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ABSTRACT

CALCULATION OF MASSES OF DARK SOLITONS IN
1D BOSE-EINSTEIN CONDENSATES USING
GELFAND YAGLOM METHOD

Kiibra Isik Yildiz
M.S. in Physics
Advisor: Mehmet Ozgiir Oktel
November 2016

Nonlinear excitations of Bose-Einstein condensates (BEC) play important role in
understanding the dynamics of BECs. Solitons, shape preserving wave packets,
are the most fundamental nonlinear excitations of BECs. They exhibit particle-
like behaviors since their characteristic features do not change during their os-
cillations and collisons. Moreover, their effective masses are calculated. We are
interested in dark solitons which have their density minima at the center. In
literature, the mass of dark soliton is obtained with Gross-Pitaevskii approxima-
tion. As a result of the contributions of quantum fluctuations to the ground state
energy, a correction term is added to the effective mass. The dispersion relation
of these fluctuations are derived from Bogoliubov de Gennes equations. However,
with familiar analytical approaches, only a few modes can be taken into account.
In order to include all the modes and find an exact expression for ground state
energy, we obtain free energy from partition function. The partition function is
equivalent to an imaginary-time coherent state Feynman path integral on which
periodic boundary conditions are applied. The partition function is in the form
of infinite dimensional Gaussian integral, therefore, it is proportional to the de-
terminant of the functional in the integrand. We use Gelfand Yaglom method
to calculate the corresponding determinant. Gelfand Yaglom method is a spe-
cialized formulation of using zeta functions and contour integrals in calculation
of the functional determinant for one-dimensional Schrdinger operators. In this
study, we formulate a new technique through this method to calculate ground
state energy of stationary dark solitons up to the Bogoliubov order exactly.

Keywords: Mass of dark soliton, path integral, Bogoliubov aproximation, func-

tional determinants, Gelfand Yaglom method.
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OZET

BOSE-EINSTEIN YOGUSMALARINDAKI KARANLIK

SOLITONLARIN KUTLELERININ GELFAND
YAGLOM METODU ILE HESAPLANMASI

Kiibra Isik Yildiz
Fizik, Yiiksek Lisans
Tez Damsmant: Mehmet Ozgiir Oktel
Kasim 2016

Bose Einstein yogusmasinin lineer olmayan uyarimlari, yogusmanin dinamigini
anlamada oOnemli bir rol oynamaktadir.  Sekillerini muhafaza eden dalga
paketleri olan solitonlar Bose-Einstein yogusmalarinin en temel lineer ol-
mayan uyarimlaridir. Salinimlarda ve carpigmalarda karakteristik parametreleri
degismediginden parcacik ozelligi de gosterirler ve etkin kiitleleri hesaplanabilir.
Merkezlerindeki madde yogunlugu kenarlarina gore daha az olan solitonlara
karanlik solitonlar denir. Karanlik solitonlarin Gross-Pitaevskii yaklagimiyla
hesaplanan taban durum enerjilerine kuantum dalgalanmalarinin katkilarini dahil
ederek, bu enerji daha ileri bir seviyede hesaplanabilir. Bu dalgalanmalarin
enerji-momentum iligkilerini Bogoliubov de Gennes denklemleri verir. Ancak
aligilagelmis analitik yaklagimlarla, sadece sinirh sayidaki modun katkilari hesa-
planabilir.  Biz, biitiin modlar1 dahil ederek taban durum enerjisini anali-
tik olarak elde etmek icin, sistemin serbest enerjisini boliistim fonksiyonundan
tirettik. Boliigim fonksiyonu, periyodik smir koullarina sahip bir imajiner
zaman koherent durum Feynman yol integrali eklinde yazilabilir. Bu sekilde
yazdigimizda sonsuz boyutlu bir Gauss integrali elde ederiz. Bu integralin degeri,
integrand ic¢inde iistel fonksiyon halinde bulunan fonksiyonelin determinanti ile
orantilidir. Bu fonksiyonelin determinantini bulmak i¢in fonksiyonel determi-
nantlarimin zeta fonksiyonu ve kontur integraller kullanilarak hesaplanmasinin
bir boyuttaki Schrodinger operatorlerine uyarlanmig hali olan Gelfand Yaglom
metodunu kullandik. Boylelikle, karanlik solitonlarin kiitlelerinin Bogoliubov se-

viyesine kadar kesin analitik hesaplanmasinda yeni bir yontem gelistirdik.

Anahtar sozcikler: Karanlik solitonlar, yol integrali, Bogoliubov yaklagimi,

fonksiyonel determinantlar, Gelfand Yaglom metodu.
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Chapter 1

Introduction

Bose Einstein condensate is a phenomenon signaled by the occupation of the
ground state of a system by a macroscopic number of bosons at very low tem-
peratures. In a Bose Einstein condensate (BEC), whole system can be described
by a macroscopic wave function therefore, it is possible to observe quantum me-
chanical phenomena on a macroscopic scale. After its prediction [1] in 1925,
observation of a BEC in laboratory was achieved by using ultracold atomic gases
in 1995 [2,13]. One advantage of ultracold gases, is that these systems are highly
controlled: one can tune the interactions between atoms or external potential.

So, since its observation in cold atoms, BEC has been a growing research area.

Gross-Pitaevskii equation is the governing equation of BEC under the mean
field approximation. Uniform Bose gas and solitons, shape maintaining wave
packets, are the exact solutions of GP (Gross-Pitaevskii). Solitons are seen in
nonlinear systems as a balance of dispersion and nonlinearity [4]. Since nonlinear
excitations are important to analyze dynamics of BECs, solitons in BEC are of

great interest [5-9].

Solitary waves are seen in many branch of physics, e.g. optics [10,/11], Bose-
Einstein condensate, magnetic films |12], etc. They collide [8[13-15] and oscillate

[16-19] in a particle-like manner and also their effective masses can be calculated



[20]. In this thesis, we are interested in calculation of the masses, therefore ground
state energies, of dark solitons especially black solitons which are stationary dark
solitons. By using Gel’fand Yaglom method, we calculate the ground state energy

of black solitons in a Bose Einstein condensate up to the Bogoliubov order.

If density of the Bose gas is uniform, n(z,t) = n(t), ground state energy
can be calculated easily within the mean field approximation. This energy is
approximate. A correction to this energy can be done by adding ground state
energies of elementary excitations whose dispersion relations are derived from

Bogoliubov de Gennes (BdG) equations.

If the Bose gas has a single black soliton, first level ground state energy can
be calculated again by using the mean field Hamiltonian. Dispersion relation of
excitations, however, cannot be obtained since BdG equations for solitons are
too complicated and cannot be solved analytically. Several computational works
are done to approximate this Bogoliubov-level ground state energy but all of the

excitation modes are not included in these works.

Ground state energy is the zero temperature limit of free energy, therefore,
can be derived from the partition function. Z, the partition function, can be
written as a coherent state path integral on which periodic boundary conditions
are applied. And a complicated functional determinant is needed to calculate in
order to get partition function of solitons. We calculate this determinant by using
Gel'fand Yaglom method [21] and find the ground state energy of black soliton

up to Bogoliubov level.

In chapter 2, the physics of Bose Einstein condensates is briefly reviewed.
Exact solutions of Gross Pitaevskii equation, namely the uniform solution, dark

and bright solitons are mentioned. Then, Bogoliubov approximation is explained.

In the third chapter, Feynman path integral and coherent states are introduced
and many body (coherent state) path integral is established. Then, it is showed
that if periodic boundary conditions are applied to the imaginary-time coherent

state path integral, it becomes the quantum partition function of a many body



system. Once we get quantum partition function of the system, the ground state

energy can be easily derived.

In chapter 4, we show how to calculate the exact ground state energy of uniform
Bose gas. Hamiltonian gives mean field level energy and BdG gives, in principle,
Bogoliubov level energy. However, the sum of the ground state energies of ele-
mentary excitations of uniform gas diverges. After performing a renormalization,

energy is calculated up to the desired accuracy [20}22].

Chapter 5 is about the ground state energy of dark solitons. First order energy
is again calculated with H. Second order corrections cannot be obtained from BdG
equations therefore the partition function is used. Z is written in the form of an
infinite dimensional Gaussian integral. Such integrals are proportional with the
determinant of the corresponding matrix. In our case, we end up with a functional
determinant which is the action of dark soliton. To find this determinant we need

an advance method and we introduce it in the next chapter.

In chapter 6, first we show how zeta functions and contour integrals are used to
find determinants without knowing their eigenvalues. We introduce the Gel’fand
Yaglom method which is a 1D formulation of functional determinant calculations
by using ((n) and complex algebra. Then we get an expression for the ground

state energy of dark soliton by using GY method.



Chapter 2

Solitons in BEC

2.1 Bose-Einstein condensation

While Fermions obey Pauli exclusion principle, Bosons, in principle, can occupy
same state. For dilute gases with a large number of particles, around 10~ K [20],
the majority of particles occupy the same single particle state and form a Bose-
Einstein condensate. This phenomenon was first predicted in 1925 by Einstein
after he studied on Bose’s paper about statistics of photons, and did some further

calculations [1].

If a system is cooled down to the temperatures near absolute zero, it would
generally solidify. Bose-Einstein condensate, however, is not a solid phase but
instead a weird gas phase in which the wave functions of particles somehow inter-
laced. Both cooling and the interactions are critical to observe BEC and it was
observed experimentally in 1995 [2,|3] for the first time in a cold atom setting.

Since then, ultracold gases is a very dynamic area of research [23].

Interactions are very crucial in ultracold gases and give rise to collective be-

haviors such as superfluidity, vortices, solitons, and solitonic vortices.



2.2 Weakly Interacting Bose gas

In a non-interacting Bose gas, all particles are at their own ground states. When
the system is arranged as there is a weak interaction, some particles are excited
to more energetic states due to interactions. This interacting many body system
is complicated to fully analyzed, so some approximations are made to study on
it.

