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Abstract. A limit of attainability sets is found for a linear two-scale stochastic system for
the case when the diffusion coefficient of the fast variable is of order /2. The attainability set is
defined as the set of distributions of attainable terminal values of solutions of stochastic differential
equations. As a corollary we calculate a limit of the optimal value of the terminal cost in the stochastic
Mayer problem.
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Introduction. In mathematical modeling of complex systems with processes
having two essentially different “velocities,” fast variables are usually described by
singularly perturbed differential equations, i.e., by equations having a small param-
eter € on the left-hand side. In general, there is a hope that the reduced limiting
model (when the parameter is equal to zero) is more simple and can be used as an
approximation of the original one which may be rather complicated. This idea seems
to be fruitful also in the set-up of controlled systems. However, here an additional
difficulty arises since the optimal value of the cost function which depends smoothly
on ¢ €]0,1] may have a discontinuity at the most interesting point € = 0.

To overcome this difficulty in the deterministic setting, an approach based on a
study of the convergence of the attainability sets in the Hausdorff metric has been
developed; see, e.g., recent work [10]. In the linear case it is possible to find a limit of
the attainability sets in a rather explicit way which has been done by Dontchev and
Veliov [8]; see also the book [7]. Their result is as follows.

Let us consider the controlled system

(01) S.Ct = A1 (t)l‘t + Ag(t)yt + B1 (t)ut, o = 0,

(0.2) EYr = Ag(t)l‘t + A4(t)yt + Bg(t)ut, yo = 0,

where ¢ is a small positive number; u is any measurable function with values in a
convex compact subset of Rd; matrix-valued functions A;, B; are continuous; and
the eigenvalues of A4(t) have strictly negative real parts.

Let K. (t) be the attainability set of the system (0.1), (0.2), i.e., the set of all end
points (z7,yr) corresponding to various admissible controls, and let KF(T') be the
attainability set of the reduced system

.th = Ao(t)l’t + Bo(t)ut, o = 0,
with the coefficients Ao = Al — AQAZlA?” BO = Bl — AQAZIBQ.
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Let us define the set Ko(T) := {(z,y) : =« € K{(T), y € R(T,z)}, where
R(T,z) := —A; " (T)A3(T)z + Y,

Y = /OOo exp{A4(T)s}B2(T)Uds = {y ty = /000 exp{A4(T)s}Ba(T)vsds, vs € VU}.

Vi is the set of all U-valued Borel functions. In other words, if we put F(z,y) =
(z,—A;Y(T)A3(T)x +y), then Ko(T) is the image of K§(T) x Y under the mapping
F.

THEOREM (see [8], [7]). The sets K.(T') tend to Ko(T) in the Hausdorff metric
as e — 0.

Let us consider for the system (0.1), (0.2) the Mayer problem

g($T7 yT) - HliIl,

where g is a continuous function. Then the optimal value for the perturbed problem
is

Ji = Ig:gpl)g(x, Y)-

From the above theorem it follows immediately that

lim J* = mi ).
lim J; Igﬂl(lg)g(w y)

In the paper [13] the authors extended the theorem on the convergence of the attain-
ability sets to stochastic differential equations of the form

(0.3) dry = (A1 (t)ze + Aa(t)y: + Bi(t)us)dt + dwy, x9 =0,
(0.4) edy; = (As(t)z; + Ag(V)ys + Ba(t)ug)dt + o(e)dw?, yo =0,

where w®, w¥ are independent Wiener processes and o(¢) = O(e'/?%%), § > 0. In
the stochastic setting it is natural to define the attainability set as the set of dis-
tributions of all terminal random variables (z7,yr) when w runs through the set of
admissible controls. There are several possible choices for the latter. It seems that
the most adequate one is to consider all nonanticipating functions of the trajectories
as admissible controls. This implies the need to understand the system (0.3), (0.4) in
the weak sense; i.e., the Wiener processes are not given in advance and the solution is
actually a probability measure P%* in the space of continuous functions C[0,T]. Such
a solution can be constructed by the Girsanov theorem. In this case the attainability
set Ko (T) is a compact convex set in the space of probability measures equipped with
the Prohorov metric. In [13] it was shown that K. (T) — Ko(7T') in the Hausdorff
metric, where Ko(7T') is the set of probability measures uF~! where yu = p(dz,dy) is
such that p(dz, R™) belongs to the attainable set KF(T') of the reduced system and
w(RF, dy) belongs to the set P(Y') of probability measures on Y. The reduced system
is given by

(0.5) dzy = (Ap(t)z + Bo(t)ug)dt + dwy, x9=0,

where, as in the deterministic case, the coefficients Ag and By can be obtained if we
substitute in (0.3) the expression for y; which is a formal solution of (0.4) with ¢ = 0.
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Notice that the condition 6 > 0 provides a limiting degeneracy of the stochastic
equation (0.4) (with a fixed control) to an algebraic one.

In the present paper we prove the convergence result for o(e) = e'/2. In this
case Ko(T) is the set of all measures uF'~! such that u(de, R") € K&(T) and p(x, dy)
belong to the convex closure of the set of probability distributions of random variables

o+ /000 exp{A4(T)s}Ba(T)vsds,

where £ is the stationary Gaussian Markov process (called also Ornstein—Uhlenbeck)
with the zero mean and covariance

K(s,t) :== Bexp{A,(T)(t —s)}, s<t,

= /000 exp{A4(T)s} exp{A,(T)s}ds,

(1]

v is any measurable process with values in U such that for any ¢ the random variable
v; is measurable with respect to the o-algebra fit = 0{&, s > t}, and prime
denotes the matrix transpose. As a corollary of the theorem on convergence of the
attainability sets we calculate a limit of the optimal value in the Mayer problem
Eg(z7",y7") — min when ¢ tends to zero.

In the last few years singularly perturbed controlled stochastic differential equa-
tions have been intensively studied by various methods, mainly based on the theory of
weak convergence in the functional spaces or the Bellman—Hamilton—Jacobi equation;
see monographs [3], [4], [20] and papers [2], [5] (and the collection [17] for early re-
sults). However, almost all studies concern models where the controlled fast variable
does not affect the terminal cost. Harold Kushner wrote in his book [20, p. 64]:

It is hard to deal in any general way with the case where the fast
system is also controlled. The main difficulty is due to the fact that
the ‘stationary measures’ which are used to average out the fast vari-
able depend on the control which is used in the fast system. This
makes it hard to define the ‘averaged problem.’... Similar problems
occur in the deterministic case, and it is commonly dealt with there
by supposing that the choice of control for the fast system does not
alter the steady state value of that system, for each value of the fast
variable, i.e., that the fast system is asymptotically stable and the
control chosen in a class such that the limit point of that fast system
does not depend on the control when z is fixed. This assumption es-
sentially ‘decouples’ the fast and slow system. The assumption seems
reasonable and yields good results. Unfortunately, it does not seem
possible to find a stochastic analog of this approach which works in
any generality.

It worth noticing that the result presented here is nontrivial even for a system
with only fast variables. In this case it is clear that the limit of the attainability sets
shows to what extent optimal controls (acting on the drift of the process) can follow
the change in the scale parameter near the point zero.

The structure of the paper is the following. In section 1 we give the formal
description of the problem. Section 2 contains some preliminary explanations and
the proof of the result for the simplest one-dimensional model with the fast variable
only. The proof of Theorem 1.1 is given in sections 3 and 4. Section 5 is devoted to
measure-theoretical aspects which may have some independent interest.
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1. Formulations of the results. We consider here the linear stochastic con-
trolled system given by

(1.1) dxy = (A1(t)zr + A2 (t)y + B1(t)ue)dt + dwy, x9 =0,
(1.2) edy; = (As(t)xy + As(t)y: + B2(t)uy)dt + Vedw!, yo =0,

where w® and w? are standard independent Wiener processes with values in R* and
R" 0<t<T < o0, ¢€)0,1].

We shall understand (1.1), (1.2) as a symbolic notation for the stochastic differ-
ential equation in a weak sense when a Wiener process W = (w®, wY) is not given in
advance and u is a feedback control. Actually, in the following rigorous formulation we
could avoid the above representation (which is, in fact, a bit ambiguous) altogether.

