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ABSTRACT

SHIPMENT CONSOLIDATION UNDER DIFFERENT
DELIVERY DATE OPTIONS FOR E-TAILING

Tuğçe Vural

M.S. in Industrial Engineering

Advisor: Prof. Dr. Nesim K. Erkip

June, 2015

In this thesis, we consider a shipment consolidation problem for an e-retailer company which

has two type of services for its customers: “regular” and “premium”. In the regular service,

the e-retailer guarantees a delivery time to its customers. However, in the premium service,

customers get their items in negligible or zero amount of time, such as same-day delivery,

supplied physical inventories located sufficiently close. When a shipment decision is made, it

serves both customers of the regular service and small inventories for the premium service.

In our study, we analyze shipment consolidation operation given these two services for both

deterministic and stochastic demand structure. In the deterministic demand problem, our

average profit maximizing model decides the optimal service choice; we provide optimality

conditions, an algorithm to find optimal solution, structural analyses and numerical results.

In the stochastic demand setting, we evaluate the problem for the regular service which has

Poisson demand. Then, we expand the problem by including the premium service which has

deterministic demand. For this problem, we present an approximate model for a modified

version of the policy used for regular-service-only problem and compare the performance of

the approximation with a simulation.

Keywords: E-retailing, Shipment Consolidation, Promised Delivery Time.
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ÖZET

FARKLI SERVİS SÜRELERİ ALTINDA E-TİCARET
ŞİRKETLERİ İÇİN SEVKİYAT OPERASYONU

Tuğçe Vural

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Nesim K. Erkip

Haziran, 2015

Bu tezde, müşteriye malı gönderme özelliklerinin “normal” ve “özel” servis adı altında

farklılaştıran bir e-ticaret sirketi için sevkiyat konsolidasyonu problemi ele alınmıştır. Nor-

mal serviste e-ticaret şirketi müşterilerine belli bir teslimat süresini garantilemektedir. Özel

serviste ise şirket satın alınan ürünleri anında sayılabilecek bir hızla müşterilerine yeter-

ince yakın olan bir envanterden tedarik edip teslimat gerçekleştirilmektedir. Herhangi bir

sevkiyat kararı verildiğinde, sevkiyat aracı hem normal servisi kullanan müşterilere satın

aldıkları ürünleri taşımakta, hem de anlık tedariği mümkün kılacak müşterilere yakın envan-

tere ürün taşıyabilmektedir. Çalışmamızda hem bilinen, hem de rassal talep için sevkiyat

konsolidasyonu operasyonu iki servis çeşidi de göz önünde bulundurularak analiz edilmiştir.

Bilinen talep probleminde, modelimiz en iyi servis çeşidine karar vererek ortalama karın

maksimumunu bulmaktadır. Bu problem için, eniyilik şartları, en iyi çözümü bulan algo-

ritma, yapısal analizler ve numerik sonuçlar sunulmuştur. Rassal talep modelinde ise, normal

servisin müşterilerinin Poisson dağılımından geldiği varsayılmış ve problem bu varsayımın

üzerinden sadece normal servis için değerlendirilmiştir. Sonrasında, probleme özel servis, bi-

linen bir talep yarattığı varsayılarak dahil edilmiştir. Genişletilmiş problem için ise, normal

servis için kullanılan politikanın bu duruma uyarlanmış bir biçimi altında çalışacak yaklaşık

bir analitik model önerilmiştir. Yaklaşık modelin performansını gözlemlemek için bir benze-

tim modeliyle karşılaştırılmıştır.

Anahtar sözcükler : E-Ticaret, Sevkiyat Konsolidasyonu, Teslimat Süresi.
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Chapter 1

Introduction

As the Internet has brought a new channel for communication, many traditional businesses

got benefit from it to reach their current and potential customers. Using this new channel

not only provided a link to better communication for businesses but also cultivated new ideas

about alternative ways of operating them. At the end of 1990s, one of the emerging new

business ideas on the Internet was observed in converting traditional retailers into online

shops. The basic idea is to carry brick-and-mortar retailing into the Internet by presenting

products, making agreements and completing transactions online while keeping some assets

such as inventories and distribution systems for physical operations. As a result, the concept

of e-retailers (electronic retailers) came into play.

Today, Amazon.com, Alibaba, eBay, Peapod, Etsy, Dell, Walmart.com are some of leading

e-retailers. Their customers visit e-shops, choose their items, make transactions via internet

and their orders are shipped to them. According to the Forrester Research eCommerce

Forecast, online sales are expected to yield $334 billion in 2015 and $480 billion by 2019 in

US [1]. Additionally, this pattern for expected increase of sales in e-retailers is also foreseen

for many countries. When this is the case, to get bigger slice in the market, e-retailers not

only should use the Internet efficiently to provide what customers may want to purchase

but also should manage their distribution channels effectively to complete their agreements

with their customers. Therefore, today taking a place near the top in the competition of

e-retailers depends on both putting high customer expectations and fulfilling them in terms
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of physical attributes in their agreements.

One of the key areas of this competition where the e-retailers are battling to beat each

other, and perhaps the most significant one, is the promised delivery time. Almost all

world wide e-retailers, informs their customers about expected delivery dates and sometimes

provides exclusive services such as same-day or two-day shipping. This is such a competitive

area that, in 2014, Amazon.com introduced their new patent “Method for Anticipatory

Package Shipping” which is basically a method to start delivering items that are anticipated

to be purchased by customers [2]. It is a very futuristic idea based on forecasting and has not

being applied yet. Of course, one would expect that a powerful inventory and distribution

system will be the backbone for its realization. Furthermore, an initial step for such kind

of applications is announced in May 2015 and Amazon.com introduced their free same-day

delivery option for only a group of items that is exclusively available for the members of

“prime service”. When this is the case for Amazon.com, to be able to compete, retailers try

to optimize their supply chain operations by opening new warehouses, finding ways to place

inventories as close as possible to potential customers, and make use of efficient logistics

alternatives.

Directed shipments for an order, though, creates better service levels in terms of the

customer satisfaction, they come with very high costs. Moreover, these costs may not be re-

flected to customers as the benchmark service level in the market already has high standards.

Therefore, managing distribution channels under better utilization of delivery options may

result with huge savings in operational costs of e-retailers. We consider a stylized environ-

ment with a single product distributed via a single distribution point, say a fulfillment center.

”Regular Service” specifies those customer orders within a specified delivery time. The ful-

fillment center may ship some products, without an actual order realized, to an inventory

location, closer to the location of potential customers and may satisfy a group of customers

with a shorter (usually negligible) delivery time. We call this as ”Premium Service”, and

the customers of the Premium Service may be a part of the regular customer set, as well as

additional customers may be attracted with the more favorable delivery option. The issue of

shipment consolidation enters the picture here: How one should plan for a shipment, which

consists of products shipped to Regular Service customers, and products shipped to inven-

tory for Premium Service customers? We have two constraints: specified promised delivery

dates for Regular Service customers should be obeyed, as well as the capacity limitation

2



of the truck. We introduce other details at the end of the chapter. In this study, we are

interested in the cost saving opportunities in terms of shipment activities without exceeding

the customer service level which is the maximum length of delivery time.

1.1 Literature Review

In this section, we briefly mention about the related preceding studies in the literature in

terms of both their settings and ways of approaching to their solutions.

1.1.1 Background in E-tailing

Basu and Muylle [3] separates an e-commerce activity into five steps: search which is the

activity to find products in the web, valuation which is the defining step of possible prices and

deciding one of them to buy the item, authentication which is the agreement part between

the buyer and the seller, payment where the seller gets the payment, logistics which is the

delivering the item physically and lastly support which is the supporting the buyer after

sale. The scope of our study is included only in the operations of logistics for e-commerce

activities.

Any operation regarding logistics requires a strong distribution network to be able to

fulfill expectations of customers. Li and Muckstadt [4] defines an e-retailer’s distribution

environment as multi-echelon distribution system. In detail, from central warehouses to

regional centers, they may have various types of inventories, all can be considered as customer

fulfillment centers. These warehouses also carry various types of products. Therefore, there

is not only a direct stream from inventory to customers but also in between warehouses

to keep the balance between inventories and be prepared to any possible future demand.

Rabinovich and Evers [5] also discusses this problem and tries to provide an insight. Hence,

considering inventory balancing in terms of being responsive operationally to any order is

also major problem itself in logistics of e-retailers.

Another dimension of interest regarding distribution system of e-retailers are lead time of

3



order deliveries to customers. De Koster [6] states that it is one of the substantial parts about

meeting the expectations of customers. Rabinovich [7] identifies one of the performance

measure for inventory management as the ability to satisfying customer expectation with

preventing high level of accumulations in inventories. This can be realized with an intelligent

warehouse distribution system which provides direct fulfillment of orders to avoid from longer

delivery times [6]. Therefore, general attitude towards deciding the right fulfillment center

among warehouses for an order is to choose the closest available warehouse to the order

destination. Furthermore, today delivery lead times not only has to fulfill the customer

expectations, but also be able to compete with other firms. Even if the market still has

promised delivery times in days or weeks, e-tailing evolves to promise their customers same-

day deliveries. Hence, the importance of quick response to demand increases. However, this

short delivery time constraint triggers high shipment costs. Order deliveries can be operated

by e-retailers’ own fleet or by third party logistic firms such as UPS, FedEx etc. In either

case, the main concern for the e-retailer is to keep its delivery time promise to be able to

protect and increase its market share. Thus, sometimes at the expense of high shipment

costs, companies are willing to deliver orders in without exceeding the promised delivery

time that they indicated to their customers.

Recent studies on e-retailers generally concentrate on inventory allocations to find ways to

prevent high shipment costs. Since there is generally an uncorrelated geographical demand

and supply distribution in the real world, a wise item allocation to warehouses, at least,

may prevent supplying an item from a very distant warehouse with high costs. Xu et al.

[8] discusses the order fulfillment decision of an e-retailer company by considering periodic

evaluation of customer and fulfillment center assignment and provide a heuristic to minimize

costs. Furthermore, Acimovic and Graves [9] points out the shipment decision problem of

an e-retailer company by considering inventories located in different regions. They present

a heuristic method that considers possible future costs and minimizes current outbound

shipment costs. Also, Acimovic and Graves [10] emphasizes replenishment policies and right

product allocation problem in inventories or fulfillment centers of an e-retailer company to

minimize outbound shipment costs while considering geographical mismatch of supply and

demand. On the other hand, Aksen and Altinkemer [11] analyses hybrid brick-and-mortar

retailing business in which they have both walk-in and online customers. They consider the

problem under classic vehicle routing concept between warehouses and customers. Yanık et

4



al. [12] carries this approach one step ahead and examines premium products in e-tailers such

as groceries that should be delivered within the same day under a multi-vendor environment.

As the literature of e-retailer distribution system concentrates right and practical in-

ventory allocation decisions, there is a lack of study on shipment operations to customers.

Our interest in logistic operations of e-retailers is the last stage of the distribution system.

Specifically, in our study, we focus on the shipment operation between a fulfillment center

and customers.

1.1.2 Idea of Shipment Consolidation

Another stream of research that touches our study uses the idea of consolidation. Con-

solidation is a strategy in logistics to attain economies of scale in costs per unit carried.

The main aim behind the consolidation idea is lowering the cost of individual dispatching

by holding items until a predefined threshold. Therefore, consolidation policies may have

various characteristics.

Hall [13] classifies consolidation operations in three major groups in terms of physical

location: terminal consolidation, vehicle consolidation and inventory consolidation. In the

terminal consolidation, items are brought from different locations to be loaded in a temporary

terminal and sent via new vehicles to different locations such as cross-docking. On the other

hand, vehicle consolidation is defined as a type of milk run and the consolidation is based

on collecting and distributing items. Inventory consolidation is basically locating different

items in the same place, and dispatching them via a single vehicle. From Hall’s [13]’s

definition, shipment consolidation is the combination of concepts regarding inventory and

vehicle consolidation: It uses truck’s capacity as an inventory, and releases shipments in the

same truck when a threshold is reached. Furthermore, two major groups for cargo types are

identified in consolidation strategies by Higginson [14] as common and private carriages. In

private carriage, transportation vehicles are operated within the same company, and costs

are generally fixed per dispatching operations. On the other hand, if the producer company

does not have vehicles and shipment operations are managed by an outside company, the

carriage type is considered as common type. In that case, costs my have discount rates

according to the agreements between the outside and the producer companies.
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The main incentive behind the shipment consolidation idea is to get benefits from

economies of scale in per items carried. Higginson [14] states that shipment consolida-

tion also increases the control on transportations by reducing handling operations of items

and resulting more dedicated and direct deliveries. Ülkü [15] provides an insight that an-

other benefit of consolidation can be observed in environmental issues considering carbon

emission. On the other hand, more direct and fast deliveries are achieved generally by in-

dividual and expensive shipments. That is why, a shipment consolidation should always

consider customer service level. Moreover, some shipment consolidation policies do not only

result longer waiting time but also may cause uncertain shipment durations, which is also

an another drawback. Additionally, consolidation effects inventory levels and holding costs

negatively. Managers may need to find extra spaces or even have to keep larger safety stock

caused by uncertain shipment times. As a result, planning and managing a good shipment

consolidation policy requires elaborated administrative effort.

Even though, defining a consolidation policy has many dimensions, according to Çetinkaya

[16] they are separated into two branches in terms of implementation: pure and integrated

consolidation policies. The pure consolidation policies include only consolidation decisions

without including managerial concerns of other operations. If the extend of a consolidation

policy contains a coordination between other operations such as inventory, it is called in-

tegrated consolidation policy. Specifically, integrated inventory and shipment consolidation

policies are popular as they are applied by coordinating firms for supply chain operations.

In the literature, there are vast amount of works combining retail activities with ship-

ment consolidation ideas. Especially, vendor managed inventories (VMI), which is an agreed

operation between a supplier and a business to keep inventory in certain level by providing

information about business’ inventory levels, attracts attention in recent years. Çetinkaya

et al. [17], Axsäter [18], Çetinkaya and Lee [19], Ching et al. [20], Çetinkaya et al. [21],

Kutanoglu and Lohiya [22], Mutlu and Çetinkaya [23], Çapar [24], Kaya et al. [25], ana-

lyze shipment consolidation problem under different VMI concepts. Additionally, there exist

other retail activities which are studied under the shipment consolidation structure. Hong

and Lee [26], Hong et. al. [27] study price dependent demands, where demand is a function

of price, under integrated inventory and shipment consolidation activities. Besides, another

concept in retail activities that got attention recently is the promised delivery time. It is the

length of delivery time that the company guarantees to their customers as promise, and in
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some studies it is mentioned as quoted delivery time to customers. Ülkü and Bookbinder[28],

Ülkü and Bookbinder [29] focus customer sensitivity to promised delivery time in shipment

consolidation problems.

Many practical examples regarding shipment consolidation policies exist in literature (Hall

[13], Higginson and Bookbinder [30]) Most popular operational rules are quantity-based,

time-based and time-and-quantity based policies. Quantity-based policy implies that a ship-

ment should be realized when the indicated accumulation of items is reached in terms of

quantity or weight. As the load in a shipment is one of the cost determining factor, quantity-

based policy have long been take a place in the literature. (as examples see: Jackson [31],

Gupta and Bagchi [32], Çetinkaya and Bookbinder [33], Hong et al. [27]) On the other hand,

time-based policy limits the waiting time to wait the accumulation of items and when the

specified duration ends the shipment is realized. (as examples see: Jackson [31], Çetinkaya

et al. [17], Çapar [24]) By limiting the consolidation time length service levels in terms of

time are controlled. Lastly, time-and-quantity based or hybrid policy enforces the realization

of shipment either when the target load or the specified time limit is reached. (Bookbinder

and Higginson [34], Mutlu and Çetinkaya [23]) In a hybrid policy, both acceptable service

levels and scale economies are considered.

Consolidating shipments received considerable an attention since 1990’s to search for an

effective way of operating cargo trucks. Early works generally focus on to find practical jus-

tification for shipment consolidation operations. Jackson [31] uses simulation to understand

effects of consolidation on holding and fix costs in terms of order volumes and gives an insight

about consolidation cycles under time-based, quantity-based and hybrid policies. Burns et

al. [35] compares direct shipping operation for each order with the strategy of dispatching

orders in a truck in an environment where there is a single supplier and multiple customers

located in different regions. They develop an analytical method to minimize the distribu-

tion cost that is caused by inventory carrying and transportations. Gupta and Bagchi [32]

computes an optimal lot size in a shipment consolidation to minimize cost. All these studies

advocate the effectiveness of shipment consolidation in terms of cost minimization. Earlier

studies are reviewed by Çetinkaya in [16].

Consolidation literature can be reviewed in terms of the demand characteristics consid-

ered. There are two main distributions used to describe demand: a distribution that describes
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the time between two consecutive customer orders, and another distribution that describes

the intensity of a customer order (in other words number of units demanded per order).

Markovian structures are employed by several studies [36]. (see examples: Minkoff [37],

Higginson and Bookbinder [38], Bookbinder and Higginson [34], Cai et al. [39], Çetinkaya et

al. [17], Çetinkaya et al. [40], Mutlu et al. [41] ) A discrete time Markov Chain represents

the demand encountered at each discrete time unit (time between two consecutive customer

demand is constant, and intensity of demand at each point is represented by a discrete dis-

tribution). A continuous time Markov Process may represent the demand. In that case,

the time between two consecutive orders are exponentially distributed random variable. The

intensity of demand can be unit (in that case we have Poisson distributed demand) or can be

represented by a discrete distribution (in that case we have a compound Poisson distribution

with the discrete distribution being the compounding distribution). Specifically, Poisson

distributed demand is considered in many studies including: Çetinkaya et al. [17], Ching et

al. [20], Kutanoglu and Lohiya [22], Hong et al. [27], Çapar [24], Mutlu and Çetinkaya [23],

Mutlu et al. [41], Çetinkaya et al. [42], Marklund [43], Çetinkaya and Bookbinder [33]. On

the other hand, Bookbinder and Higginson [34], Higginson and Bookbinder [38], Çetinkaya

and Bookbinder [33] and Çetinkaya et al. [40] are examples who constructed their problems

with compound Poisson distribution.

For dynamic and stochastic shipment consolidation problem, Minkoff [37] considers

Markovian approach to model of serving inventories of different customers with various size

of vehicles. Higginson and Bookbinder [38] approaches the shipment consolidation problem

with discrete-time Markovian Decision Process (MDP) model. In their model, with the ar-

rival of each customer the shipper has to make a decision regarding realizing the shipment

or not. Their aim is to minimize the cost of per shipment in pure shipment consolidation

structure by considering the problem for both private and common carrier. Another study of

Bookbinder and Higginson [34] evaluates hybrid policy by using stochastic clearance system

under private carrier assumption. Bookbinder et al. [44] considers the problem for private

carrier under discrete-time batch Markov arrival process. For an arbitrary time accumu-

lated weight of arrived orders in the system and total consolidated weight in a shipment

cycle are analyzed and they present a computational method for such performance mea-

sures under time-bases, quantity-based and hybrid policies. Cai et al. [39] also employs

discrete time batch Markovian arrival process in shipment consolidation problem. In this
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study dispatching decision is left as a function in the model. Lastly, Kaya et al. [25] applies

MDP in a stochastic environment where a single supplier and a retailer exist by analyzing

quantity-based, time-based and hybrid policies.

