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Abstract— It has been shown that parameter varying systems
with time delays can be robustly stabilized by switching control,
provided that the plant’s parameter varies slowly enough such
that the dwell time conditions of the switched controllers can
be satisfied. In this paper, the minimization of dwell time is
considered, where an iterative search algorithm is developed
from the singular value perspectives. The local minimal dwell
time obtained in this paper can be used to estimate the upper
bound on how fast the plant’s parameters can vary. Meanwhile,
the switching controller synthesis with optimal dwell time is also
discussed, where robust stabilizer design algorithm is presented
to achieve robust stability at certain operating range, as well
as the local minimal dwell time for controller switching. A
numerical example is given to illustrate the proposed algorithm.

I. INTRODUCTION

The control of time delay systems has many important
applications in various engineering fields such as chemical
processes, aerodynamics, and communication networks [4],
[15]. Due to infinite dimensionality of the state space, delay
systems pose challenging control problems [8], [7], [9], [15].
Furthermore, many time delay systems are time varying and
parameter dependent, where system parameters are scheduled
along a measurable parameter trajectory [20], [24], [28]. An
example of parameter varying time delay systems is the data
congestion control model for TCP networks, where all the
parameters of the dynamical model, including the time delay
RTT (round trip time), are dependent on instantaneous queue
length at the bottleneck network node [14], [29].

The analysis and control of LPV (Linear Parameter Vary-
ing) delay free systems have been discussed widely [1], [20],
[24], among which an important method is switching control,
which employs multiple candidate controllers at different
operating ranges and use switching logic to select the active
controller at each instant of time. We refer to [5], [6], [11],
[12], [19], [30] and references therein for hybrid system
stability analysis and switching control synthesis for systems
without time delays. It is worth noting that the approach of
switching control is extended to LPV systems with unknown
time-varying parameters in a recent result [27], where the
model being considered is linear time-varying without time
delays.
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There are also various recent results on LPV time delay
systems [17], [21], [28]. In [21] stability and stabilization
were discussed for discrete time switched time delay sys-
tems; [17] considered similar stability problem in continuous
time domain. Note that [21] and [17] are trajectory depen-
dent results without taking admissible switching signals into
considerations. Meanwhile, trajectory independent switching
was discussed in [32], which showed that robust stabilization
can be achieved using switching control for LPV time delay
systems if the plant’s parameter varies slow enough to
meet the dwell time conditions. An open problem is the
minimization of the dwell time in the synthesis of switching
controllers, such that faster switching can be allowed in
control applications.

We present in this paper a numerical algorithm to mini-
mize the dwell time between switching instants, and to de-
sign the corresponding controllers. Compared to the switch-
ing dwell time for delay free systems [10], [19], the dwell
time conditions derived for time delay systems are more
conservative [31]. Therefore the minimization of the dwell
time in switching controller synthesis is of particular impor-
tance from application perspectives. The stability conditions
derived in [2], [31], [32] are taken as the basis here. Hence
the present work complements these papers.

The paper is organized as follows. Some preliminaries
are given in Section II, where robust stabilization problem
is defined for parameter varying time delay systems with
switched controllers. In Section III, a numerical algorithm
is presented to minimize the dwell time, with which the
stabilizer synthesis is also considered to meet the minimal
dwell time requirements, besides robust stability conditions.
Numerical example is given in Section IV, followed by
concluding remarks in Section V.

II. PRELIMINARIES

Consider the following linear parameter varying time delay
system Σθ for t ≥ 0:

Σθ :

{
ẋ(t) = A(θ)x(t) + Ā(θ)x(t− τ(θ)) +B(θ)u(t)
x0(ξ) = ϕ(ξ), ∀ξ ∈ [−τmax, 0]

(1)
where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is control
input, τ(θ) denotes the parameter varying time-delay satis-
fying 0 < τ(θ) ≤ τmax, and dτ/dt = dτ/dθ ∗ dθ/dt < 1.
The LPV time delay system Σθ depends on a parameter θ(t),
where θ(t) ∈ R is assumed to be continuously differentiable
and θ ∈ Θ where Θ is a compact set.

