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ABSTRACT

CONCRETE SHEAVES AND CONTINUOUS SPACES

Recep Özkan

M.S. in Mathematics

Advisor: Assist. Prof. Dr. Özgün Ünlü

August, 2015

In algebraic topology and differential geometry, most categories lack some good

”convenient” properties like being cartesian closed, having pullbacks, pushouts,

limits, colimits... We will introduce the notion of continuous spaces which is

more general than the concept of topological manifolds but more specific when

compared to topological spaces. After that, it will be shown that the category of

continuous spaces have ”convenient” properties we seek. For this, we first define

concrete sites, concrete sheaves and say that a generalized space is a concrete sheaf

over a given concrete site. Then it will be proved that a category of generalized

spaces (for a given concrete site) has all limits and colimits. At the end, it will

be proved that the category of continuous spaces is actually equivalent to the

category of generalized spaces for a specific concrete site.

Keywords: Site and Sheaves, Generalized spaces.
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ÖZET

SOMUT DEMETLER VE SÜREKLİ UZAYLAR

Recep Özkan

Matematik, Yüksek Lisans

Tez Danışmanı: Assist. Prof. Dr. Özgün Ünlü

Ağustos, 2015

Cebirsel topoloji ve diferansiyel geometride bulunan çoğu kategori kartezyen ka-

palı olma, geri çekişe sahip olma, dışarı itmeye sahip olma, limit ve eşlimite sahip

olma gibi uygun özellikleri barındırmıyor. Topolojik manifoldlardan daha genel

fakat topolojik uzaylardan daha özel olan sürekli uzaylar kavramını tanıtacağız.

Sonra ise sürekli uzaylar kategorisinin aradığımız uygun özellikleri barındırdığını

ispatlayacağız. Bunun için ilk olarak somut siteler, somut demetlerin tanımını

vereceğiz ve bir genelleştirilmiş uzayın aslında verilen bir somut site üzerinde

bir somut demet olduğunu söyleyeceğiz. Sonra ise bir genelletirilmiş uzay kat-

egorisinin (verilen bir somut site için) limit ve eşlimitlere sahip olduğu ispat-

lanacak. Sonunda ise sürekli uzaylar kategorisinin aslında bir genelletirilmiş uzay

kategorisine (belli bir somut site için) denk olduğu ispatlanacak.

Anahtar sözcükler : Site ve Demetler, Genelleştirilmiş uzaylar.
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Fatma Muazzez Şimşir for a careful reading of this thesis.

v



Contents

1 Introduction 1

1.1 Categories,Functors and Natural Transformations . . . . . . . . . 2

1.2 Functor Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Universals and Limits 7

2.1 Universal Arrows and the Yoneda Lemma . . . . . . . . . . . . . 7

2.2 Coproducts, Colimits and Pushouts . . . . . . . . . . . . . . . . . 8

2.3 Products, Limits and Pullbacks . . . . . . . . . . . . . . . . . . . 12

3 Generalized Spaces 14

3.1 Sites and Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Concreteness of Sites and Sheaves . . . . . . . . . . . . . . . . . . 16

4 Continuous Spaces 21

4.1 Building Generalized Spaces From Continuous Spaces . . . . . . 23

vi



CONTENTS vii

4.2 Building Continuous Spaces From Generalized Spaces . . . . . . . 27

4.3 Equivalence Between Continuous and Contspace . . . . . . . . . 28

4.4 Convenient Properties for Continuous Spaces . . . . . . . . . . . . 30



Chapter 1

Introduction

This thesis introduces some basic category theory, the notion of sites and sheaves,

generalized spaces and then an important proposition about continuous spaces.

Nowadays category theory has become an inevitable tool for algebraic topologists

and differential geometricians. Because of this reason, they have started to use a

lot of category theory and as a result they are trying to work on such categories

of spaces which has some convenient properties. So, first of all we have to give

some basic notions of category theory which will be useful in Chapter 3 and 4.

Then in Chapter 3 we will give the definitions of sites and sheaves, then talk about

their concreteness and at the end we will give the definition of a generalized space.

Finally, in Chapter 4 we will give continuous spaces and show that it is equivalent

to a generalized space. As a conclusion, it will be proved that the category of

continuous spaces is actually equivalent to a category of generalized spaces and

thanks to this relation continuous spaces will have lots of ”convenient properties”

which are very essential in the field of algebraic topology and differential geometry.
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1.1 Categories,Functors and Natural Transfor-

mations

Definition 1.1.1. [1] A category C consists of

• A collection Obj(C) of objects

• For each pair of objects A and B, a set hom(A,B) of morphisms from A

to B (morphisms are also called maps or arrows)

• For each object A, an identity morphism idA : A→ A

• For A, B, C a composition function

hom(A,B)× hom(B,C)→ hom(A,C)

〈f, g〉 7→ g ◦ f

such that the following rules are satisfied

1. Identity: for a given morphism f : A→ B, idB ◦f = f = f ◦ idA

2. Associativity: for given morphisms A
f−→ B

g−→ C
h−→ D, (h◦g)◦f = h◦(g◦f)

Note that from these axioms, one can prove that there is exactly one identity

morphism for every object. One also says that a category is small if its collection

of objects is a set.

Definition 1.1.2. [2] For a category C, we can build the opposite category Cop

whose objects are the same with the objects of the original category C and the

morphisms from b to a are {f op | f : a→ b a morphism of C} for a, b ∈ ob(C).