We consider as a phase space R™ = R¥ x R™. (RF corresponds to the slow and
R™ to the fast variables.) The phase space of control will be a compact convex set
U C R%. In our matrix notations vectors are column vectors.

The path space of the system is the space C[0,T] of continuous functions W :
[0,7] — R™. Let Cr be the Borel g-algebra on C[0,T], C? = o{W,, s < t},
Ci :=C?,. Let P be the predictable g-algebra in C[0,T7] x [0, T corresponding to the
filtration C = (Cy).

The class of admissible controls U/ is defined as the set of all predictable processes
u = (u¢)¢ejo,r) With values in U.

Let A; = A;(t), B; = B;(t) be matrix-valued continuous functions of dimensions
compatible with (1.1), (1.2); i.e., A1(t) is a k x k matrix, A4(t) is n x n, etc.

We introduce the following notation:

a3 foven = (40, B mer () )
(1.4) De:= (% 5_1?n(t)>’

where Iy, I, are the identity matrices of corresponding dimensions.
Consider on (C[0,T],Cr) the probability measure P¢ such that with respect to
P¢ the coordinate process W is the Wiener process with the correlation matrix DaD;.
For any admissible control u we define the measure P** := p5.(u)P¢ with

1

T , T ,
(1.5) p7(u) = exp {/0 fe(W, s,us) dWs — 5 /0 | fe(W, 5, us) D5|2d8} .

It is well known (see [1] or [16]) that P=“ is a probability measure. By the
Girsanov theorem the process

t
Wi [ 50 u)ds
0

with respect to P%" is the Wiener process with the correlation matrix DED;. Thus,
we can write that

th = fE(W t,Ut)dt + DEdBta WO = 07

where B is the standard Wiener process.
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If we denote the first £ components of W and B by x and w® and the remaining
n components by y and wY, the above representation formally coincides with the
system (1.1), (1.2) and the control u will be a nonanticipating functional of the phase
trajectory. This explains the terminology where P is called a weak solution of
(1.1), (1.2) and the model itself usually is referred to as the model with the feedback
control.

Let K. := {P®": u € U}, where € > 0 is fixed. The set K. is an analog of the
“tube” of trajectories for deterministic systems. Correspondingly, the attainability
set Ko(T) := {P“Wy; ' : u €U} is the set of all probability measures on R™ which
are the images of elements of K. under the mapping W — Wr. It was proved in [1]
that KC; is a convex set, hence K. (T') is also convex. In [1] it was also shown that the
set {p5-(u) : uw € U} of the attainable densities is sequentially compact in the weak
topology of L'(P¢). It follows immediately that K. and K.(T) are compact subsets
of the corresponding spaces of probability measures P(C[0,7]) and P(R™) equipped
with the Prohorov metric.

To formulate the convergence result we need the following assumption.

(A) For all ¢ the real parts of the eigenvalues of A4(¢) have strictly negative real
parts:

(1.6) Re M(A4(t)) < -2k < 0.
Let KF(T') be the attainability set of the stochastic differential equation
(1.7) dxy = (Ao(t)zy + Bo(t)uy)dt + dwf, x9=0,

where AO = Al — AQAZIA;;” Bo = Bl — AQAZlBQ.
Let & be the (strong) solution of the following stochastic differential equation with
constant coefficients on some filtered probability space (2, F,F = (F), P):

(18) dgt = A4(T)€tdt + dbta EO = 507

where b is a standard Wiener process in R™ and £ is an independent Gaussian random
variable with the zero mean and covariance matrix

[1]

(1.9) = / exp{ A4(T)s} exp{ Ay(T)s}ds.

0
In other words, £ is the stationary Gaussian Markov process with zero mean and
covariance function

(1.10) K(s,t) := B&xi, = Sexp{Ay(T)(t — s)};

see, e.g., [16].

Let Vu be the set of all U-valued processes v = (vt)>0 such that v/, is a pre-
dictable process with respect to the filtration generated by the process & /¢, Sy =
{L(& + I(v)): v e Vy}, where

(1.11) I(v) = AOO exp{A4(T)s}Ba2(T)vsds.

Here and in what follows we use the notation £(n) := Pn~! for the distribution of
the random variable n. The set S is compact in P(R"); see Lemma 5.5.
Put Sy :=conv S¢, the convex closure of S in P(R").
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Let S be the set of all probability measures p = u(dz,dy) on R™ = R¥ x R”
such that

(1) p(z,dy) € Sy;

(2) p(da, R™) € Kg(T).

From the Proposition 5.2 it follows that S is compact in P(R™).

Define a linear mapping F(x,y) := (z, —A; Y(T)A3(T)x + y) of R™ into itself.
Put Ko(T) := {uF~1: peS}.

Our main result is the following theorem.

THEOREM 1.1. The set U.gjo,1)/K<(T) is compact, and as € — 0, K (T) tend to
Ko(T) in the Hausdorff metric in the space of compact subsets of P(R™).

For the model (1.1), (1.2) we consider now the Mayer problem, which can be
rigorously formulated as the problem to determine the minimal value of the functional

(1.12) JI = zirel{{E tg(Wr) = ME}CnEf(T)/g(x,y)u(dx,dy),

where g is a function on R™ which is integrable with respect to the measures p from
Ke(T).
COROLLARY 1.1. Assume that g is continuous and bounded. Then

(1.13) ti 72 = inf [ g(o.y)uldo.dy).

Remark 1.1. The definition of the set Vi seems rather complicated. Essentially,
Vy contains measurable processes v such that for any ¢ the random variable v, is
measurable with respect to the o-algebra fit = o0{&, s >t}. To avoid a discussion
of the measurable structures related to a decreasing family of o-algebras we prefer to
consider the processes in reversed time.

Remark 1.2. There is an alternative description of the set Sy. Let a be a random
variable independent of ¢ with values in some Polish space and with a nonatomic
distribution. Define the set V{j as the set of all U-valued processes v = (v4)¢>0 such
that vy /, is a predictable process with respect to the filtration generated by the process
&1+ and the random variable a. Then Sy = {L(§ + I(v)) : v € V§}; see section 5.

Remark 1.3. Evidently, Theorem 1.1 can be applied to the more general opti-
mization problem J¢(u) = F(P%") — min, where F is any continuous function on
P(R™).

We also use in our proof another possible model based on a different (and more
traditional) interpretation of the equations (1.1), (1.2). To describe this alternative
approach we consider the standard Wiener measure P on (C[0,T],Cr). Let w® be
the notation for the first k& coordinates of the function W and w¥ be the notation for
the remaining n coordinates. Then for any u € U we can find the strong solution
Xov = (2%, y=") of (1.1), (1.2). This model is referred to as the model with the
open loop controls (since in this case u is a nonanticipating functional of the “noise”).

Let P3" := P(X=")~! be the distribution in C[0,77] of the process X=*. Cer-
tainly, the measure PZ" need not be equal to PS*. Let us consider the sets K. :=
(P3": weUy CP(C0,T)) and K(T) := {P(X3")"' : uweU} CPR™). We
do not know whether the attainability set K.(T') coincides with the attainability set
K(T). However, in our paper [13] it has been shown that there are dense embeddings
K. C K. and K.(T) C K.(T) in the sense of total variation convergence (thus, in the
weak topology) and that the inclusion K. C K. is strict even in the simplest cases.
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This fact, certainly, does not exclude the coincidence of K.(T) and K.(T). Neverthe-
less, the result that there is a dense embedding K.(T') C K.(T) is very helpful since
it permits us to apply pathwise techniques similar to that of the deterministic theory.

2. Main ideas and the proof of Theorem 1.1 in the simplest case. We
recall some basic facts concerning the Hausdorff metric and convergence of compact
sets (for details see, e.g., [11]).

Let (X, d) be a metric space and let Kx be the class of all its nonempty compact
subsets. For A, B € Kx put I(A,B) := sup,c4 d(z,B). The Hausdorff distance
between A and B is defined by the equality

dir(A, B) := (A, B) V (B, A).

