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§1. Introduction 

Prime numbers have been a source of fascination for mathemati
cians since antiquity. The proof that there are infinitely many prime 
numbers is attributed to Euclid (fourth century B.C.). The basic 
method of determining all primes less than a given number N is 
the sieve of Eratosthenes (third century B.C.). Diophantus (third 
(?) century A.D.) was occupied with finding rational number solu
tions to equations, extending ancient knowledge from Babylon and 
India on Pythagorean triples. The books of Diophantus lay lost 
for ages. It took thousands of years before new aspects of primes 
were brought into light until chiefly Fermat and Mersenne ( c.1640), 
influenced by Bachet's (1621) translation into Latin of the extant 
books of Diophantus, announced various criteria on divisibility by 
primes, assertions on primes possessing special forms, and solutions 
to Diophantine equations. 

A major breakthrough was Euler's discovery (1737) of the identity 
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Here s = a-+it E C, o-, t E IR;., and (1.1) is meaningful for o- > 1 where both sides are absolutely convergent. This identity of a sum over the natural numbers and a product over the primes is an analytic way of expressing the property of unique factorization of natural numbers into primes. Euler considered ( 1.1) and similar identities with natural number values of s. It was Riemann (1859) who initiated the study of the quantity in (1.1) as an analytic function of a complex variable. The two expressions in ( 1.1) represent the Riemann zeta
function ((s) in the half-plane o- > 1. Riemann's aim was to prove the conjecture of Legendre and Gauss on the number 7r( x) of primes p::;: x, that 7r(x) /"V --, (x--+ oo). log X 

( 1.2) 
This goal was attained in 1896 independently by Hadamard and de la Vallee Poussin who were by then equipped with some essential knowledge on entire functions. 

Riemann showed that ( ( s) can be continued analytically over the whole complex plane, being meromorphic with a simple pole at s = l, and satisfies the functional equation 

The value of ( ( s) can be calculated at any s with o- > 1 to any desired accuracy from the expressions in (1.1). Then, using (1.3), (( s) can also be calculated for any s with O" < 0. In the rather mysterious strip O ::;: o-::;: 1, one may use 
((s) = -- - s (x)x-s-l dx s 100 

S - l 1 

(a-> 0), ( 1.4) 

where ( x) is the fractional part of x. This is the analytic continuation of (( s) to o- > 0, obtained by applying partial summation to the series in (1.1). 
At s = -2, -4, -6 ... , where r(�) has poles, ((s) vanishes - these are called the trivial zeros. Upon developing general results on entire functions, Hadamard (1893) deduced that ((s) has infinitely many 

nontrivial zeros in O ::;: o- ::;: 1. The nontrivial zeros must be situated symmetrically with resped to the real axis, and by (1.3) also 
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with respect to the line CJ" = t Applying the argument principle, 
von Mangoldt (1895) gave the proof of Riemann's assertion that the 
number of nontrivial zeros p = /3 + i, with O < 1 :S T is asymptoti-

T cally - log T, as T -t oo. It follows that if the zeros p are arranged 21r in a sequence Pn = f3n + i,n with rn+1 2 rn, then 
21rn ' ,.__,  __ (n-too). n log n (1.5) 

Riemann's assertion that all of the nontrivial zeros lie on the criti
cal line CJ" = ! is yet unproved. Known as the Riemann Hypothesis 

(RH), this has been one of the most profound problems of twentieth 
century mathematics. The Riemann Hypothesis settles the horizon
tal positioning of the zeros of ((s). In 1972 Montgomery came up 
with the pair correlation conjecture (MC), as to how the nontrivia.l 
zeros, assumed to be on the line CJ"= !, are distributed on this line. 

In what follows we narrate the relation between (( s) and counting 
the number of primes (§2), some unproved strong assertions on the 
distribution of primes (§3), primes in arithmetic progressions (§4), 
the pair correlation conjecture (§5), some details of the connections 
between the distribution of primes and the zeta zeros (§6), and we 
give the proof of a theorem of Goldston and Y1ldmm on primes 
in arithmetic progressions in short intervals (§7). Finally there are 
'Further Notes' for each section. 

§2. The explicit formula 

The distribution of primes is closely linked with (the distribu
tion of the nontrivial zeros of) the Riemann zeta-function. Such 
connections are already hinted at by ( 1.1). Taking the logarithmic 
derivative of the product in ( 1.1) gives 

(2.1) 
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where A(n) is von Mangoldt's function 
A(n) = { log p, 0, if n is the power of a prime p, otherwise. 

Defining 
7/J(x) = L A(n) = L log p , 

and 7/Jo(x) = 7/J(x) - A�x), one has 
1 ic+ioo (' Xs 

7/Jo(x) = -. [--(s)]-ds 27l"Z c-ioo ( S 
(c > l). 