Mean field approach is the most common approach in which all particles are
assumed to occupy the same ground state. Mean field approximation allows to
make some implications about the system in a quite enough precision for low-
energy cases. But it does not explain the quantum and thermal fluctuations of
the system. We are interested in the ground state energy and by using mean field

we can only have an approximate value for it.

Bogoliubov approximation takes into account, on the other hand, a few number
of particles occupying excited states. Since the additional energies of elementary
excitations are not neglected like in the mean field, with Bogoliubov approxima-

tion we can have a more accurate expression for ground state energy.

2.3 Mean field approach

If the energy of the system is low enough, range of the interactions is small in
proportion to mean inter-particle distance. In this limit, effective interaction
between the particles can be modeled as a delta function, Uyd(r — ), [20] with

a strength of
B Arh’a
om

Uo (2.1)

where a is s-wave scattering length. With V' (r) being the external potential, many

body Hamiltonian is then

H= i [p? + V(ri)} + Uy (i —1y). (2.2)

2m —
1<J
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In mean field approach, the condensate state is written as a product of N same

normalized symmetric single particle state as

U(ry--ry) = H‘Z)(”)' (2.3)

When we sandwich Hamiltonian between condensate wave function energy

functional becomes
Bl = [ dr | Vo0 )R+ VOR+ il 2a)

By using a Lagrange multiplier, i, and taking condensate wave function normal-

ized to the particle number N

/dfr|\Il('r)|2 _ N, (2.5)

a variational calculation results in
h? 0 )
o Bt +V(r)+Uo|¥(r)]” ) U(r) = p¥(r). (2.6)

1 is the chemical potential. This equation is called time independent GP equation
and it is the governing equation of BEC under mean field approximation. It is

also called nonlinear Schrédinger equation [24].

The time dependent version of the Gross-Pitaevskii equation is

oV (r,t)

o (2.7)

<_h_28_: + V(r) 4+ Uo|¥(r, t)|2> U(r,t) =ih

If we take external potential to be zero, or constant equivalently, the homoge-

neous Bose gas

h? 0 )
9 v U(r) = ul 2.
(=30 s + GO ) W) = ) (25)
possesses uniform solution
Uo| W (r)PW(r) = p¥(r) (2.9)
UoW(r)* = p (2.10)
Uy, = | Lot — etk (2.11)
Uo



with an arbitrary phase where n = [¥(r)|? is the particle density. The chemical

potential is then nUj, for uniform Bose gas.

Gross-Pitaevskii equation also have other exact solutions: dark and bright

solitons.

2.4 Dark solitons

“Dark” and “bright” comes from the appearance of solitons in an experimental
setup. Dark solitons have lower density at its center compared to the background
and emerge in BECs under the influence of repulsive interactions (Uy > 0). A
bright soliton has a density maxima at its center and is seen in BEC with attrac-

tice interaction strength (Uy < 0). Their wavefunctions are

2 —ut )
Daarn (T, 1) = \/n_o[zg /(1 - %)tanh (x Y ) ]e”‘t/h, (2.12)
2u 1

Vo cosh (\ / —2"52“20)

respectively [20]. Here ng is the density of the condensate when x — 400, where

Voright (2, 1) = e im/h (2.13)

u is the velocity of soliton. s is the sound velocity in the uniform condensate and

given by (noUs/m)/2.

S S (2.14)

u2

52

where ¢ is the coherence length which is given by

h
§ = NoTTRS (2.15)

Derivation of ¥4, can be found in Ref. [20]. Here we don’t give a detailed
calculation but instead focus on a special kind of dark solitons, the stationary
ones. They are called black solitons. The density of the center of soliton decreases

with decreasing velocity. n,,;, becomes zero for solitons with zero velocity. 1.,



08 - 1

n/n o

06 1

02 - \ 1

Figure 2.1: The density of a dark soliton for u?/s? = 0, 0.25, 0.5, 0.75, and 1

reaches ng for solitons moving with the speed of sound, so, solitons dissapear in
that limit.

When we put v = 0 in 44,1 we get

Vblack = +/No tanh <%€> : (2.16)

where we drop the time evolution since black soliton is stationary.

2.5 Bogoliubov de Gennes equations

Bogoliubov de Gennes (BdG) equations gives the nature of the elementary exci-
tations of exact solutions of GP. When we write down GP by replacing ¢ with
1o+ 01 and then linearize it in 4 we find a couple of equations. Those equations
possesses both time and space invariance. By using them, we get Bogoliubov de
Gennes equations which gives us the dispersion relation of elementary excitations
of the ground state of the system.

We will do the calculation for a uniform Bose gas. Same steps can be followed

8



without specializing V(x) and p to obtain BdG equations for a general system.

The time dependent 1D Gross Pitaevskii equation is

0
(~g s + V) ol ) 0 = Y (2.17)

If we write ¢ = 1 + §1p where 1) is an exact solution of GP, § is the first order

correction to this exact solution, and if we keep the terms up to the second order

in 01y, we get
h2k? — O
~ o V254 + 2Us|tbo|* 69 + Uphgod) = Zﬁw~ (2.18)
For a uniform Bose gas 19 = \/nge */" 4| = no, p = noUy:
nk? I 5
— v%¢+2wm@¢+vmwfmw%¢_wh%$. (2.19)
m
To get rid of the terms with e~ we define ¢ such that
(fﬁ//} = (Wei“t/ h
V2(§\1L — v25weiut/h
8@ _ A1 ipt/h i iut/h
R
85¢ _ 85’¢ —iut/h ZH’N —iut/h
With this substitutions, the linearized GP in terms of g?b becomes
n2_,— ~ 06
- Ww+%mw+%%w:M—f (2.21)
2m ot
Equation contains both gf/} and @, therefore
5 = A(z)e ™ + B(x)e™. (2.22)
As a matter of convention we take it as
51 = A(z)e ™ — B(z)e™. (2.23)

—iwt

After plugging this into the equation above and equate the coefficients of e

and ™! to zero, since they are linearly independent, we get

hk?
- om V2A + Uo’rL()A - U()TZ()B — hwA = 0
nk?
- om VQB + Uo?’LoB — UonoA + hwB = 0, (224)



the so-called BAG equations for uniform Bose gas. Specializing the x-dependence
of A(x) and B(x) as

A(x) = Age™*® B(x) = Bye ™ (2.25)

and rewriting the BdG gives the following coupled equaitons

Rk
( + U()TLO - hw) AO - U()’I”LQBO =0

2m

nk?
—UonoAO + < 9 + Uono + hU)) BO =0 (226)

m

which gives a nontrivial solution only if
hok? + Uono — hw —U()TLO
det | 2™ - =0. (2.27)
—Uono RQ:I + U()no + hw

This condition gives, finally, the dispersion relation that we are looking for:

2.5 |- —— excitations :
— — sound
2L P
= e
315 7 1
o -
c -
Lu - -
1 [ - - -
05 - — .
0 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
k-momentum

Figure 2.2: Spectrum of Bogoliubov excitations

(2.28)

—— \/h4k4 N noUOthQ'

4m? m
This dispersion relation displays different features for low energy and high energy

limits. For small k’s, energy is linear in k,

noUy

hw ~

hk = shk (2.29)
m

10



where s is the velocity of sound in uniform gas. For large k’s, E = h*k?/2m-+n,U.
Which means the energy-momentum relation of these excitations looks like that

of particles in high energy regime, and that of waves in low energy regimes.

11



Chapter 3

Coherent State Path Integral

3.1 Feynman Path Integral

We use partition function to calculate the ground state energy of solitons. The
mathematics of partition function is same with of Feynman path integral, which
is an alternate formulation of quantum mechanics, with periodic boundary con-
ditions (PBCs). Therefore, we begin with constructing path integral and mainly
follow Ref. [25].

The evolution of a wavefunction in time is determined by the corresponding

Hamiltonian,

ih 0, |W) = H|U). (3.1)
The wavefunction in a later time is given as |¥(t)) = e /AW (0)). If the
initial time is set at t rather than zero, then, this relation becomes |U(t')) =
e~ =D/h |y (¢)). Position space representations are
(@ W () = (o] e H M (1))
U(a! ) = (af| e HEDIMG (1), (3.2)

12



When we insert a complete set, wavefunction at t’ is

V') = (o] e 1O [l (ol wi0)
U t) = / d (/] e~ =0/ |3 (o D (1))
V(2 t") = /dm ('] e~ H 1)/ |z) U(z,t). (3.3)

Uz, t;x,t) is called “propagator” or the corresponding Green’s function and
defined as
Uz’ 12, t) = (2| e HED/M ) (3.4)

It gives the probability amplitude. It is hard to calculate propagator for finite
t' — t values . The approach is writing the time interval ¢’ — ¢ as NAt, evaluating
propagator for that infinitesimal time with an approximation, and then merge

them again.

Rewriting the propagator as
o—ill(ty—t)/h _ [eiﬂAt/h}N (3.5)

and then inserting N-1 resolution of identity gives

At N
Ulestyaiti) = G| [ e 3] o)

-1
AL T AL T
— /h dag (xp) e T T |xn_y) (wy_g| e T 2y s) X
k=1

X (zn_a| ... e BT z)) (g e T H |2y) . (3.6)

In the Hamiltonian, we have Z-terms in potential energy and p-terms in kinetic

- At
i%H there are

energy separately so (p,| H(p,Z) |zn-1) = H(pn,Tn—1). But in e~
terms in which p and Z are mixed in order, therefore we can not write

<In| e—i%H |'Tn—1> _ e—i%H(pn7$n71)

directly. For such calculations “normal ordered Hamiltonian” is used to describe
in which all p s appear on the left of & s in each term, so Z operators act on the

right and all p operators on the left. Normal ordering is showed as
et (3.7)

13



For our calculation converting the exponential in ordered form gives an error
order of Ax? |25].