Çetinkaya et al. [17] employs a shipment consolidation problem under renewal theoret-

ical model for supplier operating VMI’s. In its setting, the objective is to minimize the

expected long run average cost of inventory replenishments under time-based policy by de-

ciding both the optimal shipment release interval and the optimal replenishment quantity.

An algorithm to calculate exact optimal values for the problem of Çetinkaya et al. [17] is

provided by Axsäter [18]. Later, Çetinkaya et al. [40] addresses the problem of [17] with

quantity-based consolidation policy having the construction of general compound renewal

process for demands. Moreover, Çetinkaya et al. [21] compares numerically time-based and

quantity-based policies mentioned in Çetinkaya et al. [17] and validate that quantity-based

policy outperforms in their cost minimization setting. They also propose hybrid policy and

provide comparisons with time-based and quantity-based via simulation. Another integrated

inventory and transportation problem with similar demand setting to Çetinkaya et al. [17]

is modeled in multi-facility and single-echelon environment by Kutanoglu and Lohiya [22]

under time-based consolidation policy.

Under VMI context in Ching et al. [20] for time-and-quantity-based consolidation policy.

It gives closed form version of the optimal solution regarding the sum of the dispatching,

the transportation, the inventory and the re-order costs. Furthermore, Çetinkaya and Book-

binder [33] also considers to apply both time-based and quantity-based shipment consolida-

tion policies by covering cost minimization objectives for common and private carrier settings

separately. They present analytical results for the optimal waiting time for time-based pol-

icy and the optimal dispatching quantity for the quantity-based policy. Even if they assume

exponential order weight distribution, their results are applicable for renewal theory setting.

Mutlu and Çetinkaya [23] focus on finding a solution approach regarding optimal inventory

level and outbound shipment scheduling policy parameters under the existence of common

carrier costs. They employ time-based and quantity-based dispatching policies and provide

a search algorithm for policy parameter for given bounds.

One of the closest study to ours is presented by Mutlu et al. [41] considering pure con-

solidation problem with hybrid shipment consolidation policy by having Poisson distributed
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demand. Their objective is to minimize the total cost which includes expected cost per ship-

ment and expected waiting cost of shipment load. The expected shipment cost constitutes fix

cost and a loading cost per demand. The capacity of shipment per truck is not incorporated.

Furthermore, Mutlu et al. [41] derives an analytical expression for the optimal value of the

objective function. They also present an analytical comparison of three shipment policies

regarding their performances. On the other hand, Çetinkaya et al. [42] focus on the service

based comparison of different shipment policies. Order arrivals are distributed as Poisson

and they consider maximum waiting time and average order delay as service measures. Their

results show that under fixed policy parameters, hybrid policy outperforms the time-based

policy in terms of maximum waiting time. Considering the average order delay, again hybrid

policy outperforms both quantity based and time based policy separately.

Another stream of VMI concept studies on nonidentical retailers. Marklund [43] analyze

an inventory replenishment and shipment consolidation between single supplier and multiple

nonidentical retailers. The demand is assumed to be Poisson distributed under time-based

dispatching policy. Marklund [43] provides a two heuristic method to to identify expected

backorder and holding costs. Furthermore, Çapar [24] also use time-based policy to operate

shipment activities between an outside supplier, a distribution center and nonidentical re-

tailers where each retailer again has Poisson demand. An optimization method to obtain an

optimal order-up-to level for retailers and optimal replenishment quantity for the distribution

center is provided by them.

Recently, the literature with Poisson demand setting in retail activities is expanded for

more complex demand functions: price effecting the demand; quoted delivery time effecting

the demand. Hong et al. [27] considered integrated inventory and transportation problem

with pricing concern under quantity-based policy. They constructed the model with Renewal

theory and analyze the case where demand is a linear function of time. Then, a more general

cases such as demand is a concave and convex function of price is presented. Moreover, Hong

and Lee [26] employ analysis of optimal time-based consolidation policy by assuming the

same relation between demand and price. They present an algorithm to obtain the optimal

price, consolidation cycle and replenishment quantity. Their study also includes extensions

regarding quantity discounts for dispatching costs and hybrid policy version of the problem.

Another case is where demand is affected by the quoted delivery time. Ülkü and Bookbinder

[28] consider time and price sensitive demand in third party logistics scheme with time based
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policy, and extend the study for different pricing schemes. Furthermore, Ülkü et al. [29]

employ the customer demand that is sensitive to both price and service as delivery time-

guarantee. By maximizing the vendors profit, they validate that optimal price is concave for

the capacity of the shipment vehicle.

Ultimately, when the shipment consolidation problem has the stochastic demand setting, it

can be easily said that one of the main concerns is to wait and accumulate orders. The general

attitude towards avoiding the extreme drawbacks from this situation is either incorporating

the waiting costs into a cost minimizing objective function or comparing the effectiveness

of different shipment policies in terms of expected waiting times or costs as the studies in

literature shows.

The second demand class in shipment consolidation problem is the deterministic demand.

Even though, most of the recent studies cover the problem for time-based, quantity-based

and hybrid policies with stochastic demand settings, there are some recent studies which

assumes deterministic demand in retail activities for popular shipment consolidation poli-

cies. In Çetinkaya and Lee [19], consolidation problem is addressed in third party logistics

with deterministic demand. Their main concerns are about frequency of shipments and the

critic quantity to replenishing the third party inventories. Thus, Çetinkaya and Lee [19]

aim is to minimize the total cost and decide the optimal consolidation cycle length within

an inventory replenishment cycle. The objective function constitutes four type of costs: in-

ventory replenishment, inventory carrying, customer waiting and outbound transportation

costs. The capacitated and uncapacitated cargo versions are presented and Karush-Kuhn-

Tucker conditions [45] is used to construct enumeration method to reach optimal solution.

Later, Moon et al. [46] carry the problem of Çetinkaya and Lee [19] a one step further and

employ the joint replenishment with multiple items. They introduce two time-based policy

and algorithms to reach near optimal parameters for specified policies. Another study using

deterministic demand assumption is used by Hwang [47]. In this study, economic lot sizing

for transportation, production and inventory decisions is considered with the assumption for

stepwise cargo costs.
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1.2 Problem Definition

In our study, we combine e-retailer’s environment with shipment consolidation problem under

hybrid policy. We assume that the e-retailer has an option to offer two types of delivery

services which differ according to their promised delivery times, as well as prices. The offered

options are available on the web page when customers navigate in a product. Specifically,

when the e-retailer decides to operate a service type for a specific product, customers are

able to see only the type of service with promised latest delivery time and price. The first

type of service is named as the “Regular Service”. If an item is operated under this service,

on the web page customers see a positive maximum length of time that is guaranteed for

the item’s delivery. The second type of service is the “Premium Service”. If the e-retailer

chooses to operate under the premium service for an item, customers are guaranteed to have

immediate delivery when they purchase. In other words, customers are served in negligible

amount of time such as shipping in a few hours or at most in the same-day which can be

interpreted as zero promised delivery time. Note that, both regular and premium services

can be offered at the same time, as well. As a result of the difference in promised delivery

times in the premium and the regular services, the demand rates for each service type in

each service combination can be different. Thus, the demand rates in different services are

represented separately.

Another important issue arising with the idea of zero promised delivery time is the ex-

istence of inventories. We assume that the e-retailer has small inventories very close to its

demand points such as having small “lockers” in neighborhoods or even a body of shipment

vehicle that can serve in zero promised delivery time. The main idea having small inventories

is that when the company decides to apply the premium service for an item, they make an

anticipated shipment of that item to the vicinity of the demand location and keep inventory

to satisfy possible future demand. From the customers’ point of view, if the e-retailer ap-

plies this service to an item, customers who are in the same region with such inventories see

an immediate delivery option. Hence, this inventory can be considered as a demand point,

which actually is a fulfillment center for the premium service customers.

Our problem considers a single echelon structure for the consolidation operation which is

between a single fulfillment center and a single customer region. In Figure 1.1 consolidation
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activity is represented. In this region, there exist customers and a single inventory point for

the premium service. Note that the region is the local area that makes a shipment vehicle

serves within a negligible amount of time. When orders come from this region under the

regular service, the shipment vehicle waits to consolidate and then ships to the customers

in that region. We assume that the time spend within the region for delivery processes and

the transportation time between the fulfillment center and the region are both zero without

loss of generality. Hence, the shipment vehicle waits in the fulfillment center at most the

promised delivery time. On the other hand, it may also carry items which will be offered

under the premium service. Therefore, the vehicle consolidates items for both services in a

single shipment.

We assume the problem for unlimited fleet availability. However, the shipment vehicle

has a constant capacity, another constraint for the problem in addition to the promised

delivery time constraint. The problem considers infinite time horizon, hence shipments

repeat themselves. Finally, for sake of simplicity, we assume the e-retailer offers a single

item to their customers.

The main concerns are to decide how much time a shipment vehicle should wait in a

fulfillment center. Note that, by this decision, we implicitly affect two measures: cycle

length as the time between two consecutive shipment realizations, and realized capacity of

the truck.

Figure 1.1: Shipment Consolidation
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We differentiate orders coming in each service in terms of their revenues. Furthermore,

each shipment realization has a fixed cost regardless of where it serves: the inventory or

customers of the regular service. However, items carried to the inventory causes holding

cost per unit per time. Different from literature, we do not include waiting costs to the

problem as it is an agreed time length to wait between a customer and the e-retailer. We

provide two type of settings for the e-retailer’s consolidation problem. In the first setting, the

problem is constructed upon deterministic demand assumption for all type of services, and

the model maximizes the average profit. In the deterministic setting, we decide the optimal

cycle length by considering different services’ profitabilities. Note that under deterministic

demand, finding optimal cycle length corresponds to finding which service (or services) to

use within the cycle and their duration. In other words, we allow for one service (or both

services together) to stop and another service (or both services together) to start within the

cycle, if it is profitable. In the second setting, we first assume that the e-retailer excludes the

premium service option and operates only the regular service which has Poisson distributed

demand under hybrid consolidation policy, similar with Mutlu et al. [41]. However, different

then Mutlu et al. [41] we have only fixed cost per shipment as pure consolidation prob-

lem, and the model maximizes expected profit. Then, we extend the problem by including

the premium service option having a constant deterministic demand rate, and provide an

approximate model. In the extended problem,the model maximizes the expected profit by

deciding optimal amount to send the inventory for the premium service, serving the regular

customers under hybrid consolidation policy.

The rest of the thesis includes is as follows. In the next chapter, we present the shipment

consolidation problem for an e-retailer under deterministic demand. We present analytical

results and a solution methodology to determine an optimal solution. In Chapter 3, a

continuum of Chapter 2, we provide numerical results and analyze special cases. In Chapter

4, we address the shipment consolidation problem of e-retailer under stochastic demand

structure, specifically we assume that the regular services’ demand follows a Poisson process

and we analyze two cases. The first case, when there is no possibility for the premium service,

we evaluate hybrid (time-and-quantity) shipment consolidation policy for the regular service

operation. In the second case, we assume that additional to the regular service, we have

the premium service possibility to serve customers with deterministic demand. We propose

a simple policy.. policy. Note that when demand is stochastic, we can only optimize the
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decisions with respect to a stated policy, unlike like deterministic demand case, where we

were able to find the optimal policy (which allows the use a combination of services within

a cycle, so long objective function is maximized). We evaluate an approximate analytical

model to optimize the policy proposed and evaluate the approximation with simulation. In

the last chapter, we conclude our study by summarizing our results and offering possible

extensions.
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Chapter 2

Shipment Consolidation Problem of

E-tailing with Deterministic Demand

2.1 Model Description

In this chapter we consider a deterministic constant demand environment. Particularly, we

assume the demand rate for the regular service customers to be constant and known, as well

as the premium service. We assume an infinite horizon problem, resulting in finding shipment

cycles which will repeat. Hence, the objective function can be specified as maximization of

average contribution, contribution meaning as revenues minus costs. For simplicity, we

assume that each order comes as a single unit. Under above constructions, we investigate

different operational strategies for the e-retailer.

Note that shipment consolidation for this case means that we would like to include the

orders for the regular service customers, as well as the products that are moved to closer

inventory location for the prospective premium service customers. We allow for possible lost

sales for both types of customers. Hence the decision problem is to find a shipment cycle.

Note that within a shipment cycle, there will be a single shipment, part of the products

in this shipment will be used to satisfy orders (regular service) and the remaining will be

inventoried to satisfy premium service customers. The costs associated with this decision
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are a fixed cost of transportation and inventory carrying cost for the inventoried products.

The revenue associated with the decision is the revenue obtained from sales of both type

of customers. Note that loss of revenue can be defined as cost of lost sales, as well. The

contribution obtained for the duration of the cycle is then divided by the cycle length to find

the average contribution.

Finally, we define the cycle length in terms of three decision variables: T0, total duration

within the cycle where we only aim to satisfy regular service customers; TP , total duration

within the cycle where we only satisfy premium service customers; TJ , total duration within

the cycle where we satisfy regular service, as well as premium service customers at the

same time. These three durations can be considered to represent three different operational

strategies. We analyze these strategies in detail.

The first operational strategy is to apply “regular policy”. In this policy, the company

quotes a delivery time to its customers and delivers them in the quoted amount of time.

Hence, TQ based policy has a defining role on the cycle length of shipments. The relation

between the regular policy’s demand rate and time length of two consecutive shipments is

shown in Figure 2.1.

Figure 2.1: The Regular Policy

where

λ0: the demand rate of regular service

τ : the promised delivery time

C : capacity of the shipment truck
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T0: total duration within the cycle length where only the regular service exists.

The second operational strategy for deliveries of the e-retailer company is what we call

“premium policy”. Being different from the regular policy, in this operation rule, the com-

pany keeps a close inventory for its customers. This inventory ensures that the company can

deliver customers’ orders in a very short amount of time such as within the same day or even

within a few hours after customers give their orders. In that case, the promised delivery time

is not the concern of the company’s service quality. Thus, this policy can be considered as

an exclusive service for committed or loyal customers, as well. As all orders are fulfilled from

this “closest” inventory, a shipment, in this case is to the location of inventory before demand

is realized. Hence, the only limitation for the cycle length of a shipment is the capacity of

vehicle. In Figure 2.2, the relation between the inventory level and the time between two

consecutive shipment is demonstrated. Notice that each shipment can be considered to feed

next cycle’s demand as customers are assumed to be satisfied from the inventory. Here, we

show the demand rate for the premium service as an inventory that decreases with demand.

Figure 2.2: The Premium Policy

where
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λP : demand rate of the premium service

TP : total duration within the cycle length where only the premium service exists

QI : the beginning inventory level (assumed to be delivered at the end of each cycle).

As a final operational strategy, the regular and the premium policies are considered to-

gether and called the joint policy. In this operation option, the company leaves the delivery

choice to its customers by offering the regular and the premium service options at the same

time. In other words, customers see two type of delivery options with different promised

delivery times for the item. Since the decision is made by customers, the total demand of

the joint policy are fed by two streams according to customers’ choices. At this point, it is

assumed that having two types of service option at the same time will affect the demand rate

coming from regular customers. Hence, the demand rate of regular service users in the joint

policy is different from the demand rate of the regular policy, λ0. The intuition would be

a decreasing demand rate for regular service, when both are offered. However, we allow for

more general structures and do not restrict the demand rate in this case. Furthermore, as

the joint policy has the premium service option, it also uses the inventory. In the same man-

ner, for customers who choose the regular service option, the joint policy takes the promised

delivery time into account. Notice that, the capacity limitation of a single shipment which

serves regular customers and the inventory is still valid. Additionally, under the joint policy,

we do not allow lost sales from neither the regular nor the premium delivery service as both

services are available to the customers. In Figure 2.3, the relation of inventory levels and

the cycle length considering demand rates can be seen.
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Figure 2.3: The Joint Policy

where

λ1: demand rate of regular service customers in the joint policy

TJ : total duration within the cycle length where only the joint policy exists.

Ultimately, to be able to make a comparison between all policies, we consider all of them

at the same time. As it can be seen in Figure 2.4, the cycle length is constituted by the sum

of time lengths devoted to each policy. Therefore, deciding contributions of T0, TP and TJ to

the cycle length leads us to the optimal policy selection if we consider all policies together

in the same deterministic setting problem. From the customers point of the meaning of the

cycle length is the following: When the shipment is realized and TP is positive, customers

can see only the premium service option to purchase the item with zero promised delivery

time which is provided by keeping the items in the close inventory. In the same manner,

when customers visit the web page of the item in TJ parts of the shipment cycle, they see

both types of delivery option available and they decide according to their wishes. Lastly, if

the web page of the item is visited in T0 portion of the cycle, customers has only regular

service option for the item’s delivery. Notice that, if the cycle length has only positive TP ,

we lose from customers who are strictly want to use the regular service. Likewise, having
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only T0 in the cycle length means lost sale from customers of the premium service.

Figure 2.4: The Regular, The Premium and The Joint Policies

where

TC : the cycle length.

Regarding different delivery strategies that the company can operate, the revenue per

unit is denoted separately for different demand types. Also, the total revenue coming from

each policy option is calculated and divided by the cycle time as the problem takes place

in the infinite horizon. First of all, the total revenue of the regular policy per cycle time is

expressed.

T0 ∗ r0 ∗ λ0

TP + TJ + T0

where r0 is the revenue in regular service policy for per unit.

Accordingly, the revenue per cycle time generated by the premium service policy is shown

as follows.
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TP ∗ rP ∗ λP
TP + TJ + T0

where rP is the revenue per unit of the premium service.

The joint policy leaves the delivery decision to customers of the company by offering

both the regular and the premium delivery options at the same time. For customers who

prefer the regular delivery service in the joint policy, the revenue per unit is taken as the

same with the regular policy’s revenue per unit. In the same manner, customers who prefer

the premium delivery option when the company operates according to the joint policy, the

revenue per unit of premium service is taken same with the revenue per unit of extend policy.

To calculate the joint policy’s revenue per cycle time, the revenue coming from each stream

of shipment type is accounted and represented as can be shown below.

TJ ∗ (r0 ∗ λ1 + rP ∗ λP )

TP + TJ + T0

In the model, there are two types of operational costs: the inventory and shipment related

costs. First of all, it is assumed that for each shipment and respectively for each cycle time,

there is a fixed cost to pay. In our problem, the fix cost is the same for each shipment cycle

and expressed as follows.

K

TP + TJ + T0

where K is the fixed cost per shipment.

The second cost component is inventory related costs. The inventory related cost is taken

as the holding costs for each unit per time. Since both the joint and the premium service

policies use the inventory, the inventory cost function takes the time spend on premium
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service and the time spend on joint service as its two variables. Hence, the inventory cost

per cycle time can be shown as:

H(TP , TJ)

TP + TJ + T0

where H(TP , TJ) is the inventory cost function.