If A, € Kx, m € Z;, and all A,, are contained in some compact set, then
lim dg (A, Ao) = 0 if and only if the following two much more tractable conditions
are satisfied for any subsequences of indices (n):

(1) For any convergent sequence z, € A, its limit is a point in Ay.

(2) For any point z € Ay there exists a subsequence z,, € A,, converging to z.

Notice that if A,, are not subsets of some compact set, the above equivalence fails
in general. For the subsets of the real line A,, :=[0,1] U {n}, conditions (1) and (2)
are satisfied but A,, do not tend to Ag in the Hausdorfl metric.

The strategy of the proof of Theorem 1.1 is the following. In the first stage
we show that for any p. € Ko (T), € €]0,1], there exists G € Ko(T') such that
d(fic, pre) — 0 (d here is the Prohorov metric). Since all K.(T') are compact this
implies that U.>0K(T') is compact and all limit points of {y.} belongs to Ko (T); i.e.,
(1) is fulfilled. Since K.(T') is dense in K.(T) it is sufficient to consider only the case
when . € K.(T). Thus, we can argue with terminal random variables (25", y5")
with the distributions g, and approximate them in probability (or in L?) by random
variables (27", 77") with distributions from Co(T).

In the second step of the proof we should find for a given measure pu € Ko(T) the
sequence of measures p,, which are elements of l&an (T) converging to p. Again we
shall argue with suitably chosen random variables with distributions corresponding
to the measures for which we are looking.

Since the proof for the general multidimensional two-scale system requires rather
long arguments, we clarify main ideas on the example of a one-dimensional model
with constant coefficients and containing only the fast variable.

Let us consider the controlled stochastic differential equation

(2.1) edy; " = (—yys " + w)dt + e 2dwf,  yo =0,

where u is a predictable process which takes values in U = [0, 1]. In this case the set
Ko(T) is the convex closure of the set {L(& + I(v)), v € Vy}, where

I(v) ::/ e Pugds,
0

¢ is an Ornstein—Uhlenbeck process on some probability space (€, F, P) with correla-
tion function K (s,t) = (2v) ‘e !*=*l and Vy is the set of all U-valued processes v
such that vy is a predictable process with respect to the filtration generated by the
process &y ;. For our purpose it is more convenient to use the alternative description
of KCo(T') as the set {L({o+1(v)), v € V§}, where « is a random variable independent
of & with values in a Polish space and nonatomic distribution and Vf; is the set of
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all U-valued processes v such that v/, is a predictable process with respect to the
filtration generated by the process £/, and the random variable a. 'We understand
the equation (2.1) in the strong sense. Its solution can be represented in the following
way:

t
2.2 gt =t [ e 9 ey ds +
t Tt
0
where
t
(2.3) n; = 571/2/ e V=9 e g,
0

Put T. := T(1 — €'/?). Let us consider on the interval [T.,T] the Gaussian
stationary process

t
& = 29) P exp{ry(t — T.)/e}f + 712 / e duy,
Te

where (3 is a standard normal random variable independent of the Wiener process w¥
(to define 3 we can extend our canonical coordinate probability space). The process

£° is the solution of the linear equation
edé; = —y&dt + eV Pdw], & = (27)7/?8.

Let us consider the Ornstein-Uhlenbeck process £ = &5 _,, t € [0,T/+/2).
Evidently, n% — &5 = 05 — 5% —0in L? as e — 0.
For uw € U we define the process vy = v§ := ur—eslio 7/ 2
Now we can write that

T/\e T/e
yr' =np + / e Pup_cods + / e Pur_csds = g7" + R (u),
0 T/

where g7 = &5 + I(v),

T/e
R (u) := /T/\[ e Pup_csds + 7 — &-
15

Since sup,,;; |R°(v)| — 0 in probability, to accomplish the first step we need to check
only that £(&5+1(v)) € Ko(T). Indeed, let us take for £ the process £ defined above.
For any s < T'/y/e the random variable v is measurable with respect to the o-algebra
CT—as~ But

Cr—es = c{w,, r <T.}Volw, T. <r<s} Co{w,., r< Tg}\/o{gﬁ, T.<r<s}
=c{w,, r <T.}Vo{&s, s<r<T/\e},

and we see that v € V{j where the random variable « is defined as the projection
mapping of C[0,T] onto C[0,T.]. The above considerations show that the limit of any
convergent sequence " € K., (T) is an element of Ko(T).

Now we introduce the set V{’ consisting of all processes

N
(24) Vs = Z SOiI]si,erl](S) + UOI]SN+1,OO[(S)7
1=1
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where 0 = 51 < -+ < SN 41, u® € U, and the U-valued random variables ¢; have the
form

(2.5) ©i = fi(a, &(rY), . .. ,5(7“}'%)), Sit1 < 7“2 < sn.

Let Ko(T') :={L(§ + I(v)), v € V§'}. Tt is easy to show that the set {I(v), v €
V{'} is dense in {I(v), v € Vy} in probability. Thus, K'(T) is dense in Ko(7T') in
PR).

Let p € K'(T). This means that p is the distribution of a random variable
X := &y + I(v) where v is of the form (2.4). The result will be proved if we construct
a random variable x¢ and a control u® such that £(x¢) = L(x) and x¢ — yaﬁs’s — 0in
probability. To this aim it is enough to find on the coordinate probability space
(C[0,T),C, P) a stationary Gaussian Markov process £° with correlation function
K(s,t), a standard normal random variable of independent on &%, and an admis-
sible control u¢ € U such that £ — n5. — 0 in probability (n% is defined by (2.3)),
and

e T
/ e vids — e / e " T=8)/eyzds — 0,
0 0

where v¢ is the process given by the formula (2.4) if we substitute £, ¢°, and o for
&, ¢, and . Indeed, in this case the random variable x¢ := &5 + I(v®) meets the
required properties.

The process £° can be constructed in the following way. For sufficiently small
let TF := T(1 — ke'/?), k =1,2,3. Put

af = (wr2 —wys) /(T2 = T3)/2,

5 = (29)7 2 (wny —wpa) (T2~ T2,
t

€ == exp{(t — T})/e} f° + 571/2/1 e V= qyy,, > T
T

€

Define the process £ on [0, /2T by the equality & := &5 __,.
Evidently,

1

T€
& — np = exp{(T — T) [} 5° — 5*1/2/ e T/ dw, — 0 in L*.
0

For sufficiently small ¢ we put

N+1

u5 = u0[[0¢1\7+1[ —|— Z @fI[ti+lati[7
i=1

where t; ;=T —es;, i < N + 1.

The random variables ¢5 are Cy,,,-measurable. Thus, u® € U. It follows that

i+1

oo T oo T/e
—VS, € Je _ ~—1 —y(T—s)/e, e _ —YS$, 6 Jo —vs, €
/ e Puids — ¢ / e utds = e Pvids e Pus_ . ds
0 0 0 0

:/ e "Pvids — 0.
T/e

The proof of the result for this particular case is finished.
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3. Proof of Theorem 1.1. Part 1. We use the notation || f ||¢+:= sup,<; |fs|
(omitting the subscript ¢ = T') and denote by C different constants which do not
depend on ¢ and u.

In the following statements the solution of (1.1), (1.2) (as well as that of (3.1)) is
understood in the strong sense as given on the probability space (C[0,T],Cr, P).

PROPOSITION 3.1. Let (z72",y3") be the solution of (1.1), (1.2) corresponding to
some u € U, and let T be the solution of the reduced equation

(3.1) 7" = (A(t)FY + Bo(t)up)dt + dw?, T% = 0.

Then for any p € [1,00]

(3.2) sup Slelzl/)tE || 5% ||P< o0,
g u
(3.3) limsup E || 25" — 2" ||[P= 0,
e—0 ey
(3.4) sup sup sup Ely; P < oo.
e uel t<T

Proof. Let us introduce for e =1 A4,(¢) the fundamental matrix (¢, s), which is
the solution of the linear matrix equation

D= (t, s)

(3.5). p

= LA (1) (t,5), U(s,s8) = I,.