We insert another complete set, the set of momentum operator eigenstates,

- A NS LA N
(2, e I RHOD) |z, ) = / Apy (0| Do) (Po] = e FHED 1z )0 (3.8)

By using (z|p) = €*?/" /A/27h, the propagator of At becomes
e Bp, e
ol F109 1) = [ G0 Gl s R0 s )
1 4 At
— d3 n an(xn_xn—l) _ZTH(p'ruxn—l). 39
[ e e (3.9)
This integral can be evaluated by writing Hamiltonian as p?/2m + V(z) and

taking the Gaussian integral of p. Inserting this matrix elements into propagator

gives

N-1 3N N ﬂ{m il Bl et § 24/ z }
k=1

2miAth
(3.10)

In the continuum limit, we do the following small modifications

N ty Tn — T N—-1
ZAt—>/ dt, S o0 e T —>/D[m(t)] (3.11)
k=1 ti k=1

and the propagator becomes

= Jm_ [ D) (57577

This formulation of time evolution of a quantum state consists all informa-

w
o2
5

i t_fd— d—f 2—Vac }
Ul st g, aty) i an(4)"vew L (3.12)

tion of a quantum mechanical system and called “path integral formulation” of

quantum mechanics.

3.2 Coherent States

To generalize Feynman path integral to many body systems, we need a complete

basis. Coherent states form a useful basis that are very easy to handle in second

14



quantized notation. We will only briefly give the relations we are going to use to
construct the many body path integral. That is a quite important topic frequently
used especially in quantum optics and is discussed in detail in many quantum

mechanics and many body textbooks, e.g.Ref. [26,27].

Coherent states are eigenstates of annihilation operators. Let [¢)) be a bosonic

coherent state and 1) be the complex conjugate of 1, then

alip) = ¢ i)
(Wla' = (y] 9. (3.13)

Writing [¢) in terms of occupying number representation

)= caln)
n=0
n = ey,
; el ;} Cn 1)
cnv/Ain—1)
ch\/ﬁ\n—l):Zzbcﬂm m=n-—1
n=1 n=0

D emaVm+1m) =" 1e, [n) (3.14)
m=0 n=0

gives a recursion relation such that ¢,11 = c,/v/n+1.

i = —F—(C
V1
2

Cy = ¢—CO

V2

n

Vn!

Co (3.15)

Coherent state is written as

) =3 T In) (316)

15



where the coefficient ¢y comes from normalization

(W) = [eol? Z ¢_|n>
col? ZW\Q"

- |CO|2e|w| /2

as co = exp(—[1]?/2).

W e P
= G_T n
NG

Their overlap is given by

(Wle) =T e

2

:6_@6_“&;22(@@1#/) GP{Q/W |¢|2 M}

Their closure relation is

/ WY 504y ] =

2w

In many body systems for clarity we address these relations as

a; ) = ¢i [¥)
(V] a;r = Wf‘%

W) = exp{z M}
and

[ wexp{ wal}w

in the non-normalized form.

16
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(3.18)

(3.19)

(3.20)

(3.21)

(3.22)



3.3 Quantum Partition Function of many body
Systems

Partition function of a quantum system in grand canonical ensemble is

7 = Tr(e PH-1N))
Z=" " (n|e PN |n) (3.23)

When we insert the closure relation of coherent states into the partition func-

tion, we get

7 — Z (n| e PH—uN) n)
=3l [ i, e S

= [ i, e E S ) (o] eI o

= [l e S S (] ) ()

- / A", gl SV (] - S [y |y

W) (e e PH |n)

:/dwj*’ w]e’ 2o <¢| e~ BH—uN) ‘w _ (3_24)

The integrand of Z looks like the propagator in which the initial state is same
with the final state. Therefore, the rest of the formulation is same with that of

path integral. We divide § into infinitesimal parts.

Z= [l e ST (] e SN ) BB )

N-1
= / dipy, hy]e =i VR / <H dw;jwn]) o= SR U i ¢
n=1

x (Y| e~ ABH=LN) [YvN_1) (Yn-1] e~ APH=LN) [YN_2) ... (¢n] e~ ABH=uN) [YN)
(3.25)
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where we label the coherent state set in the original closure relation as the N
state and we take 19 = 1 which corresponds to the periodic boundary condi-

tions.

N - N
Z = / (H d[w:wwn]> e~ Z?;]:Vl Py, i ¥n,i <H <wn| e—AB(H—,uN) ‘wn—1>> . (326)
n=1

n=1

Ap is too small since we're gonna take the limit N — oo as in the case of path

integral. Inserting the matrix element
(] eI ) = (0] 1 = AB(H — uN) + O(AB®) [¢hn1)
:<¢n W)n—l) - AB <¢n| 1- (H - MN) an—l) + O(Aﬂz)
~(wn ) (1= A8 H (5 ) = V07 000)| )

(3.27)
into the partition function results in
N =N
Z= / (H dW;;w]) €™ it Viitnix
n=1
N
X H |:(1 o ABH(@Z}:N ¢n—1) - ASMN(Qz]ZadJn—l))(@Dn |wn—1>
n=1
N
n=1
3= A [H * bn—1)—pN ;,n,]
< e >ome1 AB|H(Wy on—1)—pN (¥ n—1) ' (3.28)

In the continuum limit, like in the case of propagator,

N B
A .
571222%/0 dr, (3.29)

where 7 can be thought as imaginary time.

Yp — N
B =00 besn [l 5 D) (330
n=1
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which make Z looks like

2= [ D) exp{éﬁﬁ (—WL% I ’“‘N)) }

:/D(w,w)exp{/fdr(w; T¢n+H—uN)}

B8
= [ D@ vew { [ artwronn) + 1w ()00 - ¥ (), ¢<T>>>},
(3.31)

where the limits of integral are ¢*(8) = ¢*(0) and () = ¥*(0). Here we define
i =*(1) and 1,1 = (7).

3.4 Quantum Partition Function for 1D Bose

gas

The general many body Hamiltonian for a grand canonical system in second

quantized notation is

H — /LN = Z(h” — ,uél-j)ajaj + Z ‘/ijklala;akal. (332)

ij ikl

For a Bose gas, in mean field approach
hij = hadi; — and Vg = Uobiv,, (3.33)
kA1

and the exponent in partition function therefore becomes

H (5 (7)) — N (o (), wr)) =L )

S ()] (hij — pdij)ala; (7))
(U()](7))
D ijki UO(sZTi (¥(7)| alalarar (7))

(W) e(7))

+

(3.34)
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Here we use

ai[9(7)) = ulr) [(r))  and  ((r)]af = 0y(7) {(7)], (3.35)
where 9(7) is the n'* coherent state set (7 =

Zij(hij - N(SZJ)@E (7
W)
g Vol ()0
(¥

AB).
)5 (1) (D(7)[9(7))

H(w*ﬂ/}) - NN(w*7¢)) - ()
(7
(7

YR(T)i(7) (P (7)] 9 (7))

Py,
" ()

(3.36)

Substituting into partition function and converting to x-space with a Fourier

transform gives

—/D[@,w]exp{ /dr/dd { 2,7) (0 + Ho — p)vo(w,7)

25 o @7, 7) }} (3:37)

3.4.1 Matsubara Frequency Representation

Matsubara frequencies are discrete imaginary frequencies and are used in field
theory. To write the action in Matsubara frequency representation, we use the

following Fourier transforms

B
7/1(7') = % ;wneiuﬂ”7 wwn == %/0 dTw(T)eiiwnT (338)

where w,, = 2n7/ for bosons.

B
- [ bl exp{ - [Car [t S S @ (0 - )
e, Uo 1111 i o
Z¢wm " ﬁ(ggggZZZZ%M)%W(I’W%(%)

> wa (x)e—iwnq—e—iwmq—eiwm’eiwn)} } 7 (339)



by using

B
/ dre T = B84 w0 (3.40)
0
becomes
=/D@MW{ S [ A (b @)+ Ho = 1)
B
—WnT AW T d
x/odTe e }—i—emp{—%@zg:;z:/dmb
B
_ B
xwwmmmwmw/dw%w”Mww} (3.41)
0
Bbup 1w,
wp+wr

In terms of the action of Bose gas

Z/DWWMW%SWWH (3.42)

We will use this functional,the action of Bose gas, to obtain free energy of
solitons by evaluating Gaussian integral. For this purpose, we write the action in

discrete form in x as

r=

(3.43)
+D - U eis — e+ Yot
" ImAr2 n,z+1 n,r n,o—1
(3.44)

wnmp'r

The partition function is of the form
I= / dzes@) (3.46)
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For such integrals, the major contribution comes from s(x), where xy is the
point that makes s minimum. It is called “minimum phase integration”. Taylor
expansion of s(x) about xq is

(x — x0)?