The composite in the category Cop is defined as f op ◦ gop = (g ◦ f)op. With

this construction it can be obviously seen that Cop is a category.
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Definition 1.1.3. [2] A functor T : C → B for given categories C and B consists

of two assignments:

• The object assignment: For a given c ∈ ob(C)

c 7→ Tc

• The morphism assignment: For given c, c
′ ∈ ob(C)

(f : c→ c
′
) 7→ (Tf : Tc→ Tc

′
)

in such a way that for given composable morphisms f , g in C

T (idc) = idTc, T (g ◦ f) = Tg ◦ Tf

Note that a functor is a morphism in the category of categories.

Now we will give the hom-functor as an example to a functor which will be

used in many notions later.

Example 1.1.4. [2] Let C be a category. Then we define hom− functor for

a ∈ ob(C) as follows:

homC(a,−) : C −→ Set

b 7→ homC(a, b)

(b
k−→ b

′
) 7→ (homC(a, b)

homC(a,k)(f)=k◦f−−−−−−−−−−−→ homC(a, b
′
))

Note that the hom-functor defined on a category C for given a ∈ ob(C) can

also denoted by C(a,−).

Definition 1.1.5. [2] A functor T : C → B is an isomorphism if there exists a

functor S : B → C such that S ◦T = idC and T ◦S = idB. Let C and B are both

small. Then we can say that a functor T : C → B is called an isomorphism of

categories, if it is bijective for both object and morphism assignments.
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Definition 1.1.6. [2] A functor T : C → B is called full if for given objects c,

c
′ ∈ C) and a morphism g : Tc → Tc

′
of B, we can find a morphism f : c → c

′

of C such that g = Tf .

And of course note that the composite of two full functors is a full functor.

Definition 1.1.7. [2] A functor T : C → B is called faithful if for each pair c,

c
′ ∈ ob(C) and f1, f2 : c→ c

′
of parallel morphisms of C, Tf1 = Tf2 : Tc→ Tc

′

implies f1 = f2.

Composites of faithful functors are again faithful.

Remark 1.1.8. [2] We can summarize these two properties by using hom-sets.

Explicitly, given c, c
′ ∈ ob(C), the morphism function of T defines a function

Tc,c′ : hom(c, c
′
)→ hom(Tc, T c

′
)

f 7→ Tf

T is full if every such function is surjective and faithful if every such function is

injective.

If a functor is both full and faithful then we call it fully faithful. In terms of

hom-sets, a functor is fully faithful if for every objects in C, the function defined

in above remark is a bijection. But readers should be careful about the fact that

this does not mean the functor itself is an isomorphism.

Definition 1.1.9. [2] Let S, T : C → B be functors. A natural transformation

from S to T is an assignment which assigns a morphism τc = τ from Sc to Tc in

B to every object c in S.

S
τ−→ T

c 7→ τc = τc
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such that

Sc τc //

Sf
��

Tc

Tf
��

Sc
′ τc

′
// Tc

′

commutes for each morphism f : c→ c
′

When that holds we say τc : Sc→ Tc is natural in c.

In addition, we call τa, τb, τc, ... the components of the natural transformation τ .

Remark 1.1.10. [2] A natural transformation can be considered as a morphism

of functors

A natural transformation between functors from C to B will be called a natu-

ral equivalence or a natural isomorphism when every component is invertible

in B. (τ : S ∼= T ).

Definition 1.1.11. [3] Given c ∈ ob(C), if there exists a unique morphism c 99K

d for any d ∈ ob(D), then we say that c is an initial object in the category C.

Definition 1.1.12. [3] Given c ∈ ob(C), if there exists a unique morphism d 99K

c for any d ∈ ob(D), then we say that c is an terminal object in the category

C.

Initial and terminal objects are dual notions. If an object is both initial and

terminal, then we call it a zero object (also called null object).

1.2 Functor Categories

Given categories C and B, we consider all functors from C to B. If R : C → B,

S : C → B, T : C → B are functors and σ : R → S, τ : S → T are two

natural transformations, their components for each c ∈ C define composite arrows

(τσ)c = τc ◦ σc which are the components of a transformation τσ : R→ T . Now
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we want to show that τσ is natural. Thus,for any f : c→ c
′
we need the following

diagram commutes:

Rc
Rf //

σc

��

Rc
′

σc
′

��
Sc

Sf //

τc

��

Sc
′

τc
��

Tc
Tf // Tc

′

Since σ and τ are natural, both small squares are commutative. So the rectangle

commutes. Besides, we have defined above (τσ)c as equal to τc ◦ σc. Therefore

the composite τσ is natural.

This composition of transformations is associative, it has for each functor T

an identity (IdT : T → T with components IdT c = IdTc).

After all these work now we can introduce a very important notion which is used

extensively in the category theory.

Definition 1.2.1. [2] Given categories B and C, a functor category, denoted

by BC = {T | T : C → Bfunctor}, has the functors T : C → B as its objects

and natural transformations between functors as its morphisms.

For any S, T ∈ ob(BC), ”hom-set” of this category is

BC(S, T ) = Nat(S, T ) = {τ | S → T natural}.

Example 1.2.2. Given a category B, B[0] is isomorphic to B itself.

B[1] is the category of morphisms of B; its objects are morphisms f : a → b of

B, and its morphisms f → f
′

are those pairs 〈h, k〉 of morphisms in B for which

the square

a h //

f
��

a
′

f
′

��
b

k
// b

′

commutes. Another example is that if B and C are sets, then BC is also a set;

namely, the usual ”function-set” from C to B.
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Chapter 2

Universals and Limits

Since most of notions in category theory basically depends on universals, we will

try to explain what these ”universals” are. Thus in this chapter we will examine

some of these universals which will be used later.