As depicted in Fig. 1, a switching control approach was
discussed in [32], where Ki is a state feedback controller de-
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signed for operating points θ = θi, which robustly stabilizes
the LPV time delay systems for

θ ∈ Θi := [θ−i , θ
+
i ]. (2)

Fig. 1. The switched feedback control system

The feedback system equation can be written as:

Σq :

{
ẋ(t) = Ac

q(t)(θ)x(t) + Ā(θ)x(t− τ(θ)), t ≥ 0

x0(ξ) = ϕ(ξ), ∀ξ ∈ [−τmax, 0]
(3)

where Ac
q(t)(θ) = A(θ)+B(θ)Kq(t) and q(t) is a piecewise

switching signal taking values on the set F := {1, 2, ..., l},
i.e. q(t) = kj , kj ∈ F , for ∀t ∈ [tj , tj+1), where tj , j ∈
Z+ ∪ {0}, is the jth switching time instant which applies
controller Kkj , u = Kkjx for θ ∈ Θkj .

The notation used in this paper is the same as [32]: ∥ · ∥
denotes the Euclidean norm in Rn, and for a continuous
function f ∈ C([t− r, t],Rn) we define

|f |[t−r,t] := sup
t−r≤θ≤t

∥f(θ)∥.

The switched time-delay system Σq described by (3) is
stable if there exists a continuous strictly increasing function
ᾱ : R+ → R+ with ᾱ(0) = 0 such that

∥x(t)∥ ≤ ᾱ(|x|[t0−τmax,t0]), ∀t ≥ t0 ≥ 0, (4)

along the trajectory of (3). Furthermore, Σq is asymptotically
stable when Σq is stable and limt→+∞ x(t) = 0.

For a given positive constant τD, the switching signal set
based on the dwell time τD is denoted by S[τD], where for
any switching signal q(t) ∈ S[τD], the distance between any
consecutive discontinuities of q(t), tj+1 − tj , j ∈ Z+ ∪{0},
is larger than τD [10], [22].

Recall the main results of [32]. Consider the trajectory of
(3) in an arbitrary switching interval t ∈ [tj , tj+1):

Σkj :


ẋ(t) = (Ac

kj
+∆Ac

kj
(θ))x(t)

+ (Ākj +∆Ā(θ))x(t− τkj (θ))
xtj (ξ) = ϕj(ξ), ∀ξ ∈ [−τ̄kj , 0],

(5)

where 0 < τ̄kj := max τkj (θ), for θ ∈ Θkj , ϕj(ξ) is defined
as:

ϕj(ξ) =

{
x(tj + ξ) −τ̄kj ≤ ξ < 0
limh→0− x(tj + h), ξ = 0

(6)

Construct the Lyapunov-Razumikhin function

Vkj (xj , t) = xT
j (t)Pkjxj(t), t ∈ [tj , tj+1] (7)

for (5), then we have

κkj∥xj(t)∥2 ≤ Vkj (t, xj) ≤ κ̄kj∥xj(t)∥2, ∀xj ∈ Rn, (8)

where κkj := σmin[Pkj ] > 0 denotes the smallest singular
value of Pkj and κ̄kj := σmax[Pkj ] > 0 the largest singular
value of Pkj .

As in [32], assuming existence of a constant pkj > 1
satisfying Vkj (t+φ, xj(t+φ)) < pkjVkj (t, xj(t)) for ∀φ ∈
[−2τ̄kj , 0], we obtain

V̇kj (t, xj) ≤ −xT
j (t)Skjxj(t), (9)

with

Skj := − {S1 + S2 + S3 + γkjPkjDkjD
T
kj
Pkj (10)

+ γ̄kjPkj D̄kj D̄
T
kj
Pkj + γ̄−1

kj
ĒT

kj
Ēkj + 2τ̄kjpkjPkj

+ τ̄kjPkj (Ākj (Qkj + Q̄kj )Ā
T
kj

+ ϵkj D̄kj D̄
T
kj
)Pkj},

where

S1 = Pkj (Akj +BkjKkj + Ākj )

+(Akj +BkjKkj + Ākj )
TPkj

S2 = γ−1
kj

(Ekj + EB
kj
Kkj )

T (Ekj + EB
kj
Kkj )

S3 = τ̄kjPkj Ākj (Qkj + Q̄kj )Ē
T
kj
(ϵkjI − Ēkj (Qkj

+Q̄kj )Ē
T
kj
)−1Ēkj (Qkj + Q̄kj )Ā

T
kj
Pkj

and γkj > 0, γ̄kj > 0, ϵkj > 0 are free scalars, and Qkj >
0, Q̄kj > 0 are chosen such that

((Ac
kj

+∆Ac
kj
(θ + φ))TQ−1

kj
((Ac

kj
+∆Ac

kj
(θ + φ)) ≤ Pkj

(Ākj +∆Ā(θ + φ))T Q̄−1
kj

(Ākj +∆Ā(θ + φ)) ≤ Pkj .