5 + O(Az®) + - -

s(x) = s(zo) + s'(xo) (2 — 20) + 5" (20)

(z — xg)z'

5 (3.47)

s(x) = s(xg) + " (x0)

If we replace z in s(x) with  + 2’ and keep only the terms up to the second
order in 2/, we end up with the above relation. Replacing 1, , with ¢2,z + w}w
where ¢f) , is the solution that gives the minimum action that we can find by

taking the derivative of action in Eq. 3.39

g_g _ %{ /Oﬁ/ddr F(a:,r) (0 + Ho — p)o(w,7) + g(@(ﬂ?ﬂ')w(l‘ﬂ'))j }
— /Oﬁ/ddr [\(& + Hy — p)y(x,7) + gZ(E(x, (7)) (, 7)} —0

-~

=0

(3.48)
By taking v (z, 7) T-independent
(Ho — p)4 + gly[*p =0
Hoy + gly[*y = pp (3.49)

is actually time independent Gross-Pitaevskii equation. wg}x are therefore the

exact solutions of GP namely uniform Bose gas and solitons. Replacing ¢ with
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0 + )t in the action given in the Eqn.3.45:

s-ay Ax{ S+ T — W)+ )

Wn,

(3.50)

-0 —1
wn,w + ¢n7;v 0 1
+Z_ 2mAx? ( "Hl—i_wnxﬂ 2¢n,x_2¢n,x+¢ nz— 1+wnac 1)

Wn,

(3.51)

Wp+wWr

g —1 0 —1
2_ Z wn,x + wn,x)(wm,x + wm,az)( g,x + wl,x)( 19,90 + wi,:r)dwn"'me }7

Wn,m,p,r

(3.52)

Wn,

—1 —1 —1 —1
+ an,anwg,x + an anwl - l“/}n,x 2,9: - /’Lwn,xwrlz,w)

1 —0 —0 9
+ wz _W (wn,a: n,z+1 + ¢n x nx+l an,x n,T

- wna} +1+¢nww0x 1+wnx n,x—1

+ wn ,T m-l—l + ¢n asqu)n ,ax+1 2,¢n,m n,x
—1

- an,z n,z+1 + djn,x n,x—1 + lpn,mw}z,zfl)

g —0 —0 0 0 —0 —0 0 1
+ E 9 (5wn+wm, (¢n,x¢m,z p,m—l—lwr,w—l-l + ¢n,xwm,m p,m+1¢r,w+1
ﬁ Wp+wWr

Wn,m,p,r

+ a1Vt + PP a1 Vhesn
+ E?w%lnz 27x+1¢7(”),x+1 + Eixa:nx x+1¢r a1
+ PP Vpai1¥eir + PncPuma¥pcr1heia
+ E:Lma(r)nx ) x+1w0m+1 + Eix@glx x+1z/)r z+1
+ Eizxagnw x+1¢r a1 T Eixaglz x+1wr o+l
+ Erlz,:cainz p,z+1¢ 41 T Erlz :c%ln e z+1¢r 41

—1 —1
+ wn,xwm,w¢l,x+lw ,x+1 + wn zwm x¢p,x+1¢r ac+1)
(3.53)
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That is a bit lengthy equation but will get simplified when we insert wave-
functions of uniform functions of Bose gas and of black soliton in the following
chapters to form a calculable Gaussian integral. For now, we leave it here and

turn to how to calculate ground state energy of 1D Bose gas.
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Chapter 4
Energy of uniform solution

In the case of uniform solution of Gross Pitaevskii, the total energy of 1D BEC
can be calculated via the usual procedure. We can get the first order energy by
using exact solutions of GP equations and the second order correction to this

energy by summing up the ground state energies of the excitations.

4.1 First order energy

First order energy of the uniform solution is simply (¢| H |¢») where ¢ =
Vnexp(iut/h), n = N/V. Hamiltonian is written with Gross Pitaevskii,

WIH 1) = BW) = [ dr|GIV00R + VIl + SUdvol
 UpN?
%

(4.1)
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4.2 Second order energy

As it is mentioned above, in GP approximation, all the particles are assumed to
be in the condensate ground state. In order to describe the behaviour of conden-
sate better, we can use Bogoliubov approximation which corresponds to allowing
a few particles to occupy excited states while the majority of them still remain

in the condensate state.

In chapter 2, we find the spectrum of the quantum fluctuations on the back-

ground of uniform gas as

h4k'4 noU[)hsz
hw = \/ + . 4.2

4m? m (42)
We can,in principle, find the contribution of these elementary excitations to the
ground state energy by summing up the ground state energies of these excitations,
Y peo hw /2, however this sum does not converge. To find that contribution a more

detailed examination [20,22] in which 2" order Born approximation is needed.

The Hamiltonian of weakly interacting Bose gas in second quantized notation

18

N h2k2 1
H = Z om CL};ak + W Z V(q)a,];JrqaL,akak/ﬂ, (43)
k kK g
In a condensate N
No = ajag, WO = 0(1). (4.4)

One of the mathematical differences between operators acting on a function and
coefficients is the commutation relation. Since operators may not commute, we
should respect their orders. Consider the operators a(T) and ag. They obey the
commutation rule aoag — agao = 1 but their non commuting nature is negligible
since ag o< /Ny > 1. This point is the starting point of Bogoliubov approxima-

tion. We consider ag as a coefficient instead of an operator and take /Ny.

In the sum, if we take V(q) constant, Uy, the second part of the Hamiltonian
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18

1
H[ = WUO ]{Zk; aquaL,akakurq. (45)
’ 7q

This four fold sum represents the momentums of 2 incoming and 2 outgoing
particles, daggered ones represent momentums of particles after collision and
the others correspond to the momentums of particles before collision. In this
sum, there are small terms including a; and az and greater terms including ag.
The greatest term is the one with 4 ags. Next greater terms have 3 ay. But
such interactions are not possible they do not satisfy momentum conservation.
Therefore 3ay terms do not exist at all. The second greatest terms are then the

ones with 2ags. The remaining terms are negligible.

There are six possibilities for a collision possess two of zero momentum. If the

first and second ones are ag, then £ + ¢ = 0 and &' = 0 results in agagakaq =
ajalara_y. Other five possibilities are

1,3=0 k+q=0 k=0— aéaz/aoak/ = agazaoak

1,4=0 k+q=0 EF+q=0— agalakao = agazakao

2,3=0 E =0 k=0— agagaoaq = azagagak

2,4=0 E =0 E4+q=0— azagakao = a,tagakao

3,4=0 k=0 EF+q=0— a;aiqaoao = a,t;aT_kaoao. (4.6)

The interaction part of H becomes
H; = ﬂNg + %No > |afar +al oy + l(a_kak +alal ) +O(N|. (47)
2V Vv - 2 -

k0

Here ag represents the particles in the condensate and aj represents the excited
particles. With this, the physical interpretation of aLak term is the interaction
between excited particles with the condensate. a_jay, azaik is for the particle
annihilation and creation from the condensate to the excited states. Note that in

this approximation the total number of excited particles is not conserved.

By writing the Hamiltonian in terms of the total particle number, N = Ny +
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> alay,
h2k2

N :Z 2m ak—|——N Zakak
ke k0
zN Zaak Z{aak+a ak+1(a Lk + ala ) + O(NY),
V k0 ’ k40 ) ’ 2 )

(4.8)

and neglecting the N7 in the second term gives

2
2
= Z mk azak UO UONZakak
k0
Uo Uo
+ (VN—V;aLak) [+ ]+ O(NY)

UpN? k.
=5y +§ 5 akak—i-z

k0

UpN ZthQT UoN

2V om (kT oy

In Gross Pitaevskii approximation, we take Uy as 47rh2a/ m. For the ongoing
calculation, however, that expression does not have enough accuracy. We need
to replace the interaction potential between the particles from delta function to

a Gaussian which is done by taking into account the second Born approximation.

4.2.1 Second Order Born Approximation

We may take the interaction as a perturbation if U, is small enough. In the
perturbation theory, the energy correction to the nth energy state due to the
interaction is given by

0 Hl 0

m#n
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The correction to the ground state energy, therefore, is

UOnUnO
AE=Up+ Yy —2 (4.11)
m£0 EO - En

The matrix element for a general case can be written as explained in Ref. [22]

1
Unmn = (K1, k3| U |k1, k2) = V/U(x)e““'xd?’x (4.12)

where kq, ko refers to the momentum of the particles before the collision, kf, k),
after the collision. k = k_; — k;_; In our case ky = ky = 0 since we look for
the corrections to the ground state. Here Upyg refers to the Uy which is defined
as [U(z)d®z. The major contribution to the integrand comes from the zero
momenta terms and we neglect the others tiny corrections. That means |U,|? =

UZ and the interaction strength having the desired accuracy is

U? 2m
U new — U old T old
0, 0,0ld Z FL2(—2]€2)

4 k0
Arh? Ah?
_ 7h QAold 1 4 7h Qold ~ 2m . (413)
m mV o h*(—2k?)
When we substitute U, in H
. Arha 4ra 1| N? K2 k2
H = 1 — | — t
el R AP BE 1 B Dl IO
k=0 k
Anh2a 4ma 1| N
+ m 1 + v ﬁ W Z(aka,k + CLLCLT_k + 20,;26%) (414)
k0 k40

we should neglect the correction of Uy in the third term and keep it in the first

term to achieve the consistency in precision,

. Arnh*a Ara 1| N2 h2k?
H = 1 — | — f
m TV |y 2 om ROk
k40 3
Anh%a N
p—71 (ara_j + aLaT_k + 2aLak). (4.15)
k40

With this Hamiltonian, we aimed to calculate the corrected ground state en-

ergy. But, this expression of the Hamiltonain does not allow this since it has
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off-diagonal elements. To obtain the energy levels from H, we apply a linear
transformation, Bogoliubov transformation, to diagonalize it. At the end, we will
have a H in the form of Eg+ Y, E(K)alay, where E(k) is the dispersion relation

that we have found from BdG equations.

4.2.2 Bogoliubov Transformation

Hamiltonian is

H=H,+Hy=Hy+ Z(Aaka_k + Aalal, + Calay) (4.16)
k0
where
2rh2aN? Anha 1
H=————1]1 — 4.17
! mV L= % k2] (4.17)
2rhlaN?
A= —— 4.18
mV ( )
Anh?aN?  K2k2
— ) 4.1
¢ mV + 2m ( 9)

We replace the 3, with 3, in the second term of H since k = 0 contribution
is already zero. We perform a linear transformation, L, on Hy by defining new

creation and anihilaiton operators a; and aL such that

oy, + LozT_k

V1—12"

042 + Loy,

N

ay = al = (4.20)

oy and a,t are the annihilation and creation operators of the elementary ex-
citations rather then of particles, a, and a,i. They obey the same commutation

relations,

ooy — ooy =0 (4.21)

OékOé};/ - Oék/Oé}; = 5kk’- (422)
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By writing the Hamiltonian in terms of «y and oz;

Hy = Z(Aaka_k + Aa,taik + Cazak)

1
= {A(ak + Lot )(a_p + Lal) + Alal + La_y) (o', + Lay)

+ C(af + La_g) (o + LaTk)}

1
=2 1 {<A + AL + CL)aya_y + (A + AL’ + CL)alal,
k0

N J/

Vv
non-diagonal terms
should vanish

+ (2AL + C)alay, + (2AL + CL*)(1 + a;ak)] : (4.23)

diagonal terms
+a constant

we get the terms which should vanish. This, actually the condition that deter-

mines what L is:

AQ+L*)+CL=0 (4.24)
JO2 — 2 _ JO2 2 _
L= £VC 2jA ¢ takeL = ¢ ;ZA C. (4.25)

Plugging L into the remaining terms in the H, gives

2AL + CL? AAL+C + CL?