The inventory cost function, H(TP , TJ), is taken as a linear function of time. h′ is con-

sidered as the holding cost per unit per time and the expression for the inventory cost per

cycle time becomes:

h ∗ λP ∗ (TP + TJ)2

TP + TJ + T0

where h = h′/2.

In the problem of deciding the right operation rule for the e-commerce company, our

objective is to maximize the total contribution to profit. As a result, the objective function

of the problem is taken as the total revenue per cycle time subtracted from the total revenue

per cycle time. The final form of the objective function is expressed as follows.

TP ∗ rP ∗ λP + TJ ∗ (rP ∗ λP + r0 ∗ λ1) + T0 ∗ r0 ∗ λ0 −K −H(TP , TJ)

TP + TJ + T0

where

H(TP , TJ) = h ∗ λP ∗ (TP + TJ)2.

However, there are two important considerations for the admissibility of model regarding

the capacity of a shipment and the promised delivery time. The constraint that ensures

serving to customers in the promised delivery time considers only customers who use regular
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delivery option as it is assumed that customers of the premium delivery get their orders

immediately from the inventory. Therefore, the promised delivery time is a bound for the

regular delivery service which exists in the operation rule of both the joint and the regular

policy. Explicitly, the sum of time durations of these two policies should be less than or

equal to the promised delivery time and it can be shown below.

T0 + TJ ≤ τ

where τ is the promised delivery time.

Secondly, in each cycle, a shipping vehicle serves with its constant capacity and carries all

customer demands regardless of their types. Therefore, the capacity limit of the vehicle is

filled in the regular policy duration with the regular service demand, in the premium policy

duration with the premium service demand and in the joint policy duration with its premium

and regular services’ demand. The constraint belonging to the capacity consideration of the

shipment vehicle is expressed as follows.

TP ∗ λP + TJ ∗ (λP + λ1) + T0 ∗ λ0 ≤ C

where C is the capacity of a shipment.

Finally, variables of the problem cannot be negative since time lengths cannot be negative.

TP , TJ , T0 ≥ 0

2.2 The Model

The complete form of the model is as follows.

Parameters:
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rP : revenue per unit of the premium service

r0: revenue per unit of the regular service

λP : demand rate of the premium service

λ1: demand rate of regular service customers in the joint policy

λ0: demand rate of regular service

h: inventory holding cost

K : fixed cost of a shipment

τ : promised delivery time

C : capacity

Variables:

TP : time length used in the premium policy

TJ : time length used in the joint policy

T0: time length used in the regular policy

Maximize
TP ∗ rP ∗ λP + TJ ∗ (rP ∗ λP + r0 ∗ λ1) + T0 ∗ r0 ∗ λ0 −K −H(TP , TJ)

(TP + TJ + T0)
(2.1)

subject to T0 + TJ ≤ τ (2.2)

TP ∗ λP + TJ ∗ (λP + λ1) + T0 ∗ λ0 ≤ C (2.3)

TP , TJ , T0 ≥ 0 (2.4)

where

H(TP , TJ) = h ∗ λP ∗ (TP + TJ)2 (2.5)
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2.3 Analysis of the Model and the Optimality Condi-

tions

The objective function, (2.1), has a nonlinear structure. It is neither concave nor convex.

See the examples in Appendix A. Hence, it is not possible to use sufficient conditions of

Karush-Khun-Tucker (KKT) to reach the global optimal solution [45]. On the other hand,

constraints and the objective function of the model satisfy requirements for KKT to be used

as necessary conditions. Hence, it is possible to explicitly evaluate all solutions of the problem

indicated the necessary conditions and choose the one that yields the maximum value for

the objective function. Notice that, the necessary KKT conditions do not guarantee to get a

positive objective value in the optimal solution. As values of cost variables change, the sign

of the objective value may change. Hence, the necessary KKT conditions yield positive or

negative solutions as the optimal value.

To obtain the necessary KKT conditions, we need the Lagrangian function form of the

problem. We define µ1 and µ2 as the Lagrangian multipliers of the promised delivery time

constraint (2.2) and the capacity constraint (2.3), respectively. Under these constructions,

the Lagrangian function of the problem is formed.

L(TP , TJ , T0, µ1, µ2) = f(TP , TJ , T0) + µ1 ∗ g1(TJ , T0) + µ2 ∗ g2(TP , TJ , T0) (2.6)

where

f(TP , TJ , T0) =
TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K − hλP (TP + TJ)2

TP + TJ + T0

(2.7)

g1(TJ , T0) = T0 + TJ − τ (2.8)

g2(TP , TJ , T0) = TPλP + TJ(λP + λ1) + T0λ0 − C (2.9)

µ1 ≥ 0 (2.10)

µ2 ≥ 0. (2.11)

Finally, we are able to construct KKT conditions to find each possible solution of the

problem.
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Stationarity:

∂L

∂T0

= 0 (or ≤ 0 if T ∗0 = 0) (2.12)

∂L

∂TP
= 0 (or ≤ 0 if T ∗P = 0) (2.13)

∂L

∂TJ
= 0 (or ≤ 0 if T ∗J = 0) (2.14)

Primal Feasibility:

g1(TJ , T0) ≤ 0 (2.15)

g2(TP , TJ , T0) ≤ 0 (2.16)

TP , TJ , T0 ≥ 0 (2.17)

Dual Feasibility:

µ1 ≥ 0 (2.18)

µ2 ≥ 0 (2.19)

Complementary Slackness:

µ1 ∗ g1(TJ , T0) = 0 (2.20)

µ2 ∗ g2(TP , TJ , T0) = 0 (2.21)

After defining the necessary KKT conditions of the problem, we evaluate each of them

to be able to generate all possible solutions. Cases are created according to the domain of

each variable of the Lagrange function (2.6). More explicitly, a case can take a value of a

variable either equal to zero or greater than zero. In the model, two possible options for

subsets of three original variables and two Lagrange multipliers are shown in (2.22), (2.23),

(2.24), (2.25) and (2.26) and they generate 25 = 32 different cases for our model.
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T0 = 0 or T0 > 0 (2.22)

TJ = 0 or TJ > 0 (2.23)

TP = 0 or TP > 0 (2.24)

µ1 = 0 or µ1 > 0 (2.25)

µ2 = 0 or µ2 > 0 (2.26)

2.4 Analysis of KKT Conditions

By obtaining 32 cases of the main problem, we have all required equalities for each case that

the necessary KKT conditions yield. Each case is solved with corresponding KKT conditions

valid for the case. Solutions and related derivations are in Appendix B. Our analyses on

32 cases reveal that some case are not meaningful in terms of the problem considered. The

following observations and a proposition are used to identify those situations.

Notice that cases that yield ”no operation” option are eliminated from further consider-

ation. Of course, if the problem parameters require no economical operation (this means

that we have negative contribution to profit if operation is forced) these cases would be

important. Nevertheless we can always depict such situations once the problem solution is

obtained.

Observation 1: There exist some cases with solutions requiring problem parameters

to attain unrealistic values. Hence, these cases are eliminated from further consideration.

Please refer Appendix B for indicated cases.

1. Case 4.1 is infeasible since its solution, (T0, TJ , TP ) = (∞, 0, 0), is only possible when

K =∞.

2. Cases 1.3 and 2.3 that are constructed by µ1 > 0 with T0 = 0 and TJ = 0 are not ad-

missible as this structure forces the first inequality to be zero. However, the promised

delivery time, τ , cannot be zero.
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Observation 2: There exist some cases with solutions requiring trivial relations to hold

among parameters. Hence, these cases are eliminated from further consideration unless the

parameter values are such that the mentioned trivial relations hold. Please see Appendix B.

1. Since Case 1.1 is in the intersection of Case 2.1 and Case 3.1, Case 1.1 is feasible if

and only if C = λ0τ .

2. Since Case 1.2 is in the intersection of Case 2.2 and Case 3.2, Case 1.2 is feasible if

and only if C = (λP + λ1)τ .

3. Case 4.3, Case 4.6 and Case 4.7 are feasible if and only if r0λ1 = 0.

4. Case 4.4 is a special version of Case 4.2 and it is feasible if and only if K =
(rPλP + r0λ1 − r0λ0)2

4hλP
with having T0 = 0.

5. Case 4.5 is a special version of Case 4.3 and it is feasible if and only if K = (rPλP − r0λ0)2

4hλP

with having TJ = 0.

Observation 3: There exists some cases with solutions forcing the decision variables to

take values that are also admissible within the range of another case. Hence these cases are

eliminated from further consideration. For such cases please see following cases in Appendix

B.

1. Case 3.7 converges Case 3.4 as its solution forces TP to be zero.

2. Case 4.6 converges Case 4.3 as its solution forces TJ to be zero.

3. Case 4.7 converges Case 4.5 as its solution forces TJ and T0 to be zero.

Proposition 1. If two cases take their values of parameters from the same set, then the

case with a larger feasible region yields the same or a better objective value. Hence, if two

such cases are feasible given a parameter set, the case having a larger feasible area dominates
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the other. In the following list, we show some of such cases and for the others please refer

Appendix C. Let, Oi be the objective value of case i and Fi be the feasible region of case i.

i. O1.1 ≤ O2.1 since F1.1 ⊆ F2.1

ii. O1.1 ≤ O3.1 since F1.1 ⊆ F3.1

iii. O1.2 ≤ O2.2 since F1.2 ⊆ F2.2

iv. O1.2 ≤ O3.2 since F1.2 ⊆ F3.2

v. O1.3 ≤ O2.3 since F1.3 ⊆ F2.3

vi. O1.3 ≤ O3.3 since F1.3 ⊆ F3.3.

2.5 Solution

After solving the problem with necessary KKT conditions and eliminating redundant cases,

we further investigate each case with respect to the cost parameters K and h. For most

of the cases, we are able to detect bounds for K and h from the inequalities originated by

(2.12), (2.13) and (2.14). On the other hand, for other cases finding neat expressions is

impossible due to complexities of inequalities. For generated bounds of K and h please refer

to Appendix D. These bounds are interpreted as the value limits of related cost parameters

and outside these bounds, cases are not admissible.

Observation 4: There exist economical limitations for cases to operate, which are

different from the original feasible conditions. These limitations are generated from their

stationary KKT conditions. If for a case with given parameter set, its stationary conditions

do not hold, it is eliminated from the possible solutions. For some cases, these economical

conditions are simplified to obtain neat cost bounds for K and h. Such cases and their cost

bounds are presented in Appendix D.
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2.5.1 The Solution Framework

We observe that bounds generated for K and h contain similar expressions for marginal rev-

enues and demand rates in almost all remaining cases. Therefore, we further expose these

cases by looking at expressions of marginal revenues and demand rates that they have in

their K or h bounds. We use these expressions as a framework which enables us to under-

stand the environment and the behavior of the problem in terms of demand and revenue

relations between different policies. Therefore, according to the demand relations, we divide

the problem into three mutually exclusive subsets in terms of demand rates.

• X : λP ≥ λ0 where the demand rate of regular service is not greater than the demand

rate of the premium service.

• Y : λP + λ1 ≥ λ0 and λP ≤ λ0 where the demand of only premium service is less than

the demand of regular service. Yet, the total demand rate of joint policy is greater

than or equal to the demand of regular service.

• Z : λ0 ≥ λP + λ1 where the demand of regular service is greater than or equal to the

total demand rate of the joint policy.

To address more plausible division of subsets we also consider relations of different de-

mand rates with respect to their revenues generated per unit time. As a result, we reach

three subsets.

• A: rPλP ≥ r0λ0 where the total revenue of the premium policy is greater than or equal

to the revenue coming from the regular policy.

• B : rPλP + r0λ1 ≥ r0λ0 and rPλP ≤ r0λ0 where the revenue generated from joint policy

is greater than or equal to the revenue originated from the regular policy. Yet, the
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revenue of premium policy is not greater than the revenue of regular policy.

• C : r0λ0 ≥ rPλP + r0λ1 where the total revenue coming from regular policy is greater

than or equal to the revenue originated from the joint policy.

2.5.2 The Analysis of Model Subsets

We have three subsets for demand rates and three subsets for total revenues per unit time.

With the combination of A,B,C and X,Y,Z, the problem environment is divided into nine

distinct subsets: AX,AY,AZ, BX,BY,BZ, CX,CY,CZ. To find the subset(s) where each of

remaining 17 cases is able to survive, both feasibility of Lagrange multipliers and econom-

ical conditions mentioned in Observation 4 are considered in terms of bounds that we find

for K and h. Notice that cases which are feasible only when a special relation holds be-

tween parameters or cases which converge to other cases are not included. Consequently,

the categorization of each case is shown in Table 2.1. For details please refer to Appendix E.1.

X Y Z

1.4, 1.5, 1.6, 1.7, 1.4, 1.5, 1.6, 1.7, 1.4, 1.5, 1.6, 1.7,

A 2.2, 2.4, 2.5, 2.6, 2.7, 2.2, 2.4, 2.5, 2.6, 2.7, 2.2, 2.4, 2.5, 2.6, 2.7,

3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 4.2 3.2, 3.3, 3.4, 3.5, 3.6, 4.2 3.2, 3.3, 3.5, 3.6, 4.2

1.4, 1.6, 1.7, 1.4, 1.5, 1.6, 1.7, 1.4, 1.5, 1.6, 1.7,

B 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7,

3.2, 3.4, 3.6, 4.2 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 4.2 3.2, 3.3, 3.5, 3.6, 4.2

1.6, 1.5, 1.6, 1.4, 1.5, 1.6, 1.7

C 2.1, 2.5, 2.6, 2.1, 2.5, 2.6, 2.1, 2.5, 2.6,

3.4, 3.6 3.3, 3.4, 3.5, 3.6 3.1, 3.2, 3.3, 3.4, 3.5, 3.6

Table 2.1: The separation of cases according to 9 subsets

As each subset of the problem has different characterization regarding demand rates and

total revenues per unit time, cases in a single subset are analyzed separately from cases of
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other subsets. There exist intervals for K or h such that some cases are not admissible at

the same time and these value intervals can be ordered consecutively. For explicit relations

please refer to Appendix E.2. Therefore, values of K or h alter the case which yield feasible

solution to us. Unfortunately, we cannot order relations for regarding K or h for all subsets.

However, these ordered relations help us to decrease the number of possibilities which we

search for the optimal solution.

Observation 5: There exist global orders of cases that are valid in all nine sets in terms

of their K intervals which are defined by lower and upper bounds of K. Please see Appendix

E for the detailed ordering. Let Ki be the minimum K value that makes the case i feasible

and respectively Ki is the maximum value of K which makes case i feasible. We define Ki

as the interval defined by [Ki, Ki] for case i. An order for cases i,j Ki ≤ Kj means that

Ki ≤ Kj. Note that same notation for cost parameter h is also valid, such ordered cases are

as follows.

1. K2.1 ≤ K2.5

2. K4.2 ≤ K2.2 ≤ K2.6

3. K4.2 ≤ K3.2 ≤ K3.6 ≤ K3.3 ≤ K3.5

4. h1.4 ≤ h2.4 - except AZ and BZ subsets

The significance of these divisions of the problem set comes from its ability to differentiate

the products. For example, if a product has aspects that match one of the nine combinations,

then there are actually less candidates for the optimal policy. Hence, the solution structure

may change with products which have different demand and revenue per unit characteristics.

2.5.3 Solution Algorithm

The model satisfies only necessary conditions of KKT. Hence, the solution algorithm should

be based on finding all feasible cases and selecting the feasible case that yields the highest
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optimal value. Our solution algorithm is constructed on nine sets and ordered intervals of

K and h as mentioned in Observation 5.

Initially, the algorithm checks each special case which have special equations to be admis-

sible as in Observation 2 and 3. If feasibility conditions hold, the solution algorithm adds it

to the Candidate List. Else, it writes down the condition(s) which violates its feasibility.

When the algorithm finishes the check of special cases, it finds the subset that the problem

belongs by using values of demand and revenue per unit parameters. Subsequently, the

algorithm directs itself only this subset and considers only cases of this subset. At this

point, the algorithm starts to check which interval K and h fall by using the information

given in Observation 5. Each ordered relation provides at most one candidate and if the

algorithm has one candidate, it checks its feasibility. By controlling all ordered relation

lists of this subset and cases that are not belong such ordering in the subset, the algorithm

updates the Candidate List. When the check finishes, the algorithm calculates optimal

values of each member of the Candidate List. Consequently, it gives the highest value as the

optimal solution. Of course, it is easy to check if there are any alternative optimal solutions.

In the following Algorithm 1, the pseudo code of algorithm is presented.

34



Algorithm 1 Algorithm
1: procedure FindTheOptimalSolution(item : case)

2: for all Case : SpecialCase do

3: if Case is feasible then

4: Add it to the Candidate List

5: else

6: Inform the user about the violating constraint(s)

7: end if

8: end for

9: function Find the Surviving Set

10: Step 1: Find relations of demands in terms of X,Y, Z

11: Step 2: Find relations of total revenues in terms of A, B, C

12: Step 3: Combine Step 1 & 2 to find surviving set

13: Step 4: Call cases of the surviving set

14: end function

15: for all List of K Intervals do

16: if K belongs to the feasible region of case then

17: Add the case to the candidate list

18: end if

19: end for

20: for all List of h Intervals do

21: if h belongs to the feasible region of the case then

22: Add the case to the candidate list

23: end if

24: end for

25: for all Individual Cases do

26: Check feasibility

27: if The is feasible then

28: Add it to the candidate list

29: end if

30: end for

31: for all Cases in the candidate list do

32: Calculate optimall values

33: end for

34: return The case with the highest optimal value

35: end procedure

2.5.4 Verification of the Solution Algorithm

The solution algorithm presented in the previous subsection is verified by a total enumeration

scheme. In this scheme, for a given problem we solve all 32 cases, and then applying con-

straints (including non-negativity) we check if the solution is feasible. We select the feasible

solution that yields the best objective value. The related MATLAB code is in Appendix F.
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Chapter 3

Analysis of the Shipment

Consolidation Problem of E-tailing

with Deterministic Demand

In this chapter, we present numerical results to better understand the problem introduced

in Chapter 2. Then, a number of special cases of shipment consolidation problem with

deterministic demand is addressed.

3.1 Numerical Results

To observe how values of parameters affect the optimal case solution, numerical experiments

are conducted. As we think that BY region is operationally the most interesting one, we

define our parameter set according to limits indicated by BY. In Table 3.1, choices regarding

parameter values are presented.

First, we observe the effect of fixed cost K values for our parameter set. Starting from

the zero fixed cost, we increase the value of K and solve the problem for each iteration.

Figure 3.1 depicts the value of optimal objective value versus the fix cost. It also indicates
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the specific case for the optimal solution and the associated positive variables of the case.

The first observation regarding to Figure 3.1 is that when fixed cost is very small or zero,

variables operate as if there is no constraint. The main reason behind this result is that

when the shipment cost is small enough, shipments do not have a tendency to wait until

the full capacity. Furthermore, in Case 4.2 the optimal operation uses customers of both

premium and regular services. As the fixed cost increases, the optimal objective value de-

creases as expected. In addition to it, to compensate high fixed cost, shipments wait until

the full capacity. Finally, high K shifts the optimal operation away from only joint policy

to utilizing both the regular and joint policies to control inventory carrying costs.

