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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 60, Number 3, September 1995

 SOME QUESTIONS CONCERNING THE COFINALITY OF Sym(K)

 JAMES D. SHARP AND SIMON THOMAS

 ?1. Introduction. Suppose that G is a group that is not finitely generated. Then
 the cofinality of G, written c(G), is defined to be the least cardinal 2 such that
 G can be expressed as the union of a chain of 2 proper subgroups. If X is an
 infinite cardinal, then Sym(,.) denotes the group of all permutations of the set

 { = {a I a < a}. In [1], Macpherson and Neumann proved that c(Sym(,.)) > X.
 for all infinite cardinals K. In [4], we proved that it is consistent that c(Sym(w0))
 and 2(' can be any two prescribed regular cardinals, subject only to the obvious
 requirement that c(Sym(co)) < 20'. Our first result in this paper is the analogous
 result for regular uncountable cardinals a.

 THEOREM 1.1. Let V t GCH. Let X., 0, 2 e V be cardinals such that
 (i) X. and 0 are regular uncountable, and
 (ii) K < 0 < cf(2).

 Then there exists a notion offorcing P, which preserves cofinalities and cardinal-
 ities, such that if G is P-generic then V[G] t c(Sym(K)) = 0 < 2. .

 Theorem 1.1 will be proved in ?2. Our proof is based on a very powerful
 uniformization principle, which was shown to be consistent for regular uncountable
 cardinals in [2]. This approach does not seem suitable for proving an analogous
 result for singular cardinals. (The particular uniformization principle which we
 use is easily seen to be false for singular cardinals of countable cofinality. See
 Proposition 2.6.)

 Question 1.2. Let X. be a singular cardinal. Is it consistent that c (Sym(,.)) > a+?
 After proving Theorem 1.1., we had hoped to prove an Easton-type theorem.

 This would say that the function X. l-- c (Sym(,.)), X. regular, can be any function
 which satisfies certain "obvious constraints". Macpherson and Neumann [1] found
 the first such constraint; namely

 (1.3) K < c(Sym(K)) < cf(2"').

 It is quite difficult to find any other constraints. For example, the following result
 shows that there are no monotonicity constraints.

 THEOREM 1.4. Let V t GCH. Let K, A e V be regular cardinals such that K < 2.
 Then there exists a notion offorcing P, which preserves cofinalities and cardinalities,
 such that if G is P-generic then V[G] - c(Sym(K)) > c(Sym(2)).
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 THE COFINALITY OF Syin(ic) 893

 For some time, we suspected that (1.3) was the only constraint on the function

 X l,* c(Sym(%)). Then we were surprised to find that the following result holds.
 THEOREM 1.5. Let Kc be an infinite cardinal. If c(Sym(r,)) > K+, then

 c (Sym(,+)) < c (Sym(r'))

 Theorem 1.5 is an easy consequence of a more general result.

 DEFINITION 1.6. Let K. < A be infinite cardinals.

 ()[A] ={S I S C A, | S| = Kj.}.

 (ii) ct, (r, A) is the least cardinality I C I of an co-closed unbounded subset C
 of [A]'.

 THEOREM 1.7. Let K < A be infinite cardinals. If c(Sym(i,)) > c,((,,2), then
 c (Sym(A)) < c (Sym(r.)).

 Notice that Theorem 1.5 follows immediately from Theorem 1.7. Theorems

 1.4 and 1.7 will be proved in ?3. It is conceivable that a result even stronger than
 Theorem 1.7 holds. For example, the following problem remains open.

 Question 1.8. Is it consistent that 2W' > wc and c(Sym(col)) > co)2?
 Proposition 2.6 shows that such a consistency result cannot be achieved using

 the approach of ?2.

 Question 1.9. What is the Easton-type theorem for the function K ?-* c (Sym(i,))?

 Notation 1.10. Let /c be an infinite cardinal and let A e [X]. Let {c xI i < e}
 be the increasing enumeration of A.

 (i) If 7r e Sym(i%), then 7TA E Sym(A) is defined by 7A(ai) = a,() for all
 i < K.

 (ii) A e [c]'8 is a moiety if ir\Al = r

 ?2. Uniformization principles. In this section, we shall prove Theorem 1.1.

 DEFINITION 2. 1. Let K be a regular uncountable cardinal and let a? (Ai I i < A)
 be a sequence of elements of [s]'.

 (i) A colouring of a? is a sequence (c1 I i < A) such that c1: Ai - K for each
 I < A.