The following result can be obtained by defining Xkj =
P−1
kj

and employing Schur complement and Razumikhin
theorem [2], [32]:

Lemma 2.1: The time varying time delay system (5) is
robustly stable if there exist Xkj > 0, Qkj > 0, Q̄kj > 0,
Ykj , and scalars γkj > 0, γ̄kj > 0, ϵkj > 0, ρkj > 0,
ρ̄kj > 0, such that Xkj XkjA

T
kj

+ Y T
kj
BT

kj
XkjE

T
kj

+ Y T
kj
(EB

kj
)T

⋆ Qkj − ρkjDkjD
T
kj

0
⋆ ⋆ ρkj I

 ≥ 0

(11) Xkj Xkj Ā
T
kj

Xkj Ē
T
kj

⋆ Q̄kj − ρ̄kj D̄kj D̄
T
kj

0
⋆ ⋆ ρ̄kj I

 ≥ 0 (12)


Mkj R12 Xkj Ē

T
kj

R14

⋆ −γkj I 0 0
⋆ ⋆ −γ̄kj I 0
⋆ ⋆ ⋆ Nkj

 < 0 (13)
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where

R12 := XkjE
T
kj

+ Y T
kj
(EB

kj
)T

R14 := τ̄kj Ākj (Qkj + Q̄kj )Ē
T
kj

Mkj = (Akj + Ākj )Xkj +Xkj (Akj + Ākj )
T

+ γkjDkjD
T
kj

+ γ̄kj D̄kj D̄
T
kj

+BkjYkj + Y T
kj
BT

kj

+ τ̄kj ϵkj D̄kj D̄
T
kj

+ τ̄kj Ākj (Qkj + Q̄kj )Ā
T
kj

+ 2τ̄kjpkjXkj ,

Nkj = −τ̄kj (ϵkj I − Ēkj (Qkj + Q̄kj )Ē
T
kj
),

and ⋆ denotes the transpose of the symmetric term in
symmetric matrices. We refer to [32] for the definitions
of Dkj , D̄kj , Ekj , Ēkj , E

B
kj

. Furthermore, the state feedback
controller

Kkj = YkjX
−1
kj

is robustly stabilizing Σkj , (5). �
The stability of the switched LPV time delay system (3)

can be guaranteed with the following dwell time condition
[32]:

Lemma 2.2: Consider switched LPV time delay system
(3) with l state feedback controllers designed for θ ∈ Θi,
i ∈ F as described by (2), where each controller Kkj

, kj ∈
F , is a robustly stabilizing controller derived from Lemma
2.1. Let the dwell time be defined by

τD := T ∗ + 2τmax (14)

where
T ∗ := λµ⌊λ− 1

p̄− 1
+ 1⌋, (15)

with p̄ := minkj∈F{pkj
} > 1, ⌊·⌋ being the floor integer

function, and

λ := max
kj∈F

κ̄kj

κkj

, (16)

and
µ := max

kj∈F

κ̄kj

wkj

. (17)

where
wkj := σmin[Skj ] > 0 (18)

Then system (3) is asymptotically stable for any switching
rule q(t) ∈ S[τD].

III. DWELL TIME MINIMIZATION

Due to the free parameters of pi, Xi, Qi, Q̄i, Yi, γi, γ̄i, ϵi,
ρi, ρ̄i in Lemma 2.1, the candidate stabilizer design is not
unique. As illustrated by the numerical example discussed
in [32], the dwell time computation depends heavily on the
selection of the free parameters. It is a very challenging
question to optimize the design of the stabilizers such that
the minimal dwell time can be achieved to tolerate faster
parameter variations of LPV time delays systems Σθ. In this
section, we will provide a search algorithm for numerical
optimization of the dwell time, (14)

Consider an arbitrary switching time instant jth, j ∈ Z+∪
{0}, where controller Kkj

is applied for ∀t ∈ [tj , tj+1).