Paramter rP r0 λP λ1 λ0 K h τ C

Value 6 5 15 10 20 100 2 8 150

Table 3.1: The experimental parameter set fits BY region.

Note that one can find the threshold value for K where the optimal policy is indifferent

between Case 4.2 and Case 3.4, by equating the objective functions of those cases at their

respective optimum.

Figure 3.1: Fixed Cost vs Optimal Profit
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In the second experiment, we iteratively change the value of capacity given the parameter

set of Table 3.1 and illustrate it in Figure 3.2. Our first observation is about the change

of objective value. It is clear to see that if C is small enough to make the objective value

negative then the decision will be not to operate as it is not profitable. We also observe

that operating the regular and the joint policies at the same time is always profitable in our

parameter set as in this experiment cost and demand parameters stay same. For the small

C values that allows operating, it is easily seen that the limitation for our problem is the

capacity. When C is big enough, the promised delivery time becomes the binding constraint

as Case 2.4 becomes the optimal case. Notice that the shift from Case 3.4 to Case 2.4, the

optimal value is also observed in the Case 1.4 since Case 1.4 is the subset of both Case 3.4

and Case 2.4.

Figure 3.2: Capacity vs Optimal Profit

We change the value of promised delivery time in the given parameter set. Our findings

are similar with the second experiment except for extremely small values of the promised

delivery time. In Figure 3.3, the optimal case starts with Case 2.5 for every small amount of

τ . The main reason behind this choice lies in hybrid consolidation policy. When τ is small

enough to realize shipments very frequently, to balance the cost coming from K, the model

wants to use unused slots in the capacity to feed the inventory. Hence, the cycle time is

combined by both the regular and the premium policies. In Figure 3.3, for small values of
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τ , our binding constraint is the promised delivery time constraint. On the other hand, as τ

increases, the next optimal appears as Case 1.4. Later, the capacity constraint becomes the

binding constraint and there is no further improvement possible.

Figure 3.3: Promised Delivery Time vs Optimal Profit

After changing the parameters related to operational limitations, we intend to illustrate

the effect of the premium service’s demand rate with respect to different costs. In the first

analysis, we keep the fixed cost small as 15 and change the value of λP , which can be seen

in Figure 3.4. Note that the axis scales are not linear in order to show the effects of large

parameters. Case 3.1 is seen as the optimal case for small values of λP since operating in

the regular policy is much more profitable related to the premium service. It is also the

case for moderate values of K as in Figure 3.5 and for high values of K as in Figure 3.6.

Increasing trend of the λP carries the optimal operation from the regular policy to the joint

policy for all values of K since higher demand rate brings more revenue. Thus, we observe

the transition from T0 to T0 + TJ and lastly TJ .

Furthermore, if Figure 3.4, 3.5 and 3.6 are considered together, as K increases, the region

of Case 3.4 expands and Case 3.1 shrinks. The reason behind this trend is the tendency

to get away from lost sale when the fixed cost is high. In addition, for higher values of K,

to compensate the cost of it, the model gives the optimal by using full capacity utilization.
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That is why, we do not observe Case 4.2 in Figure 3.6. In the same manner, the area of Case

3.2 increases as K increases. Notice that Case 3.2 does not allow lost sale from any kind of

demand.

Figure 3.4: λP vs Objective Profit when K=15

Figure 3.5: λP vs Objective Profit when K=100
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Figure 3.6: λP vs Objective Profit when K=500

3.2 Special Cases

In this section, we address what will happen if the company has additional concerns and

policies besides the optimal policy selection. Therefore, we consider special cases where the

problem is reduced according to special operational concerns of the company. We consider

the case where rPλP + r0λ1 ≥ r0λ0.

3.2.1 Ranking Method Proposed For Multi-Item Systems

Let C∗ denotes the contribution of the optimal solution and CN denotes the optimal contri-

bution of the nominal case, which is “operating under only the regular service”. The largest

objective value for the problem considered, in general, is when we are allowed to make in-

stantaneous shipments. Therefore, K is rather small and h effect is not apparent. Hence,

for C∗ one can replace this term with rPλP + r0λ1 without loss of generality.

C∗ = rPλP + r0λ1

CN = r0λ0 −
K

min{ C
λ0
, τ}
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By using C∗ and CN , conveniences to be served under premium service of products can

be expressed. Hence, an indicator for potential to improve total contribution for a single

product if it is served under the premium service is constructed as

C∗ − CN

CN
.

Ranking items according to the above indicator in decreasing order provides a comparison

technique regarding which items are more suitable for premium service. Having a comparison

method has high significance since e-retailer companies today have to deal with over a million

SKU. Even if they are willing to operate to provide high quality customer service such as

zero promised delivery times, physical constraints make them to decide wisely among their

products as all of them cannot be served immediate delivery techniques for all their potential

customers. Hence, above indicator provides a method to decide by giving an insight about

products’ profitability in case of being served under premium service.

3.2.2 Performance Comparison Method For Different Cases

Let CS denotes the optimal contribution of the “special” case considered. A number of

measures can be defined to assess the effect of using the special case versus the optimal

solution. They are listed below:

• PC : % contribution lost when special solution is applied.

PC =
C∗ − CS

C∗
∗ 100%

Note that PC will be in between 0-100%.

• IPC : % contribution improvement over the special case if optimal solution was applied.
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IPC =
C∗ − CS

CS
∗ 100%

Note that IPC will be any value.

• PCN : % contribution lost over the nominal solution when special case is applied.

PCN =
(C∗ − CN)− (CS − CN)

(C∗ − CN)
∗ 100%

• IPCN : % contribution improvement over (special solution - nominal solution) if opti-

mal solution was applied.

IPCN =
(C∗ − CN)− (CS − CN)

(CS − CN)
∗ 100%

Of course, CS 6= CN for this case.

Our aim in this subsection is to find the worst case analytical bounds for the measures

computed. Denote PC, IPC, PCN and IPCN as the worst case.

3.2.2.1 No Premium Service Allowed / Only Regular Service

In the case where premium service is not allowed, we want to see the effect of excluding

premium service from possible operational options. The company’s problem becomes:
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Maximize
T0r0λ0 −K

T0

(3.1)

subject to T0 ≤ τ (3.2)

T0λ0 ≤ C (3.3)

T0 ≥ 0 (3.4)

Accordingly, the optimal solution is either T ∗0 = τ as in Case 2.1 or T ∗0 = C/λ0 as in

Case 3.1 or the intersection of the two cases T ∗0 = C/λ0 = τ which is the solution of Case

1.1. Clearly, if C and τ are infinite, the solution of Case 4.1, T ∗0 = ∞, can also be valid.

However, it is not an applicable solution.

In fact, this is the nominal case. Hence, we can compute PC, contribution lost when we

do not allow premium service.

PC =
rPλP + r0λ1 − r0λ0 + K

min{τ, C
λ0
}

r0λ1 + rPλP
∗ 100%.

or if we rewrite,

PC =

(
1− r0λ0

r0λ1 + rPλP
+

K

(r0λ1 + rPλP )min{τ, C
λ0
}

)
∗ 100%

For given λ0, C, τ,K; PC becomes

PC =

(
1− r0λ0

r0λ1 + rPλP
+

Constant

r0λ1 + rPλP

)
∗ 100%.

Note that Constant should be less than r0λ0.
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Let p1 denote the profitability proportion of the regular service, where

p1 =
r0λ0 − K

min{τ, C
λ0
}

r0λ0

p1 ≤ 1 and

PC =

(
1− p1

r0λ0

r0λ1 + rPλP

)
∗ 100%.

In the same manner, we calculate IPC.

IPC =
r0λ1 + rPλP − p1r0λ0

p1r0λ0

∗ 100%.

IPC =

(
r0λ1 + rPλP
p1r0λ0

− 1

)
∗ 100%.

3.2.2.2 Only Premium Service

In this special case, we consider the only existed policy is the premium policy and construct

its model according to it.

Maximize
TP rPλP −K − hλPT 2

P

TP
(3.5)

subject to TPλP ≤ C (3.6)

TP ≥ 0 (3.7)
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Referring to KKT cases having the solution is to use only the premium policy, the above

model has two possible optimal solutions: T ∗P =
√

K
hλP

and T ∗P = C/λP . As T ∗P =
√

K
hλP

is the

economic order quantity, the worst possible objective function is attained when T ∗P = C/λP .

Hence, the worst objective value for this special case is

rPλP −
λPK

C
− hC.

To see the % contribution lost when the worst objective value is attained, we calculate

PC.

PC =
r0λ1 + rPλP − rPλP + λPK

C
+ hC

r0λ1 + rPλP
∗ 100%.

PC =
r0λ1 + λPK

C
+ hC

r0λ1 + rPλP
∗ 100%.

Let

p2 =
rPλP − λPK

C
− hC

rPλP

Thus p2 ≤ 1. Accordingly PC can be written as

PC =

(
1− p2

rPλP
r0λ1 + rPλP

)
∗ 100%.

And IPC becomes
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IPC =
r0λ1 + rPλP − p2rPλP

p2rPλP
∗ 100%.

IPC =

(
r0λ1 + rPλP
p2rPλP

− 1

)
∗ 100%.

3.2.2.3 No Lost Sale For Regular Service

We further analyze the special case that the company does not want any lost any sales

from its regular customers when it considers to operate the premium service. Therefore,

we evaluate the model for the regular and the joint policy separately. Notice that cases

with “.1” extension have only the regular policy and cases with “.2” extension have only the

joint policy and “.4” extension have both the joint policy and regular policy as a solution.

According to our initial assumption, we only consider the subset of B. Therefore, we reach

Table 3.2.

X Y Z

3.1

B 2.1, 2.2, 3.2, 4.2 2.1, 2.2, 3.2, 4.2 2.1, 2.2, 3.2, 4.2

1.4, 2.4, 3.4 1.4, 2.4, 3.4 1.4, 2.4

Table 3.2: Sets which have only the regular and the joint policy exist

Table 3.2 shrinks our search area significantly. If the problem parameters do not satisfy

one of the special cases such as Case 1.1, Case 1.2 and Case 2.1, one can directly eliminate

regular policy in BX and BZ and continue with joint policy only or joint and regular policy

according to the parameter set.
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3.2.2.4 rP = r0 & λ0 ≤ λ1 + λP

One of the special cases for our problem is having same amount of revenue per unit for all

type of services, rP = r0. Therefore, with the help of the assumption that we made for

special cases, we reach the demand relation as λ0 ≤ λP + λ1. This construction for the

special case decreases the number of subsets that we have in Table 2.1 by deleting A and C

as a result of our initial assumption, and the column of Z. Hence, new problem framework

is as follows.

X Y

1.4, 1.5, 1.6, 1.7, 1.4, 1.5, 1.6, 1.7,

A 2.2, 2.4, 2.5, 2.6, 2.7, 2.2, 2.4, 2.5, 2.6, 2.7,

3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 4.2 3.2, 3.3, 3.4, 3.5, 3.6, 4.2

1.4, 1.6, 1.7, 1.4, 1.5, 1.6, 1.7,

B 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7,

3.2, 3.3, 3.4, 3.6, 4.2 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 4.2

Table 3.3: Subset of problems when rP = r0 and λ0 ≤ λP + λ1

Consider the same problem for an item, which has a constant revenue for all services but

yields more demand in the extend of premium service, and the e-retailer does not want to

draw back the item from regular service as it is their basis operation. In that case, the

solution space shrinks significantly as it can be seen in Table 3.4.

X Y

1.4, 1.7, 1.4, 1.7,

A 2.2, 2.4, 2.7, 2.2, 2.4, 2.7,

3.1, 3.2, 3.4, 4.2 3.2, 3.4, 4.2

1.4, 1.7, 1.4, 1.7,

B 2.1, 2.2, 2.4, 2.7, 2.1, 2.2, 2.4, 2.7,

3.2, 3.4, 4.2 3.1, 3.2, 3.4, 4.2

Table 3.4: Subset of problems when rP = r0 and λ0 ≤ λP + λ1 with no lost sale for regular

service.
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Chapter 4

Shipment Consolidation Problem of

E-tailing with Stochastic Demand

In this chapter, we construct a shipment consolidation model with stochastic demand setting

for the e-retailer company. Firstly, we assume a single type of basic service for the customers

of the e-retailer: the Regular Service. We evaluate a shipment consolidation model and a

policy to operate it. Later, we extend the model by integrating a new type of service with

its constant demand: the Premium Service. For this premium model, we present a modified

policy for the shipment consolidation operation and provide an approximate model with

simulation results.

4.1 Shipment Consolidation Problem for Regular Ser-

vice

In this section, we assume the e-retailer company offers a single type of service for items’ de-

livery operation: the regular service. In the regular service, the e-retailer quotes a maximum

delivery time to its customers, namely promised delivery time. When a customer agrees to

purchase an item from the e-retailer, his/her order is delivered latest at the end of promised

delivery time duration. This is a strict time limit to make a delivery since it is an indicator
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for the service level of the e-retailer in such a competitive market. For simplicity, we as-

sume that the company sells a single type of item and the quoted promised delivery time is

constant. In this problem, the demand of the e-retailer is stochastic and follows a Poisson

distribution with coming a single unit per order.

After an order is received by the e-retailer, the decision regarding which fulfillment center

will send the order is made. For simplicity, we assume again a single fulfillment center and

a single region where customers are very close to each other so that within the region the

shipment vehicle visits customers in a negligible amount of time to deliver their orders. A

representative figure is illustrated in Figure 4.1. To avoid the cost of individual shipment

for each order, the e-retailer plans to consolidate orders as much as possible, and then the

shipment vehicle delivers orders to the customers without exceeding any promised time length

of carried orders in a vehicle. We assume that even if there is no restriction for the number

of trucks that the company uses in our setting, there is a single constant vehicle capacity for

all shipment operations.

Figure 4.1: Shipment consolidation operation for only regular service.

The e-retailer operates shipment consolidation activities under hybrid (time-and-quantity

based) policy. Thus, a shipment is realized either when the capacity of a truck/vehicle or the

promised delivery time for the earliest demand is reached. Note that transportation times

regarding from the fulfillment center to the customer region, and within the region are not

included to the model. However,the promised delivery time can be considered as the differ-

ence between the quoted delivery time to the customer on the web page and transportation
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times.

In the problem of shipment consolidation of the e-retailer company, the focus is on an-

alyzing only the shipment consolidation operation. Therefore, we do not include decisions

or settings regarding choosing the right fulfillment center, item levels in warehouses, trans-

portation times or generalized fleet operations. As a result, costs in the model include only

shipment related costs and in this case we assume a fix cost per shipment operation. The

e-retailer’s delivery activities are strictly guaranteed in terms of time, customers willing to

wait until the quoted delivery time. Hence, we exclude waiting costs. At this point, our

interest is different from the closest study to ours in the literature which is Mutlu et al.

[41]. Additionally, Mutlu et al. [41] aim to minimize the cost but again we differ with profit

maximization approach.

We assume that the company’s demand for regular customers follows Poisson distribution

with rate λ0, and each customer order comes as a single unit. The inter-shipment time (cycle

length) is the time length between two consecutive shipment realization from the fulfillment

center. The promised delivery time, τ is defined as the maximum promised delivery duration,

and it is valid for all orders carried in the shipment vehicle.Hence, after a shipment has been

send, the arrival of the first customer initiates the ”promised-delivery-time-clock” for the

next shipment. Note that, with exponential times between customer arrivals, the arrival for

this first customer initiates a renewal cycle; i.e. the cycles are identically distributed. Thus

Renewal Theory applies, and hence we only need to compute expected revenues and costs

for a cycle, and expected cycle length [48].

e−λ0τ (λ0τ)n

n!

As the company operates according to the hybrid policy, there are two possible thresholds

to realize each shipment: τ ; the total waiting time for the first coming order and C ; the

capacity of a shipment vehicle. The time length between two shipment realization is named

as inter-shipment time and it depends on both of these parameters.

Let ISk be the inter-shipment time between (k − 1)th and kth shipments,
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ISk = t1 +

τ, if tC−1 > τ

tC−1, otherwise

where ti is defined as the time of ith arrival unit.

To find the expected inter-shipment time, E[IS], we evaluate expected probabilities of

both cases. The first case is the realization of a shipment when the waiting time for the

earliest coming demand reaches τ . It is the situation where waiting time for the full truck

load is greater than τ .

P{tC−1 > τ} = P{tC−2 ≥ τ} =
C−2∑
n=0

e−λ0τ (λ0τ)n

n!

In the same manner, the probability of filling C-1 unit capacity on τ is the Erlang dis-

tribution for the (C − 1)th event [49]. The cumulative probability for this to happen on or

before τ is defined as

F (t) =

∫ τ

0

t ∗ e
−λ0tλC−1

0 tC−2

Γ(C − 2)
dt.

Hence, the expression for the expected inter-shipment time is as follows.

E[IS] =
1

λ0

+ τ ∗
C−2∑
n=0

e−λ0τ (λ0τ)n

n!
+

∫ τ

0

t ∗ e
−λ0tλC−1

0 tC−2

Γ(C − 2)
dt

or in more compact form:

E[IS] =
C

λ0

+ e−λ0τ

(
C−3∑
n=0

λn0τ
n+1

n!
+

(1− C)

λ0

C−2∑
n=0

λn0τ
n

n!

)
. (4.1)

Another quantity of interest is the expected number of units per shipment. It is con-

structed easily from the probabilities evaluated above and it is expressed as

E[number of units per shipment] = 1 +n ∗
C−2∑
n=0

e−λ0τ (λ0τ)n

n!
+ (C − 1) ∗

∫ τ

0

e−λ0tλC−1
0 tC−2

Γ(C − 2)
dt.

(4.2)
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Note that equations (4.1) and (4.2) are related to each by a factor of λ0. This is verified

in Appendix G.

In this problem, we also assume that each regular customer yields a revenue r0. As it is

mentioned before, the only cost for the regular service in shipment consolidation is a fix cost

per shipment decision, K. Our aim is to maximize the expected profit. After the evaluation

of probability measures for each shipment realization condition, we construct the objective

function to get average profit. The final structure for the e-retailer’s shipment problem is

E[Profit]= r0λ0 −
K

C
λ0

+ e−λ0τ

(
C−3∑
n=0

λn0 τ
n+1

n!
+ (1−C)

λ0

C−2∑
n=0

λn0 τ
n

n!

)
(4.3)

where

K : the fix cost per shipment

r0 : revenue per unit for regular demand.

Now, we analyze two extremes of the consolidation policy: where we have unlimited ca-

pacity and where we have no promised shipment time.

• Unlimited Capacity

For this case we took the limit as C goes to infinity for E[IS] and the result is expressed

as:

lim
C→∞

C

λ0

+ e−λ0τ

(
C−3∑
n=0

λn0τ
n+1

n!
+

1− C
λ0

C−2∑
n=0

λn0τ
n

n!