[ 12 + N Qo (4.26)

k0

First term contributes to the ground state energy together with H; and the

second term is the dispersion relation.

4AL+C+CL?

Ek) = 1— L2
 4AL—-C?/LA 4AL-—C?L/A 4A*L—C°L (1.27)
1+ CL/JA-1 24+CL/A — 24+CL '
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We define D as C? — 442,
(VD — C) (442 — 02)/4A2 +C(VD - C)

E(k) = 24 24

~D(VD — C)4A%* 4+ Cv/D — C?
24 24

_ZDWVD-O) 5 yermm
CvD-D

B Anh?aN N h2k2\° 4 omh2aN\>
N mV 2m mV

B \/ kY ARkPmaN

4m? m2V
RkA nURk2
= \/ et (;n (4.28)

is same with the one we have found via BdG equations. The constant term that

contributes to the ground state energy is

2AL+CL?  2AL—C2L/A—C

G 1-L2 2+ CL/A
(242 -C) (VD —-0)2A—-CA  2A>D —2A%C — (2D + C% — 2C A?
N 24+ C(VD - C)/24 N CvD-D
—~C*/D +CD 2A°D 2A2D
“ T ovb-D ovb-p " 'ovD-b
_C ¢, 28D _ C 1[-CVD+CD+44’VD
2 2 ¢VD-D 2 2 CvD-D
__C VD|=D+CVD| VD-C V1A -C
2 2 | cyD-D 2 2
1 [R'%%* nUhk2 14wh*aN  1R%K?
25\/4m2+ 271 2 mV 22m’ (4.29)
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With this linear transformation, Hamiltonian is diagonalized,

i Arh%a Arh2a 1| N2
- 2 2
m e k2| 2V
Z 1 [hkt nU0h2k2 14rh?aN  1h2%k?
2\ 4m? m 2 mV 2 2m
k0
Bkt nUohk2
+ \/4m2 + - alay, (4.30)

We define v as
ATh*aN  [UpN

= = 4.31
’ m2V mV (4.31)
. His
~ Nmu® 1 m3v? n?k? 9
— T

H= 5 T —Z {thQ + E(k) — 5 W } + ZE(/{)akak (4.32)
k#0 E#0
corrected grou‘lgd state energy spectrum of excitations

where E(k) in terms v is \/ R*k2v? + (R*k2/2m)2. Finally, second order grund

state energy can be calculated

1 , 1 210 5 , DKL R s mivt
Ho = gNmv* +3 5 ¢hk“+4mw‘mn—m“+%%5
k£0
1 1 47V pr p? m3v?
— Nmv?2+ = 24 292 4 2 2
g MY 2(27rh)3/p plyre +4m2 om Tt p?
—_———
*}Il
(4.33)

First we evaluate I,

dz

I, = /pzdpi /Am20? + p2; > = 4m20? +p2; &9
2m dp
dz 1 1
- [t G v = g [ e = i [ e
4m2v2+p§

1 25/29 o 23/22 1 52 _ 277“)223/2 (4.34)
“4m 5 3 10m 3

4m2v?
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and substitute in Eg

o= L ¢ 22V [ ey
79 (27h)? 10m 10m
2mu? 2mu?
- Tgv (4m*0® + p})¥% + ﬂ(47712112)3/2
5
_ Py mvpg
om 3 TP ]
5/2 3/2
B 1N 2, 21V | P} 14 4m*v? 2mup} - 4m*v?
o (27h)3 | 10m 7 3 vy
(2mv)>  2mupy o oo Py mw pf
_ _ ] _
10m R T i SRR Y
lN 2 21V | P} L+ 54m2*v? 53 16m*v? (2mv)3
2 (27h)3 | 10m 2 p; 22 2p} 10m
2mu?p’ 34m®v?\  2mu’p}
— 3 1 + E p2 —
f
5
Py muv pf
“lom 3 T ]
1 2rV | P} (2mv)®  2mv*p}
—ZN 2 3 3,4 . o
2 E By | Tom g+ 3y = 3
16m*s  pr mo’p}
—AmB3utn. — S f 3.4
m v py 3 Tom 3 + m v py
1 2rV 128
= _Nmv* + —— | — —m"°|. 4.35
M T | T Y (4:35)
E¢ in terms of the original parameters is
2h*aN? 128 [a3N
EBr="—"""" 4.36
“ mV 15V AV (4.36)
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Chapter 5
Energy of a Black Soliton

In this chapter we first calculate first order ground state energy of black soliton
with mean field Hamiltonian. Then we recalculate this first order energy with
partition function. To do so we only take Sy term. We are interested in Bogoli-
ubov level ground state energy of soliton but BdG equations can not be solved
analytically for soliton as it is shown at the end of this chapter. That is why, there
is not an analytical expression for this energy. We, then use partition function to

calculate this second order energy by taking into account S, term in the action.

5.1 First order energy by variational calculus

Energy of soliton with mean-field approximation is calculated in e.g. Ref [20].

Here, we follow those calculations. Energy of the system can be written as

W) = B0) = [[dr |5 19600 +VERP+ SUlol]. 6

Since the number of particles is not conserved in general, £ — N sholud be
considered instead of E itself. V(z) = 0 and N = [dr|y(r)]*. Moreover the

system is quasi-one dimensional therefore [dr = A [ dz where A is the area.
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This equation gives us the energy of the whole system: soliton+background.
We get soliton energy if we subtract the energy of the system with soliton from

the energy of the system without soliton,

(E — uN), :A/dx [2m
(B~ iN)uyo = A [ da ( ) — W) (5.3)

A(E—,uN):A/dx [27"

dx

+ %M“wWﬂ (5.2)

dx

—U (11" = ng) — u(lv* — no)] - (54)

Chemical potential is Uyng in the case of uniform Bose gas. For infinite-sized
systems including finite number of solitons, the chemical potential can be taken

Ugng as well and we also consider such a system. The soliton energy then becomes

a5 - far| [

TV
I Iz

+A/ Dwk-m?|. 69

/

We are interested in black solitons but the following calculations are simple

enough to consider more general case, dark solitons. The integrals I; and I5,

/ u? 1 1
I, = A iut/h
' / \/—6 coshz(’““ “t)\/_éu

1 n?
= Anyg ( V2 2&u
CDSh4 3

) 2¢2 2m cosh4 0y
= Ang ( - ”—2) —/T— /s 2—- (5.6)

2

per unit area

||
~
wl Se

3m\/_ R

/ 2
noh nOUO g (57)
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and

2
I, = AUO dx [no —ng (1 — u_j) L no] V2€, (5.8)

2 s? ) cosh?® &
AU() 2 U2 2 ~ 1
= — 1—— d 2&., )
g Mo ( 52 / Y eosh® 7 vt (5.9)
4/3

per unit area

2 2\ 2
/1 — u_2

%) S
)

2
_ ( _ “_2 noh,/nOUO Ut (5.12)

Finally the energy of a single soliton per unit area is obtained as

B 4 2\ 3/2
= = Znohs (1 - “—) . (5.13)

This equation possesses an interesting feature, energy is inversely proportional

to the velocity which correspondsn to negative effective mass.

This energy can also be expressed as

4 u?
3/2
[T 2
_ Al  wm (5.15)
3 \/ﬁ TLQUO
I
4h 9\ 3/2
_ _ 5.16
3/ (1 — mu®) (5.16)

37



For black solitons

3v/mU,

B =

5.2 First order energy from partition function

In this section we reevaluate the previous result, energy of black soliton, from
partition function. We have written the lengthy expression of the action after
performing the saddle point analysis. Plugging the wavefunction of black soliton,

which is

Yolack = \/_ B tanh (f/%;) 0,0

in Matsubara frequnecy domain, into the open form of the general action gives

A
S AZ Ax{ > (iwy — p)Bliol* tanh® (%)5%,05%,0

Wn

-1 A + 1A
+ wzn W\/ﬁwo tanh (%)%n,o [\/Ewo tanh (%&Umo

— 2/Biy tanh (%)dmmo + /By tanh (L

Az
+ _6'11771, 'wm 4ta h4 x 571) Oawm 05711 067-07"0
Z m (ol tanls* ()8 0, ,)}

W 25 Wp+wr
A _

Az _
' Z e (f ot (25) (B = 208+ b L]

+ /B wotanh(”’fﬁz)(wm))

U A
+w;mﬁ5wn+wm B3/2 |3 |* tanh® (f@ z ) [Bun 00 00, 0L,

38



—1 —1
+ 5wn,05wm,0é‘whow;7w + 5wn,05wp,05wr,0wm,x + 5wm,05wp70§wr,0wn7x:| }

+AZA:E{Z¢”$ Wy, —
- rAx

_ 1 Uy
+ Zwi,x(m>¢i,x_1 + Z 265w$+wm B|ol* tanh? (\/55) X

wp’wT

—1 -1 1
n,a:( 2mAx2 )¢n,x+1

n,T

1,1 -1 1 -1 1
X |:5wn,05wm,0¢p,x1/}r,m + 5wn,05wp,0¢m7x1/}r,z + 5wn,05wr,01/}p7x1/}r,m+

—1 —1 -1 —1
5wm706w17,0¢n,:17¢7',$ + 6’wm,05’wr70¢n,l‘¢p,z + 5wp,06wm,0¢m,z¢n,m:| }

[ J/
-~

0 o2 tanh? (282 ) [0} 0L o 4T b a4 TP

(5.18)

We only take Sy term for now. After taking Matsubara sums with the help of

Kronocker delta,

So.bs —AZOAm{,uBWOFtanh? (wf_z)
(x+1)Azx
QmA 2\/_¢0tanh(\/_ )\/_¢0[tanh(T£
~ 9tanh (P2Y) 4 tann (B DA
2t h(\/_)+t h ( NGT }
rAx

25@% ol * tan h4(\/§£))}. (5.19)

After converting the summation to the integral, by using u = g||?,

2 2
’ —BWM tanh( 9

B 2 2 T W2
So.bs —A/dm{fzﬁhﬁd tanh (\/55)4 \ 5 \/_g)ath (\/55)
NG T
Uof3|%o* 4( X
+Ttanh (\/_—25)1 . (5.20)
e

There are three integrals of tanh? z,tanh?®z sech? z,and tanh® z respectively.