Define Π
pkj

kj
for the LMIs of (11-13) in Lemma 2.1. Using

the same arguments in Lemma 2.1, we denote

Ξ
(z,p)
kj

=


Mp

kj
R12 Xkj Ē

T
kj

R14 Xkj

⋆ −γkjI 0 0 0
⋆ ⋆ −γ̄kjI 0 0
⋆ ⋆ ⋆ Nkj 0
⋆ ⋆ ⋆ ⋆ −zI

 (19)

where

Mp
kj

= (Akj + Ākj )Xkj +Xkj (Akj + Ākj )
T

+ γkjDkjD
T
kj

+ γ̄kj D̄kj D̄
T
kj

+BkjYkj + Y T
kj
BT

kj

+ τ̄kj ϵkj D̄kj D̄
T
kj

+ τ̄kj Ākj (Qkj + Q̄kj )Ā
T
kj

+ 2τ̄kjpXkj .

For ∀z > 0, we claim that Ξ
(z,pkj

)

kj
< 0 is necessary and

sufficient to guarantee Skj > z−1I . Note that

Skj > z−1I

⇐⇒ Skj − z−1I > 0

⇐⇒ Xkj (Skj − z−1I)Xkj > 0

⇐⇒ Xkj (−Skj )Xkj +Xkjz
−1Xkj < 0 (20)

Recall (10), we can derive the following inequalities from
Schur complements:

Xkj (−Skj )Xkj +Xkjz
−1Xkj < 0 ⇐⇒ Ξ

(z,pkj
)

kj
< 0.

Now we are ready to state the numerical search algorithm
to minimize the dwell time τD given in (14). In the following
search algorithm, we assume the existence of the dwell time,
i.e. feasible solutions of LMIs of Π

pkj

kj
.

Step 1. Initialize the search with p∗ = p0 > 1, and z∗ =
z0 > 0, where a sufficiently small p0 > 1 and a sufficiently
large z0 > 0 can be chosen as a feasible initial condition.

Step 2.Let pkj = p∗, solve the following LMIs:

0 < z

z < z∗

Ξ
(z,p∗)
kj

< 0

I < Xkj

and
Πp∗

kj
are satisfied, ∀kj ∈ F

It is worth noting that the LMI condition of Xkj > I
normalizes the search. If feasible solutions exist, go to step
3, otherwise skip to step 4.

Step 3. Let p∗ = p∗ + δp and z∗ = z, go to step 1 to
find a smaller z, where δp is the step size to search p∗

incrementally.
Step 4. Iterate step 2 and 3 until the LMI solver could not

find feasible solutions. We denote z∗ = min z∗ and p∗ =
max p∗.

Step 5. For ∀kj ∈ F , deploy the following optimization
subject to LMI conditions:
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min ν+kj

s.t. 0 < ν+kj
is a scalar

Ξ
(z∗,p∗)
kj

< 0

I < Xkj

Xkj < ν+kj
I

Πp∗

kj
are satisfied (21)

Denote ν̄+kj
= min{ν+kj

}, and solve the following LMI
optimization problem:

max ν−kj

s.t. 0 < ν−kj
is a scalar

Ξ
(z∗,p∗)
kj

< 0

ν−kj
I < Xkj

Xkj < ν̄+kj
I

Πp∗

kj
are satisfied (22)

We denote ν̄−kj
= max{ν−kj

}, and p∗, X∗
kj

, Q∗
kj

, Q̄∗
kj

, Y ∗
kj

,
γ∗
kj

, γ̄∗
kj

, ϵ∗kj
, ρ∗kj

, ρ̄∗kj
the corresponding solution of LMI

set (22). An upper bound of the minimal dwell time can be
derived:

Theorem 3.1: Follow the above search algorithm step 1 to
5; the resulting minimal dwell time τD is bounded by:

τD < τ∗D :=
λ∗z∗

η∗
⌊λ

∗ − 1

p∗ − 1
+ 1⌋+ 2τmax, (23)

where

λ∗ := max
kj∈F

ν̄+kj

ν̄−kj

(24)

and
η∗ := min

kj∈F
ν̄−kj

(25)

Meanwhile corresponding robust stabilizers are derived from:

K∗
kj

= Y ∗
kj
(X∗

kj
)−1 (26)

Proof. Recall that Pkj = X−1
kj

, and observe ν̄−kj
< Xkj <

ν̄+kj
. We have:

(ν̄+kj
)−1 < Pkj < (ν̄−kj

)−1

The singular value ratio λ in (16) can be bounded by:

λ < λ∗ := max
kj∈F

ν̄+kj

ν̄−kj

.