)
=

1

λ0

+ τ

Hence, the objective value is as follows.

r0λ0 −
K

1
λ0

+ τ

This is the situation where we have only the promised delivery time as a threshold

for our shipment policy. Therefore, this version of the problem becomes time-based

consolidation policy and it provides us an upper bound for the objective function.
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Proposition 2. An upper bound for the equation (4.3) is given by r0λ0− K
1
λ0

+τ
. Proof:

Follows unlimited capacity argument for the truck.

• Unlimited Promised Delivery Time

If there is no promised delivery time consideration of the company, the operation

strategy act according to quantity-based consolidation policy. Thus, a shipment is

realized only when the capacity of the shipment vehicle is full without concerning

service time for customers. It is equivalent to taking the limit of expected inter-

shipment time as τ goes to infinity and the new expected inter-shipment time becomes

lim
τ→∞

1

λ0

+

∫ ∞
0

t ∗ e
−λ0tλC−1

0 tC−2

Γ(C − 2)
dt =

C

λ0

.

Accordingly, another upper bound for the objective function is

r0λ0 −
λ0K

C
.

Proposition 3. An upper bound for the equation (4.3) is given by r0λ0 − λ0K
C

. Proof:

Follows unlimited promised delivery time argument for the truck.

4.2 Shipment Consolidation Problem Including Pre-

mium Service

In the previous section, we assume the e-retailer company offers only the regular service to its

customers. Now, we integrate the premium service option to the problem. However, we also

assume that the e-retailer does not want to lose any customers preferring to use the regular

service. The premium service provides an immediate delivery to its customers compared

to the regular service. This immediate delivery can be considered as same day shipping

or delivery in a few hours. To enable such a service, we assume very close inventories

to customers or demand points. When the e-retailer physically keeps items be ready in

those inventories, customers within regions of those inventories see the premium service with
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immediate delivery option on the web page for physically available items. For simplicity,

we assume a single small inventory in a single customer region. The inventory is fed by the

fulfillment center for prospective demands. The e-retailer wants to decide how much to send

to the inventory in each shipment realization from the fulfillment center to the region by

carrying both the orders of the regular service and items for the inventory.

4.2.1 Approximate Model of The Problem with Premium Service

The e-retailer company brings the premium service option in addition to its regular service.

We assume deterministic demand for the premium service with rate λP . As the e-retailer

does not want any lost sales from the regular service, inter-shipment times are still stochastic

and depend on both the promised delivery time and the capacity dedicated to the regular

service in a shipment truck. However, stochasticity in realizations of the hybrid policy makes

inter-shipment times inconsistent while feeding the premium service’s inventories which has

constant demand rate. Additionally, it is hard to identify the exact distribution of the inter-

shipment times due to its complicated structure, and this makes it harder to detect the exact

state of inventory position. Even if having a constant demand rate for the premium service

makes the problem slightly easier, we still have to consider possible accumulations in the

inventory with respect to high holding costs. Therefore, the crucial point in this problem

is to decide right amount to send small inventories per shipment by deciding the optimal

combination of capacities dedicated to each services in the shipment vehicle.

To avoid extreme holding costs caused by accumulations of items in the inventory, we allow

lost sale from the premium service by assuming items send to the inventory are always sold.

The main idea behind it is that if each shipment realization finds an inventory empty, the

accumulations in small inventories are prevented. Hence, in each cycle inventory clears itself

and loses the remaining demand which come until the next shipment arrival. In Figure 4.2,

an illustration for our model assumption is depicted. Under this assumption, the problem is

to decide how much to send the inventory for the premium demand while also sending the

regular service’s demand in the same shipment vehicle.
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Figure 4.2: Model Assumption

where CP is the amount send to the inventory with each shipment realization.

Since, we include the existence of the inventory to the problem due to the premium service

expansion, the new objective function additionally has inventory carrying costs. The discrete

holding cost function is expressed as

h
CP (CP + 1)

2λP

where

h: holding cost per item per time

λP : demand rate of the premium service

CP : amount send to the small inventory.

Each premium demand comes with a revenue rP . As a result, we construct expected

average profit maximizing model for the shipment consolidation problem.
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Maximize r0λ1 +
rPCP − hCP (CP+1)

2λP
−K

C0

λ1
+ e−λ1τ

(
C0−3∑
n=0

λn1 τ
n+1

n!
+ (1−C0)

λ1

C0−2∑
n=0

λn1 τ
n

n!

)
(4.4)

subject to C0 + CP ≤ C (4.5)

CP , C0 ∈ Z+ (4.6)

where

C0: amount dedicated to the regular service per shipment

CP : amount dedicated to the inventory per shipment for the premium service

C: the total capacity of a shipment vehicle

h: holding costs of premium service per unit per time

r0: revenue per item bought from the regular service

rP : revenue per item bought from the premium service

λ1: demand rate of the regular service when the premium service also offered

λP : demand rate of the premium service.

In the approximate model of the problem including premium service, our aim is to decide

right amount of capacity to dedicate both of services given the shipment truck’s capacity

constraint by maximizing the expected profit. Different from the hybrid policy, which re-

quires the information of the promised delivery time and the capacity per shipment (τ, C),

the new modified policy requires information regarding (τ, C0, CP ) to initiate a shipment and

keep items ready for the premium services’ prospective customers.

4.2.2 Analysis of The Approximate Model

In reality, stochasticity in inter-shipment times may lead too frequent shipments. Considering

an infinite horizon, consecutive shipments to the inventory of premium service can cause

accumulations of the inventory level due to not cleared inventory from the previous cycle.

In Figure 4.3, an example of realization is illustrated.
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Figure 4.3: Realization

As a result, our assumption to avoid extreme inventory accumulations underestimates

holding costs in the expected profit function, (4.4). Furthermore, another important outcome

arising from our assumption in the approximate model is overestimating revenue generated

by the premium service. In each shipment cycle duration we assume that amount sent to the

inventory in the beginning of each cycle will be sold until the next shipment’s realization.

This causes an overestimation in revenue per shipment. As a result of underestimated holding

costs and over estimated revenues, the expected profit is overestimated in the approximate

model. Hence, our assumption’s accuracy is high when we have longer lost sale duration in

realized inter-shipment times.

To interpret our assumption and strengthen the approximate model, we introduce the

parameter α which is the fraction of premium demand to satisfy. In other words, each

shipment arrival finds the inventory empty by allowing (1 − α) ∗ 100% lost sale in the

premium service. Therefore, in each cycle the inventory clears itself and loses the demand

of premium service until next shipment’s arrival. Even if we do not have the distribution of

inter-shipment times, we have the expected value of it, and it can be used as an upper limit

to the the amount shipped for the premium service as a caution. Our assumption states

that in each shipment the inventory level is found empty as it is illustrated in Figure 4.2.

Therefore, to make our approximate model strengthen in the application, we construct a

natural bound for the amount to be shipped for the premium service by using the E[IS] and
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α. This natural bound of the approximation in the model is expressed as follows.

CP ≤ αλPE[IS] (4.7)

where α ∈ [0, 1]

CP : the amount shipped to for the premium service per shipment

λP : demand rate of the premium service.

On the other hand, there is an another bound for CP to operate in an economical man-

ner. By considering the first order condition coming from the objective function (4.4), we

construct a new bound for CP . Therefore, there exists a global CP value such that the model

prevents to send more than that amount as it would be illogical in economical manner. man-

ner. Please refer to Appendix H for the derivation of the condition. This global upper bound

is expressed in an interval and CP takes the integer value from this interval.

rPλP
h
− 1 ≤ CP

∗ ≤ rPλP
h

(4.8)

where CP
∗

is the global integer bound for CP .

By using upper bounds that we constructed, we are able to provide an operational new

constraint for the number of items that can be send for premium service. For the sake of

simplicity, we take the bound coming from (4.8) as rPλP
h

and expressed the operational upper

bound as

CP ≤ min
{rPλP

h
, αλPE[IS], C − C0

}
. (4.9)

The first upper bound comes from economical benefit of the premium service. The second is

to strengthen the application of our assumption and the last one is the feasibility condition.

In the modified policy, our interest is to identify (τ, C0, CP ). We provide a simple search

algorithm to find best combination of (C0, CP ) given the total available capacity and the

promised delivery time. Algorithm 2 is presented as follows.
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Algorithm 2 Maximize The Expected Profit for Given Parameter Set

1: procedure Compute the best combination for(C0, CP )

2: for C0 = 1 : C do

3: CalculateE[IS]

4: for each CP = 0 : min
{
rPλP
h , αλPE[IS], C − C0

}
do

5: Calculate the expected profit.

6: end for

7: Return CP that yields maximum expected profit.

8: end for

9: Return C0 and CP that yields maximum expected profit.

10: end procedure

By using Algorithm 2 and the parameter set given in Table 4.1, we generate a numerical

example.

Parameters r0 rP λ1 λP h K C τ α

Values 5 6 20 15 1 100 150 8 0.8

Table 4.1: Parameter set to find best combination between C0 and CP

After we run Algorithm 2, the best (C0, CP ) combination is found as (92, 55), and the

total used capacity is 147. The main reason behind this observation is CP always hits the

natural bound (4.7) for small C0 which causes small E[IS]. However, increasing C0 one by one

does not necessarily increase this natural bound incrementally in each iteration. Therefore,

we observe wavy shapes in the left hand side of the figure. In Figure 4.4, it can be seen that

the horizontal line is the place where the smallest upper bound of CP changes. Since C0

increases, E[IS] increases so the remaining capacity becomes more more strict bound for CP .

60



Figure 4.4: Results of the best combination of (C0, CP )

.

4.3 Simulation for The Approximate Model

Our main concern is to understand the extend of overestimation in the expected profit

function given the problem in Subsection 4.2. Therefore, we conduct a simulation experiment

in MATLAB to asses the accuracy of the approximate model proposed.

One of drawbacks of the approximate model is its underestimation of holding costs. Hence,

in the simulation, we aim to see the difference between the analytical model and the real-

ization regarding the average inventory carried. In the approximate model, the average

inventory carried is calculated according to the following expression.

α
CP (CP + 1)

2λPE[IS]
(4.10)

where α ∈ [0, 1] is the fraction to satisfy the premium demand per shipment.

By using parameters in Table 4.2, we calculate the expected inter-shipment time with C0

and τ and it is found as E[IS]=5.
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Parameter λP h K τ C0

Value 15 1 100 8 100

Table 4.2: Parameter set for the comparison between the simulation and the approximate

analytical model.

Finding the exact distribution for the inter-shipment time is hard because of its com-

plicated probabilistic structure. Hence, in the simulation we generate inter-shipment times

from Gamma distribution for different coefficient of variations (CV= 0.5, 1 and 2) by taking

the mean value of the distribution same as we found in the analytical model, E[IS]=5. Under

the above parameter settings, we generate 100 consecutive cycle lengths as a single stream

and repeat it 200 times to reach sample size n=200. In other words, we have 200 streams of

100 consecutive shipment realization and each stream is started freshly with CP amount of

inventory level.

The other significant point in the simulation is to decide CP level to use both in the

approximate analytical model and in the simulation to see the effect of underestimation of

items hold in the inventory. We know from (4.9), CP can be chosen as its global upper

bound, the remaining capacity or the expected number of demand in per cycle time. To

be able to see the effect of our assumption in the model, we arrange parameters to have

the expected number of demand per cycle as minimum among other bounds and take total

capacity C as infinity. Hence, λPE[IS] yields the minimum upper bound as having the value

of 75.

For different α and CV combinations, we make a simulation and keep the average lost sale

and the average inventory carried for both the approximate analytical model and realizations

of inter-shipment times and their results are as follows.

α

0.5 0.80 0.95

0.5 9.3633 vs 9.3733 25.3298 vs 23.60 57.5120 vs 34.08

CV 1 9.8497 vs 9.3733 33.9462 vs 23.60 99.0078 vs 34.08

2 11.3478 vs 9.3733 49.3201 vs 23.60 146.8524 vs 34.08

Table 4.3: Average Inventory Carried (Simulation vs Analytical Model)
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α

0.5 0.80 0.95

0.5 50.76 % 21.51 % 5.87 %

CV 1 50.79 % 21.71 % 6.96 %

2 50.86 % 22.06 % 7.86 %

Table 4.4: Average Lost Sale in the Simulation

In Table 4.3, we present average inventory carried from the simulation versus the analytical

model as pairs. Note that results of the analytical model are independent of CV values.

However, under our assumption, CP value of the analytical model changes regarding different

α values. As it is shown in Table 4.2, the analytical model always underestimates carried

inventory and its estimation is better when we have low α values, as expected. On the other

hand, since high CV values create more variation in the realizations of inter-shipment times,

we carry more inventory as CV increases.

It is expected that when α gets bigger, more demand is satisfied as we send more item to

the inventory. Hence, we lose less demand as it is shown in Table 4.4. However, if we decide

to send very close to the expected premium demand per shipment, for high coefficient of

variation we loose more than we assume. That is why in the last column of Table 4.4, an

increase in the lost sale is observed as CV gets bigger.

Regarding the CV level to select, more analyses can be conducted. Here, our aim is to

show that the accuracy of the expected profit function is well affected by the actual CV and

α value selected.
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Chapter 5

Conclusion

To the extent of our knowledge, this is the first work combines shipment consolidation

problem with e-retailer activities under different customer characterizations. We assume

an e-retailer that has two types of services to offer their customers possibly with different

prices: the regular and the premium. In the regular service, the company guarantees a

promised delivery time to its customers and realizes delivery of orders without exceeding

the promised time length. In the premium service, we assume zero promised delivery time,

and the e-retailer has inventories located very close to its prospective customers to provide

practically zero promised delivery time service. The problem considers a single fulfillment

center to send items and a single customer region, which includes a single inventory location

for the premium service. When an item is in such inventory, customers who navigate the

item’s web page observe the premium service option. Otherwise, items are served under the

regular service.

Each shipment realization from the fulfillment center to the region serves to customers of

the regular service, who already purchased items and wait for their delivery, and/or to the

inventory to be kept for prospective premium service customers. As our interest is shipment

consolidation operation, the problem becomes determining conditions to consolidate items

send for both of services from the fulfillment center under different services.

Shipments are carried out by trucks with limited capacity. We assume a single constant
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capacity for each shipment. Moreover, we are not concerned with fleet capacity or truck

availability, and hence assume that we have unlimited number of trucks or cargo vehicles.

We consider an infinite horizon for the problem as demand is taken to have a constant

rate. As a result, an optimal solution for deterministic demand case will have a constant

inter-shipment time for the trucks. Similarly, for the stochastic demand case where demand

follows a Poisson distribution, we discuss that renewal theorem is applicable for the analysis

under the policies considered.

The e-retailer company is assumed to operate under hybrid policy. Under this policy, a

single shipment is realized either when the promised delivery time or the capacity of the

truck is reached. For simplicity, we assume the e-retailer offers a single type of an item, and

each demand comes as a single unit.

We differentiate demand rates coming in each service type. Similarly, demand for regular

service will be different if premium service is offered at the same time. In the same manner,

revenues generated by orders from each service are allowed to be different. We consider a

fixed cost per shipment realization, and holding cost for items kept in the inventory. The

objective function is to maximize the average contribution to profit (or expected profit),

which is average revenues minus average costs. We employ two settings for this shipment

consolidation problem.

In the first setting, we assume that demand of each service is deterministic, and there

is a third service option for the company: operate these two services together - we call it

joint operation. In the deterministic setting, we have truck capacity and promised delivery

time constraints. There is no restriction in the policy applied, and hence each service type’s

(individual and joint) contribution to the cycle length (inter-shipment time) are the decisions.

As the objective function is non-linear, we apply Karush-Kuhn-Tucker conditions and provide

analytical results to find an optimal solution. Even if the objective function is shown to be

neither concave nor convex, a number of properties on the solution are shown to be active,

decreasing the solution time. Our results show that items can be categorized according to

their revenue generating abilities, of course depending on the problem parameters.

In the second setting, we assume stochastic demand for the regular service. Demand is

assumed to follow a Poisson distribution. We also assume that the e-retailer does not allow
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any lost customer from its regular service. First, we evaluate the problem where we have

only the regular service. Similar to the deterministic setting we assume constant revenue for

each demand and a fix cost per shipment. As a result, we aim to maximize average expected

contribution to profit. Next, the problem is extended by integrating the premium service

with constant and deterministic demand rate. We present an approximate model that will

utilize the following policy: Trigger a shipment if the promised delivery time is reached, or if

the capacity limit for regular customers is reached. Additionally, ship a constant amount for

the use of premium service. Hence, capacity limit for the regular customers and the constant

amount sent as inventory are decision variables of the proposed policy. The analytical model

is built with the premise that when truck reaches the region, there will be no units left for

the inventory. However, this may not be the case, as we have stochastic demand. As a result

of this assumption, we show that the approximate model overestimates the average expected

profit. A simulation is used to show when the margin of error caused by the approximate

model is high.

The current work is valuable as it proposes benchmarks for the more complicated, real

problem. In the deterministic demand problem, there is no restriction with respect to the

policies one can use, making the solution very general. The categorization proposed in

Chapter 3 is an important contribution for practical version of the problem.

Stochastic demand problem can be extended in a number of ways. Different policies can

be proposed and modeled. Policies that depend on the current inventory level allocated for

the premium service can be devised as a future work.
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[23] F. Mutlu and S. Çetinkaya, “An integrated model for stock replenishment and ship-

ment scheduling under common carrier dispatch costs,” Transportation Research Part

E: Logistics and Transportation Review, vol. 46, no. 6, pp. 844–854, 2010.
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[40] S. Çetinkaya, E. Tekin, and C.-Y. Lee, “A stochastic model for joint inventory and

outbound shipment decisions,” Iie Transactions, vol. 40, no. 3, pp. 324–340, 2008.
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Appendix A

An Example For The Objective

Function

To form the Hessian matrix of objective function, (1), required derivatives are constructed

in the following. Let

O(T0, TJ , TP ) =
TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K −H(TP , TJ)

(TP + TJ + T0)
(A.0.1)

And elements in the diagonal of the Hessian matrix are:

∂2O

∂2T0

= −2(K + λP (TP + TJ)(h(TP + TJ)− rP )) + r0(λ0(TP + TJ)− λ1TJ)

(TP + TJ + T0)3

∂2O

∂2TJ
= −2(K + λ1r0(TP + T0) + T0(λP rP − λ0r0 + hλPT0))

((TP + TJ + T0)3

∂2O

∂2TP
= −2(K − λ1r0TJ + T0(λP rP − λ0r0 + hλ0T0))

(TP + TJ + T0)3

If we choose K = 10, h = 0.1, λ0 = 10, λ1 = 8, λP = 5, TP = 1, TJ = 1, T0 = 1, r0 = 4, rP =
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8,

∂2O

∂2T0

= 1.48148

∂2O

∂2TJ
= −5.51852

∂2O

∂2TP
= 1.59259

and related eigenvalues are: -6.28318, -0.167412, 4.00615. Hence, in this combination of

parameter set, the objective function is neither convex or concave.

74



Appendix B

32 KKT Cases

Possible case types are structured as follows.