 (ii) The function g: Ui,, Ai - es uniformizes (cs I i < A') if for each i < A
 there exists Pii < re such that g (a) = ci (a) for all Pi < a e Ai.

 (iii) a? has the uniformization property if every colouring of a? can be uni-
 formized.

 LEMMA 2.2. Let K. be a regular uncountable cardinal such that i<r, = K. Let x

 be a regular cardinal such that / > I, and suppose that sW = (Ai i < x) is a
 sequence of elements of [s]K with the uniformization property. Let ms e Sym(Ai)

 for each i < X. Then there exist I C [x] and g C Sym(r,) such that g [ Ai = 1 rj
 for all i e I.

 PROOF. For each i < X, define c :Ai -u x K byc1(a)= (7r2(a), 2j7(a)). Since
 v has the uniformization property, there exists a function h: Ui<,z Ai - x
 such that for all i < X there exists /i < Kf such that h(a) = cj((a) for all /i < a c Ai.
 Since ri'K K , there exist fi < K and I E [Z]/ such that

 (i) /i = f for all i e I, and
 (ii) As ofl = As sfl and c [ Ai n =cj j n[fl for all i,j E I.
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 894 JAMES D. SHARP AND SIMON THOMAS

 Thus k = Uit 7s is a function from UiE1 Ai into K such that k [ Ai = ri for
 all i e I. It is clear that range(k) = Uie Ai. We claim that k is an injection.
 For suppose that k(y) = k(6), where y e Ai and 36 c Aj for some i, j e I. Then
 a k(y) = k(6) E Ai n Aj, and so ci (a) = cj (a). Hence y =7r-1(a) = ir-1(a) = 6,

 as required. Thus k e Sym(Uie Ai). Let k C g e Sym(%). Then g satisfies our
 requirements. EZ

 DEFINITION 2.3 [2]. A notion of forcing P is s-strategically complete if for all

 a < a, Player II has a winning strategy in the following game of length a. Players

 I and II alternately choose a decreasing sequence p/I. ,B < a, of elements of P,
 where Player I chooses at the even ordinals and Player II at the odd ordinals.

 Player I wins either if for some fi < a there is no legal move or if the sequence

 p/i, /? < a, has no lower bound.
 In [2], it is noted that if P is ic-strategically complete, then P does not adjoin

 any new sets S of ordinals such that ASH < K. Also if we iterate Kc-strategically

 closed notions of forcing with supports closed under the union of fewer than K

 sets, then the resulting notion of forcing is also Kc-strategically complete.
 The following result was proved in ?2 of [2].

 THEOREM 2.4. Let M t ZFC. Suppose that K, ,u E M are cardinals such that

 K< = K% andu > K. Then there exists a Kc-strategically complete notion offorcing

 Pr,, with the +-c.c. such that if G is P,,,-generic, then in M[G] there exists a
 sequence v = (Ai I i < A) of elements of [K]'K with the uniformization property.
 Furthermore, lP),,,Xl = 2". EZ

 For the rest of this section, P,, A denotes the actual notion of forcing which is
 defined in ?2 of [2].

 PROOF OF THEOREM 1. 1. Let V k GCH. Let a, 0, i e V be cardinals such that
 K and 0 are regular uncountable, and K < 0 < cf(2). Let liR be the notion of

 forcing consisting of all partial functions p : -> 2 such that IpI < N. Let H be
 R-generic and let VI = V[H]. From now on, we will work in VI. In particular, we
 have that <K = K; and 21' = 2 for all K <? t < cf(2). Define a sequence (,u I i < 0)
 of cardinals as follows. If 0 is a limit cardinal, let (pi, i < 0) be an increasing
 sequence of cardinals such that K < ,ui < 0 and supi<0 ,u = 0. If 0 = j+ is a
 successor cardinal, define ,u1= , for all i < 0. Now define a <X-support iteration

 (Pi, Qi I i < 0) as follows. Assume that Pi has been defined. Then, working inside
 Vpi, set ?X P= i Then Pi is Kc-strategically complete for each i < 0. This
 implies that Pi does not adjoin any new sets S of ordinals such that IS1 < K.
 Hence, arguing as in the proofs Lemmas 1.1 and 1.2 of [2], it can be shown that

 Pi is +-c.c. for each i < 0. Let G be Po-generic, and let G1 = G n Pi for each
 i < 0. From now on, we will work inside VI[G]. (Note that VI[G] h- K' = s.
 This will enable us to apply Lemma 2.2 later in the proof.)