(2.2) 

(2.3) 

(2.4) 

Considering the integral from c - iT to c + iT, and moving the line of integration all the way to the left in the complex plane one obtains, by the residue theorem, for any x � 2, 
7/Jo(x) = 

Xp (' 1 x - L - - -(0) - -log(l - x-2) 
h·l<T p ( 2 

x log2( xT) . x 
+ 0( T ) + O(log x mm(l, T(x) )) (2.5) 

(here (x) denotes the distance from x to the nearest prime power -other than x itself if x is a prime power). Equation (2.5) is called the explicit formula; it provides an explicit link between a (weighted) count of the primes and a sum over the non trivial zeros of (( s ). (This form of (2.5) is more useful in applications than the form obtained by taking the limit T--+ oo in (2.5)). The estimate for the sum over pin (2.5) depends upon our knowledge about the location of these zeros (this will be dwelt upon in §6). From de la Vallee Poussin's result (1899) that ((s) -=/= 0 for O' > 1- �' (which could be derived from log t a relation between ((O' + it) and ((O' + 2it) resting on the inequality 3 + 4 cos()+ cos 2() � 0) it follows that 
1 

7/J( x) = x + 0( x exp[-c2(log x) 2]) (2.6) 
(here c; are appropriate positive constants). This embodies the prime 
number theorem in the form (1.2). If one assumes RH, then all the 
p's have real part !, implying 

1 2 7/J(x) = x+O(x2 log x), (2.7) 
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with a much smaller error term than (2.6). The sharpest possible estimate for 'ljJ( x) was conjectured by Montgomery [38] by probabilistic arguments ( upon assuming RH and that the imaginary parts 1 > 0 of the nontrivial zeros are linearly independent) to be 

lim 'ljJ(x) - x = ±� (x--+ oo). (2.8) -Jx(log log log x )2 21r 
In the opposite direction we note that Littlewood (1914) proved 

1 'ljJ(x) - X = D±(xnog log log x) (x--+ oo) (2.9) 

(for the proof see lngham's tract [31]). 

After the prime number theorem it is natural to ask for which functions <I>(x), as x--+ oo, 
<I>(x) 1r(x + <I>(x)) - 1r(x) rv - ? log X 

(2.10) 

Here one would try to find <I>( x) as slowly increasing as possible. Heath-Brown [28] proved that one can take <I>(x) = xi-l(x) (c(x)--+ 0, as x --+ oo), and assuming RH <I> ( x) = x l+l is allowed. Of course <I>( x) cannot be too small, and we know due to Rankin [46] that . . log x log2 x log4 x . there exist mtervals around x of length > c (1 )2 (logk 1s og3 X the k-fold iterated logarithm) which don't contain a prime. Moreover Maier [35] showed that (2.10) is false even for <I>(x) as large as (log x f' with any ,\ > 1, contrary to what was expected from the heuristic probabilistic arguments of Cramer [7]. On the other hand Selberg [51] showed assuming RH that, (2.10) holds for almost all x 

if (l:�;)2 --+ oo as x--+ oo. Here what is meant by 'almost all x' is 
that, while X --+ oo the measure of the set of x E [O, X] for which (2.10) doesn't hol<l is o(X). Without assuming RH, this almost-all result is known to hold with <I>(x) = xt+l (Huxley [30]). 
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§3. Some unproved conjectures on the 
distribution of primes 

In this section we briefly relate some of the deepest conjectures on the distribution of primes. One of the oldest of all is the Goldbach 

conjecture (1742), that every even number > 2 is the sum of two prime numbers. The furthest that has been proved in this direction is the remarkable theorem of Chen [3], that every sufficiently large even number can be expressed as the sum of a prime and a number which has at most two prime factors - counted with multiplicity. It should also be noted that Vinogradov, using his method of estimating exponential sums, proved that every sufficiently large odd number can be expressed as a sum of three primes. The methods developed for attacking the Goldbach conjecture can also be used for other problems of an additive nature. But still we do not know whether or not there are infinitely many twin primes ( e.g. p and 
p + 2 both prime). The more general situation was asserted as the 
prime r-tuple conjecture by Hardy and Littlewood [25]. The r-tuple conjecture is an asymptotic formula for the number 7rd(N) of positive integers n :S: N for which n + d1 , ... , n + dr are all prime (here d1 , ... , dr are distinct integers and d = ( d1, ... , dr)). The formula is 

when Pd -=I- 0, where 
-rrpr-l(p-vd(P)) Pd -

P (p- lt ' 

(3.1) 

and Vd (p) is the number of distinct residue classes modulo p occupied by d1, ... , dr. With r = 1, this reduces to the prime number theorem. For r � 2 the conjecture remains unproved for any d. Assuming that for each r, (3.1) holds uniformly for 1 :S: d1 , ... , dr :S: h, Gallagher [ 14] showed that if Pk(h, N) is the number of integers 
n :S: N for which the interval ( n, n + h] contains exactly k primes, then Pk(>.. log N, N) ,...., N e-;/'k as N---+ oo, i.e. the distribution tends to the Poisson distribution with parameter >... 