The system is inifinite-sized and dx integral goes from —oo to oco.For such a
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system

/taunh2 xzdr = — tanh
tanh®
/ tanh? z sech? zdz = an3 a:
4 tanh 1 0
/tanh4 xdr = x — a; Ty 3 tanh zsech® 7. (5.21)

The integrals are then evaluated easily:

L = A/d:v {—uﬁ]woftanhQ (%&)]

= — AuBlvo|® [ﬂf ~ V2tanh (\/%f) 4 e

= — ApB|wo|*x|% + 2V26AuBvol?,
_ —Blil? r ) & d
I = A/dw o D (f_2§) ggz (\f_%)

_ ABl? x -2 x x
= A Jasann () () et (g ) v ()
ALY o ()|

eam 3 V2¢

_ V2AB||?
- 3¥m

_ 95|¢0|4 4 T
Ig = A/di[) 9 tanh (\/_—25)
= AgBlyol* [_4\/56 tanh (i) + @ tanh <i> sech? (i) +x
V2

—00

o0

’ ’ vag) 3 vag) |
4 4 s

- _Ag%lw 8?6 * Ag@%’ m‘_oo' (5.22)

Sy becomes
2 - )
Soss = Altho28 (ghéo‘ - u) o+ ApoPe (2\/§u + 3ﬁ2 42l > |
— 50 mf 3
(5.23)

Sp is constant therefore it goes out of the integral

Z:eSO/---. (5.24)
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The remaining in the integral are the higher order contributions. Free energy
is
1 1 1
A=—InZ=——In(e®...)=—=8 +---. 5.25
6 5 ( ) 6 0 ( )

The first order energy of black soliton is

2 o 2
e LA G P —Awom(w b2 mg'%').

(5.26)

First term is the background energy, nUy,V/2, which we have obtained in the

previous chapter. The second term is just

4 2 4
—%So = —Alvol*¢ (2\/§M+ 3;@2 - \/ig)wo' ) = §|¢0|2¢0\/70A7 (5.27)

the same with the first order energy coming from the variational calculation.

5.3 Second order energy from BdG equation

By linearizing Gross Pitaevskii equation for homogeneous Bose gas, we get

n’ 2—— o!
_ _v?wl + 2U0‘¢0‘2¢1 + U0¢0 ¢1 — i
m ot

(5.28)
To find the excitations on a black soliton background, we plug soliton wave-

function, v tanh(:z: / \/55) into this equation,

fz2,ut/hw1 _ ha¢1

73 ot
(5.29)

hQ
— 5V + 2Uo|vo|* tanh?® (—= )" + Upt§ tanh? (

\/_
To get rid of e~ term, we define

Pt = gplett/h, (5.30)
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The equation

2

h —~
- %V2'¢16_1Ht/h + 2U0|1/J0|2 tanh2 (

V2

)6—i2ut/h$€iut/h —ih

)Z/}\Ie—i,ut/h
8;/; —ipt/h iﬁ(—iu)ﬁ —ipt/h
Ee + —h @ZJ € .

+ Uy tanh? (\fi25

(5.31)
simplifies to

n? 27 2 2( ~% 1
—%V Y+ | 2Us (10" tanh (\/——25)—M (0
R L

+ Uyt tanh?® ( ﬂg)wl =ik o

(5.32)

We use the time invariance of the system in order to write

= A(x)e™™ — B(z)e™" (5.33)
which gives
h2

. .
_ 2A —iwt fe ZB iwt
2mv (x)e ™" + sz (x)e

+ 2U0W0!2 tanh? (i) — [A(gg)e*"wt _ E(x)em}

V26
) [Z(a:)e“”t — B(:c)e’“”t}

Ve
= ihA(z)(—iw)e ™" — ihB(x)(iw)e™". (5.34)

+ U(]wg tanh2 (

Since exp(—iwt) and exp(iwt) are linearly independent, we can equate their

coefficients to zero.
h2

——v2A+[2U 2 tanh? (——) — ]A—U 2 tanh? (—2)B = hwA
. 00| tan (\/55) I 0t tan (\/55) w
K2 — T _ T _
—V?%B — |2U,|1)o]? tanh? (——) — }B+U 2 tanh? (—)A = hwB.
o [ 0|1/10| an (\/55) o 0¥ tan (\/55) w

(5.35)

These are the BdG equations for dark solitons. Since they are not analytically
solvable, the contributions of all modes are not known. With numerical calcula-
tion contributions coming from a few modes are analyzed but to include all the

modes, a different approach should be used.
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5.4 Second order energy from partition function

After performing Matsubara sums, the second part of the action becomes

)

—pU+ ——

N
S = A3 ar ST, (i,
=0 n
— ~1
1
TV e (QmAa:Z

— —1
1
TV e (QmA:UQ

<

+ U ( 40| ta

+ $n,x (70‘1/}0’2 tanh

If we define Sy, as

SQ,bs -

N
Sg,bs =A Z Az [E?lz,xK?w}z,y + wrlz,m

z=1
y=1

1
mAz2

1
> l/Jn,:p—l-l

> @D'rll,m—l

12 (xAx
n NG

(xAx
V2
ng,ba‘?

%ps can be written as an infinite dimensional integral.

K3

—1
fn,ywn,x

)) et
)7}

where K7', K3, and K3 are the matrices respectively given by

f(n, ) ¢
¢ f(n,x)
Er=1] 0 ¢
|0
[h(z) 0
0 h(z)
K} = 0 h(z)
| 0
K} = K3
K' = KT
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™\

+ 2Up|1bo|? tanh? (

n 71
KB ’l/}fn Yy

f(n, @)

(5.36)

(5.37)

(5.38)
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where

fln) =5 ( i 1|2 tanh? (ffzf))
- (i ()
(2m M) | (5.42)

We have an integral of the form

1 _ N
7 = exp{—Sous} [ | [ / Ndwcw] exp { — A

¢

—1 n n
AJ} [wn,mKl @Z}'rlz,y + ¢'rlz,zK2 ¢£n,y
=
-1 n 7L 1 n 71
+ wn,a:KS wfn,y + wn,xKl4wn,y} :
(5.43)
It looks like infinite dimensional Gaussian integrals. It has off-diagonal terms.

Gaussian integrals of different dimensions can be evaluated.

—— One dimension case: It is well known that

/ dve=o = [ (5.44)

0o (%

— Two dimensions case: It is easy to show that

> = 1

/ dite™ 2™ — ()PP (5.45)
—00 det M

where D is the dimension of the matrix M. Its proof can be found in Ref. 28]

— Infinite dimensions case: In the case of infinitely many dimensions, the

formula is given as

N
1 — N 1
. _Zi,jZI wlMUw] — .[|
Nh_r){l)o [/ N <k||1 dl/’kdwk) € ] ]\}1—>oo det M (5.46)

where IN is normailzation constant.

The partition function of Bose gas is not exactly of the form of this but it can

be transformed to by defining a new variable ®! such that

E] | 547




With this new definition

K, K,
Ks Ky

3K = [El 1/11} l lgil B W wl] [Z,Zi 25]

—P K+ 9 Kol + 0 Kt 4+ 0 K (5.48)

This new definition allows us to write the action in the form of a Gaussian

2N
Sry=A Y Ard'Kp,o' (5.49)
z=1,y=1
and the second order contribution to the free energy can be calculated from the

partition function,

1 2N
Z:exp{—SO’bs}H [/Ndﬂ)d@exp{—/l Z qu)l]l{zyq)l}]

z=1,y=1
1
det Kn

= exp{—Sos} [ | (5.50)

Evaluating the corresponding determinant, however, is not straightforward.
We need to use Gel'fand Yaglom method which is explained in the following
chapter.
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Chapter 6

Gelfand Yaglom method

6.1 Functional Determinants

Evaluating functional determinants are crucial in many areas of physics. Al-
though they are hard to evaluate, they possess important information. Several
methods have been developed to evaluate functional determinants exactly or ap-
proximately. [29]. Using zeta functions and contour integrals is one of these meth-
ods which allows to find determinant of an operator without explicitly calculating

its eigenvalues [30].

Zeta functions are widely used in quantum field theory [31H33] to calculate
functional determinants. Riemann zeta functions are generally associated with a

set of \,, as
=1
Crls) =) 55 (6.1)
n=1" "

where \,s can be considered as eigenvalues of a finite dimensional matrix M.

Cr(s) is convergent when real part of s is greater than 1 [30].

The derivative of (gr(s) is




At s =0

gives the determinant of M

det M = exp{—Cr(0)} | (6.4)

We define a function F'(\) such that

FA\) =0 YA = A\, (6.5)
The contour integral
1 _dInF()\) 1 JF'(N)
I=— [ A\ ——F = — [ d\\° 6.6
2mi J, d\ 27ri/y F(\) (6.6)

has poles at exactly each \,.

Figure 6.1: Contour in the complex A plane and the branch cut

The residues of the integrand at these poles can be calculated by expanding
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the integrand in Taylor series,
F'(An) (A=)

F'(X) s s
Foy Y M TN RO T PO ) T O0E (A” ')
6.7

res,, =\ °

Writing the contour integral as the sum of residues shows that this integral

equals to Cgr(s).