2.1 Universal Arrows and the Yoneda Lemma

Definition 2.1.1. [2] Let S : D → C be a functor and c ∈ ob(C), then we say

that a pair 〈r, u : c → Sr〉 where r ∈ ob(D) and u : c → Sr a morphism in C,

is a universal morphism from c to S if for every pair 〈d, f : c → Sd〉 where

d ∈ ob(D) and f : c → Sd a morphism in C, there exists a unique morphism

f
′
: r → d in D such that Sf

′ ◦ u = f . Diagrammatically,

c u // Sr

Sf
′

��
c

f // Sd

commutes.

Informally every morphism f to S factors through the universal morphism u.
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The universality can be formulated with hom-sets, as follows by omitting the

proof:

Proposition 2.1.2. [2] Let S : D → C be a functor.Then 〈r, u : c → Sr〉 is a

universal morphism from c to S if and only if the function

D(r, d)
∼=−→ C(c, Sd)

f
′ 7→ Sf

′ ◦ u

is bijective for every d. This bijection is natural in d.

Conversely, given r and c, any natural isomorphism is determined in this way

by a unique morphism u : c→ Sr such that 〈r, u〉 is universal from c to S.

Definition 2.1.3. [2] Let D be a category. A a pair 〈r, ψ〉 where r ∈ ob(D) and

ψ : D(r,−) ∼= K a natural isomorphism is defined to be a representation of a

functor K : D → Set .

Lemma 2.1.4. [2] ( Yoneda )Let K : D → Set be a functor and r ∈ ob(D),

then there exists a bijection

y : Nat(D(r,−), K)
∼=−→ Kr

α 7→ αr idr

Proof. See page 61 in [2]

2.2 Coproducts, Colimits and Pushouts

Before starting to define coproducts, let us first give the definition of a very

important functor, diagonal functor, which will be used in a lot of definition.

Definition 2.2.1. [2] Let C and J be categories (J for index category, usually

small and often finite) and CJ be the functor category. The diagonal functor

∆ : C → CJ is defined to be the functor which sends
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• each c ∈ ob(C) to ∆c

– here ∆c is the constant functor which sends every i ∈ ob(J) to c and

every morphism in J to the identity idc.

• each morphism f : c→ c
′ ∈ C to ∆f : ∆c→ ∆c

′
which has the same value

f at each i ∈ J .

Now let us give an example to a diagonal functor by specifying the index

category J .

Example 2.2.2. If we take the index category J as the discrete category J =

{1, 2}, then our diagonal functor will be as follows

C // C{1,2} = C × C

c

f
��

� // 〈c, c〉
〈f,f〉
��

c
′ � // 〈c′ , c′〉

Definition 2.2.3. [2] A universal morphism from 〈a, b〉 ∈ ob(C × C) to the

diagonal functor ∆ on C as in the previous example, is called a coproduct

diagram.

A coproduct diagram consists of an object c ∈ ob(C) and a morphism

〈a, b〉 〈i,j〉−−→ 〈c, c〉 as in the diagram below

a i // c b
joo

Here c can be denoted by a
∐
b as the coproduct of a and b.

The arrows i and j in the coproduct diagram are called the injections of the

coproduct a
∐
b.

The pair 〈i, j〉 has the universal property, that is, for any 〈f : a → d, g : b → d〉
there exists a unique morphism h : c → d with 〈f, g〉 = 〈h ◦ i, h ◦ j〉. Diagram-

matically

a
i //

f
!!

a
∐
b

h
��

b
joo

g
}}

d

9



is commutative. Actually we can observe that in many familiar categories there

exists the coproduct of any two objects. Here are two basic examples:

• Set: the coproduct of any two sets is just their disjoint unions.

• Top: the coproduct of any two topological spaces is the disjoint union of

these spaces.

Definition 2.2.4. [4] Given a pair of morphisms 〈f : a →, g : a → b〉 in C, a

coequalizer of this pair is a morphism u : b → e such that uf = ug and the

following universal property is satisfied:

• if for a morphism h : b → c has the property hf = hg then, there exist a

unique morphism h
′
: e→ c such that h = h

′
u.

Let us state it with the diagram below:

a
f //
g
// b

h
��

u // e

h
′

��

uf = ug,

c hf = hg

Note that a coequalizer is nothing but a universal morphism from an object

of CJ to ∆ where the index category J is defined as below:

• ((
66 •

Coproduct and coequalizer are just the special cases of the colimit obtained

by just changing the index category J . Now let us define colimit:

Definition 2.2.5. [2] A colimit diagram is a universal morphism from a functor

F ∈ ob(CJ) to ∆.

The colimit diagram consists of an object r ∈ C, usually denoted by r = lim−→F

or r = ColimF , together with a natural transformation u : F → ∆r which is

universal among other natural transformations from F to ∆

10



Let τ be a morphism in CJ from F to ∆c. Since ∆c is the constant functor

for every c ∈ C, τ consists of morphisms τi : Fi → c of C, one for each object

i ∈ J , with τj ◦ Fv = τi for each morphism v : i → j of J . Thus, a natural

transformation τ : F → ∆c, usually written as τ : F → c since ∆c sends every

object in J to c, is called a cone from F to c. Pictorially,

Fi

τi
  

Fv // Fj
τj

��

Fw // Fk

τk
}}

c

Now, in terms of the definiton of a cone, it can be obviously said that a colimit

of F : J → C consists of an object ColimF ∈ C and a cone µ : F → ColimF

which is universal, i.e. for any cone τ : F → c there exists a unique morphism

t
′

: ColimF → c with τi = t
′ ◦ µi, for every i in the index category J . Here µ is

called the limiting cone or the universal cone. Diagrammatically

F

τ
$$

µ // ColimF

t
′

��
c

Earlier we have mentioned that coproducts and coequalizers are actually the spe-

cial cases of the colimit obtained by just changing index category J . It obviously

means that coproducts and colimits are some examples of colmit. Now we present

another important example to colimit.