Primes in Short Intervals 313 
A heuristic way, depending on the prime number theorem and the counting of appropriate residue classes to certain moduli, of deriving the r-tuple conjecture (in the special case r = 2, d1 = 0, d2 = 2) can be found in the book of Hardy and Wright [26, §22.20]). Hardy and Littlewood developed the circle method for attacking such additive arithmetical problems, which when written in the form of summations can be re-expressed as integrals over the circle lzl = (} < 1 with a power series of radius of convergence 1 in the integrand. The main contribution comes from those z's with arguments close to fractions with small denominators while (} -+ 1. The arithmetical information is then extracted from the singularities of the power series on the unit circle. 
For an upper bound on the difference between consecutive primes Cramer [7] conjectured on probabilistic grounds that 

1. Pn+I - Pn 1m sup (l )2 = 1, n og pn (3.2) 

where Pn is the n-th prime. The known estimates for this limit, even under the unproved assumptions RH and MC, fall dismally short of Cramer's guess: 
Pn+l - Pn � p�.535 (unconditional) [1] 

1 Pn+I - Pn � pJ log pn (on RH) [6] (3.3) 
Pn+I - Pn = o((Pn log pn)t) (on RH+ MC) [19] 

( in ( 6.1) and ( 6.15) below, further conditional estimates for the difference between consecutive primes are given). 

§4. Primes in arithmetic progressions 

Dirichlet (1837) proved that if a and q are two coprime natural numbers, then there are infinitely many primes of the form kq + a. Davenport begins his book [8] with the remark that this work of Dirichlet may be regarded as the origin of analytic number theory. 
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The proof involved the so-called Dirichlet 's L-functions, defined by 

L(s ,  x) = � x(n)
, 

� ns n=l 
( 4.1) 

in O" > 1 where the series is absolutely convergent. Here x is a Dirich
let 's character to the modulus q, a function of an integer variable n 
which is multiplicative and periodic with period q. It follows that if 
(n, q) = 1, then x(n) is a root of unity. For (n, q) > 1, it is conve
nient to define x( n) = 0. The character Xo which assumes the value 
1 at all n coprime to q is called the principal character. It could be 
that for values of n coprime to q, the least period of x( n) is a proper 
divisor of q, in which case x is called an imprimitive character: and 
otherwise primitive. There are r/J( q) characters in all to the modu
lus q, which form an abelian group (defining X1X2(n) = X1(n)x2(n)) 
isomorphic to the group of relatively prime residue classes to the 
modulus q. The characters satisfy 

or equivalently 

L x(n) = { t
(q), 

n (modq) ' 

L x(n) = { t
(q), 

x (modq) ' 

if X = Xo, 
otherwise, 

if n = 1 ( mod q), 
otherwise. 

Thus by using Dirichlet's characters we can select from integers in 
a given set those that are in a particular residue class modulo q as 
in ( 4.3) below. It also follows that for non principal x the series in 
( 4.1) is conditionally convergent in the strip O < O" S 1. Dirichlet 's 
proof hinges on the fact that L(l, x) -=j:. 0 for nonprincipal X· The 
theory of Dirichlet's L-functions parallels that of ((s) for the most 
part, and the Generalized Riemann Hypothesis (GRH) states that 
all zeros of Dirichlet's L-functions lie on the line O" = !-

The main question is for which ranges of the relevant variables 
are the primes evenly distributed with respect to the permissible 
congruence classes modulo q. To what extent and in which sense this 
distribution is even has been an active area of research. Analogous 
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to (2.3), for (a,q) = 1 let 

'ljJ(x;q,a) = 
n<x 

n:=a (modq) 

·writing 'ljJ(x, x) = L x(n)A(n), we have 
n<x 

A(n). 

1 
'ljJ(x;q,a) = ef;() L x(a)vi(x,x). 

q x(modq) 

315 

( 4.2) 

( 4.3) 

Proceeding as in the proof of the prime number theorem one aims 
for a result of the type 

X 'ljJ(x; q, a)= ef;(q) (1 + o(l)) . ( 4.4) 

Unconditionally the Siegel- Walfi.sz theorem says that ( 4.4) holds uni
formly for q < (log x )N with any fixed N > 0, while assuming GRH 
yields 

X 1 'ljJ(x;q,a)=
q;(q)+O(x'llog2 x) (q�x). (4.5) 

Just as for (2.6) and (2.7), these results depend on the knowledge of 
the zero-free region to the left of O" = 1 for Dirichlet's L-functions. 
The Siegel-Walfisz restriction on the range of q is quite severe. On 
the other hand ( 4.5) implies ( 4.4) for q almost up to xl. It is natural 
to wonder whether the error term in ( 4.5) need really be so large. 
With regard to this we make the following observation. Littlewood's 
result (2.9) was preceeded by the weaker v,(x) - x = D± (xl) due to 
E. Schmidt (1903). A proof of this is in lngham's tract [31, Thm. 
33], with the constants implied in D± being ± l!)h11 ( ! + h1 is the 
zero of ((s) with the least positive 11; 11 � 14.13 [52, §15.2]). If we 
adapt this proof for v,(x,x), using (4.3) we have 

