ [K]

}
.

As seen in Fig. 6(a), using H&C, max-max msgs is empirically
found to be ≈ 3× lgK, which is very close to the expected
lgK bound on the number of messages per sub-epoch given
in (13). The figure shows that P2P incurs high max-max msgs
on K=256, and then the max-max msgs values start to decrease
as K increases. We believe this is attributed to the ability of
random partitioning to balance P2P message counts and volume.
In Fig. 6(b), the sum-max msgs metric is shown for all matrices
in the dataset using P2P and H&C onK = 64, . . . , 1024 proces-
sors. The figure shows the success of H&C in keeping the number
of messages under the K lgK theoretical bound. Since P2P’s
sum-max msgs do not decrease as K increases, this means maxi-
mum number of messages per sub-epoch are almost equal among
all sub-epochs, especially when K ≥ 512. On the other hand,
although the H&C’s max-max msgs come very close to those
of P2P on some instances such as Goodreads Reviews and
Google Reviews, sum-max msgs stay significantly less than
those of P2P. This means that although the maximum number
of messages sent per sub-epoch can reach 3 lgK in very few

TABLE II
NORMALIZED COST METRICS OF P2P-HP WITH RESPECT TO P2P-RAND ON

K = 1024 PROCESSORS. A VALUE v < 1 MEANS P2P-HP OUTPERFORMS

P2P-RAND BY (1− V)× 100%

sub-epochs, it is still equal to or less than the expected lgK
messages.

C. Evaluations With SGD Iteration Time

Fig. 5(d) and (e) compare the methods in terms of SGD iter-
ation time on K = 1024 processors respectively using F = 16
and F = 64 values. The figure shows that the P2P improvement
over DSGD is significant (more than 4x on all matrices, except
for Twitch which is 1.4x) when F = 16. The improvement
grows further as F increases to 64. It becomes more than 15x on
all matrices except Twitch, and on Twitch the improvement
becomes at least 4.7x.

Using RAND, the H&C improvement over P2P is also sig-
nificant. When F = 16, H&C improves the iteration runtime
over P2P by 2x, 1.2x, 2x, 1.5x, 2.15x, and 1.25x respectively on
Amz Books, Amz Clothing & Jewelry, Amz Items,
Goodreads Reviews, Google Reviews and Twitch.
WhenF = 64, the respective values become 1.7x, 1.2x, 2x, 1.4x,
1.74x, and 1.22x.

Using HP improves the P2P runtime by 1.3x, 1.17x, 1.22x
and 3.35x on Amz Books, Amz Items, Goodreads Re-
views and Google Reviews, respectively, when F = 16.
On Amz Clothing & Jewelry there is no significant im-
provement and on Twitch there is deterioration by 1.4x. When
F = 64, HP improves the P2P runtime by 1.4x, 1.42x, 1.3x and
3.9x respectively on Amz Books, Amz Items, Goodreads
Reviews and Google Reviews. Table II also shows the
normalized P2P-HP cost metrics with respect to those of P2P-
RAND. On average, HP improves (reduces) the SGD iteration
time by 22% whenF = 16 and 29% whenF = 64. The increase
in the gap between HP and RAND in terms of P2P runtime when
F grows from 16 to 64 is expected since the HP method aims
at reducing the total volume, effect of which is seen more with
higher F values. We observed that the HP method improves
the H&C runtime compared to RAND only on Goodreads
Reviews and Google Reviews.

Fig. 7 shows the strong scaling curves of RAND-based
DSGD, P2P and H&C using two different F values on K =
{64, 128, 256, 512, 1024} processors. As seen in the figure, P2P
and H&C show superior scaling compared to DSGD. Further-
more, H&C performs significantly better than P2P, especially
with smaller F values.

10614 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 8. Loss curves.

Increasing the F value is expected to render the SGD com-
munication as bandwidth-bound. Therefore, the effect of the
methods that reduce the bandwidth (volume of communication)
becomes conspicuous. This is observed in two different cases
when moving from F = 16 in Fig. 7(a) to F = 64 in Fig. 7(b):
(i) the performance gap between P2P/H&C and DSGD increases
as F becomes larger as a result of the huge reduction in commu-
nication volume when using P2P/H&C, and (ii) the difference
in performance between P2P and H&C slightly reduces due to
the communication overhead leaning towards bandwidth.

D. Evaluations With Loss Values

Since all the methods discussed in this work follow the strati-
fied SGD algorithm, their loss values per iteration is expected to
be very similar regardless of the communication strategy used
or number of processors. We demonstrate this using Fig. 8(a).
The figure shows the loss value (y-axis) following each SGD
iteration (x-axis) ofAmz Books andGoodreads Reviews
using the RAND-based DSGD, P2P, H&C methods on K =
{64, 256, 1024} processors. The loss values are very close as
expected thus the curves appear to be on top of each other.