Since Ay is continuous and the eigenvalues satisfy (1.6), there exists a constant L such
that

(3.6) |We(t,s)| < Le rt=s)/e

for all s <t < T and ¢ €]0,1]; see, e.g., [18]. In particular, from the above bound it
follows that for all ¢ < T and € €]0, 1]

(3.7) %/O (¢, 5)|ds < L/x.

Using the fundamental matrix, the equation (1.2) can be solved with respect to
y = y=" and we get the representation

g,u 1 ¢ u
(39) i =L [ W) Aae)a + Balopunlds +
0

where

1t
3.9 = Ue (L, s)dw?.
(39) wi= g [ s
The process 7° is the solution of the linear stochastic equation
(3.10) dnf = e YA (t)nEdt + e~ Y 2dw?, n5 = 0.

We shall use the following properties of 7° following, e.g., from Theorem 3.1 in [14]:
there exists a constant C), such that

(3.11) sup Elnf | < C,
t>0



Downloaded 10/30/17 to 139.179.72.198. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

144 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

for any p € [1,00[ and
(3.12) E |7 |P< Cpe™/t

for any p € [4, 00][.
Substituting (3.8) in the equation (1.1) written in the integral form we come to
the following representation for the slow variable:

t
" = / [A1(s)z5" + Bi(s)us|ds
0

(3.13) + /Ot{Ag(s)lfos \Ila(s,r)[Ag(r)xi’“Jng(T)ur]dr} ds + ¢ + w?,

3

where

t
(3.14) ¢ ::/0 As(s)nsds.

LEMMA 3.1. For any p € [1, 00| there exists a constant ¢, such that for all e €]0, 1]
it holds that

(3.15) E ¢ P< cp,
(3.16) lim B | ¢* |[P=0.
£E—

Proof. Since A, is bounded, (3.15) follows immediately from the Jensen inequality
and (3.11). To prove (3.16) we consider the approximation of D := Ay A} ' by the
step functions

N
DN = ZDtiI]ti—17ti] )
i=1
where t; := i¢T/N. Using (3.10) we have

t t
= / DY Ay(s)neds + / (Dy — DY) Ay(s)yicds
0 0

N

t
= > Dl — 1ot — (W — 0l )]+ / (D, — DY) Au(s)rds.
1=1

This implies the bound
T
(3.17) ¢ lI< 262 2 I |l + |l w ) +C5N/ InSlds,
0

where oy :=| D — DV ||— 0 as N — oo due to continuity of a.

Notice that (3.12) implies that the family of random variables {e'/2 || n° ||, € €
10,1]} is bounded in L? (for any finite p). It follows from (3.11) that the family of
integrals on the right-hand side of (3.17) is also bounded in LP. Thus,

limsup || ¢° [|< Céy
e—0

and (3.16) holds.
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From the representation (3.13) and bounds (3.6), (3.15) it is easy to deduce that

t
pla s e (14 [ Blee ).
0

and the standard application of the Gronwall-Bellman lemma gives (3.2).
Put AY®" := 27" — z}. The relations (3.1), (3.13) imply that

t
(3.18) AP = / Ao(s)AP"ds + Ry,
0

where

t 1 s
Ry = / Aa(s) [E / Ue (s, 1) As(r)zs dr + Azl(r)Ag(r)xf’“} ds
0 0

(3.19)  + /otAg(s) E/os\Ilg(s,r)Bg(r)urdr+A41(7")Bg(r)ur} ds + CF.

Tt follows from (3.18) that
— t —
E| AW i< C (/ E| A% [[g ds + E || R#* ||p> ;
0

and by the Gronwall-Bellman lemma we have
E | A»S" [P< CE || RS ||P 7.
Thus, to prove (3.3) we need to show that
limsup E || R ||P=0
e=0yuecu
But this relation follows from (3.2), (3.16) and the following statement (see [15,
Lemma 3.1] or [13, Lemma 3.2]).

)
LEMMA 3.2. For any € €]0,1], n > 0, and bounded measurable function h the
following holds:

A2 {1 Ue (s, 1m)hedr + Ag(s) Ay (s)hs] ds
€Jo

(3.20) <[ 2| T(Crn + eCa(n)),

where C1, Co(n) depend on As and Ay.

At last, the property (3.4) of uniform boundedness in LP of values of the fast
variables for the fixed time follows from the representation (3.8) and (3.2), (3.7),
and (3.11).

PROPOSITION 3.2. Let (5", y=") be the solution of (1.1), (1.2) corresponding to
some u € U, and let T be the solution of the reduced equation (3.1). Let the random
variable 3" be defined by

(3.21) gt = — AN (T)A3(T) % +/ exp{ A4(T)r} Bo(T)vidr + &5,
0
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where v§ :=ur v lig 7 /5 (1) + U072 00 (1), u® is an arbitrary point in U,

(3.22) &5 = exp{e LA (T)(T — T°}3 + \/ig /TE exp{e 1Ay (T)(T — s)}dw?,

T. := (1—/e)T, B is a Gaussian random variable with the zero mean and covariance
E, and the matriz E is defined in (1.9).
Then for any p € [1,00]

P =0.

(3.23) lim sup Ely7" — y3"
ueU

e—0
Proof. Let =" be the solution of the stochastic differential equation
(3.24) edje" = (As(T)Z% 4+ Ay(T)GE™ + Bo(T)uy)dt + vedw! G5 = 0.
Put
e A R

Ai(t) == Ay(t) — Al(T), Bi(t) == Bi(t) — By(T).
The process A¥%" is the solution of the ordinary differential equation

dAY" = (Ag(T)A)=" + o7 ")dt, A" =0,

where
o7 = Ag(yp "+ As(D)ap + As(D)FF" + As(T)AT™ + Ba(t)u,.
Thus,
_ 1 T
(3.25) ALY = E/ exp{e P A4(T)(T — 5)}pSds.
0

By virtue of (1.6) for all ¢ > 0 we have that
(3.26) |exp{e T A4 (T)t}] < Ce™ 2wt/

Taking into account (3.2), (3.4) and the boundedness of U, we get from (3.25)
that the LP-norm of A% is bounded by

I ~ ~ .
(321) O / T2 ITIE (A (s)] + [As(s)| + f5 + 57 + | Ba(s)[)ds,
0

where

f5 = sup(Blag" — a5 [)/7, g° = sup(E|AG""
ueUd ueU

p)l/p_

Let f, be the function similar to f¢ but defined for z%. It follows from (3.3) that for
any § > 0 we have f¢ < f, + 6 for all sufficiently small e. But it is clear from the
equation (3.1) that lims_,7 fs = 0. Taking into account the above remarks we check
easily that the expression (3.27) tends to zero as e — 0 and, hence,

P=0.

(3.28) lim sup Ely7" — §3"
ueU

e—0
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Now we show that

(3.29) lim sup E|gz" — g7"|? = 0.
cu

e—0,

Indeed,

1 /7T
yrt = gpt = (—A41(T) - /0 exp{e T A4(T)(T — 8)}d8> As(T)zY

T/e

+ /OO exp{ A4(T)r} Bo(T)uldr —/ exp{A4(T)r}Ba(T)ur—_erdr
T/e T/Ve

1"
+ exp{e V2A,(T)T}f — 75/0 exp{e A4 (T)(T — s)}dw?.

Evidently, LP-norms of all terms on the right-hand side of this identity tend to zero
and the convergence of the first one is uniform in u € Y by virtue of (3.2) and (3.3).
Thus, (3.29) holds. The relations (3.28), (3.29) imply (3.23).

Proposition 3.2 is proved.

Assume that sequence L(z7""", y7""“") converges in P(R™) to some p. Choose
in the representation (3.22) the random variable 5 independent of W. It follows from

FUn  5En,Un

Propositions 3.1, 3.2 that the sequence L£(Z7",7“") converges to the same limit.
Let us introduce the modified controls i, = unljo,7. ]+ u’ljr. 7], where u? is a fixed
point from U. Since Z7" —Z;" tends to zero in probability, the sequence Lz, y")
converges to p and we need to check only that £(z7", y77"") € Ko(T'). To show this

notice that :E’%" is a function of the natural projection
i A{wf,wf, te[0,T)} — ({wf, t €0, T} {wf, t €[0,T:,]}).