X X2 v,(x;q,a)- ef;(q) = D±(
q;(q)), (4.6) 

assuming GRH and some extra hypotheses. In these it-results as
suming RH or GRH is not a burden, because zeros off the critical 
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line, if they ever exist, would cause greater oscillations of the error term in the prime number theorem. The extra hypotheses are 
L (!,x) =f- 0 for all x (modq), and the critical zero of IJ L (s,x) 

x (mod q) with the least positive ordinate is a. zero of just one of the functions 
L (s,x). If this zero!+ i11 ,q has multiplicity m1 then (4.6) holds with the constants ± 11 +�1 1 ( the latter condition may be somewhat 

2 i')'J,q relaxed or modified, and the constants would accordingly be modi-fied). The best that can be hoped for was conjectured by Friedlander and Granville [ 12] as 
X X 

'ljJ(x;q, a) � l cp(q) 
(q < (log x)z+J' (4.7) 

'ljJ(x;q, a) = cp�q) 
+ o((f )lxl) (q :S x). (4.8) 

When various averages over q and a are taken results that hold in greater ranges of the parameters can be obtained. The Bombieri
Vinogradov theorem says that given any constant A > 0, we have 

y X 
L max max l'ljJ(y; q, a) - -;:-( ) I � (1 q�Q y�x (a,qa)=l 'f' q og X 

( 4.9) 
I 

X2 with Q = where B = B(A), thereby saving an arbitrary (log X )B power of log x from the trivial estimate (see e.g. [36, Chapter 15]). The meaning of the Bombieri-Vinogradov theorem is that the asymptotic formula for 'ljJ(x; q, a) usually holds for q roughly as large as 
xl, the same extent that can be handled by GRH for an individual 'ljJ(y;q, a), compared with q restricted to powers of log x in the Siegel-Walfisz theorem. The Elliott-Halberstam conjecture is that ( 4. 7) should hold beyond xl up to Q = x1 - l . It has been proved by Friedlander et al. [ 13] that it cannot hold up to (log x )G. The im-
portant ingredients in the proof of the Bombieri-Vinogradov theorem include a so-called large-sieve inequality 

q 
M+N M+N 

L "'( ) I:* I L anx(n)l 2 
� (N + Q 2 ) L lanl2 

q�Q '+' q X M+l M+l 
(4.10) 
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(here I:* denotes a sum over all primitive characters x (mod q)), 

X and the P6lya- Vinogradov inequality for a nonprincipal character to the modulus q, 
M+N 

L x(n) � qt log q. ( 4.11) 
M+l 

The B arban-Davenport-Halberstam theorem, the proof of which also depends upon the large-sieve inequality ( 4.10), reads in its asymptotic form (proved by Montgomery) 
q X X 

L L l v, (x ; q, a) - ,1,( ) l
2 rv Qx log x ( ( )A S:: Q S:: x), 

q <Q a=l  'I' q log X 
- ( a , q ) = l  ( 4.12) where A > 0 is any fixed number ([36, Thm. 17.2]). Upon GRH this holds for xl log2 x S:: Q S:: x ( [ 1 1], [21]). Here the range of q is much longer but a mean-square over the residue classes is considered instead of the maximum in Bombieri-Vinogradov theorem. 

§5. Pair correlation and simple zeros 

In 1972 Montgomery [37], manipulating the explicit formula, was led to define the function F( a, T) as 
T F(a, T) = ( - log Tt 1 L Ticx('Y--y')w (, - 1') (5 . 1 ) 27!' O<-y,"l' �T 

( i + i, and i + i1' run through the zeros of ((  s)), where w( u) is a suitable weight function; in [37] it was w( u) = 4:u2 but other weight functions can also be used ( cf. (5.8) below and Hejhal's w( u) = 
e - au2 in [29]). By using the large sieve result (a quantitative form of Parseval 's identity for Dirichlet series) 

{
T

I I: an n-it l 2 dt = L l an l 2(T + O(n) ) , (5 . 2 ) Jo n n Montgomery showed that upon RH 
F(a, T) = ( 1  + o( l))r-2a log T+ a+ o( l) (0 S:: a S:: 1) (5.3) 
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as T ---+ oo. For larger a in bounded intervals Montgomery, drawing upon the prime r-tuple conjecture with r = 2, conjectured that 
F(a ,  T) = 1 + o(l) (1 :s; a :s; A) . (5.4) 

(In (5.3) and (5.4) the estimates are uniform in the respective domains of a). 
Convolving F(o- , T) in (5 . 1 ) with a kernel r(a) gives 
L r(  (, - ,') log T )w(, - -l ) = (!._ log T) j00 

F( a, T)r( a) da , 
O<-y,-y' •::J 27f 27f - oo (5.5) where r and r are Fourier transforms of each other, 

r(a) = 1-: r(u)e-Z1Ciau du . 