From the definition of µ in (17) and the fact that (z∗)−1 <
σmin[Skj ], we have:

µ < z∗ max
kj∈F

κ̄kj

< z∗ max
kj∈F

(ν̄−kj
)−1

= z∗
1

minkj∈F ν̄−kj

=
z∗

η∗
(27)

which implies (23) and completes the proof.
Note that the search of an optimal free parameter p∗

can not be deployed from LMI optimization perspectives
due to the term of 2τ̄kjp

∗Xkj in Ξ
(z,p)
kj

. Meanwhile, it is
worth mentioning that the conservatism of the above search
algorithm is mainly due to the assumption of pkj = p∗ for the
convenience of computation. It is possible to generate better
results with optimization over multi-dimensional space of
(p1, p2, · · · , pl). The above algorithm can be deployed using
Matlab R⃝and its Robust Control ToolBox.

IV. NUMERICAL EXAMPLE

In this part of the paper, the example of [32] is considered
to illustrate the algorithm discussed in Section III. The
parameters of (1) be given as

A(θ) =

[
−2.5− 1θ −0.75− 0.5θ

−1 −1.95 + 0.1θ

]

Ā(θ) =

[
−1 0

−0.2− 0.5θ −1

]
B(θ) = [ 1 1 ]T

τ(θ) = 0.15 − 0.05θ and θ(t) = cos(ωot), Note that θ ∈
[−1 , 1] = Θ, and ωo determines the speed of parameter
variations.

Similar to [32], we define θ1 = 0.5, θ2 = −0.5 and two
parameter intervals

Θ1 = [−0.1 , 1] Θ2 = [−1 , 0.1]

for which two separate controllers K1 and K2 are to be
designed and switched according to hysteresis switching
logic with the hysteresis range Θ1 ∩Θ2 defined as |d1,2| =
0.2. The two nominal systems are defined as:

A1 =

[
−3 −1
−1 −1.9

]
Ā1 =

[
−1 0

−0.45 −1

]

A2 =

[
−2 −0.5
−1 −2

]
Ā2 =

[
−1 0

0.05 −1

]

E1 = E2 =

[
0.6 0.3
0 0.06

]
Ē1 = Ē2 =

[
0 0

0.3 0

]
D1 = D2 = D̄1 = D̄2 = I , with τ̄1 = maxθ∈Θ1 = 0.155
sec., τ̄2 = maxθ∈Θ2 = 0.20 sec.

We now pick up arbitrary initial conditions p0 = 2.4 and
z0 = 4 in step 1 and perform the iterative search of step 2
and 3. We have z∗ = 3.145 and p∗ = 2.700.

By further deploying the LMI optimization (21) and (22)
in step 5 with the achieved z∗, and p∗, we can synthesize
the two stabilizers:

K1 = [0.9681 0.0465] K2 = [−0.2708 0.3715]

and
λ = max{κ̄1/κ1, κ̄2/κ2, } = 1.3807

µ = max{κ̄1/ω1, κ̄2/ω2, } = 0.3772
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The dwell time can be calculated from (15) and (14):

τD = 2τmax + λµ⌊λ− 1

p̄− 1
+ 1⌋

= 2 ∗ 0.2 + 1.3807 ∗ 0.3772⌊1.3807− 1

2.700− 1
+ 1⌋

= 0.92

Meanwhile, we have:

λ∗ = max{ν̄+1 /ν̄−1 , ν̄+2 /ν̄−2 } = 1.3858

η∗ = min{ν̄−1 , ν̄−2 } = 0.9996

so, from Theorem 3.1, an upper bound for the minimal dwell
time can be given as:

τ∗D =
λ∗z∗

η∗
⌊λ

∗ − 1

p∗ − 1
+ 1⌋+ 2τmax = 4.76

The level of conservatism in Theorem 3.1 is illustrated by
the amount of deviation of τ∗D from τD.