As in section 2 it can be shown that the regular conditional distribution of the random
variable &5 + I(v®") for a fixed value i* belongs to S. Since S is a convex closed
set and n’c:ﬁp" is a measurable function on i¢~, it follows from Lemma 5.6 that the
regular conditional distribution of & + I(v®") for a fixed value Z%" also belongs to

S, implying the result.

4. Proof of Theorem 1.1. Part 2. Now we must show that for any measure
pF~t € Ko(T) there exists a sequence p, € K., (T) which converges to uF~! in
P(R"). It is sufficient to find such a sequence for an arbitrary puF~! from the set
Ko(T) which is dense in Ko(T) in the total variation topology. The latter property
holds since the attainability set K& corresponding to the strong solutions of (2.1)
is dense in K in the total variation topology. Thus, there are dense embeddings
’Co - IC() and ]CO(T) - ]Co(T)

Let us fix § > 0 and a measure u = m(z, dy)v(dz) such that pF~1Ko(T). By def-
inition v = L(Z4), where " is a solution of the reduced equation (2.1) corresponding
to some admissible control w. Let vy, := L(Z%_,), pn(dz,dy) := m(z,dy)vy(dz), h €
[0,T]. Then there exists hy > 0 such that

(4.1) d(pF=, i F1) < 6

for all h €]0, hg].
To prove (4.1) we use the following.
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LEMMA 4.1. Let T be the solution of (3.1). Then
(4.2) liH(l) sup Var(L(Z7_,) — L(Z%)) = 0.
SV uel
Proof. For any u € U let u" := ulpr_, + uOI]T,T’T], where ©° is an arbitrary
point in U. It follows from the bound for the total variation distance in terms of the
Hellinger process h; (see [12, Theorems 2.2 and 5.1]) that
(4.3) Var(L(z%) — £(z*)) < Crl/2.

T

(Notice that in the considered situation the Hellinger process for the pair (£(z"), £L(Z" ))
has the form

t
hy = / Itm (7)|Bo(1)(ur — u0)|2d7'7
0

where U, takes values in U.)
Fix v > 0 and r > 0 such that Cr'/2 < 5. For any s € [0, 7] we have

r

‘C(E%—s) - ‘C(i’%—r) *N(G’S?KS)a

where * denotes the convolution, N (as, Ks) is the nondegenerate Gaussian distribu-
tion with the mean

T—s
as := / Bo(1)u’dr
T—r
and covariance
T—s ,
K= / O(T — 5, 7)o (T — s, 7)dr,
T—r

and ®o(T — s,7) is the fundamental matrix corresponding to Ag(t). In particular,

r

L(zg ) = L(ZF_,) * N(ao, Ko).

The well-known inequality

Var(F + G — F +G) < Var(G — G)
implies that
Var(L(z%_,) — L(z%)) < Var(N(as, Ks) — N (ao, Ko)),

where the right-hand side tends to zero as s — 0.
Thus, for sufficiently small s we have

(4.4) sup Var(L(25_,) — L(2F)) <.

It follows from (4.3) and (4.4) that

sup Var(L(Z7_,) — L(T7)) < 3y
ueUu

and the lemma is proved.
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Since
Var(uF~ — pp, F~1) = Var(u — pp) = Var(v — vp,) — 0

by virtue of the above lemma, the relation (4.1) holds.
Furthermore, there exists h; > 0

(4.5) sup sup d(L(zgZ,,,y77), L(277,y77)) <6,
€ zeUp(u)

where U (u) is the set consisting of all z € U such that

(4.6) 2o, r—n) = uljor—p)-

The relation (4.5) is an evident corollary of Proposition 3.1 and the following.
LEMMA 4.2. Let (5%), v€I(h), hel[0,T], i=1, 2, be two families of random
variables with values in R™ such that

sup sup E|§fi}1\p <oo, i=1, 2,
h €I(h) ’
lim sup Ele) — 3P =0
h—0 veI(h)

for some p > 0. Then for any bounded continuous function f on R™

lim sup [Ef(§3) ~ F(E7)] = 0.
h—0 ,e1(h) ’ ’

The proof of Lemma 4.2 is easy and is omitted.

Lemma 4.2 implies also the existence of hy > 0 such that

(4.7)  supd(L(zp_p, —As(T)A3(T) Ty, + ), L(T_p, —As(T) A3(T)ZF + 1)) <6,

where the family (,) consists of all random variables with distribution from Sy.
Let us consider some h < hg A hy A he. The desired result will be proved if we
find for any sufficiently small € an admissible control z = z¢ satisfying (4.6) such that

(4.8) d(L(x72 3, y77), pnF ) < 26
Indeed, it follows from (4.1), (4.5), and (4.8) that
AL, y77), mnF 1) < 48,

and this means that any point in Ko(7") can be approximated by points from K. (7).

Let (2, F, P) be a probability space with a countably generated o-algebra. As-
sume that on this space we have independent random elements (, «, &, where ¢ has
the distribution vy, i.e., the same distribution as Z%_,; a has the standard normal
distribution; ¢ is a stationary Gaussian Markov process with zero mean and covariance
function given by (1.8), (1.9). Let us consider the set V§; of all U-valued processes
which are predictable with respect to the filtration generated by £, /; and a (we denote
by P the corresponding predictable o-algebra in Q x R).

LEMMA 4.3. There is a function v : Q x Ry x R™ — U which is measurable with
respect to P @ B(R™) such that v(.,x) € V for all x € R™ and L(& + I(v(.,x))) is
equal to p(x,dy) for v, almost all x € R™.
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Proof. Evidently, v — L(& + I(v)) is a continuous, hence measurable, mapping
from the space V := L}(Q x Ry, P, p)¢ into P(R"), where p(dw, dt) = e~2*' P(dw)dt.
Thus, the multivalued mapping

Fiz—{veV: v(wt)eUpae, L[+ I(v)=pu(z.)}

has a measurable graph. Hence, it admits a measurable selector x — V(x). Notice
that V(x) as an element of V is a class of p-equivalent functions. To choose from V(z)
a representative in a measurable way we proceed as follows. Let (v') be a sequence
of elements from V§& which is dense in V§ NV, j(z,1) := min{i : || v(z) — v |< 1/1}.
Then v/ = 7@ (w, 1) is a P ® B(R™)-measurable function with values in U. The
sequence v/(®1 converges to V(z) in V. Since U is bounded, the sequence v
converges to V in L'(Q2 x Ry x R™ P ® B(R™),p x v,)%. Hence, there exists a
subsequence which converges p x v}, a.e. to some P ® B(R™)-measurable function
v =v(w,t,z). For v, almost all  we have the inclusion v(.,z) € V(z) implying that
L(& + I(v(.,x))) = p(z,dy) for such x.

It follows from the above lemma that the measure uy is the distribution of the
random variable (¢, & + I(v(.,())), i.e.,

Generalizing the arguments of section 2 we introduce a set V[(]a’O/ consisting of all
functions
(410) Z@Z ]9“974-1 ( ) + U’OI]SN-H,DO[(S)?

where 0 = 51 < --- < sny+1, u’ € U, and ;(r) have the form
(4'11) 901(55) :fi(a7€(ri)ﬂ'“7§(T§\4i)>$)7 Si+1 <T;‘ < SN,

and the functions f; are measurable with respect to their arguments and take values
inU.

Assume that the representation (4.9) holds with v € V{(Ja,é),. There is a freedom
in the choice of {, «, and £ which we use in the following constructions.

Put TF :=T(1 — ke'/?), k=1, 2, 3, (:==7%_,.

Define

af = (why —wiy)/(T2 = T2)Y?,
where w¥+! is the first component of the vector process w?,
B = El/z(le - ’ng)/(Tl Tf)l/Q-
Let us consider on [T}, T the linear stochastic differential equation
edé; = Ay(T)& dt + ' Pdwy, &0 = 5.