Since on RH, F( a, T) can be calculated for ! al :s; 1 as in (5.3), one can use (5.5) with r (a) s�pported in [- 1 ,  1 ]  to see the implications of 
RH. By taking r( u) = ( sm 1rau )2 Montgomery derived that at least 

1f lYU 
i of the zeros of ( (  s) are simple. The pair correlation conjecture (5.4) implies that almost all zeros are simple. In this connection we mention that Mertens hypothesis in its weaker form 

(5 .6) 

where 
M(x) = L µ(n) ( 5 . 7) 

n<x (1-l (n) is the Mobius function) implies that all zeros of ( (s) which are on the critical line are simple (see [52, §14.29]). Recall that the Riemann Hypothesis is equivalent to I M(x) I = O(xt+c ) ([52, §14.25]). The Mertens conjecture, in the form I M(x) I < x t ,  was disproved by Odlyzko and te Riele [42]. 
Goldston [ 17] showed assuming RH, that the following asymptotic estimates as T ---+ oo are equ1valent : 



Primes in Short Intervals 3 1 9  

r+s (i) la. F (o:, T) do: "" 8 ( fixed o: 2:: 1, 8 > 0) 

(i i) T 1/3 sin 1ru 2 L 1 "" (- log T) 1 - (--) du 
O< ' <T 27f O 7fU 

(fixed /3 > 0) 
-Y,-Y  -

0 < - ' <2!!.P.... -y -y _ Iog T 

( . .. ) J,T
"'

( . !· (  u ) . t. ( ) 
u

)2 2 d ( l )
log2 T 

l l l  '+' u + - - '+' u - - u- u "-' K, - - --
1 T T 2 T ' 

� 2 1 z T 
for fixed K 2'.'. 1 ( if O < K ::; 1, then this integral is "" � 

0
� 

assuming RH). 

Some of these results have been extended to Dirichlet 's £-functions 
and primes in arithmetic progressions by Ozliik [43] and Yi ldmm 
[55]. By estimating a q-analogue of F( o:, T) ,  

(in the innermost summation, assuming GRH, t + i ,  and t + i,' 
run through the zeros of L(  s, x)) in O ::; o: ::; 2 - E ,  Ozliik showed 
that at least g of the zeros of all Dirichlet 's £-functions are simple.  
It was because an ensemble of £-functions were considered together 
that the barrier o: ::; 1 could be overcome. 

It was shown by Goldston and Montgomery [20] that upon RH, 
assummg 

F(T, x) "" 
2

1r T log T 

for x B1 (log x t3 ::; T ::;  xB2 (log x)3 , (0 < B1 ::; B2 ::; 1) implies 

J,x 1 1 

1 { 1/J (y (l + 8)) - 'ljJ (y) - y8} 2 dy ,.__, 28x 2 
log 8 , (5 . 9) 

uniformly for x - B2 ::; 8 ::; x - Bi .  (There is also a converse implica
tion. Another such equivalence was mentioned above). Upon RH, 
for O < 8 ::;  1 this integral is � 8x 2 (log f)2 (see [50] ; also in Eq . 
(7.9) below we mention a lower bound of the correct order of mag
nitude) . Yi ldmm defined a function which correlates the zeros of 
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all pairs of Dirichlet's L-functions to the same modulus. Under a conjecture for this function, analogous to MC, the author got the asymptotic result corresponding to (5.9) for the second moment for primes in an individual arithmetic progression. 

The appearance in (ii) of 1 - ( si:;u )2 as the pair correlation function of the zeros of ( ( s) has opened up new avenues of progress . The eigenvalues of a random complex Hermitian matrix of large order taken from the Gaussian Unitary Ensemble (GUE) have the same pair correlation function. So one might expect that there exists a linear operator whose eigenvalues characterize the zeros of ((s). Recently higher order correlations of zeros of ( ( s) have been under study. Hejhal [29] calculated the triple correlation function, similar to Montgomery's work. Rudnick and Sarnak [48] [49] defined the n-level correlation sums for the Riemann zeta-function and more general L-functions. They showed that the n-level correlations are in accordance with the predictions by the GUE model. Farmer [9] has given some consequences of the 'GUE Hypothesis' that the distribution of gaps between the zeros of ((s) is like the distribution of gaps between the eigenvalues of large random Hermitian matrices. The numerical results of Odlyzko [40], [41 J constitute great evidence for the truth of RH and the GUE model. Also the heuristic and non-rigourous methods of Bogomolny and Keating (in a series of articles, the last being [2]) assuming the Hardy-Littlewood conjecture with r = 2, indicate that the n-level correlations of zeta zeros are in agreement with the results for GUE beyond the ranges that were possible in the works of Hejhal, and Rudnick - Sarnak who assumed merely RH. The equivalence of (iii) with the pair correlation conjecture (cf. also (5.9)) reflects that the second moment for primes is determined by the pair correlation of the zeros of ( ( s). The higher moments analogues of (5.9) (which can be expected to be calculable from the general r-tuple conjecture (3.1), see Gallagher [ 14]), and their connections with the distribution of zeta zeros seems not to have been worked out yet. 
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§6 . Sums over zeta zeros and the 