For comparison purpose, we also use the above parameters
in the approach of the earlier paper [32], which generates the
controllers

K1 = [1.2651 0.8975] K2 = [0.2122 0.4232]

and gives the corresponding dwell time as

τ̃D = 2τmax + λµ⌊λ− 1

p̄− 1
+ 1⌋

= 2 ∗ 0.2 + 1.7308 ∗ 0.5843⌊1.7308− 1

2.700− 1
+ 1⌋

= 1.41 (28)

In view of 0.92 < 1.41, clearly the algorithm proposed in
the present paper can derive a smaller dwell time. Recall
Corollary 3.3 in [32], we can guarantee switching stability
with

|θ̇| < 0.2/0.92 ≈ 0.2174 ,

which implies that ωo ∈ (0 , 0.2174). However, the dwell
time τ̃D derived from [32] only allows much slower param-
eter variations:

|θ̇| < 0.2/1.41 ≈ 0.1418 ,

i.e. ωo ∈ (0 , 0.1418).
We should also indicate that the above results can be

further improved by a selection of a suitable initial values
p0 and z0 as shown in Table I, which includes a summary
of the above results.

(p0, z0) (p∗, z∗) K1 K2 τD τ∗D K1 of [32] K2 of [32] τD of [32]
(3.0 , 5.0) (3.0 , 5.0) [1.01 0.09] [−0.27 0.37] 0.86 6.84 [1.18 0.80] [0.08 0.38] 0.85
(2.4 , 4.0) (2.70 , 3.15) [0.97 0.05] [−0.27 0.37] 0.92 4.76 [1.27 0.90] [0.21 0.42] 1.41
(1.1 , 4.0) (1.80 , 1.51) [0.97 0.06] [−0.31 0.46] 0.80 2.23 [1.38 0.95] [0.56 0.58] 1.18
(1.1 , 2.5) (1.65 , 1.39) [0.97 0.06] [−0.30 0.49] 0.77 1.99 [1.40 0.95] [0.59 0.59] 1.63
(1.1 , 1.1) (1.15 , 1.10) [0.97 0.07] [−0.31 0.53] 0.73 1.58 [1.46 0.98] [0.67 0.64] 2.08

(1.05 , 1.05) (1.05 , 1.05) [0.96 0.07] [−0.31 0.53] 1.06 2.66 [1.47 0.98] [0.70 0.66] 5.02

TABLE I
NUMERICAL RESULTS FOR VARIOUS INITIAL CONDITIONS

V. CONCLUSIONS

This paper considered the minimization of dwell time in
robust stabilization of time varying time delay systems with
switched controllers. Compared to the earlier results [31]
and [32], the algorithm obtained in the present paper allows
for faster parameter variation and therefore faster switchings.
An iterative search algorithm is proposed based on the
optimization of matrix singular values using LMIs. This
procedure is guaranteed to minimize an upper bound of the
dwell time, τ∗D, but the actual dwell time τD obtained by the
switching robust controllers designed using the parameters
of this optimization can be much lower as illustrated by the
numerical example.

In conclusion, this paper provides a methodology for the
design of switching robust controllers with the objective of
making the dwell time as small as possible. Although there
is still room for improvement in the controller design for the
minimal achievable dwell time, the present paper provides
a basis on which new methods can be built and compared
with.

REFERENCES

[1] P. Apkarian, P. Gahinet and G. Becker, “Self-scheduled H∞ control
of linear parameter-varying systems: a design example”, Automatica,
31:1251-1261, 1995.

[2] Y.-Y. Cao, Y.-X. Sun, and C. Cheng, ”Delay-dependent robust stabi-
lization of uncertain systems with multiple state delays”, IEEE Trans.
Automatic Control, 43:1608–1612, 1998.

[3] C. De Persis, R. De Santis, and S. Morse, “Supervisory control
with state-dependent dwell-time logic and constraints,” Automatica,
40:269–275, 2004.

[4] L. Dugard and E.I. Verriest, Eds., Stability and Control of Time-Delay
Systems, Springer, London, New York, 1998.

[5] J. C. Geromel and P. Colaneri, “Stability and stabilization of
continouous-time switched linear systems,” SIAM J. Control and
Optimization, 45:1915–1930, 2006.