Definition 2.2.6. [5] Given 〈f : a→ b, g : a→ c〉 in C, a pushout of 〈f, g〉 is

a commutative square

a

g

��

f // b

u

��
c

v // r

such that for every other commutative square built on f , g there exists a unique

morphism t : r → s with t ◦ u = h and t ◦ v = k. Let us display this fact with a

11



diagram like this

a

g

��

f // b

h

��

u

��
c

k

,,

v // r
t

��
s

Note that a pushout is just a colimit where the index category J is the category

• •oo // •

2.3 Products, Limits and Pullbacks

The limit, product, equalizer and pullback notions are just dual to that of colimit,

coproduct, coequalizer and pushout, respectively. Since product, equalizer and

pullback are the special cases of the limit notion, let us start with the definition

of limit. But first let us give a remark.

Remark 2.3.1. Let S : D → C be a functor and c ∈ ob(C). Earlier we have

defined a universal morphism from c to S in the Definition 2.1.1. Likewise in

that definition, we can define the dual notion of it, i.e., a universal morphism

from S to c. Let us show both notions with a diagram

Sr
′ u

′
// c

��

u // Sr

��
Sd

′

OO ??

Sd

Here the pair 〈r′ , u′〉 is the universal morphism from S to c.

Definition 2.3.2. [2] Given categories C, J , and ∆ : C → CJ , then a limit of

a functor F : J → C is defined to be a universal morphism from ∆ to F .

Note that limit and colimit are dual notions.

12



Now let us picturize them in one diagram:

lim←−F
// F //

$$

ColimF

��
c

OO <<

c

Definition 2.3.3. [2] A universal morphism from ∆ : C → CJ where J is the

discrete category {1, 2} to an object 〈a, b〉 ∈ CJ is called a product diagram.

A product diagram is shown by diagrammatically as below:

a a× bpoo q // b

where p and q are called the projections of the product.

Definition 2.3.4. [2] If the index category J is the same as defined in Definition

3.2.4., then a limit object d is called an equalizer. The limit diagram is as

follows

d
e // b

f //
g
// a fe = ge

The universal property for this definition is that for any h : c→ b with fh = gh

there exists a unique morphism h
′
: c→ d with eh

′
= h.

Definition 2.3.5. [5] Given 〈f : b→ a, g : c→ a〉 in C, a pullback of 〈f, g〉 is

a commutative square

r u //

v
��

c

g

��
b

f // a

such that for every other commutative square built on f , g there exists a unique

morphism t : r → s with u ◦ t = k and v ◦ t = h. Diagrammatically:

s

h

��

t

��

k

!!
r

v
��

u // c

g

��
b

f // a

Note that a pullback is just a colimit where the index category J is the category

• // • •oo

13



Chapter 3

Generalized Spaces

The main goal in this chapter is to define generalized spaces after giving some

basic definitions and explanations about sites and sheaves. But before doing

all these works, we should tell the story of why we are trying to understand and

develop all the concepts which will be studied along this chapter. With this aim,

let us look at some motivations.

Many mathematicians, especially algebraic topologists and differential geome-

tricians, come up with many problems about the categories in which they work

mostly. Some of these problems are the followings:

• The category of topological spaces is not cartesian closed,

• In the category of manifolds, mapping space C∞(X, Y ) of finite dimensional

smooth manifolds X and Y may not be finite-dimensional.

• A quotient subspace or subspace of a topological manifold may not be a

manifold,

• The category of manifolds lacks having limits and colimits.

Because of these lacking properties encountered frequently, researchers have

14



started to investigate a ’convenient category’ of spaces. Some studies have shown

that generalized spaces may help to find the desired categories.

In conclusion, our job here will be to construct a new category of spaces that

has all good convenient properties.

3.1 Sites and Sheaves

In this section we will give some basic notions about sites and sheaves which will

help us to construct generalized spaces.

Definition 3.1.1. [6] Given a category D, a function sending every D ∈ ob(D)

to a collection of covering families R(D) = (fi : Di → D | i ∈ I) is defined to

be a coverage on D, if for a given covering family (fi : Di → D | i ∈ I) and a

morphism g : C → D , there is a covering family (hj : Cj → C | j ∈ J) such that

for every j ∈ J there exists i ∈ I, there exists k : Cj → Di such that g◦hj = fi◦k.

Now by means of the notion of coverage we will simply define site as follows :

Definition 3.1.2. [6] A category D equipped with a coverage is called a site and

every object D ∈ D is called a domain.

Definition 3.1.3. [6] A functor X : Dop → Set on a category D is called a

presheaf . Given a domain D ∈ ob(D), the elements of X(D) are called plots

in X.

Definition 3.1.4. [6] Let (fi : Di → D | i ∈ I) be a covering family of D ∈ ob(D)

and X : Dop → Set be a presheaf. Then a collection {ϕi ∈ X(Di) | i ∈ I} is said

to be compatible if the diagram

C h //

g

��

Dj

fj
��

Di fi
// D

15



commutes then X(g)(ϕi) = X(h)(ϕj) for any g : C → Di and h : C → Dj.

Notice that when we have a commutative diagram as follows

C h //

g

��

Dj

fj
��

Di fi
// D

then we have a commutative diagram as follows

X(C) X(Dj)
X(h)oo

X(Di)

X(g)

OO

X(D)
X(fi)
oo

X(fj)

OO

Definition 3.1.5. [6] A sheaf is defined to be a presheaf X : Dop → Set on a

given site D with an extra condition:

• Given a covering family (fi : Di → D | i ∈ I) of D and a compatible

collection {ϕi ∈ X(Di) | i ∈ I}, then for each plot ϕi ∈ X(Di) there is a

unique plot ϕ ∈ X(D) such that X(fi)(ϕ) = ϕi.