321 
error term in the prime number theorem 

The pair correlation conjecture (5.4) , assumed in varying degrees of strength depending on the problem, implies ( see Heath-Brown [27]) 
1 .  , f Pn+ 1 - Pn O Im In = , 

n-HXJ log pn 

'ljJ(x )  = x + o(x hog2 x )  

(6. 1 )  

(6.2) 
(cf. Eq.s (2.6)-(2.9) and (3.3)). Such implications are natural, as 
(5 .4) (or weaker forms of it) imply nontrivial estimates on sums like 

p 

L .:._, the quantity which appears in the explicit formula (2.5 ) .  To 
p p describe this briefly we take the pair correlation function in the form 

F(T, x) = L x i(-y-,,' ) ( 
4 '

)
2 , (6.3) 

0<')' ,,'' '5-_T 4 + I - I 

and let 
L(T, v, u) = L e (, (v + u)) . 

0<1''5-_T Then 1-: 27re-471'1v l I I:(T, v, log x) 1 2 dv = F(T, x ), 
and from here it follows that 

L xii' � rt{�}x F(t, x)}t. 
D<,,'5_T -

(6.4) 

(6.5) 

(6.6) 

So, roughly speaking, the assumption that the size of F(T, x) ( for appropriate ranges of T and x)  is O(T log T) will save a log 2 T from the trivial estimate 
L x i" � T log T. (6.7) 

D<T�T 

xP Since 'ljJ0 ( x )  is discontinuous at the prime powers, so is L -( = 
p p 

p l im L �) by the explicit formula (2.5) ; the series is boundedly T-+oo hl <T p 
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convergent in fixed intervals 1 < a ::;; x ::;; b. The sum L x P is 

O <-y:ST 

1 d. . h . B . d . j (' ( s) 
s d a so IScontmuous at t e pnme powers. y cons1 ermg ((s) 

x s 

taken around a rectangular contour Landau [33] proved that 
T L xP = - -A(x) + O(log T) 

O<-y:ST 
271" (6.8) 

for every fixed x > 1, as T -+ oo. Gonek [23] proved a uniform (in 
both x and T) version of (6.8), that for x ,  T > 1, 

T - -A( x) + 0( x log 2x log log 3x) 271" 
+ O(log x min(T, _

(
x

)
)) + O(log 2T min(T, -1 

1-)). x og x 
(6 .9) 

(It is possible to calculate the sum also for O < x < 1 from (6.9) by 
using the symmetry of the zeros of ( ( s) with respect to the critical 
line). In ( 6. 9) if one assumes RH, then 

L x i-y � (Tx - l  + x l) log x log log x. 
0<-y:ST 

(6.10) 

Comparison with (6.7) shows that (6.10) is nontrivial for 2 ::;; x ::;; 
r2

- f . If one assumes further that x i-Y's behave like independent ran
dom variables (d. (2.8)), then one expects that for almost all x > 1 

L xh � rt+f. (6. 11) 
O<-y'.ST 

By Dirichlet's theorem on Diophantine approximation there exist 
arbitrarily large x with 

L x i-y ::}> T log T, 
O<-y:ST 

(6.12) 

so (6.11) doesn't hold for all x > 1. The observation (6.11) along 
with the heuristics of using lo; n in place of tn (see (1.5)) in I:: xh 
led Gonek to conjecture that 

(x . T � 2). (6.13) 
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This would imply that for 1 � h � x 

'lj; (x + h) - 'lj; (x) = h + O(h txe), 
which in turn implies 
(cf. (3.3) and (6.2)). 
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(6.14) 
(6.15) 

Averages of the error term in the prime number theorem have also been of interest not just for their own sake but because quantities involving them crop up in many problems (e.g. Eq.s (7.15) and (7.24) below). For brevity call 
R(x) = 'lj;(x) - x .  (6.16) 

The results on the order of magnitude of R( x) or various averages of it are in correspondence with the estimates for sums over zeta zeros as clearly seen from the explicit formula. Upon RH one has (2.7), and one can only hope to have improvements in the logarithmic part (cf. (2.8), (2.9), (6.2)). By (2.9) it is known that, as x ---+  oo, R(x) changes sign infinitely many times. Cramer showed that on RH 
J,x (R(u)) z 

du =  O (X), 
I U 

(6.17) 
(6.18) 

Gallagher's article [ 15] contains compact proofs of such results. By Cauchy-Schwarz inequality (6.17) implies 
fi

x 
I R(u) I  du =  O(X !) . 