Case 1: µ1 > 0 and µ2 > 0

Case 2: µ1 = 0 and µ2 > 0

Case 3: µ1 > 0 and µ2 = 0

Case 4: µ1 = 0 and µ2 = 0

Moreover, each of 4 cases is then divided into 8 cases according to (2.22), (2.23) and

(2.24). The associated case numbers are expressed as shown below ∀i = 1, 2, 3, 4.

Case i.1: T0 > 0, TJ = 0, TP = 0

Case i.2: T0 = 0, TJ > 0, TP = 0

Case i.3: T0 = 0, TJ = 0, TP > 0

Case i.4: T0 > 0, TJ > 0, TP = 0

Case i.5: T0 > 0, TJ = 0, TP > 0

Case i.6: T0 = 0, TJ > 0, TP > 0

Case i.7: T0 > 0, TJ > 0, TP > 0

Case i.8: T0 = 0, TJ = 0, TP = 0

Notice that as Case i.8 ∀i = 1, 2, 3, 4 refers no operation.
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B.1 Case 1

B.1.1 Case 1.1

• µ1 > 0 and µ2 > 0

• T0 > 0, TJ = 0, TP = 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ T0 = τ

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λP + λ1) + T0λ0 = C

=⇒ T0 = C/λ0

By combining above solutions we get:

C/λ0 = τ

From stationarity:

∂L

∂T0

= 0 =⇒ K = T 2
0 (µ1 + µ2λ0) (B.1.1)

∂L

∂TJ
≤ 0 =⇒ (rPλP + r0λ1 − r0λ0)

T0

− µ1 − µ2(λP + λ1 − λ0) ≤ 0 (B.1.2)

∂L

∂TP
≤ 0 =⇒ T0(rPλP − r0λ0)−K

T 2
0

− µ2λP ≤ 0 (B.1.3)

Hence, the solution of Case 1.1 is

(T0, TJ , TP ) = (τ, 0, 0) = (C/λ0, 0, 0) (B.1.4)

B.1.2 Case 1.2

• µ1 > 0 and µ2 > 0
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• T0 = 0, TJ > 0, TP = 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ TJ = τ

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λP + λ1) + T0λ0 = C

TJ(λP + λ1) = C =⇒ TJ = C/(λ1 + λP )

By combining above solutions:

C/(λ1 + λP ) = τ

From stationarity:

∂L

∂T0

≤ 0 =⇒ TJ(r0λ0 − rPλP − r0λ1)−K − hλPT 2
J

T 2
J

− µ1 − µ2λ0 ≤ 0 (B.1.5)

∂L

∂TJ
= 0 =⇒ TJ(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

− µ1 − µ2(λ1 + λP ) = 0 (B.1.6)

∂L

∂TP
≤ 0 =⇒ TJ(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

− µ2λP ≤ 0

(B.1.7)

Hence, the solution of Case 1.2 is

(T0, TJ , TP ) = (0, τ, 0) = (0, C/(λ1 + λP ), 0) (B.1.8)

B.1.3 Case 1.3

• µ1 > 0 and µ2 > 0

• T0 = 0, TJ = 0, TP > 0
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From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ τ = 0

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λP + λ1) + T0λ0 = C

=⇒ TP = C/λPfca

From stationarity:

∂L

∂T0

≤ 0 =⇒ TP r0λ0 − (TP rPλP −K − hλPT 2
P )

T 2
P

− µ1 − µ2λ0 ≤ 0 (B.1.9)

∂L

∂TJ
≤ 0 =⇒ TP (rPλP + r0λ1 − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

− µ1

− µ2(λ1 + λP ) ≤ 0 (B.1.10)

∂L

∂TP
= 0 =⇒ TP (rPλP − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

− µ2λP = 0 (B.1.11)

Hence, the solution of Case 1.3 is

(T0, TJ , TP ) = (0, 0, C/λP ) (B.1.12)

B.1.4 Case 1.4

• µ1 > 0 and µ2 > 0

• T0 > 0, TJ > 0, TP = 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TJ(λP + λ1) + T0λ0 = C

By combining above solutions:

T0 = τ − C − τλ0

λP + λ1 − λ0

TJ =
C − τλ0

λP + λ1 − λ0
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Notice that Case 1.4 does not exist when λP + λ1 − λ0 = 0.

From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TJ)r0λ0 − (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2
J )

(T0 + TJ)2
− µ1 − µ2λ0 = 0

(B.1.13)

∂L

∂TJ
= 0 =⇒ (T0 + TJ)(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0

(T0 + TJ)2

−K − hλPT 2
J )

(T0 + TJ)2
− µ1 − µ2(λ1 + λP ) = 0 (B.1.14)

∂L

∂TP
≤ 0 =⇒ (T0 + TJ)(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2

J )

(T0 + TJ)2

− µ2λP ≤ 0 (B.1.15)

Hence, the solution of Case 1.4 is

(T0, TJ , TP ) = (τ − C − τλ0

λP + λ1 − λ0

,
C − τλ0

λP + λ1 − λ0

, 0) (B.1.16)

B.1.5 Case 1.5

• µ1 > 0 and µ2 > 0

• T0 > 0, TJ = 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ T0 = τ

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + T0λ0 = C =⇒ TP =
C − τλ0

λP
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From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TP )r0λ0 − (TP rPλP + T0r0λ0 −K − hλPT 2
P )

(T0 + TP )2
− µ1 − µ2λ0 = 0

(B.1.17)

∂L

∂TJ
≤ 0 =⇒ (T0 + TP )(rPλP + r0λ1 − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

P )

(T0 + TP )2

− µ1 − µ2(λ1 + λP ) ≤ 0 (B.1.18)

∂L

∂TP
= 0 =⇒ (T0 + TP )(rPλP − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

J )

(T0 + TP )2
− µ2λP = 0

(B.1.19)

Hence, the solution of Case 1.5 is

(T0, TJ , TP ) = (τ, 0,
C − τλ0

λP
). (B.1.20)

B.1.6 Case 1.6

• µ1 > 0 and µ2 > 0

• T0 = 0, TJ > 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ TJ = τ

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λ1 + λP ) = C =⇒

TP =
C − τ(λ1 + λP )

λP
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From stationarity:

∂L

∂T0

≤ 0 =⇒ (TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1)−K − hλP (TJ + TP )2)

(TJ + TP )2

− µ1 − µ2λ0 ≤ 0 (B.1.21)

∂L

∂TJ
= 0 =⇒ (TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
− µ1 − µ2(λ1 + λP ) = 0 (B.1.22)

∂L

∂TP
= 0 =⇒ (TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
− µ2λP = 0 (B.1.23)

Hence, the solution of Case 1.6 is the following

(T0, TJ , TP ) = (0, τ,
C − τ(λ1 + λP )

λP
). (B.1.24)

B.1.7 Case 1.7

• µ1 > 0 and µ2 > 0

• T0 > 0, TJ > 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λ1 + λP ) + T0λ0 = C
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From stationarity:

∂L

∂T0

=
(T0 + TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2

− µ1 − µ2λ0 = 0 (B.1.25)

∂L

∂TJ
=

(T0 + TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(T0 + TJ + TP )2

+T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
− µ1 − µ2(λ1 + λP ) = 0 (B.1.26)

∂L

∂TP
=

(T0 + TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0

(T0 + TJ + TP )2

−K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
− µ2λP = 0 (B.1.27)

By solving above equations together, we have the solution of Case 1.7. The variables used

in Figure B.1 contain the subscripts as a part of their variable name. Also subscript P is

represented by i in the figure.

Solution (B.1.28)

Figure B.1: Solution of Case 1.7
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B.2 Case 2

B.2.1 Case 2.1

• µ1 > 0 and µ2 = 0

• T0 > 0, TJ = 0, TP = 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ T0 = τ

From stationarity:

∂L

∂T0

= 0 =⇒ K = T 2
0 µ1 (B.2.1)

∂L

∂TJ
≤ 0 =⇒ (rPλP + r0λ1 − r0λ0)

T0

− µ1 ≤ 0 (B.2.2)

∂L

∂TP
≤ 0 =⇒ T0(rPλP − r0λ0)−K

T 2
0

≤ 0 (B.2.3)

Hence, the solution of Case 2.1 is

(T0, TJ , TP ) = (τ, 0, 0) (B.2.4)

B.2.2 Case 2.2

• µ1 > 0 and µ2 = 0

• T0 = 0, TJ > 0, TP = 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ TJ = τ
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From stationarity:

∂L

∂T0

≤ 0 =⇒ TJ(r0λ0 − rPλP − r0λ1)−K − hλPT 2
J

T 2
J

− µ1 ≤ 0 (B.2.5)

∂L

∂TJ
= 0 =⇒ TJ(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

− µ1 = 0

(B.2.6)

∂L

∂TP
≤ 0 =⇒ TJ(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

≤ 0 (B.2.7)

Hence, the solution of Case 2.2 is

(T0, TJ , TP ) = (0, τ, 0) (B.2.8)

B.2.3 Case 2.3

• µ1 > 0 and µ2 = 0

• T0 = 0, TJ = 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ τ = 0

From stationarity:

∂L

∂T0

≤ 0 =⇒ TP r0λ0 − (TP rPλP −K − hλPT 2
P )

T 2
P

− µ1 ≤ 0 (B.2.9)

∂L

∂TJ
≤ 0 =⇒ TP (rPλP + r0λ1 − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

− µ1 ≤ 0 (B.2.10)

∂L

∂TP
= 0 =⇒ TP (rPλP − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

= 0 (B.2.11)

By solving ∂L
∂TP

= 0, TP ’s solution is reached. Hence, the solution of Case 2.3 is

(T0, TJ , TP ) = (0, 0,
√
K/hλP ). (B.2.12)
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B.2.4 Case 2.4

• µ1 > 0 and µ2 = 0

• T0 > 0, TJ > 0, TP = 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ

From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TJ)r0λ0 − (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2
J )

(T0 + TJ)2
− µ1 = 0

(B.2.13)

∂L

∂TJ
= 0 =⇒ (T0 + TJ)(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K

(T0 + TJ)2

−hλPT 2
J )

(T0 + TJ)2
− µ1 = 0 (B.2.14)

∂L

∂TP
≤ 0 =⇒ (T0 + TJ)(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2

J )

(T0 + TJ)2
≤ 0

(B.2.15)

By solving (B.2.13), (B.2.14) and (B.2.15) simultaneously:

T0 =τ − rPλP + r0λ1 − r0λ0

2hλP

TJ =
rPλP + r0λ1 − r0λ0

2hλP

Hence, the solution of Case 2.4 is

(T0, TJ , TP ) = (τ − rPλP + r0λ1 − r0λ0

2hλP
,
rPλP + r0λ1 − r0λ0

2hλP
, 0). (B.2.16)
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B.2.5 Case 2.5

• µ1 > 0 and µ2 = 0

• T0 > 0, TJ = 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ T0 = τ

From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TP )r0λ0 − (TP rPλP + T0r0λ0 −K − hλPT 2
P )

(T0 + TP )2
− µ1 = 0 (B.2.17)

∂L

∂TJ
≤ 0 =⇒ (T0 + TP )(rPλP + r0λ1 − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

P )

(T0 + TP )2

− µ1 ≤ 0 (B.2.18)

∂L

∂TP
= 0 =⇒ (T0 + TP )(rPλP − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

J )

(T0 + TP )2
= 0

(B.2.19)

By solving (B.2.17) and (B.2.19) simultaneously, the expression for TP is reached. Hence,

the solution of Case 2.5 is

(T0, TJ , TP ) = (τ, 0,

√
τ 2 +

K − τ(r0λ0 − rPλP )

hλP
− τ). (B.2.20)

B.2.6 Case 2.6

• µ1 > 0 and µ2 = 0

• T0 = 0, TJ > 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ =⇒ TJ = τ
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From stationarity:

∂L

∂T0

≤ 0 =⇒ (TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1)−K − hλP (TJ + TP )2

(TJ + TP )2

− µ1 ≤ 0 (B.2.21)

∂L

∂TJ
=

(TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
− µ1 = 0 (B.2.22)

∂L

∂TP
= 0 =⇒ (TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
= 0 (B.2.23)

By solving above equations the expression for TP is obtained. Hence, the solution of Case

2.6 is

(T0, TJ , TP ) = (0, τ,

√
K − τr0λ1

hλP
− τ). (B.2.24)

B.2.7 Case 2.7

• µ1 > 0 and µ2 = 0

• T0 > 0, TJ > 0, TP > 0

From complementary slackness:

µ1g1(TJ , T0) = 0 =⇒ g1(TJ , T0) = 0 =⇒ T0 + TJ = τ
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From stationarity:

∂L

∂T0

=
(T0 + TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2

− µ1 = 0 (B.2.25)

∂L

∂TJ
=

(T0 + TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(T0 + TJ + TP )2

+T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
− µ1 = 0 (B.2.26)

∂L

∂TP
=

(T0 + TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0

(T0 + TJ + TP )2

−K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
= 0 (B.2.27)

(TP , TJ , T0) = (
−(λ1 − λ0)r0)2 + 4hλP (K − λP r0τ

4h(λ1 − λP )λP r0

,

(λP rP + (λ1 − λ0)r0)2 + 4hλP (K − λ1r0τ

4h(λ1 − λP )λP r0

,

((λ2
1 − λ2

0)r2
0 − λ2

P rP (rP + 2r0) + 2λP r0(−λ1r0 + λ0(rP + r0)) + 4hλP (K − λ1r0τ))

4h(λ1 − λP )λP r0

)

(B.2.28)

B.3 Case 3

B.3.1 Case 3.1

• µ1 = 0 and µ2 > 0

• T0 > 0, TJ = 0, TP = 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λP + λ1) + T0λ0 = C

=⇒ T0 = C/λ0

88



From stationarity:

∂L

∂T0

= 0 =⇒ K = T 2
0 µ2λ0 (B.3.1)

∂L

∂TJ
≤ 0 =⇒ (rPλP + r0λ1 − r0λ0)

T0

− µ2(λP + λ1 − λ0) ≤ 0 (B.3.2)

∂L

∂TP
≤ 0 =⇒ T0(rPλP − r0λ0)−K

T 2
0

− µ2λP ≤ 0 (B.3.3)

Hence, the solution of Case 3.1 is

(T0, TJ , TP ) = (C/λ0, 0, 0). (B.3.4)

B.3.2 Case 3.2

• µ1 = 0 and µ2 > 0

• T0 = 0, TJ > 0, TP = 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λP + λ1) + T0λ0 = C

=⇒ TJ = C/(λ1 + λP )

From stationarity:

∂L

∂T0

≤ 0 =⇒ TJ(r0λ0 − rPλP − r0λ1)−K − hλPT 2
J

T 2
J

− µ2λ0 ≤ 0 (B.3.5)

∂L

∂TJ
= 0 =⇒ TJ(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

− µ2(λ1 + λP ) = 0 (B.3.6)

∂L

∂TP
≤ 0 =⇒ TJ(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

− µ2λP ≤ 0

(B.3.7)

Hence, the solution of Case 3.2 is

(T0, TJ , TP ) = (0, C/(λ1 + λP ), 0). (B.3.8)
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B.3.3 Case 3.3

• µ1 = 0 and µ2 > 0

• T0 = 0, TJ = 0, TP > 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λP + λ1) + T0λ0 = C

=⇒ TPλP = C =⇒ TP = C/λP

From stationarity:

∂L

∂T0

≤ 0 =⇒ TP r0λ0 − (TP rPλP −K − hλPT 2
P )

T 2
P

− µ2λ0 ≤ 0 (B.3.9)

∂L

∂TJ
≤ 0 =⇒ TP (rPλP + r0λ1 − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

− µ2(λ1 + λP ) ≤ 0

(B.3.10)

∂L

∂TP
= 0 =⇒ TP (rPλP − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

− µ2λP = 0 (B.3.11)

Hence, the solution of Case 3.3 is

(T0, TJ , TP ) = (0, 0, C/λP ). (B.3.12)

B.3.4 Case 3.4

• µ1 = 0 and µ2 > 0

• T0 > 0, TJ > 0, TP = 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TJ(λP + λ1) + T0λ0 = C
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From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TJ)r0λ0 − (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2
J )

(T0 + TJ)2
− µ2λ0 = 0

(B.3.13)

∂L

∂TJ
= 0 =⇒ (T0 + TJ)(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2

J )

(T0 + TJ)2

− µ2(λ1 + λP ) = 0 (B.3.14)

∂L

∂TP
≤ 0 =⇒ (T0 + TJ)(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2

J )

(T0 + TJ)2

− µ2λP ≤ 0 (B.3.15)

The solution of Case 3.4 changes with respect to the relation between λ0 and (λ1 + λP ).

If λ0 = (λ1 + λP ) =⇒ The solution of Case 3.4 is

(T0, TJ , TP ) = (C/λ0 −
rPλP + r0λ1 − r0λ0

2hλP
,
rPλP + r0λ1 − r0λ0

2hλP
, 0). (B.3.16)

If λ0 6= (λ1 + λP ), the solution will be

(
ChλPλ0 + (λ1 + λP )

√
hλP (C2hλP + (λP + λ1 − λ0)(K(λP + λ1 − λ0)− C(rPλP + (λ1 − λ0)r0)))

hλPλ0(λP + λ1 − λ0)
,

ChλP −
√
hλP (C2hλP + (λP + λ1 − λ0)(K(λP + λ1 − λ0)− C(rPλP + (λ1 − λ0)r0)))

hλP (λP + λ1 − λ0)
, 0).

(B.3.17)

B.3.5 Case 3.5

• µ1 = 0 and µ2 > 0

• T0 > 0, TJ = 0, TP > 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + T0λ0 = C
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From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TP )r0λ0 − (TP rPλP + T0r0λ0 −K − hλPT 2
P )

(T0 + TP )2
− µ2λ0 = 0 (B.3.18)

∂L

∂TJ
≤ 0 =⇒ (T0 + TP )(rPλP + r0λ1 − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

P )

(T0 + TP )2

− µ2(λ1 + λP ) ≤ 0 (B.3.19)

∂L

∂TP
= 0 =⇒ (T0 + TP )(rPλP − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

J )

(T0 + TP )2
− µ2λP = 0

(B.3.20)

Hence, the solution of Case 3.5 is

(T0, TJ , TP ) = (
Chλ0 −

√
hλP (C2hλP +K(λP − λ0)2 − C(λP − λ0)(λP rP − λ0r0))

hλ0(−λP + λ0)
,

0,
ChλP −

√
hλP (C2hλP +K(λP − λ0)2 − C(λP − λ0)(λP rP − λ0r0))

hλ0(λP − λ0)
).

(B.3.21)

B.3.6 Case 3.6

• µ1 = 0 and µ2 > 0

• T0 = 0, TJ > 0, TP > 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λ1 + λP ) = C
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From stationarity:

∂L

∂T0

≤ 0 =⇒ (TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1)−K − hλP (TJ + TP )2)

(TJ + TP )2

− µ2λ0 ≤ 0 (B.3.22)

∂L

∂TJ
=

(TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
− µ2(λ1 + λP ) = 0 (B.3.23)

∂L

∂TP
= 0 =⇒ (TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
− µ2λP = 0 (B.3.24)

Hence, the solution of Case 3.6 is

(T0, TJ , TP ) = (0,
Chλ1 −

√
hλ2

1λP (K − Cr0)

hλ2
1

,
−Chλ1λP + (λ1 + λP )

√
hλ2

1λP (K − Cr0)

hλ2
1λP

).