Put & := & _,, t € [0,6"Y/2T]. For sufficiently small ¢ we define the admissible
control

N+1
- U/I[O tN+1 + Z Spl xT h)I[ tit1,t [

i=1

where t; ;=T —es;, 1 < N + 1, and ¢ is constructed in accordance with (4.11).
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It follows from Propositions 3.1 and 3.2 that
(@72, 97" ) — @_p, —Ad(T)As(T)zp + &5 + I(v(., 2p_y))) — 0

in probability as € — 0. Thus,
(412)  d(L@,, 77 ), L@F_p, —As(T) As(T)Z + & + L(v(, 24_4)))) < 8
for all sufficiently small e. Taking into account (4.7) we get from here the desired
inequality (4.8).

Part 2 of Theorem 1.1 is proved now for the case when uy, is given by (4.9) with
v € V[(JQ’OI. Since the set {I(v) : v € V[(JD"C/} is dense in probability in the set
{I(v): v eV}, the result holds for the general case as well.

5. On a compactness of some subsets in the space of probability
measures.

5.1. Notations and preliminaries. Let X be a Polish space with the Borel
o-algebra X and P(X) be a space of all probability measures on X with the topology
of weak convergence. It is well known that P(X) equipped by the Prohorov metric is
again a Polish space. The relative compactness of a subset A C P(X) is equivalent
to its tightness. The last means that for any € > 0 there exists a compact set K C X
such that m(K) > 1 —¢ for all m € A.

We shall use the notation m(f) = [y f(z)m(dx). We denote by L() the distri-
bution of a random variable &.

Let (X,X) and (Y,)) be two Polish spaces. We denote by M(X,Y") the set of
stochastic kernels from (X, X) to (Y,)) that is mappings 1 : X x Y — ([0, 1], B[0, 1])
such that z — p(z,T') is X-measurable for any I' € Y and u(x,.) € P(Y) for any
reX.

It is easy to check that the mapping v : X x Y — ([0,1], B[0,1]) is in M(X,Y) if
and only if one of the following equivalent conditions is satisfied:

(1) The mapping z — p(z,.) is X-measurable (i.e., u(zx,.) is a P(Y)-valued
random variable).

(2) For any f € Cp(Y) (the set of all bounded continuous functions on Y') the
mapping x — p(z, f) is X-measurable (i.e., p(z, f) is a real-valued random variable).

THE SKOROHOD REPRESENTATION THEOREM. Let Y be a Polish space and m,, €
P(Y) be a sequence converging in P(Y) to some m. Then on the probability space
([0,1], B0, 1], dx) there exist Y -valued random variables &, and € such that £(€,) =
M, L(E) =m, and &, — € pointwise.

THE MEASURABLE ISOMORPHISM THEOREM. Let (X, X be an uncountable Polish
space. Then there is a one-to-one mapping i : X — [0, 1] such that i(T') € B0, 1] for
any ' € X and i~ *(A) € X for any A € B[0,1].

Another useful result is that any Polish space X is homeomorphic to a Gg-subset
of the Hilbert cube [0, 1]N. For further information see, e.g., [6], [9].

5.2. For p € M(X,Y), m € P(X), and I € Y, the integral [, pu(z,T')m(dz)
defines a probability measure on (Y, )) which we shall denote by [ p(z,.)m(dz).

LEMMA 5.1. Let (X, X) be a Polish space with nonatomic measure v on it, let S
be a compact set in P(Y), and let M) be the set consisting of all stochastic kernels
from (X, X to (Y,Y) such that u(z,.) € S for all x € X. Then the set

K= {m cP(Y): m()= /Xm, Yw(dz), pe M}

is a convex compact subset in P(Y) coinciding with convs.
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Proof. By virtue of the measurable isomorphism theorem we can consider only
the case when (X, X) = ([0, 1], B[0, 1]). Assume at first that V(dx) =dz, i.e., v is the
Lebesgue measure. Convexity of /\/l is clear: if measures m;(.) = [y pi(x )dm, 1=
1, 2, belong to K, a >0, 3>0, a+ =1, then the measure aml( ) + ﬂmg(.) =
f « M(z,.)dx with

wlx,.) = I, (@)p (a2, ) + Liogay(@)ma (87 (z — 1+ B),.)

also belonging to K. The tightness of K follows easily frorn the tightnebe of S.
To prove that K is closed, let us consider the sequence my,( f tn(z, )dx € K
converging to some m(.) in P(Y). Notice that elements of /\/l are randorn Varlables
with values in the compact subset S of a Polish space. Thus, the set of distributions
of these random variables {L£(p) : p € M} is relatively compact in P(P(Y)). Taking,
if necessary, a subsequence we can assume that L£(u,) tend to some £ in P(P(Y)).
By the Skorohod representation theorem on the probability space ([0, 1], B[0, 1], dx)
there exist S-valued random variables fi,, and i such that fi,(z,.) — ji(x,.) for all ©
when n — oo and L(i) = m, L(fin) = L(uy,) for all n.

The last equality means that for any f € Cp(Y) the distribution of the random
variable [, (f) coincides with the distribution of p,(f). It follows that for any f €
Cy(Y)

m(f) = lim m,(f) = lim [ p,(z, f)de = lim /ﬂn(x,f)da: = //l(ﬂ;,f)dx
n—oo n—oo n—oo
Thus, m(.) = [ f(z,.)dz € K.
The general case When v is any nonatomic measure on [0,1], B[0, 1] is easily re-
duced to the considered one by the quantile transformation. Indeed, let F(¢) :=
v([0,t], C(t) :=inf{s: F(s) > t}. Then we have the identities

Jutwsde= [utr@. vz, [t i) = [ (€. )ds

which show that K does not depend on the measure v.

Evidently, S C K. Hence, conv S C K. Let mg(.) = [ pu(t,.)dt be a point in K
which does not belong to conv S. By the separation theorem a convex compact set
and a point outside it can be strictly separated by a continuous linear functional. This
means that there exists f € Cy(Y) such that inf,,ceomy s m(f) < mo(f). It follows
that [ p(t, f)dt < mo(f) in contradiction with the assumption that mg € K.

Remark 5.1. If v has atoms, then we can assert only that K is a subset of conv S,
even when S is compact.

5.3. Convergence of measure-valued martingales.

PROPOSITION 5.1. Let (2, F, P) be a probability space with an increasing family
of o-algebras (Fy,) such that F = o{F,, n € N}. Let u,(w,.) be a stochastic kernel
from (Q,F,) to (Y,Y) such that for any f € Cp(Y) the sequence (pin(f), Fn) is a
martingale. Assume that for almost all w the sequence p,(w,.) is tight. Then for
almost all w there exists a limit p(.) of pn(w,.) in P(Y) and E(u(f) | Fn) = pn(f)
for all f € Cy(Y) and n € N.

Proof. To clarify ideas we start from the case when Y = R. Let M, (w,y) =
tn(w,] — 00,y]) be the distribution function of w,(w,.). Evidently, (M, (y),Fy) is
a bounded martingale for all y € R and by the Doob theorem it converges almost
surely (a.s.) to M°(y). There is a set Q; with P(2;) = 1 such that for all w € Q4
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and all rationals r we have convergence of M, (w,r) to M%(w,r). Put M(w,y) =
inf{M°(w,r): r € Q, r >y} for w € Q;. Let M(w,.) be equal to any distribution
function outside ;. The assumption on tightness implies that M (w, .) is a probability
distribution function and for any w € £; we have that M, (w,y) tends to M(w,y) at
any point y where the function M (w,.) is continuous.