3.2 Concreteness of Sites and Sheaves

In this chapter we will give some important definitions like concrete sheaves and

concrete sites by which we will construct generalized spaces.

Remark 3.2.1. [6] Given a presheaf X : Dop → Set, if for a given D ∈ ob(D),

X ∼= hom(−, D), then X is called representable as in definition 2.1.3.

Definition 3.2.2. [6] If each representable presehaf on a site D is a sheaf, then

D is called subcanonical.

Definition 3.2.3. [6] If a subcanonical site has a terminal object 1 and satisfies

the following conditions, then we call it a concrete site:

1. hom(1,−) : D→ Set is a faithful.
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2. Given a covering family (fi : Di → D | i ∈ I),for each i ∈ I the following

functions are jointly surjective

hom(1, fi) : hom(1, Di)→ hom(1, D)

(1
h−→ Di) 7→ (1

fi◦h−−→ D)

in the sense that the union of their images is all of hom(1, D)

This definition helps us to think the objects of the category D basically as

sets with extra structure. What we are tying to say here is that objects of D can

actually be considered with their own underlying sets and morphisms of D with

their underlying functions between sets.

For a given objectD ∈ ob(D), hom(1, D) (also denoted asD) can be considered

as the underlying set of D and called the set of points of D. Given morphism

f : D1 → D2 in D, then the underlying function will be f = hom(1, f) : D1 → D2.

So, the first condition in the previous definition actually implies that for given

f, g : C → D in D , f = g if hom(1, f) = hom(1, g). Furthermore the second

condition actually implies that if we have a covering for an object D ∈ ob(D)

then its underlying family of functions is a covering as well.

Now we will define ’concrete sheaves’ , but first we obtain a set by considering

X(1) = X from a sheaf X : Dop → Set on a concrete site. Then, what we need

is to turn a plot ϕ ∈ X(D) into a function ϕ (called underlying function). For

this, we set

ϕ : hom(1, D)→ X(1)

(1
d−→ D) 7→ (X(d)(ϕ))

Here the morphism 1
d−→ D gives us a morphism

X(d) : X(D)→ X(1)

ϕ 7→ X(d)(ϕ)

Definition 3.2.4. [6] Let D be a concrete site and X : Dop → Set be a sheaf.

Given D ∈ ob(D), if the function ϕ 7→ ϕ is injective, then X is called a concrete

sheaf .
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Notation 3.2.5. From now on, when we say X is a concrete sheaf over a concrete

site D, we will denote it by mathfrak letter notation X.

Definition 3.2.6. [6] A generalized space (also called D space) is nothing

but a concrete sheaf X : Dop → Set on a given concrete site D.

Note that since each D space is a functor it is obvious that a map between D

spaces X and Y is a natural transformation F : X→ Y.

Now we construct a category Dspace to be the category of D spaces and maps

between these.

Remark 3.2.7. It should not to be confused that a D space is just a space given

in Definition 4.2.5. and Dspace is the category whose objects are D spaces and

morphisms are natural transformations between them.

The reason of why we call them as ’generalized spaces’ is that an object D

space in the category Dspace has all general ”convenient” properties we seek

for(see Theorem 52 in [6] ). Besides, ’generalized spaces’ can be thought as

concrete sheaves .

Lemma 3.2.8. [7] The category of sheaves have all (small) limits.

Proof. See page 15 Lemma 10.1. in [7]

Theorem 3.2.9. [6] Given a concrete site D, Dspace has all (small) limits.

Proof. [6] Suppose that we are given a functor F : J → Dspace. We claim

that limits in Dspace are limits of the underlying diagram of sheaves. For any

D ∈ ob(D), consider the two diagrams of sets below

L : Dspace→ Set, L : Dspace→ Set

X 7→ X(D) X 7→ XD
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There is a natural transformation U : L→ L which is defined for a given D space

X as follows

UX : L(X) = X(D)→ L(X) = XD

ϕ 7→ (ϕ : hom(1, D)→ X(1))

Note that ϕ s are plots of the concrete sheaf X and ϕ s are the underlying

functions of it. Recall that for a concrete sheaf the map ϕ → ϕ is injective. So

every component of U is injective. Thus, for given any F (j) ∈ ob(Dspace) we

get the following injective function

limj∈J F (j)(D) 7→ limj∈J(F (j))D

By using the properties of limit, we can write this function as

limj∈J F (j)(D) 7→ (limj∈J F (j))D

F (j) = F (j)(1), so limF (j) = limF (j)(1) = limF (j) and limits of sheaves can

be computed pointwise. (Previous Lemma). Therefore the following function is

also injective.

UF (j) : (limF (j))(D) 7→ (limF (j))D

Here we actually proved that the limit of F is concrete by showing the previous

injectivity. Thus, it is in Dspace

Theorem 3.2.10. [6] For a given concrete site D, Dspace has all (small) colim-

its.

Proof. [6] Suppose that we are given a functor F̃ : J → SetD
op

. The colimit, say

L, of F̃ can be obtained pointwisely. For any presheaf in the category SetD
op

can be turned into a concrete sheaf in order to obtain a D space and this process

preserves colimits ([5]). So, the D space obtained from the presheaf L is the

colimit of F .
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From these two theorems we obtain the following corollary.

Corollary 3.2.11. [6] The category of D spaces, that is Dspace, has all (small)

limits and colimits.