Pintz [44] has shown that for all sufficiently large X 

:O� � fix 
I R(u) I  du �  x! , (6.19) 

where the lower bound is unconditional and the upper bound depends essentially on RH. Jurkat [32], by developing concepts on 1 almost-periodic functions proved upon RH that, with d( x) = l l og og x 

l 1x+x d(x) R( U)  du 
-(-) -1- - = n±(log log log x) (6.20) 
d X x U 2 U 
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(with the implied constants ±! ), and that this cannot be improved upon much for he also showed that this quantity is 0( (log log log x )2) . Eq. (6.20) implies (2.9), Littlewood's result without averages. From (6.19) and (2.7) we see that as x ---+ oo, I R(x) J spends most of its time roughly around the value xl (instead of much smaller values), and (6.20) reveals the existence of quite long intervals throughout which J R( x) I is almost as large as possible. 

§7. Some recent results on the second moments 
for primes 

In this section, as an example of recent work in our topic, we present a theorem of Goldston and Yildmm. This is Thm. 3 of [22], where the details of the proof have not been included. The results given by Eq.s (7.2), (7.6) and (7.9) below are also proved in [22]. We define for 
X � 2, 1 ::::; q ::::; X , 1 ::::; h ::::; X , 

( 
) 2 * � h 

I (x , h ,  q ) = "'£ 1 7/J (y  + h ; q ,  a)  - 7/J (y ; q ,  a )  - �( ) 
dy , 

a (q ) q 

where "'£* is the sum over a reduced set of residues modulo q . 
a ( q) 

(7 . 1 ) 

If h ::::; q, the interval (y , y + h] contains at most one integer which belongs to the congruence class a ( mod q) , so the situation is rather trivial and one has unconditionally 
I (x , h , q ) "' hx log x ( h ::::; q ) .  

S o  henceforth we will take 1 ::::; q ::::; h ::::; x . 

It was shown by Prachar [45] that, assuming GRH 
I (x , h , q ) � hx log2 qx . 

It is possible to evaluate the asymptotic value of I (x , h , q ) , as 

(7.2) 

(7.3) 
x ---+ oo, assuming RH and a strong form of the twin prime conjecture 
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(the case r = 2 of the Hardy-Littlewood conjecture mentioned in §3 above). Let 
N1 = N1 ( k) = max(O , - k), Nz = N2 (x, k) = min(x, x - k) , 

E(x, k) = A(n)A(n + k) - 6(k) (x - l k l ) ,  

where 

with 

{ 2c II (�) , 
6 ( k) = v l k  P - 2 

p> 2 0, 
if k is even , k -=f. 0; 
if k is odd, 

C = II (1 - ( � )2
) 

· 
p> Z p l 

(7.4) 

Assuming the twin prime conjecture in the form that for O < l k l  :S: x , and some given l E (0, ! ) 
E(x, k) � xt+e ,  

it follows for 1 < !le. < xt-,  and h < x that 
- q - -

xq 
J(x, h, q) rv hx log h. 

(7 . 5 )  

(7 .6) 
Upon GRH only, it can be shown that (7 .6) holds for almost all q with hi  log5 x :S: q :S: h (see [22]). Moreover by Goldston's method ( [ 18]) of using the auxiliary arithmetic function 

µZ (r) 
AR(n) = L ,1,(r) L dµ(d), 

r �R 'P d lr 
d in  

(7 . 7 ) 

which in relevant cases mimics the behaviour of A( n), starting from the inequality 
L l

zx 

I L (A(n) - AR(n) ) l
2 

dy � 0 (7 .8) 
a (q) 

x y<n�y+h 
n::::a (q) 
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a lower-bound of the correct order of magnitude for I(x, h, q) can 
be obtained. The last inequality enables one to replace the trouble
some sums involving A( n )A( n + k) 's by sums of -'R( n )A( n + k) 's and 
-'R(n)AR(n + k) 's , which can be evaluated with no need for a con
jecture like (7.5). The result is that for any E > 0, and O ::; a ::; ! , 
where we write I!,_ = xa, 

q 

1 3 
I(x, h, q) � (

2 
-

2
a - e:) hx log x. ( 7 . 9) 

Let us remember that Lavrik [34] showed that for B > 0 and 
y � Yo (B) ,  

y 
2 

'2:JE(y , k) ) 2 � y 2 (log ytB . 
k=l 

(7.10) 

This was used by Montgomery [36] in proving the asymptotic version 
of the Barban-Davenport-Halberstam theorem ( 4. 1 0), in the light of 
which we expect that assuming only GRH one can get an asymptotic 
result for sums of I(x, h, q) over certain ranges of q. This is indeed 
the case, and here we will prove the following theorem. 