(B.3.25)

B.3.7 Case 3.7

• µ1 = 0 and µ2 > 0

• T0 > 0, TJ > 0, TP > 0

From complementary slackness:

µ2g2(TP , TJ , T0) = 0 =⇒ g2(TP , TJ , T0) = 0 =⇒ TPλP + TJ(λ1 + λP ) + T0λ0 = C
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From stationarity:

∂L

∂T0

=
(T0 + TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2

− µ2λ0 = 0 (B.3.26)

∂L

∂TJ
=

(T0 + TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(T0 + TJ + TP )2

+T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
− µ2(λ1 + λP ) = 0 (B.3.27)

∂L

∂TP
=

(T0 + TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K
(T0 + TJ + TP )2

−hλP (TJ + TP )2)

(T0 + TJ + TP )2
− µ2λP = 0 (B.3.28)

The solution of this case exits only when TP = 0. The main reason behind this solution is

that rPλP can be produced by TP and TJ separately. When both of them are positive, filling

the cycle length with TJ is more reasonable as it additionally brings r0λ1. Consequently, it

makes the Case 3.7 to has the same solution with Case 3.4.

B.4 Case 4

B.4.1 Case 4.1

• µ1 = 0 and µ2 = 0

• T0 > 0, TJ = 0, TP = 0

From stationarity:

∂L

∂T0

= 0 =⇒ K = T 2
0 (µ1 + µ2λ0) =⇒ K/0 = T 2

0 =⇒ T0 =∞ (B.4.1)

∂L

∂TJ
≤ 0 =⇒ (rPλP + r0λ1 − r0λ0)

T0

− µ1 − µ2(λP + λ1 − λ0) ≤ 0 (B.4.2)

∂L

∂TP
≤ 0 =⇒ T0(rPλP − r0λ0)−K

T 2
0

− µ2λP ≤ 0 (B.4.3)
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Hence, the solution of Case 4.1 is

(T0, TJ , TP ) = (∞, 0, 0) (B.4.4)

B.4.2 Case 4.2

• µ1 = 0 and µ2 = 0

• T0 = 0, TJ > 0, TP = 0

From stationarity:

∂L

∂T0

≤ 0 =⇒ TJ(r0λ0 − rPλP − r0λ1) +K + hλPT
2
J

T 2
J

≤ 0 (B.4.5)

∂L

∂TJ
= 0 =⇒ TJ(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

= 0

(B.4.6)

∂L

∂TP
≤ 0 =⇒ TJ(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1)−K − hλPT 2

J )

T 2
J

≤ 0 (B.4.7)

By solving ∂L
∂TJ

= 0 the expression for TP is reached and, the solution of Case 4.2 is

(T0, TJ , TP ) = (0,
√
K/hλP , 0). (B.4.8)

B.4.3 Case 4.3

• µ1 = 0 and µ2 = 0

• T0 = 0, TJ = 0, TP > 0
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From stationarity:

∂L

∂T0

≤ 0 =⇒ TP r0λ0 − (TP rPλP −K − hλPT 2
P )

T 2
P

≤ 0

∂L

∂TJ
≤ 0 =⇒ TP (rPλP + r0λ1 − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

≤ 0

∂L

∂TP
= 0 =⇒ TP (rPλP − 2hλPTP )− (TP rPλP −K − hλPT 2

P )

T 2
P

= 0 =⇒ TP =
√
K/hλP

Hence, the solution of Case 4.3 is (T0, TJ , TP ) = (0, 0,
√
K/hλP ). If we put the solution of

Case 4.3 into the other stationarity inequalities TP r0λ1 ≤ 0. To satisfy this inequality r0λ1

should be 0 as we TP > 0.

B.4.4 Case 4.4

• µ1 = 0 and µ2 = 0

• T0 > 0, TJ > 0, TP = 0

From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TJ)r0λ0 − (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2
J )

(T0 + TJ)2
= 0

∂L

∂TJ
= 0 =⇒ (T0 + TJ)(rPλP + r0λ1 − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K

(T0 + TJ)2

−hλPT 2
J )

(T0 + TJ)2
= 0

∂L

∂TP
≤ 0 =⇒ (T0 + TJ)(rPλP − 2hλPTJ)− (TJ(rPλP + r0λ1) + T0r0λ0 −K − hλPT 2

J )

(T0 + TJ)2
≤ 0

If ∂L
∂T0

= ∂L
∂TJ

= 0 and solve it, the expression of TJ = rPλP+r0λ1−r0λ0
2hλP

is reached. However,

if we put the solution of TJ into ∂L
∂T0

= 0 or ∂L
∂TJ

= 0, T0 disappears from the solution and we

get K = (rPλP+r0λ1−r0λ0)2

4hλP
as special condition for existence of this case. Consequently, the

solution of Case 4.4 is

(T0, TJ , TP ) = (0,
rPλP + r0λ1 − r0λ0

2hλP
, 0). (B.4.9)
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B.4.5 Case 4.5

• µ1 = 0 and µ2 = 0

• T0 > 0, TJ = 0, TP > 0

From stationarity:

∂L

∂T0

= 0 =⇒ (T0 + TP )r0λ0 − (TP rPλP + T0r0λ0 −K − hλPT 2
P )

(T0 + TP )2
= 0

∂L

∂TJ
≤ 0 =⇒ (T0 + TP )(rPλP + r0λ1 − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

P )

(T0 + TP )2
≤ 0

∂L

∂TP
= 0 =⇒ (T0 + TP )(rPλP − 2hλPTP )− (TP rPλP + T0r0λ0 −K − hλPT 2

J )

(T0 + TP )2
= 0

Solving ∂L
∂T0

and ∂L
∂TP

together gives the solution of TP as rPλP−r0λ0
2hλP

. Being similar with

Case 4.4, putting the solution of TP into equalities in the stationarity conditions leave us

the feasibility condition for Case 4.5 which expressed as K = (rPλP−r0λ0)2

4hλP
. Additionally, this

condition pushes to T0 be zero. Therefore, the solution of Case 4.5 is

(T0, TJ , TP ) = (0, 0,
rPλP − r0λ0

2hλP
). (B.4.10)

B.4.6 Case 4.6

• µ1 = 0 and µ2 = 0

• T0 = 0, TJ > 0, TP > 0
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From stationarity:

∂L

∂T0

≤ 0 =⇒ (TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1)−K − hλP (TJ + TP )2)

(TJ + TP )2
≤ 0

∂L

∂TJ
=

(TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)−K
(TJ + TP )2

−hλP (TJ + TP )2)

(TJ + TP )2
= 0

∂L

∂TP
= 0 =⇒ (TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(TJ + TP )2

−K − hλP (TJ + TP )2)

(TJ + TP )2
= 0

Solving above equalities together gives the solution of TP =
√
K/hλP . However, the only

way to be feasible is having r0λ1 = 0 and it means no joint service, TJ = 0. Therefore, the

solution of Case 4.6 becomes

(T0, TJ , TP ) = (0, 0,
√
K/hλP ). (B.4.11)

B.4.7 Case 4.7

• µ1 = 0 and µ2 = 0

• T0 > 0, TJ > 0, TP > 0
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From stationarity:

∂L

∂T0

=
(T0 + TJ + TP )r0λ0 − (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0 −K

(T0 + TJ + TP )2

−hλP (TJ + TP )2)

(T0 + TJ + TP )2
= 0

∂L

∂TJ
=

(T0 + TJ + TP )(rPλP + r0λ1 − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1)

(T0 + TJ + TP )2

+T0r0λ0 −K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
= 0

∂L

∂TP
=

(T0 + TJ + TP )(rPλP − 2hλP (TP + TJ))− (TP rPλP + TJ(rPλP + r0λ1) + T0r0λ0

(T0 + TJ + TP )2

−K − hλP (TJ + TP )2)

(T0 + TJ + TP )2
= 0

By simultaneously solving three above equalities TP is found as rPλP−r0λ0
2hλP

. However,

feasibility is reached when T0 = 0 and r0λ1 = 0. At this point, the case converges Case 4.5.

However, it is proved that Case 4.5 has TJ = 0. Hence, the solution of Case 4.7 is

(T0, TJ , TP ) = (0, 0,
rPλP − r0λ0

2hλP
). (B.4.12)
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Appendix C

Proof of Proposition 1

Let, f(T0, TJ , TP ) be the objective function of the original model and C1(T0, TJ) be the

promised delivery time, C2(T0, TJ , TP ) be the capacity constraint. The set for C1 is defined

as C1 = C1
1 ∪ C2

1 where C1
1 = {T0, TJ |T0 + TJ = τ} and C2

1 = {T0, TJ |T0 + TJ < τ}.
Similarly, C2 = C1

2 ∪ C2
2 where C1

2 = {T0, TJ , TP |T0λ0 + TJ(λ1 + λP ) + TPλP = C} and

C2
2 = {T0, TJ , TP |T0λ0 + TJ(λ1 + λP ) + TPλP < C}.

Now consider two models,

(1) max f(x)

st. x ∈ C1
1

(2) max f(x)

st. x ∈ C1
1 ∪ C2

1

As the feasible region of (2) is greater than (1) the objective value of (2) will be greater

than or equal to the objective value of (1). We observe this relation between Case 1.i and

Case 2.i for all i = 1, .., 8. The same relation also exits between models having feasible set

C1
2 or C1

2 ∪ C2
2 . Thus, for all i = 1, .., 8 Case 1.i and Case 3.i pairs also show this property.

Nonetheless, we cannot compare Case 2.i and Case 3.i pairs as they have vice versa binding

and unbinding constraints considering subsets of C1 and C2.
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Lastly, as all Case 4.i have unbinding constraint comparing each of Case 4.i with Case

1.i, Case 2.i or Case 3.i is possible. Let, Oi be the objective value of case i and Fi be the

feasible region of case i. Therefore, following statements are valid for for all i = 1, .., 8.

1. O1.i ≤ O4.i since F1.i ⊆ F4.i

2. O2.i ≤ O4.i since F2.i ⊆ F4.i

3. O3.i ≤ O4.i since F3.i ⊆ F4.i
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Appendix D

K and h Bounds of Some Cases

By solving the equations of each case from Appendix B, we reach bounds for cost parameters

K and h for some cases.

D.1 Case 1.4

With using the first constraint of the problem and solving (B.1.13) and (B.1.14) simultane-

ously, we reach the following equation:

rPλP + r0λ1 − r0λ0 − 2λPhTJ
τ

− µ2(λP + λ1 − λ0) = 0

Notice that for Case 1.4 µ2 ≥ 0. Moreover, solving (B.1.15) with either (B.1.13) or

(B.1.14) gives

λ1(rPλP + r0λP − 2λPhTJ)

τ(λP + λ1 − λ0)
≤ 0

We know that problem parameters cannot be zero. Thus we can make following conditions

by using the solution of TJ . If
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• λP + λ1 − λ0 > 0

(rPλP + r0λ1 − r0λ0)(λP + λ1 − λ0)

2λP (C − τλ0)
> h (D.1.1)

(rPλP − r0λP )(λP + λ1 − λ0)

2λP (C − τλ0)
< h (D.1.2)

• λP + λ1 − λ0 < 0

(rPλP + r0λ1 − r0λ0)(λP + λ1 − λ0)

2λP (C − τλ0)
< h (D.1.3)

(rPλP − r0λP )(λP + λ1 − λ0)

2λP (C − τλ0)
> h. (D.1.4)

D.2 Case 1.5

From (B.1.19), we have the expression equivalent to µ2.

µ2 = τ(rPλP − r0λ0)− 2hλPTP (τ + TP ) +K + hλPT
2
P

If we put the above expression in (B.1.18), we reach an expression for µ1.

µ1 = (TPλP + τλ0)(r0λ0 − rPλP )− (λ0 − λP )(K + hλPT
2
P ) + λ02hλPTP (τ + TP )

In Case 1.5, we have µ1 > 0 and µ2 > 0. Thus, by using the solution of the Case 1.5,

(B.1.20), in these conditions we reach bounds for K.

τ(r0λ0 − rPλP ) + (C − τλ0)2h/λP + 2hτ(C − τλ0) < K (D.2.1)

C(r0λ0 − rPλP ) + (hλ0 + hλP )(C − τλ0)2/λP + 2hλ0τ(C − τλ0)

λ0 − λP
> K (D.2.2)

D.3 Case 1.6

From (B.1.23),

τr0λ1 +K + hλP (τ + TP )2 − 2hλP (τ + TP )2

(τ + TP )2λP
= µ2
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By solving (B.1.22) and (B.1.21) jointly, we are able to reach µ1 also.

λ1(r0λP (τ + TP )− τr0λ1 −K − hλP (τ + TP )2 + 2hλP (τ + TP )2)

(τ + TP )2λP
= µ1

We know that µ1 > 0 and µ2 > 0 for Case 1.6. If we condition above expressions to be

non-negative and use the solution for TP and TJ , we reach bounds for K.

Cr0 − 2τr0λ1 + h(C − τλ1)2/λP > K (D.3.1)

h(C − τλ1)2/λP − τr0λ1 < K (D.3.2)

D.4 Case 1.7

By solving (B.1.26) and (B.1.27) simultaneously, we reach the following.

µ1 + µ2λ1 =
r0λ1

TP + TJ + T0

And similarly from (B.1.25) and (B.1.26), we have

rPλP + r0λ1 − r0λ0 − 2hλP (TP + TJ)

TP + TJ + T0

− µ2(λP + λ1 − λ0) = 0

From the above equations we are able to get expressions for µ1 and µ2.

µ1 = λ1
r0λP − rPλP − 2hλP (TP + TJ)

(TP + TJ + T0)(λP + λ1 − λ0)

µ2 =
rPλP + r0λ1 − r0λ0 − 2hλP (TP + TJ)

(TP + TJ + T0)(λP + λ1 − λ0)

Even though solving the equations with the exact solutions of TP , TJ , T0 gives too com-

plicated expression that make simplifying impossible to get bounds for K or h, we are still

able to reach following results. As parameters and decisions variables are positive, if

• λP + λ1 − λ0 > 0

rPλP + r0λ1 − r0λ0 − 2hλP (TP + TJ) > 0 (D.4.1)

r0λP − rPλP − 2hλP (TP + TJ) > 0 (D.4.2)
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• λP + λ1 − λ0 < 0

rPλP + r0λ1 − r0λ0 − 2hλP (TP + TJ) < 0 (D.4.3)

r0λP − rPλP − 2hλP (TP + TJ) < 0 (D.4.4)

D.5 Case 2.1

By using the solution of Case 2.1, (B.2.4), and the inequality (B.2.3), the following bound

for K is reached.

τ(r0λ0 − rPλP ) ≥ K (D.5.1)

D.6 Case 2.2

In Case 2.2, the solution (B.2.8) and (B.2.6) gives the expression for µ1 and the lower bound

for K is reached.

hλP τ
2 < K (D.6.1)

Moreover, the inequality, (B.2.7), with the solution, (B.2.8), give us the upper bound for

K.

hλP τ
2 + r0λ1τ ≥ K (D.6.2)

Lastly, by simplifying (B.2.5), a bound for h is reached.

rPλP + r0λ1 − r0λ0

2λP
≥ h (D.6.3)
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D.7 Case 2.4

From equation (B.2.13), the expression for µ1 is reached and simplified to get a lower bound

for K.

(rPλP + r0λ1 − r0λ0)2

4hλP
< K (D.7.1)

Similarly, with the solution of Case 2.4, (B.2.16), (B.2.15) is simplified to get an upper

bound for K.

(rPλP + r0λ1 − r0λ0)2

4hλP
+ τr0λ1 ≥ K (D.7.2)

We know that decision variables are non-negative. From (B.2.15), a lower bound for h is

reached.

rPλP + r0λ1 − r0λ0

2τλP
< h (D.7.3)

Lastly, another lower bound for h is constructed by using the solution, (B.2.15) and the

capacity constraint of the problem.

(rPλP + r0λ1 − r0λ0)(λP + λ1 − λ0)

2τλP (C − τλ0)
+ τr0λ1 < h (D.7.4)

D.8 Case 2.5

By solving (B.2.20) and (B.2.19) together, the expression for µ1 is obtained. We know that

for Case 2.5, µ1 is positive. If we condition the expression for µ1 to positivity, we are able

to get a lower bound for K.

(rPλP − r0λ0 + 2hλP τ)2

4hλP
+ τ(r0λ0 − rPλP )− τ 2hλP < K (D.8.1)

Furthermore, we know that TP is positive. Thus, an another lower bound is created from

this condition.

τ(r0λ0 − rPλP ) < K (D.8.2)
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If we put the solution (B.2.20) into the capacity constraint, an upper bound for K is

expressed as follows.

h(C − τ(λ0 − λP ))2/λP + τ(r0λ0 − rPλP )− τ 2hλP > K (D.8.3)

Lastly, we know that K is positive, so as its upper bound should be positive. If we

condition (D.8.3) to be positive, we reach a lower bound for h.

r0λ0 − rPλP
C − τ(λ0 − λP )

< h (D.8.4)

D.9 Case 2.6

We know that the decision variable TP is positive. Hence, using the expression for it in

(B.2.23), a lower bound for K is obtained.

τ 2hλP + τr0λ1 < K (D.9.1)

On the other hand, an upper bound for K is created by using the solutions in the capacity

constraint.

(C − τλ1)2h/λ1 + τr0λ1 > K (D.9.2)

D.10 Case 2.7

From (B.2.25) and (B.2.27), the following expression is obtained.

rPλP + r0λ1 − r0λ0 = 2hλP (TP + TJ) (D.10.1)

As the right hand side of the expression is the derivative of the inventory cost function, we

know that it is positive. Hence, the expression in the left hand side also positive.
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D.11 Case 3.1

We have the solution of Case 3.1 (B.3.4). If we solve (B.3.2) together with (B.3.1), an upper

bound for K is obtained.

C(r0λ0 − r0λ1 − rPλP )

λ0 − λ1 − λP
≥ K (D.11.1)

An another bound for K is also constructed by simplifying (B.3.3) with the solution of

the case.

C(r0λ0 − rPλP )

λ0 − λP
≥ K (D.11.2)

D.12 Case 3.2

First, the solution of Case 3.2, (B.3.8), is used to get the expression for µ2. If we condition

this expression to be positive, we reach the following.

C2hλP
(λP + λ1)2

< K (D.12.1)

On the other hand, applying same simplification to (B.3.7) yield an upper bound for K.