Proof. See Theorem 3.2.8. and Theorem 3.2.9. or (See [6], page 40.)
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Chapter 4

Continuous Spaces

In this chapter we will construct the notion of continuous space which is defined

by modifying the first axiom of diffeological spaces (see page 5 in [6]) and later

it will be shown that the category possessed these continuous spaces as objects

is actually equivalent a Dspace.

Along all this chapter an open set is considered as an open set of Rn, therefore

a function f : U → U
′

for open sets U and U
′

is considered continuous in the

usual sense.

Definition 4.0.12. A set X equipped with some functions {ϕ : U → X} which

we call as plots in X, is defined to be a continuous space , if the three following

axioms are satisfied:

1. For given a plot ϕ in X and a continuous function f : U ′ → U , their

composition ϕ ◦ f is always plot in X.

2. Given an open cover Uj
ij−→ U where ij s are inclusion morphisms , if ϕ ◦ ij

is a plot in X for each j, then ϕ is also a plot in X.

3. Every morphism from the one point of R0 to X is a plot in X.

Notation 4.0.13. Continuous denotes the category whose objects are continu-

ous spaces and morphisms are continuous maps which we define them as follows
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Definition 4.0.14. f : X → Y is a continuous morphism if for every plot ϕ in

X f ◦ ϕ is a plot in Y .

Notation 4.0.15. Cont denotes the category such that open subsets of Rn are its

objects and continuous functions are its morphisms.

Now we will see that the category Cont is a concrete site:

Firstly, we need to define a coverage on Cont in order to make it a site. Ex-

plicitly, we need to define a covering family for each object of Cont and show tat

it is a coverage.

We build a coverage on the category Cont as follows:

• (ij : Dj → D | j ∈ J) is a covering family where ij : Dj → D are the

inclusion maps iff Dj ⊆ D form an open covering for D ⊆ Rn with its usual

subspace topology.

Lemma 4.0.16. The category Cont is a site with this coverage.

Proof. Given covering family (ij : Dj → D | j ∈ J) ( ∪ij(Dj) = D ) and g : C →
D in Cont , then (g−1(ij(Dj)) | j ∈ J) covers C, which means ∪j∈Jg−1(ij(Dj)) =

C. Let kj denotes the inclusion g−1(ij(Dj)) to C. Since g ◦ kj = gjij, it is a

coverage for Cont.

Therefore, the category Cont is a site.

Lemma 4.0.17. Cont is subcanonical.

Proof. Let X be a representable presheaf on Cont and DX be its representing

object, i.e.,

X : Contop → Set

D 7→ hom(D,DX)

For a given compatible collection of plots {ϕj ∈ X(Dj) | j ∈ J}, we need to find a

unique plot ϕ in X(D) such that X(ij)(ϕ) = ϕj. To do this we define ϕ : D → DX
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as ϕ(z) = ϕj(z) if z ∈ Dj. Let z be in Dj and Dj′ then Dj∩Dj′ is an open subset

of D it is equal to Dj′′ for some j
′′ ∈ J , this means ϕj(z) = ϕj′′ (z) = ϕ

′
j(z). So

ϕ is well-defined. Therefore Cont is subcanonical.

Since one-point open set is a terminal object, the two conditions in the definition

3.2.3. is automatically satisfied.

In conclusion, Cont is a concrete site.

4.1 Building Generalized Spaces From Contin-

uous Spaces

We have a concrete site Cont and now we will construct a concrete sheaf over this

site by using the objects of the category Continuous, that is continuous spaces.

For a given object X ∈ Continuous, there exists a concrete sheaf X :

Contop → Set :

Given C ∈ ob(Cont), X(C) is defined as the set of plots {ϕ : C → X}.
Given f : C

′ → C ,we set X(f) : X(C)→ X(C
′
), ϕ 7→ ϕ ◦ f

Let us explain it with a simple diagram like this:

X : Contop // Set

C � // X(C) = {ϕ : C → X}
X(f)(ϕ)=ϕf
��

C
′

f

OO

� // X(C
′
) = {ϕ : C

′ → X}

Thanks to the axiom 1 in Definition 4.0.8. we ensure that ϕf lies in X(C
′
).

Next we will finish the proof in 3 steps.
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• Firstly, we have to show that X is a presheaf, more precisely X : Contop →
Set must be a functor:

– Given arrows f
′
: C

′′ → C
′
, f : C

′ → C in Cont and a plot ϕ : C → X

in X(C) we have

X(f ◦ f ′
)(ϕ) = ϕ ◦ f ◦ f ′

X(f
′
) ◦ X(f) = X(f

′
)(ϕ ◦ f) = ϕ ◦ f ◦ f ′

Thus X(f ◦ f ′
) = X(f

′
) ◦ X(f)

– Given C ∈ ob(Continuous) and a plot ϕ : C → X. Then we have

X(IdC)(ϕ) = ϕ ◦ IdC = ϕ and (IdX(C))(ϕ) = ϕ.

Thus X(IdC) = IdX(C)

Therefore X : Contop → Set is a presheaf on the given concrete site Cont.

• Secondly, we need to show that the presheaf X is actually a sheaf:

Suppose that we are given a covering family (ij : Dj → D) where ij s are

inclusion maps and a compatible collection {ϕj ∈ X(Dj) | j ∈ J}. Then for

each plot ϕj we must find a unique plot ϕ ∈ X(D) such that X(ij)(ϕ) = ϕj.