Fig. 8(b) shows the amount of time (x-axis) required to reach
a certain loss value (y-axis) of Amz Items and Google Re-
views using the RAND-based DSGD, P2P, H&C methods
on 1,024 processors. The figure shows that DSGD requires
significantly more time to reach a certain loss value compared
to P2P and H&C.

Fig. 8(c) shows the scaling behavior of the RAND-based H&C
method with Amz Clothes & Jewelry and Twitch in
terms of loss value as the time increases.

VII. RELATED WORK

There exist several works in the literature that adopt the SSGD
for parallel matrix completion for shared-memory systems [16],
[17], [18] and distributed-memory systems [3], [4], [5]. Here,
we focus on the works that involve distributed-memory imple-
mentations. The work of Gemulla et at. [3] proposed the SSGD
approach as well as the parallel DSGD algorithm discussed in
Sections II-B and III-B. Teflioudi et al. [4] proposed DSGD++,
an improved DSGD framework for better performance. They use
computation and communication overlaying through dividing
the input matrix into K × 2K blocks, and in each of the K
sub-epochs DSGD++ performs computation on K blocks while
simultaneously communicating the other K blocks. They report
up to 2.3x improvement over DSGD in terms of runtime. Yun et
al. [5] extend the idea of DSGD++ in their framework, NOMAD,
and divide the input matrix into K ×M blocks. Each of the
K processors dedicates � threads to update � H-matrix rows,
and M − � other threads for communication. Once processor
px updates an H-matrix row, or a set of rows, it sends it/them to
another processor py that has idle computation threads. DSGD,
DSGD++ and NOMAD have the same total communication
volume during an SGD epoch which is equals to F×M×K
as discussed in Section III-B. The number of messages sent
per processor during an epoch of DSGD and DSGD++ has
an upper bound of O(K), whereas NOMAD may send up to
O(M) messages. Guo et al. [6] proposed a novel framework,
BaPa, for improving the nonzero load balance of DSGD through
a novel algorithm for balancing per-processor and per-epoch
ratings. Their BaPa-based DSGD shows a significant runtime
improvement on small number of processors (< 16). However,
their results show that both the original DSGD as well as the
BaPa-based DSGD stop scaling after 256 processors.

There are several asynchronous-SGD-based parallel matrix
completion algorithms in the literature. ASGD [4] (shown in the
upper part of Fig. 1) is the simplest example of such algorithm.
During ASGD, it is possible that several processors update the
same H-matrix row hj at the same time (i.e., stale updates).
This results in each processor having a different copy of hj .
These copies are coordinated by sending them to a processor
responsible for hj . This processor takes their average and then
sends the up-to-date version of hj back to the same set of
processors. This type of coordination is done once or more
during an SGD epoch [4], [19]. GASGD [19] extends ASGD
by utilizing intelligent partitioning for balancing computational
loads, reducing communication between processors, and reduc-
ing staleness. The authors utilize a bipartite graph model and

ABUBAKER et al.: SCALING STRATIFIED STOCHASTIC GRADIENT DESCENT FOR DISTRIBUTED MATRIX COMPLETION 10615

propose a partitioning method based on the balanced K-way
vertex-cut problem [20] to achieve the partitioning goals. Luo et
al. [21] proposed a different strategy to facilitate asynchronously
computing SGD in parallel which is called alternating SGD. In
alternating SGD, each epoch is divided into two sub-epochs
where in each sub-epochs one factor matrix is fixed and the
other is updated. This approach enables limiting the feature
vector updates that use stale data to one of the two factor
matrices during a sub-epoch. Recently, Shi et al. [22] proposed a
distributed algorithm based on alternating SGD with data-aware
partitioning.

VIII. CONCLUSION

We proposed a framework for scaling stratified SGD through
significantly reducing the communication overhead. The frame-
work targets at reducing the bandwidth overhead by efficiently
finding the required communication during an SGD epoch, using
P2P messages to perform it, and an HP-based method to further
reduce the P2P communication volume. The framework targets
at reducing the increase in latency overhead through the novel
H&C strategy to limit the number of messages sent by a proces-
sor per epoch toO(K lgK). Our proposed framework achieves
scalable distributed SGD, on up toK=1024 processors, without
any compromise on convergence rate or any update on stale
factors. The proposed framework achieves up to 15x runtime
improvement over the state of the art DSGD method, on 1024
processors, using six real-world rating matrices.

REFERENCES

[1] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009.

[2] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endowment, vol. 5, no. 8,
pp. 716–727, 2012.

[3] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix
factorization with distributed stochastic gradient descent,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2011, pp. 69–77.

[4] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix completion,”
in Proc. IEEE 12th Int. Conf. Data Mining, 2012, pp. 655–664.

[5] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon, “NOMAD:
Non-locking, stOchastic multi-machine algorithm for asynchronous and
decentralized matrix completion,” Proc. VLDB Endowment, vol. 7, no. 11,
pp. 975–986, 2014.