C2hλP
(λP + λ1)2

+ Cr0 ≥ K (D.12.2)

In the same manner, the inequality (B.3.5) gives

C(rPλP + r0λ1 − r0λ0)

λP + λ1 − λ0

− C2hλP (λP + λ0 + λ1)

(λP + λ1)2(λP + λ1 − λ0)
≥ K. (D.12.3)

We know that K is positive, so its upper bound should be positive. Thus, by conditioning

the left hand side of (D.12.3), we reach two possible bound for h. If λP + λ1 − λ0 > 0,

(λP + λ1)2(rPλP + r0λ1 − r0λ0)

(λP + λ0 + λ1)CλP
> h, (D.12.4)
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else,

(λP + λ1)2(rPλP + r0λ1 − r0λ0)

(λP + λ0 + λ1)CλP
< h. (D.12.5)

D.13 Case 3.3

From the equation (B.3.11), the expression for µ2 is obtained and simplifying the inequality

(B.3.10) gives a lower bound for K.

C2h/λP + Cr0 ≤ K (D.13.1)

Similarly, an upper bound for K is derived from (B.3.9) by substituting the solution

(B.3.10) and the expression for µ2 from (B.3.11).

C(rPλP − r0λ0)− C2h(λP + λ0)/λP
λP − λ0

≥ K (D.13.2)

As K is positive, its upper bound should be positive. Thus, bounds for h are obtained. If

λP − λ0 < 0

(rPλP − r0λ0)λP
C(λP + λ0)

< h (D.13.3)

else

(rPλP − r0λ0)λP
C(λP + λ0)

> h (D.13.4)

D.14 Case 3.4

As the solution of Case 3.4 depends on λP + λ1 − λ0’s value, only bounds regarding K and

h are generated when λP + λ1 − λ0 6= 0.

We know that the expression being inside the square root in (B.3.17) should be positive.

From this conditioning, we reach

C(rPλP + r0λ1 − r0λ0)

λP + λ1 − λ0

− C2hλP
(λP + λ1 − λ0)2

< K (D.14.1)
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On the other hand, by substituting the solution (B.3.17) into the promised delivery time

constraint, the following upper bound is obtained.

C(rPλP + r0λ1 − r0λ0)

λP + λ1 − λ0

+
hλP (τ 2λ2

0 − C2)

(λP + λ1 − λ0)2
> K (D.14.2)

Let λP + λ1 − λ0 > 0,

from TJ > 0

C(rPλP + r0λ1 − r0λ0)

λP + λ1 − λ0

< K (D.14.3)

from T0 > 0

C(rPλP + r0λ1 − r0λ0)

λP + λ1 − λ0

− C2hλP (λP + λ1 + λ0)

(λP + λ1 − λ0)(λP + λ1)2
< K (D.14.4)

If we have λP + λ1 − λ0 < 0 condition, above two inequalities will appear upper bounds

for K.

D.15 Case 3.5

By making the the expression inside the square root in the solution (B.3.21), a lower bound

for K is obtained.

C(rPλP − r0λ0)

λP − λ0

− C2hλP
(λP − λ0)2

< K (D.15.1)

Let λP − λ0 > 0,

from T0 > 0

C(rPλP − r0λ0)

λP − λ0

− C2h(λP + λ0)

(λP − λ0)λP
< K (D.15.2)

and from TP > 0

C(rPλP − r0λ0)

λP − λ0

> K (D.15.3)
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Now let λP − λ0 be negative, then

from T0 > 0

C(rPλP − r0λ0)

λP − λ0

− C2h(λP + λ0)

(λP − λ0)λP
> K (D.15.4)

and from TP > 0

C(rPλP − r0λ0)

λP − λ0

< K (D.15.5)

D.16 Case 3.6

We know that for Case 3.6, TP , TJ > 0. Therefore, for TP > 0 a lower bound of K is

constructed.

C2hλP
(λP + λ1)2

+ Cr0 < K (D.16.1)

If we condition TJ > 0, an upper bound for K is reached.

C2h

λP
+ Cr0 > K (D.16.2)

An another upper bound of K is constructed by substituting the solution (B.3.25) into

the promised delivery time constraint.

(τλ1 − C)2h

λP
+ Cr0 > K (D.16.3)

D.17 Case 4.2

We know the solution of Case 4.2, (B.4.8). The promised delivery time constraint generates

an upper bound for K.

τ 2hλP ≥ K (D.17.1)
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The capacity constraint also provides an upper bound for K.

C2hλP
(λP + λ1)2

≥ K (D.17.2)
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Appendix E

Solution

E.1 Division of 9 Subsets

Notice that some cases are not valid to apply their K or h bounds when rPλP+r0λ1−r0λ0 = 0.

In the solution method, MATLAB code is included these special conditions for them. Note

that in this Appendix we use the results of Appendix D, and hence refer the equations at

that appendix as (D.x.y).

• Case 1.4: It is not feasible only when rPλP + r0λ1 − r0λ0 < 0 and λP + λ1 − λ0 > 0 as

(D.1.1) becomes negative. Hence, CX and CY are not applicable for this case.

• Case 1.5: From (D.2.2) we know that if λP−λ0 < 0, then we should have rPλP−r0λ0 <

0. However, when rPλP − r0λ0 > 0, we cannot say anything about the regions A,B

and C. Hence, only BX and CX are not applicable for it.

• Case 1.6: Since, none of the bounds created for Case 1.6 has relational expressions in

it, it is assigned to all subsets.

• Case1.7: From (D.4.1) we know that rPλP + r0λ1 − r0λ0 should be greater than 0.

However, it is not possible to define a condition when λP + λ1 − λ0 < 0, it can be

assigned A, B or C. Hence it is not feasible only when CX and CY.
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• Case 2.1: Because of (D.5.1), this case only feasible in B and C.

• Case 2.2: As (D.6.3) should be positive, this case is not feasible when rPλP + r0λ1 −
r0λ0 < 0.

• Case 2.4: As the decision variable TJ is positive, (B.2.16), this case feasible when

rPλP + r0λ1 − r0λ0 > 0.

• Case 2.5: As we cannot find any relation between rPλP + r0λ1− r0λ0 and λP +λ1−λ0

from obtained bounds, this case is assigned all subsets.

• Case 2.6: Same situation with Case 2.5 is valid for the Case 2.6. Thus, it is in all 9

subsets.

• Case 2.7: Since rPλP + r0λ1 − r0λ0 should be positive. This case is not feasible only

in C.

• Case 3.1: We know that K is positive. Hence, its upper bounds should be positive

(D.11.1) and (D.11.2). Their valid relations are only observed in AX, BY and CZ.

• Case 3.2: From (D.12.4), we know that rPλP + r0λ1− r0λ0 > 0 when λP +λ1−λ0 > 0.

However, we cannot say anything about the situation when λP + λ1 − λ0 < 0. Hence,

it is not valid only in CX and CY.

• Case 3.3: From (D.13.3), we know that when λP − λ0 > 0, rPλP − r0λ0 should be

positive. Thus, if X, then should be the region A. However, λP − λ0 < 0, we cannot

say anything just by looking the bounds of K or h.

• Case 3.4: In this case, because of the condition related to λP + λ1 − λ0 < 0, rPλP +

r0λ1 − r0λ0 can only take negative values. However, again for the subsets containing

λP + λ1 − λ0 > 0, cost bounds do not limit feasible subsets.

• Case 3.5: Since (D.15.3) only feasible when rPλP + r0λ1 − r0λ0 > 0, so in X it is

feasible only in A. On the other hand, for the subsets Y and Z, it is not possible to

find infeasible subset only by looking the cost bounds.
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• Case 3.6: As this case has not implicit relation in its cost bounds to assign it subsets

it is assigned all of them.

• Case 4.2: From the stationary inequality (B.4.5) and the positive decision variable TJ

we know that rPλP + r0λ1− r0λ0 > 0 should hold. However, for the other subsets it is

not possible to direct the case according to the K and h bounds.

E.2 Ordered Cost Parameter Relations

Let Ki be the minimum K value that makes the case i feasible and respectively Ki is the

maximum value of K which makes case i feasible. We define Ki as the interval defined by

[Ki, Ki] for case i. An order for cases i,j Ki ≤ Kj means that Ki ≤ Kj. Same notation is

valid for the cost parameter h.

E.2.1 AX

• (D.1.2) ≤ (D.1.1) ≤ (D.7.4) =⇒ h1.4 ≤ h2.4

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.6.1) ≤ (D.6.2) ≤ (D.9.1) ≤ (D.9.2) =⇒ K4.2 ≤
K2.2 ≤ K2.6

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤
min{(D.16.2), (D.16.3)} ≤ (D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤
(D.15.3) =⇒ K4.2 ≤ K3.2 ≤ K3.6 ≤ K3.3 ≤ K3.5

• (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ max{(D.14.1), (D.14.3), (D.14.4)} ≤
(D.14.2) =⇒ K3.2 ≤ K3.4
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• (D.11.1) ≤ (D.14.3) =⇒ K3.1 ≤ K3.4

E.2.2 AY

• (D.1.2) ≤ (D.1.1) ≤ (D.7.4) =⇒ h1.4 ≤ h2.4

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.6.1) ≤ (D.6.2) ≤ (D.9.1) ≤ (D.9.2) =⇒ K4.2 ≤
K2.2 ≤ K2.6

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤
min{(D.16.2), (D.16.3)} ≤ (D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤
(D.15.3) =⇒ K4.2 ≤ K3.2 ≤ K3.6 ≤ K3.3 ≤ K3.5

• (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ max{(D.14.1), (D.14.3), (D.14.4)} ≤
(D.14.2) =⇒ K3.2 ≤ K3.4

E.2.3 AZ

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.6.1) ≤ (D.6.2) ≤ (D.9.1) ≤ (D.9.2) =⇒ K4.2 ≤
K2.2 ≤ K2.6

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤
min{(D.16.2), (D.16.3)} ≤ (D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤
(D.15.3) =⇒ K4.2 ≤ K3.2 ≤ K3.6 ≤ K3.3 ≤ K3.5
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E.2.4 BX

• (D.1.2) ≤ (D.1.1) ≤ (D.7.4) =⇒ h1.4 ≤ h2.4

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.6.1) ≤ (D.6.2) ≤ (D.9.1) ≤ (D.9.2) =⇒ K4.2 ≤
K2.2 ≤ K2.6

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤
min{(D.16.2), (D.16.3)} =⇒ K4.2 ≤ K3.2 ≤ K3.6

• (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ max{(D.14.1), (D.14.3), (D.14.4)} ≤
(D.14.2) =⇒ K3.2 ≤ K3.4

E.2.5 BY

• (D.1.2) ≤ (D.1.1) ≤ (D.7.4) =⇒ h1.4 ≤ h2.4

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.6.1) ≤ (D.6.2) ≤ (D.9.1) ≤ (D.9.2) =⇒ K4.2 ≤
K2.2 ≤ K2.6

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤
min{(D.16.2), (D.16.3)} ≤ (D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤
(D.15.3) =⇒ K4.2 ≤ K3.2 ≤ K3.6 ≤ K3.3 ≤ K3.5

• (D.11.1) ≤ (D.14.3) =⇒ K3.1 ≤ K3.4
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• (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ max{(D.14.1), (D.14.3), (D.14.4)} ≤
(D.14.2) =⇒ K3.2 ≤ K3.4

• (D.5.1) ≤ max{(D.8.1), (D.8.2)} ≤ (D.8.3) =⇒ K2.1 ≤ K2.5

E.2.6 BZ

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.6.1) ≤ (D.6.2) ≤ (D.9.1) ≤ (D.9.2) =⇒ K4.2 ≤
K2.2 ≤ K2.6

• 0 < min{(D.17.1), (D.17.2)} ≤ (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤
min{(D.16.2), (D.16.3)} ≤ (D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤
(D.15.3) =⇒ K4.2 ≤ K3.2 ≤ K3.6 ≤ K3.3 ≤ K3.5

• (D.5.1) ≤ max{(D.8.1), (D.8.2)} ≤ (D.8.3) =⇒ K2.1 ≤ K2.5

E.2.7 CX

• (D.5.1) ≤ max{(D.8.1), (D.8.2)} ≤ (D.8.3) =⇒ K2.1 ≤ K2.5

E.2.8 CY

• (D.5.1) ≤ max{(D.8.1), (D.8.2)} ≤ (D.8.3) =⇒ K2.1 ≤ K2.5
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• (D.16.1) ≤ min{(D.16.2), (D.16.3)} ≤ (D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤
(D.15.3) =⇒ K3.6 ≤ K3.3 ≤ K3.5

E.2.9 CZ

• (D.5.1) ≤ max{(D.8.1), (D.8.2)} ≤ (D.8.3) =⇒ K2.1 ≤ K2.5

• (D.12.1) ≤ min{(D.12.2), (D.12.3)} ≤ (D.16.1) ≤ min{(D.16.2), (D.16.3)} ≤
(D.13.1) ≤ (D.13.2) ≤ max{(D.15.1), (D.15.2)} ≤ (D.15.3) =⇒ K3.2 ≤ K3.6 ≤
K3.3 ≤ K3.5
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Appendix F

MATLAB Code for The Algorithm
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Appendix G

Verification of Little’s Law for the

Stochastic Demand Problem -

Regular Service Only

E [IS] =
1

λ0

+

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!
∗ τ +

∫ τ

0

t
e−λ0tλ0

C−1tC−2

Γ(C − 1)
dt (1)

E[# units per shipment] =

1+

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!
∗ n+ (C − 1) ∗

∫ τ

0

e−λ0tλ0
C−1tC−2

Γ(C − 1)
dt (2)

(2) = λ0 ∗ (1) (3)

λ0 ∗ (1) =

(
1

λ0

+

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!
∗ τ +

∫ τ

0

t
e−λ0tλ0

C−1tC−2

Γ(C − 1)
dt

)
∗ λ0

= 1 +

∫ C−2

n=0

e−λ0τ (λ0τ)n+1

n!
+

∫ τ

0

e−λ0tλ0
CtC−1

Γ (C − 1)
dt

= 1 +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
+

Γ (C)− Γ(C, λ0τ)

Γ(C − 1)

= 1 +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
+

(C − 1)!− Γ(C, λ0τ)

(C − 2)!
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= 1 +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
+ (C − 1)− Γ(C, λ0τ)

(C − 2)!

= 1 +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
+ (C − 1)−

(C − 1)! ∗
∫ C−1

n=0
e−λ0τ (λ0τ)n

n!

(C − 2)!

= 1 +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
+ (C − 1)−

(
(C − 1) ∗

∫ C−1

n=0

e−λ0τ (λ0τ)n

n!

)
= C +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
−
(

(C − 1) ∗
∫ C−1

n=0

e−λ0τ (λ0τ)n

n!

)
= C +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
−
(

(C − 1) ∗
∫ C−1

n=0

e−λ0τ (λ0τ)n

n!

)
(4)

(2) = 1+

(
e−λ0τ

(
(λ0τ)0

0!
0 +

(λ0τ)1

1!
1 + ..+

(λ0τ)C−3

(C − 3)!
(C − 3) +

(λ0τ)C−2

(C − 2)!
(C − 2) +

))
+

(C − 1)

(
Γ (C − 1)− Γ (C − 1, λ0τ)

Γ (C − 1)

)

= 1 +

(
e−λ0τ ∗

(
0 +

(λ0τ)1

0!
+ ..+

(λ0τ)C−3

(C − 4)!
+

(λ0τ)C−2

(C − 3)!

))
+(

(C − 1) ∗

(
(C − 2)!− (C − 2)!

∫ C−2

n=0
e−λ0τ (λ0τ)n

n!

(C − 2)!

))

= 1 +

(
(λ0τ) ∗

∫ C−3

n=0

e−λ0τ (λ0τ)n

n!

)
+

(
(C − 1) ∗

(
1−

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

))
= 1 +

(
(λ0τ) ∗

∫ C−3

n=0

e−λ0τ (λ0τ)n

n!

)
+ (C − 1)−

(
(C − 1) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
= C +

(
(λ0τ) ∗

∫ C−3

n=0

e−λ0τ (λ0τ)n

n!

)
− (C − 1) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!
(5)

No consider (4)-(5)

= C +

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
−
(

(C − 1) ∗
∫ C−1

n=0

e−λ0τ (λ0τ)n

n!

)
−(

C +

(
(λ0τ) ∗

∫ C−3

n=0

e−λ0τ (λ0τ)n

n!

)
− (C − 1) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
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=

(
(λ0τ) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)
−
(

(C − 1) ∗
∫ C−1

n=0

e−λ0τ (λ0τ)n

n!

)
−((

(λ0τ) ∗
∫ C−3

n=0

e−λ0τ (λ0τ)n

n!

)
− (C − 1) ∗

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

)

(
(λ0τ) ∗

(∫ C−2

n=0

e−λ0τ (λ0τ)n

n!
−
∫ C−3

n=0

e−λ0τ (λ0τ)n

n!

))
−(

(C − 1) ∗
(∫ C−1

n=0

e−λ0τ (λ0τ)n

n!
−

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

))

=

(
e−λ0τ (λ0τ)C−1

(C − 2)!

)
−
(

(C − 1) ∗
(∫ C−1

n=0

e−λ0τ (λ0τ)n

n!
−

∫ C−2

n=0

e−λ0τ (λ0τ)n

n!

))

=

(
e−λ0τ (λ0τ)C−1

(C − 2)!

)
−

(
(C − 1) ∗

(
e−λ0τ (λ0τ)C−1

(C − 1)!

))

=

(
e−λ0τ (λ0τ)C−1

(C − 2)!

)
−

(
e−λ0τ (λ0τ)C−1

(C − 2)!

)
= 0
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Appendix H

Derivation of The First Order

Condition

Let CP
∗ be the integer value that maximizes the objective function above.

O(CP ) = r0λ0 +
rPCP − h ∗ CP (CP+1)

2λP
−K

C0

λ0
+ e−λ0τ

(
C0−3∑
n=0

λn0 τ
n+1

n!
+ (1−C0)

λ0

C0−2∑
n=0

λn0 τ
n

n!

)

If CP = CP
∗, then

• O(CP )−O(CP + 1) ≥ 0

O(CP )−O(CP+1) = r0λ0+
rPCP − hCP (CP+1)

2λP
−K

E[IS]
−

(
r0λ0+

rPCP − h (CP+1)(CP+2)
2λP

−K
E[IS]

)

=
rPCP − hCP (CP+1)

2λP

E[IS]
−

(
rPCP − h (CP+1)(CP+2)

2λP

E[IS]

)

=
−h/(2λP )

(
CP (CP + 1)− (CP + 1)(CP + 2)

)
− rP

E[IS]

=
−h/(2λP )(CP + 1)(−2)− rP

E[IS]
=
h/λP (CP + 1)− rP

E[IS]
≥ 0 where E[IS] > 0
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CP ≥
rPλP
h
− 1

• O(CP )−O(CP − 1) ≥ 0

O(CP )−O(CP−1) = r0λ0+
rPCP − hCP (CP+1)

2λP
−K

E[IS]
−

(
r0λ0+

rP (CP − 1)− hCP (CP−1)
2λP

−K
E[IS]

)

=
−h/(2λP )CP

(
CP + 1− (CP − 1)

)
+ rP

E[IS]
=
−h/λPCP + rP

E[IS]
≥ 0 where E[IS] > 0

CP ≤
rPλP
h

As a result CP
∗ be the integer value between

[
rPλP
h
− 1, rPλP

h

]
.
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