1 LdIn F()) B ¢
I=— d/\>\ — = eres >N (6.8)

AAAAAAAAAAAAAAAAAAAAASD—0—0—0—0—0—0-—0-—0—0—0—00> Re(\)

Figure 6.2: Deformed contour

After deforming the contour as in Figure 6.2, the integral can be written as

1 0 1 1dnF()\) —ee 1 1dInF())
S dA— — A —
¢(s) 2m'{ / am e dn /0 T CRY

o0

sin s 1 dln F(\)
= AN\ ——+—+> 6.9
- /0 N dA (6.9)

We find an expression that relates the desired determinant with (5(0). We
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can, now, find another expression for (5 (0)

d¢ _ mcos(ms) /Ood)\ldlnF(/\)
dS s=0 o T 0 )\s d>\ s=0
sin(rs) (™% 1 dln F())
dA————>(—1nA 1
T /0 JC e (6.10)
:/ dln F(X) +O-/ —InAdln F()) (6.11)
0 0
=In F(—o0) — In F'(0) (6.12)

which does not require an information of eigenvalues. With this equality, det M

can be written in terms of F'(\) only,

¢'(0) = —Indet M
¢'(0) =In F(—o0) — In F(0)
—Indet M = In F(—o0) — In F(0)

M = = .1
det I (6.13)

In F'(—o0) is an issue and not allowing us to evaluate the determinant itself.
But we still can determine the ratio of two operators; M and My,... To do this,
we first define M., as it describes the same system with M when V., = 0.
Second, it is assumed that the behaviors of the two functions, F/(A) and Fpee()

are same at —oo [29].

det M = F{E(il)
det Mypee = % (6.14)
With this assumption, we end up with a magnificent relation
djteﬁj - FZSBO) | (0:15)
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6.2 Gelfand Yaglom method

Contour integral method allows to find the ratio of functional determinants whose
eigenvalues are not explicitly known if functions F'(\) and Fe.(\) are given.
Gel’fand Yaglom method is used to find these functions for 1D Schrodinger op-

erators.

We write a one dimensional Hamiltonian of which we want to find determinant.
h? 2
H=—-_—_"_ 1
5 42 + V(x) (6.16)
where the system is defined in the interval [0,1]. And Hy.. is the Hamiltonian

of uniform system as

h? 2
Hipoo = ————. 6.17
! 2m dx? ( )
Let
HP), = N\, Py, (6.18)

be the eigenvalue equation on which Dirichlet boundary conditions are applied;
®(0) = 0, &(1) = 0. We write also an initial value equation with the same

operator,
H®) = \P), (6.19)

with the initial conditions ®,(0) = 0 and ®,(0) = 1. When A = \,, the second

boundary condition of the eigenvalue equation is satisfied as

Py, (1) =0 (6.20)

n

If we consider ®,(1) as a function of A, F'(\), then

F(AO)=0 VA=A, (6.21)

That means, we can find the required function, F'()\), by writing an initial
value equation with the operator which determinant is of interest.

det H @y o(1)

= 6.22
det Hfree (I){\”ree ( 1) ( )
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To sum up the method, we have a 1D Schrodinger operator M. It is defined
in the interval [0, L]. We want to find its determinant but we can not calculate
its eigenvalues. Then we write two differential equations; one for M and one for
Mree,

M®(z) =0
Mfreeq)free<m> == U. (623)
Boundary conditions are ®(0), ®f..(0) = 0 and ®'(0), ®’,..(0) = 1. Then
det M ®(L) (6.24)

det Mfree - (I)free(L).

6.3 Calculation of the free energy with GY
method

Helmholtz Free energy, A, of uniform Bose gas and of black soliton are

1 1 1
Aps = ——=InZy; = ——In [ e 00 2
b 5 n 7z, 5 n (e E[det S§b5> (6.25)
1 1 1
Ay =—=InZ,y = ——1In [ e 0w 2
u 5 n 5 n (e I;Idet Sg,us> (6.26)

respectively where the subscript us is for uniform solution and bs is for black

soliton. We can calculate the difference between

1 1 1 1
Aps = —= | —Soss 1 =Agps——= > 1 6.27
b 3 < 0,bs T ; na Sg,m) 0,b E ; o S ( )

1 |
— Agus — = S 2
) Ous 75 2 Mg (6:28)

1 1
Aus =—1| -5 us 1
B < Ous ; " det 57

2,us

as

1 1 1
Abs - Aus = AO,bs - AO,us - B |: In - In :| (629)
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where Ap s and Agps are the ground state energies of uniform Bose gas and of

black soliton respectively which we have calculated in Chapter 4 and Chapter 5

as
Uy N2
A us
% oV
Uy N2 4h
Ao ps 3/2 6.30
0. oV " 3y/mU, (6.30)

The difference is then

4h 3/2 1 n n
Abs — Aus == mu — E Zln (1/det SQ,bS/l/det SQ,’LLS)

4h det S5,
= . 31
3\/mU0 B Z (det Sgbs> (6.31)

We can think S5 ,s,the action of uniform solution, as the normalized functional
of the free system, V(x) = 0, and Sy s as the desired one. Then we can perform

GY method.
det M det 53,,  ®}.(2L)

det Myyee ~ det 57 - on (2L)

2,us

(6.32)

where ®}.(2L) and @' (2L) are the solutions of the corresponding initial value
problems. We calculate @ (2L) analytically and ®7,(2L) numerically. The exact

second order ground state energy can be found then with

L 4h e ] on (21)
Ebs_Eus—jl}Lr%]Abs_A —hm{ ——;ln(s— )

We see how to write the partition function in terms of the determinant of S,
in Chapter 5, for black soliton. We follow the same way to obtain it for uniform
Bose gas. For uniform gas we do not need to do that calculation since we calculate
the second order energy of Bose gas without referring GY method. But we need
that to determine the energy of soliton since GY method does not provide a

determinant itself rather a ratio of two.
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6.3.

The

1 Partition function of uniform Bose gas

general open form of action is written in Chapter 3. When we plug the

wavefunciton of uniform solution, /ngd,0v/3, (in Matsubara frequancy domain)

into

form

this general form of action we get rather a long equation. It will be in the

S= S
+5
+ S, (6.34)

where Sy goes for zeroth order action in fluctuation ¢!, S; for first order action

in ¢!, and lastly Sy for the second order:

-1
AZ Al’(z an — M)nofswmodwmoﬁ + Z Wﬂo(swmoéwmgﬁ(l -2+ 1)

25
E 5wn+wm,noﬁ wn,05wm 05%,05%,)

'wp"‘w'r
wn m,p,r

+ AZ Az ( Z iwn — 10) (/100 0) (Vb + D)

—1 —1 —1
+ Z QmA 2 V 5wn7 )( n,r+1 Qw;lz,x + wi,z—l + wn,x - 2wn,x + wn,x)

1 1
X 10/ T000w,,,00w,,00w,,0%p 2+ 100/ T000w,,,00w,,,00w,,00) &
j2 5 Db,

—1 —1
+ ng vV n05wn,0(5wp,05wr,0wm7x + no V noéwm,ﬂéwp,05wr,0wn7g;:|
+Azm(z (it — T,
1 -1 1 -1 1 Uo
+ Z QmA{EQ ¢n,m¢n,r+1 - an,zwn,z + ¢n,x¢n,x—1) + % Z 5wn+wm,
11 -1 1 -1 1
[no%n,o%m,o%@%,x + 100w, ,00w,,00 1 2 U2+ 100w, 00w, 0V 2 Vp 2
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—1 —1 4 —1 —1
+ noéwm,ﬂdwmown,xwr,q; + noéwm,oéwr,ﬂwn,zwp7x _I_ noé’u}p,oéwr,owm,an7x:| ) > *

(6.35)

After doing a few line simplifications Action looks like the following

N “n2UB & —1
SzAZAx( 02 4 AZAw{—Mx/n_o(%,ﬁ%,x)
s=0
U —1
1 gl 1 Z0 1
+ omAz2 0 (%,xﬂ 29, + %,x—l) + 3 nov/no(Yo . + ¢O,x):|

—1 —1

s=0 Wn,

+ (350000l 42 bt + 2 T bt + St m})

(6.36)

Sp gives the known first order energy, S; is zero. Sy is

N
n _A A —1 . 1 4U07’LO 1 1
Su,2 - Z T [wn,m (an Y + mAx2 + 26 ) n,T + n,az(

U -1
Ogo)w—nx +wn (E(2 Azr 2)¢TIL,.’L'+1

— -1

+ wi,x(QmAxQ )@D'}L,x—l]

Uong

2p

)¢£n,w

r=1

+ P

N
—1 n n —1 n_l n_l
=AY Ax [, L), + 0 Ly, b, LA+ L, ] (6.37)
=1
y=1
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where L7, Ly, Ly, and L} are the matrices respectively given by

[ f(n) ¢ o ... 0
c  f(n) 0
Ly=10 c f(n) ¢ 0 (6.38)
| 0 0 c  f(n)]
-Uono/QB 0 0 ]
0 U0n0/2ﬁ 0
Ly = 0 0 Uono/23 ... 0 (6.39)
0 . : 0 Upno/28]
Ly =13 6.40
Ly =1L} (6.41)
where
- 1/, 1 4U0n0 . —1
f(n) = 5 (an N + 2 ) and €= 52 (6.42)
We define ®
1
D, s = [w_fn“:j , (6.43)
and write partition function as
1 2N
7 = exp{—Soss} [ | [ / Ndwdaexp{—A > Axcplmgycpl}
n rz=1,y=1
1
= eXp{_SO,bs}];[ T (6.44)
where
LY LY
Lr=|"t . (6.45)
Ly Ly

The corresponding initial value problem for the uniform solution case is
Lzsq)n,us =0 where q)'mus(o) =0 and CI)’ (0) =1:

n,us

1 L Lr 1
L"®, . =0; L' || =0; oL =0 (6.46)
1n,us Lg LZ wln,us
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qu‘bl/}}@,us + Lgﬁn,us =0
ng}z,us + LZJn,us =0

We rewrite the matrices

102 (jw, — ) N Uong)
2 02 2 I}
Uono

268

L} =L} = A1( -

L =L} = Al

The coupled initial value problems becomes

Uoyno—

1 82 [an - M UOnO

U()’n,(] 1 82 — @wn — U U()’I"LO -
A- 25 w+A~—§@w+A[ ot | =0
can be simplified to
i . 2UO”O UOnO—
=(tw, — p+ +
v =(iwn — et == )+ =
— . 2U0n(] — U()n()
=(w, — p+ +
v =( It 5 )¢ B (G
and then to
W' =ayp + by
& =a+ by

(6.49)

(6.50)

(6.51)

(6.52)

where a = (iw,, — p+2Uyng /) and b = Uyng/B. The subscripts and superscripts

of ¢ are dropped till the end of this calculation.