As any Polish space is homeomorphic to a Gs-subset of H = [0, 1]N we can assume
in general case that Y is the intersection of open subsets G, in H. The closure Y of Y/
is a compact subset of H. Thus, Cj,(Y) is separable. Let A be a countable dense subset
of Cy(Y) closed under finite sums and multiplication by rationals. For any f € A the
sequence Ly, (w, f) converges to some p¢(w) for all w from a set Qf with P(Qy) = 1.
Tt is possible to find a set 1 with P(Q2;) = 1 such that for all w € Qq, f, g € A, and
rational a and b

Pafbg(w) = app(w) + bpg(w).
Evidently,

[ ip(w) = pg(@) 1< f =g, we,

where || . || is a uniform norm in C,(Y'), and the function f +— ps(w) can be extended
uniquely to the continuous positive linear functional on Cy(Y) which by the Riesz
theorem has the form p1s(w) = p(w, f) for some measure p(w,.) on Y. For w € 2 we
put p(w,.) equal to any fixed probability measure on Y. We show that u is the kernel
we are seeking. Notice that p(w,Y) = 1. Fix w € Q;. By the assumption there exists
a subsequence i,/ (w,.) which converges in P(Y") to a measure y/(w,.) on Y. We can
extend i, (w,.) and p/(w,.) to Y in a trivial way. Then for f € A we have

/f (wydy) = /f (wydy) = hm/f )i (0, )
= Jim [ f@ . dy) = /f (w, dy).

It follows that the probability measures u/(w,.) and u(w,.) coincide, and, since any
convergent subsequence has the same limit, the whole sequence p, (w,.) converges in
P(Y) t0 fin(w,.).

The result is proved.

5.4. Let X and Y be Polish spaces. Any measure m € P(X x Y) can be
desintegrated, that is, can be represented as m(dz,dy) = u(z, dy)v(dz), where v is
the image of m under the projection mapping X X Y onto X and p is an element of
M(X,Y) (regular conditional probability) defined v a.s. uniquely.

LEMMA 5.2. Let Sy be a convexr compact subset in P(Y), and let S be the set
of all m € P([0,1] X Y) such that m(dz,dy) = p(z,dy)dx with u(x,.) € Sy for all
t €[0,1]. Then S is a convex compact set.

Proof. The problem is to prove that S is closed. Let us consider for any A =
[a,b] € [0,1], b > a, the set

1
b—a

Ka = {m ePY): m()= /Au(x, Jdx, p(z,.) € Sy for all z € A} ,

which is, by Lemma 5.1, a convex compact set in P(Y). Let L be the set of all
m € P([0,1] X Y) such that the image of m under the projection mapping X x Y
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onto X is the Lebesgue measure (this means that m(dz,dy) = p(z,dy)dr without
any restriction on p). Evidently, L is a closed convex set in P([0,1] x ).

Define the continuous affine mapping fa : L — P(Y) by the formula fa : m —
ma where ma(T') = m(A x T')/(b — a). The result will be proved if we show that
S = Nafr'(Ka). The inclusion S C Nafx'(Ka) is evident. To prove the opposite
inclusion let us consider the measure m from L which belongs to Na fA'(Ka). Let
us define the dyadic o-algebras F; = 0{Ay,, k= 1,..., 2'}, where Ag; = [0,27],
Apg =]k — 1)271 k271, k > 1. Using Lemma 5.1 it is easy to show that for any I
there exists a stochastic kernel gy such that p;(x,.) € Sy for all ¢ € [0, 1] and

m(Ax.)= /A,ul(a:,.)dax

for all A € F;. Put

2l
ml(t7 ) = ZIAk,L(t)ml’k(‘)
k=1
where
my(.) = 2l/ wi(x,)dx € S
AV]

according to Lemma 5.1. By Proposition 5.1 on convergence of measure-valued mar-
tingales, the sequence p;(x,.) tends to p(z,.) in P(Y) for almost all z and

/A,ul(a:,.)dx = /Au(x,.)d:v

for all A € F;. Thus, we find a stochastic kernel p such that u(z,.) € Sy for all
z € [0,1] and m(AxT) = [, p(z,I)dx for all A€ By, l € N, and ' € Y. Tt follows
that m(dz, dy) = p(x,dy)dt. Hence, m € S and the lemma is proved.

5.5.

LEMMA 5.3. Let (X, X) be any uncountable Polish space with a probability measure
v on it. Then there exists an increasing family of o-algebras (X)), 1 € N, such that

(1) Ay is generated by a finite partition of X to the sets Agy, k=1,..., r;

(2) X =0{X;, l e N};

(3) v(0Ak,) =0 for any k and | (OA denotes the boundary of A).

Proof. Since a Polish space is homeomorphic to Gs-subsets of H = [0, 1]N, we
can assume without loss of generality that X is a Borel subset of H. Moreover,
it is sufficient to construct the family (X}) for the space H (then the o-algebras
XNX={ANnX, X € &} will have the desired properties for X). Let ¢ € [0,1/2].
Let us define the partitions of the interval [0,1] by points a5, ,, k=0, ..., 2/, in
the following recurrent way. Let a§ =0, af =1, a5, = 271 + . Starting from the
Ith partition we define for k even the point aj, -, = (aj,—; + afk+1)2_l)/2; ie., we
construct the ordinary dyadic partitions on both intervals [0,27! +¢] and |27 +¢,1].

Evidently, diameters of the partitions tend to zero as | — oo.

Put

Al = [0,a5..], AL, :]afkfl)Q*L’aiZ*L]’ k=1,..., 2"
re={a, ., k=1, ..., 2,, le N}.
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Let A, pu={z: 2 €Ay ... e Af |}, XF =0{A}, .0 ki <2'}. Notice
that the set Ny of superscripts € € [0,1/2] such that I'¢ are d1s301nt is uncountable
(this follows from the observation that I'* NI = @ if Qe + Q # Qn + Q and there
are uncountably many different sets Qe + Q). Let’s consider the countable subset
N, of Ny containing all superscripts € such that at least one of the probabilities
v(z: x, € I'°), k € N, is positive. Thus, Ny \ N, is uncountable. It is clear that for
any € € Ng \ N, the sequence of o-algebras A has the needed properties.

5.6. The following assertion is a generalization of Lemma 5.2.

PROPOSITION 5.2. Let Sx be a compact subset in P(X), and let Sy be a convex
compact subset in P(Y). Assume that all elements of Sx are nonatomic. Let S be
the set of all m € P(X xY) such that m(dx,dy) = p(z,dy)v(dr) with u(x,.) € Sy
for all x and v(.) € Sx. Then S is a compact set.

Proof. Since the relative compactness is evident, we need to show only that S
is closed. Let us consider the sequence m,, € S with m,,(dz,dy) = pn(z, dy)v,(dz)
which tends in P(X x Y) to m(dz,dy) = p(x,dy)v(dx). As v, tends to v in P(X)
and Sx is a compact, v € S.

To prove that m € S for all , we construct a sequence of stochastic kernels
f; such that f;(x,.) € Sy for any z, [;(x,.) converges v-a.s. to some fi(z,.), and
fi(@, dy)v(de) = p(x, dy)v(dz).

Let us consider the o-algebras X} = 0{Ak;, k =1,..., i}, | € N, defined in
Lemma 5.3. Since v(0A,;) = 0, the sequence of measures m,,(Ag,; X .) converges in
P(Y) to the measure m(Ay,; x .) for any set Ay ;. From Lemma 5.1 it follows that for
any | € N there exists a stochastic kernel p; such that p(¢,.) € Sy for all ¢ € [0,1]
and

m(Ax.)= /A,ul(x, Jv(dx)

for all A € X}. Let

ZIA“ x)myx(.),

where

1
myk(.) = ) /Ak,l (z, Jv(dz) € Sy

according to Lemma 5.1 (if v(Ax,;) = 0 we can put my ,(.) to be equal to any point
of Sy). By Proposition 5.1 on the convergence of measure-valued martingales the
sequence fi;(x,.) tends to f(x,) in P(Y) for almost all x and

[ it = [ i, i

for all A € &;. Thus, we found a stochastic kernel u such that f(z,.) € Sy for all
z € [0,1] and m(AxT) = [, i(z,D)v(dx) forall A€ X;, l € N,and T' € Y. It follows
that m(dz, dy) = f(x,dy)v(dx). Hence, m € S.