 For each i < 0, let Fi = Sym(K) n VI [G,]. Then each Fi is a proper subgroup of
 Sym(K), and Sym(K) = Ui<0 Fi. Thus c(Sym(t)) < 0. Suppose that c(Sym(s)) =
 x < 0. Then we can express Sym(i) = Ui< Hi as the union of a chain of X proper
 subgroups. Fix a moiety A of K. By Lemma 2.4 of [1], for each i < X there exists

 7is E Sym(t) such that p [ A =& it for all p E Hi. Let H = (ir I i < X).
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 Claim 2.5. Suppose that B is any moiety of K. Then there exists lB < x such
 that if jB < i < x, then v [ B 7& rjB for all ,ve H,.

 Proof of Claim 2.5. There exists V/ E Sym(%) such that tii A is an order-
 preserving bijection between A and B. Clearly jB = minj | e Hi } satisfies
 our' requirements. D

 Let ae < 0 be a successor ordinal such that HI e V1 [Ga] and , > x. There exists

 a sequence v = (Ai I i <iu,) E V1 [G.] of elements of [i,]K with the uniformization
 property Note that each Ai must be a moiety of a,. (For suppose that I \Aj I < X
 for some j < ua. Then AX n AiAl = X for all i < Hu. Define c;: Aj K )Xby
 cj(a) =1 for all a e Aj. For each i < u, such that i #1 j, define c1: Ai >X by
 c1 (a) = 0 for all a e Ai. Then clearly (ci I i < uig) cannot be uniformized.) Let
 (jAi I i < X) E V1 [G] be the sequence of ordinals lAi < X given by Claim 2.5. Since
 Po is rz+-c.c., there exists a sequence (F(i) I i < X) e V1 such that F(i) e [X]'
 and jAi e F(i) for all i < X. For each i < X, let f(i) sup F(i) > jAi. Then
 f e zX n V1. Thus we can define the sequence (vjAi I i < ) e VI [G,] by p pAi = 7TAi

 where ki = max{i, f(i)}. Note that for all i < %p [ Ai 0 pj for all p E Hi. By
 Lemma 2.2, there exist g e Sym(,.) n VI[G ] and I e [X]z such that g [ As = 1 Ai
 for all i e I. By considering an i e I such that g C Hi, we obtain a contradiction.
 Thus c(Sym(,.)) =0. EZ

 The following observation shows that a different approach is needed to answer

 Question 1.2 for cardinals X. such that cf(<) = co, and to answer Question 1.8.
 PROPOSITION 2.6. Suppose that K, is an uncountable cardinal such that i& > rK.

 If v = (A; I i < a.+) is a sequence of elements of [r.]4, then v does not have the
 uniformization property.

 PROOF. Suppose that a has the uniformization property Let (f' i < K+) be
 a sequence of a.+ distinct elements of W'.. For each i < a.+, let {a' | < a.} be
 the increasing enumeration of Ai. For each i < es+, define c1: Ai - X x X. by
 ci(ah) = (xa~, f(n)), where = A + n for some limit ordinal A. Then there

 exists a function h: Ui<,+ Ai -> X. x r, such that for all i < a.+ there exists /3, < X

 such that h(a) = c1(a) for all A < ao e Ai. There exist /3 < X. and I e [K+]K
 such that /h /3 for all i e I. Let A be a limit ordinal such that /< < A.< K. Then

 there exist distinct ordinals i, j e I such that ao' a-. This implies that
 A A

 (x/+, f i (0)) = Ci (ao i) = cjX (a-i) =0. (x+I , fj/ (0)).

 Continuing in this fashion, we obtain that f= fj, which is a contradiction. EZ

 ?3. In search of an Easton-type theorem. In this section, we shall prove Theorems
 1.4 and 1.7.

 LEMMA 3.1. Let V t GCH. Let Xz, A e V be regular cardinals such that Es < A.

 Then there exists a +-c.c. notion of forcing P, which preserves cofinalities and
 cardinalities, such that if G is P-generic then V[G] t c(Sym(%)) = A++.

 PROOF. For K > co, this was shown in the proof of Theorem 1.1. So suppose
 that , = co. There exists a c.c.c. notion of forcing P such that if G is P-generic,
 then V[G] I MA + 2' = A++. By [4], MA implies that c(Sym(co)) = 2`W. D
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 DEFINITION 3.2. Let A be an infinite cardinal.

 (i) If f,g e i' 2, then f <* g if there exists a, e A. such that f (3) < g(jJ)
 for all a. < fi < 2.