Thanks to the compatibility of {ϕj ∈ X(Dj) | j ∈ J}, for any g : C → Dj

and h : C → Dz the diagram below commutes

C
h //

g

��

Dz

iz
��

Dj ij
// D

So,

X(C) X(Dz)
X(h)oo

X(Dj)

X(g)

OO

X(D)

X(iz)

OO

X(ij)
oo

also commutes and X(g)(ϕj) = X(h)(ϕz) Existence of the plot ϕ ∈ X(D)

such that X(ij)(ϕ) = ϕj comes from the axiom 2 in Definition 4.0.8.

Now we will show that this ϕ is unique:

Suppose that there exists another ϕ
′ ∈ X(D) such that X(ij)(ϕ

′
) = ϕj.

Then we have
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X(ij)(ϕ
′
) = ϕ

′ ◦ ij = ϕj

X(ij)(ϕ) = ϕ ◦ ij = ϕj

So ϕ ◦ ij = ϕ
′ ◦ ij and since ijs are inclusion maps ϕ = ϕ

′
. Thus the

uniqueness is proved.

Therefore the presheaf X : Cont→ Set is a sheaf.

• Thirdly, we need to show that X is a concrete sheaf over the concrete site

Cont :

Through the axiom 3 in Definition 4.0.12. we obtain a bijection between X

and the set X(1)

X
∼=−→ X(1) ∼= hom(1,X)

x 7→ ϕx ∈ {ϕ : 1→ X}

where ϕx(1) = x

Then let ϕ ∈ X(C) and define the underlying function ϕ : hom(1, C) →
hom(1, X) ∼= X(1) ∼= X as the map ϕ(c) = X(c)(ϕ) = ϕ ◦ c = ϕ(c). Let us

show it more explicitly with a diagram :

X : Contop // Set

C � // X(C) = {ϕ : C → X}
X(c)(ϕ)=ϕ(c)=ϕ◦c=ϕ(c)
��

1

c

OO

� // X(1) = {ϕ : 1→ X}

where by c we denote the one-point map c(1) = c.

Now we want the function U sending ϕ to the underlying function of itself

ϕ be one-to-one in order to show that X is concrete :

U : X(C)→ X(C)

ϕ 7→ ϕ : hom(1, C)→ hom(1, X) ∼= X(1) ∼= X
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where ϕ is the underlying function of ϕ defined above.

Now let us show that U is 1-1:

Suppose U(ϕ) = U(ϕ
′
) for any ϕ, ϕ

′ ∈ X(C). Then

U(ϕ) = ϕ = U(ϕ
′
) = ϕ

′
. Then for all c ∈ C

ϕ(c) = X(c)(ϕ) = ϕ(c) = ϕ
′
(c) = X(c)(ϕ

′
) = ϕ

′
(c).

So we conclude ϕ = ϕ
′
.

Therefore X is concrete.

. So we get a new concrete sheaf over the concrete site Cont, therefore we get

a new D space, that is Cont space. By using this, we can build a new category

Contspace.

So far we actually determined the objects of Contspace and now we need to

determine morphisms of this category:

For a given continuous map f : X → Y ∈ Continuous , we will build a

natural transformation f : X→ Y by defining

fC : X(C)→ Y(C)

ϕ 7→ f ◦ ϕ

Now we check that f is natural. To do this check that the following square is

commutative:

C X(C)
fC //

X(g)
��

Y(C)

Y(g)
��

C
′

g

OO

X(C
′
)

f
C
′
// Y(C

′
)

We have the equalities

(Y(g) ◦ fC)(ϕ) = Y(g) ◦ (fϕ) = fϕg
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(fC′ ◦ X(g))(ϕ) = fC′ (ϕ ◦ g) = fϕg

Thus from these equalities we can easily see that f is natural.

Now we can construct the functor T :

T : Continuous // Contspace

X � //

f
��

X

T (f)=f
��

X
′ � // X

′

where X : Contop → Set and X
′
: Contop → Set and T (f) is defined as the natural

transformation defined above, i.e., T (f) := f.

We can easily check that T is a functor by showing the following identities:

• T ((g◦f)C(ϕ)) = g◦f ◦ϕ and (T (g)◦T (f))C(ϕ) = (T (g))C ◦(f ◦ϕ) = g◦f ◦ϕ
for each f : X → X

′
, g : X

′ → X
′′
, C ∈ Cont, ϕ : C → X.

• T (IdX)C(ϕ) = ϕ ◦ IdX = ϕ and (IdT (X))C(ϕ) = ϕ for each X ∈
Continuous, C ∈ Cont

4.2 Building Continuous Spaces From General-

ized Spaces

Like we did in the previous section, we try to build continuous spaces for given

generalized spaces in Contspace. So now e will construct a continuous space X

from a given X ∈ ob(Cont).

Take X = X(1) and ϕ where ϕ ∈ X(C). Now check the axioms for continuous

space X defined earlier in Definition 4.0.8. :

• Axiom 1 is satisfed since X is a presheaf.
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• Axiom 2 is satisfied since X is a sheaf.

• Axiom 3 is trivial because X = X(1).

Next, we construct a function f : X → Y from a given natural transformation

f : X→ Y in Continuous by setting

f = f1 : X(1)→ Y(1)

ϕ 7→ f ◦ ϕ

Now we check that the construction

S : Contspace // Continuous

X � //

f
��

X = X(1)

S(f)=f=f1
��

X
′ � // X

′
= X

′
(1)

defines a functor :

• S(f ◦ f′)(ϕ) = (f ◦ f ′
) ◦ϕ = f ◦ (f

′ ◦ϕ) = f ◦ (S(f
′
)) = (S(f) ◦ (S(f

′
))(ϕ) for

each f : X→ X
′
, f

′
: X

′ → X
′′
, ϕ : 1→ X

• S(IdX)(ϕ) = IdX ◦ϕ = ϕ and (IdS(X))(ϕ) = (IdX(1))(ϕ) = (IdX)(ϕ) = ϕ so

S(IdX) = IdS(X)

4.3 Equivalence Between Continuous and Contspace

Proposition 4.3.1. Continuous ∼= Contspace.