Remark 5.2. Walter Schachermayer suggested the following simpler proof of the
above result without the assumption that measures from Sx are nonatomic. At first,
notice that Sy = U7_ T, where T'; := {u : u(f;) < 85}, f; € Cp(Y), B; € R.
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Indeed, from the Hahn—-Banach theorem it follows that Sy is an intersection of sets of
this type. Their complements form an open covering of the open set P(Y)\ Sy. Since
a Polish space is Lindel6f it contains a countable covering f‘j, j € N. Assume now
that for the limiting measure m(dz, dy) = p(z, dy)v(dz) there exists a set of positive
v-measure where p(z,.) € Sy. The above representation for Sy implies that there
exists a set B = {z : p(z, f) > B} with v(B) > 0. Let g € Cp(X) be a sequence
converging in L*(v) to I. Since py(,.) € Sy we have that u,(z, f) < . Thus,

k—oo n—oo

hmhm//%@ﬂ%m@m@=ggﬁg (). £ (o)

Shmﬁ/gk = Bv(B).

From the other side,

b ] o 1= | ettt
~ lim gktrﬁddx,fﬁddr)=:/;Addw7fﬁ4dx)>>QV(B)

k—oo
and we get a contradiction to the assumption that p(x,.) does not belong to Sy v-a.s.

5.7. Now we consider the following problem.

Let (2, F, P) be a probability space, P be a o-algebra in the product 2 x R such
that P C F@B(Ry), I'is a measurable set-valued mapping from (R4, B(R4)) to R.
Measurability means that the graph GrT' = {(¢,z) : z € T'(t)} is a B(R+) ® B(RY)-
measurable set. We shall assume that T'(¢) are closed sets and there exists a function
r € L'(R.dt) such that |T'(t)] < r; for all . Let V be a set of all P-measurable
functions f on  x R, such that f(w,t) € ['(t). Define the set K in P(R?) as

K= {e@: o= [" o gev).

The question is if K is a compact set. We give here only a partial answer to this
question imposing some specific assumption on the structure of the o-algebra P.

Let w = (w;) be a d-dimensional Wiener process on (2, F, P), ;" = o{ws, s <
t}, F = FY VN, where N is a family of all sets from F of zero probability. In
other words, F* = (F}*) is the minimal filtration generated by the Wiener process
and satisfying the usual assumptions.

LEMMA 5.4. Assume that P is the predictable o-algebra generated by F* and T'(¢)
is a convex set for allt. Then K is a compact set.

Proof. Since random variables ¢ are bounded by some constant, K is relatively
compact and it remains to show that K is closed.

Let us consider the sequence f™ € V such that the corresponding sequence of
distribution £(¢™) converges in P(R?). Define the random processes

M:Aﬂwww

Using the criteria of relative compactness in P(C44(R.,)) (the space C?t4(R,) is
equipped with the metric ;27 I @ l; A+ ] = |I;)7"), we can assume without loss
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of generality that the sequence £((¢™,w)) converges to some £ in P(C%t4(R.)). The
Skorohod theorem asserts that on some probability space (Q, F, 15) (actually, on the
standard unit interval) there are processes (é",u?"), n € N, and ((;37111) such that
L(¢™, ") = L(¢",w), L(¢, W) = L, and (¢, d"™) converges to (¢, ) in CIT4R,)
pointwise.

It is easy to show that the following properties hold:

(1) The process ¢ is adapted with respect to (F*), where FJ' := o{u", s <t}
and

(5.1) (@) = / (@, 5)ds

with P"-measurable f" such that fH(@,s) € T(s) for (©,s) (where P™ is the pre-
dictable o-algebra generated by (F}")). 3 3
(2) The process ¢ is adapted with respect to (F;), where F; := o{w,, s <t} and

(5.2) 5(@) = / f(@, 5)ds

with P-measurable f such that f(@,s) € I'(s) for (@,s) (where P is the predictable
o-algebra generated by the minimal filtration with the usual assumptions for w).

Let us prove that ¢" is adapted with respect to (F}'). Fix t € Ry and define the
Wiener process w} = w},, —w;, s € Ry, which is independent of F}*. It is sufficient
to show that E(&? | ft") = é? (P-a.s.) or, equivalently, that

EE(¢} | Fh(@")g(@") = Egh(a")g(@")

for any bounded continuous functions h : C4[0,#] — R and g : C*(R4) — R (the
argument of h, in fact, is the restriction of @™ to [0,¢]). Since h(w™) is F}'-measurable,

it follows from properties of the conditional expectations that the above equality holds
if and only if

(5.3) Eph(")Eg(@") = B¢} h(w")g(@").

But L(¢™, w™) = L(¢™,w), and the last identity is equivalent to the following one:
E¢ph(w)Eg(w) = E¢}h(w)g(w),

where w; = Ws+t — W, s € R4, which holds because ¢” is adapted with respect to
().
Taking a limit in (5.3) we get that
Eéth(@)Eg(ﬁ)) = Eéth(ﬁ))g(@)v

where Wy = Ws1¢ — W, s € Ry. As above, this means that o E((ﬁt | Fp);ie., ¢
is adapted with respect to (F;). The representation (5.1) follows from the definition
of ¢" and coincidence of L(¢",w") and L(¢",w). To obtain the representation (5.2)
we notice that by the Komlo$ theorem [19] for the bounded sequence f™, there exists

a subsequence (n;) such that (f™ +--- + f™)/k converge to some function fO for
almost all (@,t). It follows that

(5.4) b (@) = /0 (@, s)ds.
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The convexity assumption implies that fo(u}, s) € T'(s) for almost all (@, s), and we
can assume without loss of generality that f(@,s) € I'(s) for all (©,s). This means
that the trajectories of ¢ are absolutely continuous functions. Let

f~l (‘:}a S) = lim sup Z N (S)2m(&ti—1 ((Ij) - (gti—2 ((:)))7

m—oo £
=2

where t; =i27™, A; =t; —t;_1. Clearly, f/ (@,s)is a P-measurable function, and for
all @ and almost all s it coincides with f°(@,s) € I'(s). Thus, the following function
gives the representation (5.2) with the required properties:

~ ~

f(‘bv S) =f (&)? S)IA + IL‘(S)IA,

where A = {(@,s) : f (@,s) € [(s)}, 2(s) is any Borel function such that z(s) € I'(s).

Properties (1) and (2) imply the result. Indeed, it follows from (2) and Lemma
2.1 in [13] that there exists a predictable function a(z,s) : C¢4(Ry) x Ry — R4
such that f(@,s) = a(w(@),s). Evidently, we can modify a(z,s) in such a way that
a(z,s) € I'(s) for all (z,s). Let us define on the original probability space (2, F, P)
the process

t
o) = [ s
0
with f(w,s) = a(w(w), s). Since f € V and L(¢) = L(¢) = L it follows that the limit
of L(¢™) belongs to K and the lemma is proved.

5.8. Now we apply the previous result to our specific setting.

LEMMA 5.5. The set SY := {L(& + I(v) : v € Vy)} is compact in P(R™).

Proof. Reversing the time and taking into account the notations of the previous
subsection we can reduce the problem to the question of whether the set

Ki={e@: o= [~ o sev

is compact. Here I'(t) = —s~2 exp{A4(T)/s}B2(T)U and the o-algebra P is generated
by the time reverse of the Ornstein—Uhlenbeck process & /;, or, equivalently, by the
process 1; := t&§; ;. The process ) (as well as §) is defined in the present context
only up to the distribution. For example, we can take as n the process defined by the
stochastic differential equations

(5.5) dn, = t72(tI — A)medt + dwy, 19 = 0,

where [ is the unit matrix and w is the Wiener process. This representation can be
deduced from the differential equation for the Ornstein—Uhlenbeck process by the Ito
formula. But from equation (5.5) it follows that 7" = o{ns,s < t} and the needed
result is a corollary of Lemma 5.4.

5.9. Let n; be random variables with values in Polish spaces (X;, X;), i =1, 2, 3,
let v; be the distribution of n;, and let pu;;(x;, dx;) be the regular conditional distri-
bution of 7; given n;.

LEMMA 5.6. Let n3 = f(n2) for some measurable function f : Xo — X3, and let
S1 be a compact convex set in P(X1). Assume that p2(x2,dx1) € Sy for all zo. Then
ws(zs,dxy) € Sy for vs-almost all x.
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Proof. The assertion follows from the relation

M13(333,d$1)=/ piz (e, dry)pes(zs, drs)  (vs-ae.)
X2

and Remark 5.1.
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