We seek for the solutions of the form

¥ =1 cos(kx — ) )= ﬁcos(kx —a)

(6.57)

After plugging them into the above coupled differential equations, we get

— k%) cos(kx — o) =ar) cos(kx — a) + l@ cos(kxr — )
—k‘2$ cos(kr — ) :aicos(k‘x — ) + b cos(kz — ).

o6

(6.58)
(6.59)



These two gives
~o—(a+k*)? 4 b?
LIRS
where k; = /b —a and ky = v/—b — a are the wavenumbers since 1& = $ =01is

the trivial solution that we are not looking for. Here we neglect —k; and —ko

=0 (6.60)

since cosine is an even function. k; and ks corresponds to the normal modes of
the system and the most general motion of such a system is a linear combination

of the two normal modes:

—Vb—a|=0 =~

Wb = Pr cos(krz — ) = —b, cos(krz — o) (6.61)
and
k=v—b—a|=0 =1
Wb = P cos(kat — a2) = By cos(kat — cv2) (6.62)
as

¥ =1y cos (\/Hx — oq) + 1y cos(x/ﬂx - 042) (6.63)
P =— @/A)l COS(MQZ — a1> + @/;2 cos(Mx - a2>. (6.64)

The unknown coefficients 1[)1, 1@2, a1 and a9 are to be determined from the
initial conditions

®(0)=0 and @'(0)=1. (6.65)

But these are not enough, we need four. Therefore we add two more initial

conditions, namely the complex conjugates of the original two:

$(0)=0 and 9(0)=1. (6.66)

The relation between ®(z) and ¢ (x) via the corresponding matrix is

O(x)=9¢(x) if z<L, ®(z)=yY(x—L) if z>1L, (6.67)
which gives ®(0) = ¢(0), ®'(0) = +'(0) and ®(2L) = ¥(L).
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We rewrite the initial conditions

and apply them to the general solutions

1&1 cos(a) + Vo cos(az) =0
—klz/Ajl sin(—ay) — k21/;23m(—042) =1
— )y cos(a) + 1y cos(ay) =0
klzﬁl sin(—ay) — kgzﬁgsin(—ag) =1.
Adding the first and the third gives
20 cos(az) = 0, az = (ng + %)73
and subtracting them gives

2, cos(ay) = 0, a; = (ng + %)71

(6.68)

(6.73)

(6.74)

sin(ay ) and sin(ay) can be written as (—1)™ ! and (—1)"2*! respectively. After

a few line of calculations .
~ 1= kathy(—1)"
Yy = o
k(=1)m

are X
1 1 — kgthy(—1)"2
1
k‘l(—]_)nl

are obtained. From these, 1&1 and iﬁg are found as

(=17 (-1 = 1

) i — Iy
— (=1 —2 "= — z
= e T T )T

) Kk 1
= (=1)r2L ™ = Z
Vo= CD s 2T (e g)m

o8

(6.75)

(6.76)

(6.77a)

(6.77b)



We need ®,(2L). It is obtained as

D,s(2L) = (L) = —tpy cos(kr L — ar) + 1y cos(ka L — o)
(~1) ks — ko)
— kL —
it kg sl —a)
(=1)"2(kf + k1)
Kk + ks
k‘; - ]{?2 . kr + kl
= 2T Gn(ky L)+ LT
K kSR D) e

cos(koL — ag)
sin(koL) (6.78)

where k; and ko are

2
ki =Vh—a= \/UO”O - (mn o+ UO"O) = \/u — iw, — UOB”“ (6.79)

o}
ky =V/—b—a = \/— Uono _ (iwn — i+ 2U°n°> = \/u — W, — SUﬁonO- (6.80)

8

6.3.2 Partition function of black soliton

We also need ®,5(2L). The corresponding initial value problem for black soliton

is K @, ps = 0 where @,,;,,(0) = 0 and @], (0) = 1:
1 Kn Ko 1

K'®,,, =0; K [_1"””] = 0; [ ! 2] [_1”7"8] =0 (6.81)

n,bs Kg Kzll w n,bs
K{lzﬁ'rlz,bs + K;En,bs =0 (682)
ngbrlz,bs + KZEn,bs =0 (683)

The matrices are found in Chapter 5 as
1 19%  (iw, — ) x
K=K} =-Al(—- = = 2tanh® [ —— 84
1 4 5 ( 28I2 + ) + U0|'lﬂ0‘ an (\/ﬁ&) ) (6 8 )
U() X

Ky =Ky = Al | —|t|* tanh® (—» : 6.85
R (6.85)

29



The coupled initial value problems becomes

1 0? Wy, —
A 5ot + AR 4 Uylu | tank? <\/“i—2€) ]
UO X —

Uo 9 2 T 1 62 —

+ A[Zw”; £ 4 Uplol? tanh? (%g) Jo=0.  (6.87)

It is hard to solve these equations analytically. So, we solve them numerically

by using 4th order Runge Kutta method.

6.3.2.1 4" order Runge Kutta method for coupled differential equa-

tions

4t order Runge Kutta method is used to solve differential equations numerically.

Consider a differential equation

Yy _
— = f(y,t) (6.88)
. k1, ko, k3, and k4 are defined in intermediate steps as

ky=dt- f(yn,tn)

k At
ko Zdt-f(yN—FEl,tN—i—?)
k At
ks :dt-f(yN+§2,tN+7)
ky=dt- f(yn + ks, ty + At) (6.89)

The method gives yy41 in terms of yy as

ok Rk ks kg
yN+1—yN+6+3+3+6. (6.90)
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We have two coupled second order differential equations. They can be written

as four first order differential equations,

dyl
_— t fr
o 9(y2, 1) Yo
dy _ _
d—tl = g(Yy 1) =7,
dy _ _
d—; = f(y1, 71, 1) = h(x)y: + s(z)7,
dy _ _
d—; = f(H1, v, 1) = h(x)y, + s(x)m
where
= ¢
Yy = E
and where

h(z) = Q[iwn2_ £y Us|to]? tanh? (\/_i%) ]

s(z) = 2 (%Wo\%anhz (\%J)

(6.91)

(6.92)

(6.93)

We modify the intermediate steps for coupled differential equations by follow-

ing the original trace in the method,

kin=dt- g(yan,tn)

kor = dt - g(Ta v, tn)

k31 = dt - f(yin, U1n» )
S

kg =dt- (U N, Y18, tN)
k At
ks = dt - g(y27N + %,tN + 7)
_ k At
koo = dt - g(Jon + %JN + 7)
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kll

k21

At

ksp =dt- fy1n + — 5 ,§1,N+7 tN+7)
_ ko k At
ki = dt - f(U, n + 21>y1N+ ;t +7)
k At
klg =dt- g(ysz + %,t]\f + 7)
k4o At
ks =dt - g(Yon + —- 5 N+ =)
k koo At
ksg =dt - f(y1,n + ;2@11\/‘*‘ 5 tN“‘?)
k k At
k?43Idt'f@l,N“‘£7Z/1,N+£,tN+—)
2 2 2
k'14 = dt . g(yzN + k33,tN + At)

k24:dt'
kgy = dt - f
kag = dt -

9o n + kaz, tn + At)
Yi,n + ki3, Uy v + Kos, ty 4+ At)

At each step, increments are given as

le+1—y1N+%+%+%+%
y1N+1—y1N+k6 +%+%+%
92N+1—?/2N+%+%+%+%
y2N+1_y2N+k6 +%+%+%

(
f@yn + ks, y1nv + ks, ty + At).

(6.95)

(6.96)

(6.97)

(6.98)

By using this code we get ®p5(2L). The corrected ground state energy up to

the Bogoliubov level of order is

Ebs -

Eus = lim Abs —
T—0

A,s = lim
T—0

= lim {
T—0

4h
3v/mUs

62

4h 3/2 1
3y/mUs"" _len(
,LL3/2 . %IDH (

o (2L)
oy, (2L)

us(2L)
@5, (2L)

))
)

(6.99)



¥ (x)

Figure 6.3: ¢(z) for first 20 modes

In the figure, the divergence of the higher modes are seen. We should perform

a renormalization like in the case of uniform solution.

6.4 Conclusion

Corrections to the ground state energy of a Bose gas which calculated via mean
field Hamiltonian can be added by considering the contributions of quantum fluc-
tuations. Bogoliubov de Gennes equaitons possesses information of these fluctu-
ations. In the case of uniform gas, BdG equations can be solved analytically and
the dispersion relation of all modes can be obtained. By performing a renormal-

ization, the ground state energy of uniform gas is calculated.
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In the case of a Bose gas with a single stationary dark soliton, BdG equations
become complicated and can not be solved analytically for all modes. Numer-
ically, the contributions of only a few modes can be calculated. In this thesis,
we formulate the usage of Gelfand Yaglom method to calculate ground state en-
ergy up to the Bogoliubov order from quantum partition function. We solve two
coupled initial value equations numerically but the rest part of the calculation is
analytic. We should perform a renormalization like in the case of uniform gas in

the next step.

We calculate the corrected ground state energies for a Bose gas with zero ex-
ternal potential. As further studies, we will generalize our calculation for trapped
Bose gas to compare the result with empirical values since experiments are done

for trapped gas in harmonic oscillator potentials.

Moreover, we will implement this usage of Gelfand Yaglom method in the
calculation of ground state energies of collective excitations for Fermionic con-

densates.
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