[6] R. Guo et al., “BaPa: A novel approach of improving load balance in
parallel matrix factorization for recommender systems,” IEEE Trans.
Comput., vol. 70, no. 5, pp. 789–802, May 2021.

[7] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method for scaling
iterative solvers: Avoiding latency overhead of parallel sparse-matrix
vector multiplies,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 3,
pp. 632–645, Mar. 2015.

[8] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication,” IEEE Trans.
Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–693, Jul. 1999.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI domain,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69–79, Mar. 1999.

[10] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
VLSI Des., vol. 11, no. 3, pp. 285–300, 2000.

[11] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in Proc. 25th Int.
Conf. World Wide Web, 2016, pp. 507–517.

[12] M. Wan and J. McAuley, “Item recommendation on monotonic behavior
chains,” in Proc. 12th ACM Conf. Recommender Syst., 2018, pp. 86–94.

[13] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommenda-
tion,” in Proc. 11th ACM Conf. Recommender Syst., 2017, pp. 161–169.

[14] R. Pasricha and J. McAuley, “Translation-based factorization machines
for sequential recommendation,” in Proc. 12th ACM Conf. Recommender
Syst., 2018, pp. 63–71.

[15] J. Rappaz, J. McAuley, and K. Aberer, “Recommendation on live-
streaming platforms: Dynamic availability and repeat consumption,”
in Proc. 15th ACM Conf. Recommender Syst., 2021, pp. 390–399.

[16] J. Oh, W.-S. Han, H. Yu, and X. Jiang, “Fast and robust parallel SGD matrix
factorization,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2015, pp. 865–874.

[17] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, “A fast parallel
stochastic gradient method for matrix factorization in shared memory
systems,” ACM Trans. Intell. Syst. Technol., vol. 6, no. 1, Mar. 2015,
Art. no. 2.

[18] W. Tan, L. Cao, and L. Fong, “Faster and cheaper: Parallelizing large-
scale matrix factorization on GPUs,” in Proc. 25th ACM Int. Symp. High-
Perform. Parallel Distrib. Comput., 2016, pp. 219–230.

[19] F. Petroni and L. Querzoni, “GASGD: Stochastic gradient descent for
distributed asynchronous matrix completion via graph partitioning,” in
Proc. 8th ACM Conf. Recommender Syst., New York, NY, USA, 2014,
pp. 241–248.

[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:
Distributed graph-parallel computation on natural graphs,” in Proc. 10th
USENIX Conf. Operating Syst. Des. Implementation, USA: USENIX
Association, 2012, pp. 17–30.

[21] X. Luo, H. Liu, G. Gou, Y. Xia, and Q. Zhu, “A parallel matrix factorization
based recommender by alternating stochastic gradient decent,” Eng. Appl.
Artif. Intell., vol. 25, no. 7, pp. 1403–1412, 2012.

[22] X. Shi, Q. He, X. Luo, Y. Bai, and M. Shang, “Large-scale and scalable
latent factor analysis via distributed alternative stochastic gradient descent
for recommender systems,” IEEE Trans. Big Data, vol. 8, no. 2, pp. 420–
431, Apr. 2022.

Nabil Abubaker received the BS degree from An-
Najah National University, Palestine, in 2014, and the
MS and PhD degrees from Bilkent University, Turkey,
in 2016 and 2022, respectively, all in computer engi-
neering. He is currently affiliated with Bilkent Uni-
versity as a postdoctoral researcher. His research
interests include parallel computing and algorithms
with focus on reducing data movement in scientific
and machine learning applications running on HPC
systems.

M. Ozan Karsavuran received the BS, MS, and
PhD degrees in computer engineering from Bilkent
University, Turkey, in 2012, 2014, and 2020, respec-
tively. He is currently a postdocdoral scholar of the
computing sciences area with the Lawrence Berkeley
National Laboratory. His research interests include
combinatorial scientific computing, graph and hy-
pergraph partitioning for sparse matrix and tensor
computations, and parallel computing in distributed
and shared memory systems.

Cevdet Aykanat received the BS and MS degrees
from Middle East Technical University, Turkey, both
in electrical engineering, and the PhD degree from
Ohio State University, Columbus, in electrical and
computer engineering. He worked with the Intel Su-
percomputer Systems Division, Beaverton, Oregon,
as a research associate. Since 1989, he has been affil-
iated with the Department of Computer Engineering,
Bilkent University, Turkey, where he is currently a
professor. His research interests mainly include par-
allel computing and its combinatorial aspects. He is

the recipient of the 1995 Investigator Award of The Scientific and Technological
Research Council of Turkey and 2007 Parlar Science Award. He has served as
an associate editor of IEEE Transactions of Parallel and Distributed Systems
between 2009 and 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