Proof. In order to show that any two categories are equivalent to each other, we

have to construct functors from one to another and prove the composite of these
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functors are naturally isomorphic to the identity. So our main job here is to define

functors

Continuous
T //

Contspace
S
oo

But earlier we have defined these two functors. So we just have to show that

S ◦ T ∼= IdContinuous and T ◦ S ∼= IdContspace.

Let us recall our functors again:

T : Continuous→ Contspace S : Contspace→Continuous

X 7→ X X 7→X

Now,

• Since (S ◦ T )(X) = S(X) = X(1) ∼= X for each continuous space X ∈
Continuous we get easily the conclusion S ◦ T ∼= IdContinuous.

• For the other side, first we take a concrete sheaf X and turn it into a

continuous space X. Then get the image of it under T , call it X
′
X

′
, i.e.

(T ◦ S)(X) = T (X(1) ∼= X) = X
′

Then we have for a given C ∈ Cont,

X
′
(C) = {ϕ : C → X(1)}

but, Since X is concrete, there is a bijection

X(C)
∼=−→ X

′
(C)

ϕ 7→ ϕ

Therefore X = X
′

and we now can say that T ◦ S ∼= IdContspace.
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4.4 Convenient Properties for Continuous Spaces

The following theorem essentially gives an important clue about the subject that

the category of continuous spaces, that is Continuous, satisfies almost all good

formal properties mentioned at the beginning of Chapter 3.

Theorem 4.4.1. [6] All (small) limits and colimits exist in the category

Continuous.

.

Proof. Proof comes from the equivalence of the categories Contspace and

Continuous proved in Proposition 4.1.4. and the fact that the category Dspace

has all limits and colimits (see Theorem 3.2.10. in Chapter 3 )

At the beginning of Chapter 3 we talked about that our main purpose is to de-

fine new categories in which so many convenient properties is satisfied. Now, as a

consequence of the previous theorem, we have a convenient category Continuous.

Let us check some of the properties satisfied in Continuous

1. Subspaces Assume that X is a continuous space and take any subset Y ⊆
X . In order to make Y a continuous space, we consider that ϕ : D → Y is

a plot in Y iff i ◦ ϕ is a plot in X where i : Y ↪→ X.

With this construction of plots, the inclusion i : Y → X is continuous.

2. Quotient space Suppose that we have a continuous space X and an equiv-

alence relation ∼ . We give a structure to the quotient space Y = X/ ∼ by

defining plots in Y as following :

ϕ : D → Y is a plot in Y if there is an open cover (Dj | j ∈ J) of D and a

collection of plots {ϕj : Dj → X}j∈J in X such that:

Dj

ϕj //

ij
��

X

p

��
D ϕ

// Y
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commutes. Here ij : Dj ↪→ D and p : X → Y is the induced function by ∼.

This is called the quotient space structure.

With this construction of plots, the quotient space p : X → Y is continuous.

3. Initial object

Now we consider that every map from every object to ∅ is a plot(This holds

for only empty domain).This is the only way that we can make the ∅ a

continuous space. this continuous space is the initial object of Continuous.

4. Terminal object

There is only one way to make the one element set 1 a continuous space.

This way is to consider that each function from each object to 1 is a plot.

This setting makes 1 a terminal object.

5. Locally cartesian closed

Continuous is locally cartesian since Dspace is locally cartesian closed (see

page 33 in [6]). In addition, since a locally cartesian closed category which

has a terminal object is automatically cartesian closed, Continuous is also

cartesian closed.

6. Products

Assume that we have two continuous spaces X and Y . We give a structure

to the product X × Y of the underlying sets of X and Y by defining plots

in X × Y like this :

• ϕ : D → X×Y is a plot iff pX ◦ϕ , pY ◦ϕ are plots in X and Y , where

pX and pY are projection maps.

With this construction of plots, it can be said that pX and pY are continuous.

Besides, for given continuous space Q, continuous maps fX : Q → X and

fY : Q → Y , there exists a unique continuous map f : Q → X × Y such

that

Q
fX

{{
f
��

fY

##
X X × YpX
oo

pY
// Y
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is commutative. This clearly shows us that X × Y is the product of X and

Y in Continuous .

7. Equalizers

Assume that we have continuous maps f, g : X → Y between continuous

spaces. Then,

Z = {x ∈ X : f(x) = g(x)} ⊂ X

is also a continuous space. According to this fact, i : Z ↪→ X is the equalizer

for f and g :

Z i // X
f
))

g
55 Y

Of course there are other convenient properties like coproducts, coequalizers,

pullbacks, pushouts ... to check. But, since all these properties are just some

special cases of limits and colimits, it is enough to check just these and by Theorem

4.2.1. limits and colimits exist in Continuous immediately.

Now we will the definition of a cartesian closed category.

Definition 4.4.2. A category D is called cartesian closed if and only if it has

finite finite products and exponentials, i.e. given Y , Z ∈ ob(D), there is an object

ZY such that there exists u : ZY × Y → Z for every f : X × Y → Z and there

exists f
′
: X → ZY such that

ZY ZY × Y u // Z

X

f
′

OO

X × Y
f
′×idY

OO

f

;;

is a commutative diagram.

The category of topological spaces is not cartesian closed ([8]) and we have ear-

lier said that (in page 30., property 5) Continuous is cartesian closed. Therefore

we have the following remark.

Remark 4.4.3. Top � Continuous
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