 (ii) A family F c A is dominating if for every g e i i, there exists f e F
 such that g <* f.

 (iii) d;, is the minimal cardinality of a dominating family F of 'R.
 LEMMA 3.3. c(Sym(A)) < d;,.

 PROOF. Let ,u = d;, and let F = {ff i I i < u} be a dominating family. We may
 assume that each f X is strictly increasing. For each 0 < ,u, define

 Go =(g e Sym() I There exist i,j < 0 such that g <* fi and g- <* fj)

 Then Sym(2) = U0<P Go. Arguing as in the proof of Proposition 1.4 of [3], we
 can easily see that each Go is a proper subgroup. [

 PROOF OF THEOREM 1.4. Let P be the notion of forcing given by Lemma 3.1. Let

 F ='. n V. Since V t GCH, IF1 =2+. Since P is +-c.c., for each h E A2. n V[G]
 there exists a sequence (H(i) I i < 2) such that H(i) e [2]K and h(i) e H(i) for
 all i < 2. It follows that V[G] t F is a dominating family in '2A. By Lemma 3.3,

 V[G] - c(Sym(2)) < IF1 < A++ = c(Sym(K)). El
 The rest of this section will be devoted to the proof of Theorem 1.7. Let X <2.

 be infinite cardinals, and suppose that c(Sym(,.)) = 0 > cct,(.,). Let Sym(,.)
 Ui<0 G,, where each G; is a proper subgroup. From now on, let C be a fixed co-
 closed unbounded subset of [2]K such that I C = c (, 2). Also, for each T E C,
 fix a bijection fT: T -- A.

 Convention 3.4. If Q C 2. then we identify Sym(Q) with the subgroup
 {g e Sym(2) g(a) = a for all a e 2\Q} of Sym(2). In particular, we regard
 Sym(K) as a subgroup of Sym(2).

 DEFINITION 3.5. For each o e Sym(,.) and T e C, we define OT e Sym(T) by

 f T I T = Tf- 7 1 ? o f.

 DEFINITION 3.6. For each i < 0, Hi is the set of all elements m e Sym(2) such
 that for some co-closed unbounded subset D C C of [2]K, for all T e D,

 (i) 7[T]= T, and
 (ii) there exists o e G, such that m F= T =T F T.

 LEMMA 3.7. For each i < 0, Hi is a subgroup of Sym(2).
 PROOF. Left to the reader. El

 LEMMA 3.8. For each m e Sym(2), there exists i < 0 such that m E Hi.
 PROOF. There exists an co-closed unbounded subset D C C of [2]' such that

 7[T] = T for all T e D. For each T e D, there exists iT < 0 such that
 T T =T F T for some p e GiT. Note that 0 = c(Sym(K)) is regular. Since
 D = c(,(I,2) < 0, it follows that SUpTcD iT < 0- E
 Clearly Hi C Hi for all i < j < 0. So the following lemma completes the proof

 of Theorem 1.7.

 LEMMA 3.9. For each i < 0, Hi is a proper subgroup of Sym(2).
 PROOF. Suppose that Hi = Sym(2) for some i < 0. Let
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 THE COFINALITY OF Sym(K) 897

 For each T E C*, let XT = fT [I . For each pair of elements S, T E C*, there
 exists HST E Sym(K) such that

 fT Of5 [XS =H-S,T [ XS

 In particular, nS,T[XSI = XT. Since IC*j < 0, we can assume that nS,T E G1 for
 all S,T E C*.

 Now fix some R E C*. Let p E Sym(XR). (Remember that we are using Con-
 vention 3.4 during this proof. Thus o E Sym(XR) means that (p is a permutation
 of A such that p(a) = a for all a E A\XR.) We shall show that there exists a E Gi
 such that a [ XR = ?p [XR. Let ir = 'PR. Then ir E Sym(K). Since ir E Hi, there

 exist T E C* and y/ E Gi such that i [ T = 'T [ T. Clearly t E Sym(XT). Let
 I=HTR o f o . Then

 XR = fR ? fT ? /?t R FX fR ? ? R pX

 =fROf-1o sOfROfR1 XR == s XR.

 Thus we have shown that the setwise stabilizer of XR in Gi induces Sym(XR) on
 XR. By Lemma 2.4 of [1], there exists g E Sym(r.) such that Sym(r.) = (Gig).
 Let g E Gj, where i <j < 0. Then Gj = Sym(r.), which is a contradiction. C1
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