[6] J. C. Geromel, P. Colaneri and P. Bolzern, “Dynamic output feedback
control of switched linear systems,” IEEE Trans. Automatic Control,
53:720–733, 2008.

[7] K. Gu and S.-I. Niculescu, “Survey on recent results in the stability and
control of time-delay systems,” ASME Journal of Dynamic Systems,
Measurement, and Control, 125:158-165, 2003.

[8] K. Gu, V.L. Kharitonov, and J. Chen, Stability and Robust Stability of
Time-Delay Systems, Birkhauser, Boston, 2003.

[9] J. Hale and S. Verduyn Lunel, Introduction to Functional Differential
Equations, Springer-Verlag, New York, 1993.

[10] J. Hespanha and S. Morse, “Stability of switched systems with average
dwell-time”, Proc. of the 38th IEEE Conf. on Decision and Contr.,
Phoenix AZ, December 1999, pp. 2655–2660.

[11] J. Hespanha, “Uniform stability of switched linear systems: extension
of Lasalle’s invariance principle,” IEEE Trans. Automatic Control,
49:470–482, 2004.

[12] J. Hespanha, D. Liberzon, and S. Morse, “Overcoming the limitations
of adaptive control by means of logic-based switching,” System &
Control Letters, 49:49–65, 2003.

4913



[13] J. Hochcerman-Frommer, S. Kulkarni, and P. Ramadge, “Controller
switching based on output prediction errors,” IEEE Trans. Automatic
Control, 43:596–607, 1998.

[14] F. Kelly, “Mathematical modelling of the Internet,” in Mathematics
Unlimited - 2001 and Beyond, B. Engquist and W. Schmid, Eds.,
Springer-Verlag, Berlin, 2001, pp. 685–702.

[15] V.L. Kharitonov, “Robust stability analysis of time delay systems: a
survey,” Annual Reviews in Control, 23:185–196, 1999.

[16] V.L. Kharitonov and D. Hinrichsen, “Exponential estimates for time
delay systems,” System & Control Letters, 53(5):395–405, 2004.

[17] V. Kulkarni, M. Jun, and J. Hespanha, “Piecewise quadratic Lyapunov
functions for piecewise affine time delay systems,” in Proc. of the
American Control Conference, Boston, MA, June-July 2004, pp. 3885–
3889.

[18] J.-W. Lee, ”On uniform stabilization of discrete-time linear parameter-
varying control systems”, IEEE Trans. Automatic Control, 51:1714-
1721, 2006.

[19] D. Liberzon and S. Morse, “Basic problems in stability and design of
switched systems,” IEEE Control Systems Magazine, 19:59–70, 1999.

[20] B. Lu and F. Wu, “Switching LPV control designs using multi-
ple parameter-dependent Lyapunov fucntions”, Automatica, 40:1973-
1980, 2004.

[21] V. Montagner, V. Leite, S. Tarbouriech, and P. Peres, “Stability and
stabilizability of discrete-time switched linear systems with state
delay,” in Proc. of the American Control Conference, 2005, Portland
OR, June 2005, pp. 3806–3811.

[22] S. Morse, “Supervisory control of families of linear set-point con-
trollers: part 1: exact matching,” IEEE Trans. Automatic Control,
41:1413–1431, 1996.

[23] S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach,
Lecture Notes in Control and Information Sciences No. 269, Springer-
Verlag, Heidelberg, 2001.

[24] W. Rugh and J. Shamma, “Research on gain scheduling”, Automatica,
36:1401-1425, 2000.

[25] A. Savkin, E. Sakfidas and R. Evans, “Robust output feedback
stabilizability via controller switching”, System and Control Letters,
29:81-90, 1996.

[26] E. Skafidas, R. Evans, A. Savkin, and I. Peterson, “Stability results
for switched controller systems,” Automatica, 35:553–564, 1999.

[27] L. Vu and D. Liberzon, ”Supervisory control of uncertain linear time-
varying systems,” IEEE Trans. Automatic Control, 56:27-42, 2011.

[28] F. Wu and K. Grigoriadis, “LPV systems with parameter-varying time
delays: analysis and control,” Automatica, 37:221–229, 2001.
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[30] P. Yan and H. Özbay, “On switching H∞ controllers for a class of
linear parameter varying systems,” System & Control Letters, 56(7-
8):504–511, 2007.
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