Theorem . Assume the Generalized Riemann Hypothesis. Then 
we have, for h! log6 x ::; Q ::; h ::; x, as x ----,  oo 

xQ 
L I(x, h, q) rv Q hx log(-1 ). 
q� Q 

i 

In fact we shall obtain the more detailed formula (7.48). Note 
that the range of validity of this theorem is even greater than that 
of (7.6) when h is very close to x . In the proof we will use methods 
and results of Friedlander and Goldston [ 1 1 ] .  
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Proof. Expanding the integrand of (7.1) we have 

* r 2x I ( x ,  h ,  q) = L I, ( 'ljJ (y + h ; q , a ) - 1/J ( y ;  q , a ) )2 dy 
a (q )  X 2h * r2x li2 x: - qS ( q ) � lx ('ljJ (y + h ; q , a ) - 'ljJ (y ; q , a ) ) dy + qS( q ) 

Here 
where 

2h h2 x S1 - qS(q ) S2 + qS(q ) ' say. 

S2 = L A (n)f (n ,  x ,  h ) , (n ,q )=l  
( 7 . 1 1 )  

(7.12) 

{ 
n - x ,  

f (n , x , h )  = l dy = h ,  lrx ,2x]n [n-h ,n) 2x - n + h ,  
0 ,  

if X � n < X + h ,  if x + h � n � 2x, if 2x < n � 2x + h ,  otherwise. 
Since 

L A(n) = I: L log p � I:: log p � log q , (7.13) x<n< 2x+h p J q  v p J q  - - x<_p" <_2x+h (n ,q ) > l  
we can lift the condition ( n , q)  = 1, so that 

S2 = L A(n)f (n , x , h ) + O ( h log q ) . 
x<n::;zx+h 

The sums involving f ( n ,  x ,  h )  will be evaluated by the following part ial summation formula. Let C(x )  = L en . Then n<x 

r2x+h rx+h 
L cnf (n , x , h )  = J,

2 
C(u) du - },. C (u ) du + h (cx+h - Czx ) ,,:<n< 2x+h 2x x -

( 7 . 14 ) ( cu = 0 if v is not an integer). Taking C(x )  = 1/J ( x )  in ( 7 . 14 ) and recalling (6.16) we obtain 
r 2x+h r+h 

S2 = hx + { J2x - I" R(u) du } + O(h log x). (7.15 ) 
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From (7.11) we have 

S1 = L A2 (n)f(n,x, h) 
x<n< 2x+h 

(n ,q )=I 
+2 L 

O< k< h  x<n< 2n+h- k  
k:::O(q ) (n(n+k ) , q )=I 

A(n)A(n + k)J(n, x, h - k) . 
(7.1 6) 

A calculation similar to (7.13) shows that we may drop the conditions 
(n, q) = 1 and (n(n + k), q) = 1 in the above sums with an error 
<t: b:_ log2 x . Thus we have q 

where 

and 

h2 

S1 = S3 + 2S4 + O(- log2 x ) ,  (7.1 7) 
q 

S3 = L A2 (n)f(n, x, h), 
x<n:'.S 2x+h 

A(n)A(n + jq)f(n, x, h - jq) . 
O<j:'.S h/q x<n9x+h-jq 

(7 . 1 8) 

7.19) 

To evaluate S3 call 

P(x) = L A 2 (n) - x log x + x, 
n<x 

and apply (7.14) with Cn = A2 (n) to get 

(2x + h )2 (2x )2 
S3 = 

2 
log (2x + h) - -

2
- log 2x 

(7 .20) 

(x + h) 2 x2 3xh 
-

2 
log(x + h) + 

2 
log x - -

2
- (7.21) 

r 2x+h rx+h 
+{J2x - lx 

P(u) du } +  O(h log 2 x) . 

Taking C(u) = L A(n)A(n + jq) in (7.14) we have 

12x+h 
S4 = L L A(n)A(n + jq) du 

2x 2 < · O<j :'.S  "� x n_u-J q 

r+h h2 

- lx L L A(n)A(n + jq) du + O(- log2 x ). 
x O< " < !!..=!!. n:'.Su-jq q 

J _  q 

(7 .22) 
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Note that by (7.4) the difference of the two integrals in (7.22) is 

{ 2x+h 1x+h x L ( h-jq ) 6(jq )+ {12 L - L E(u, jq ) du } 
O<j� h/q 2x O<j < u-2.,: a; 0<3" < !!..=£!Z. 

- q - q (7.23) On combining (7. 1 1), (7. 15), (7. 17), (7.21), and effecting the cancellations that occur in (7 .21), we obtain 
I (x, h, q) = ( 1 + h ) 2 4 ( 1 + h ) 2 hx log x + x2 log ( 2:r ) + hx(log( ¥ ) - �) ( I + � ) t ( i + x" ) 2 h2 l ( 2x + h

) 
h2x S O( h2 log2 x

) + 
2 

og 
X + h - </>( q) 

+ 2 
4 
+ 

q { 2x+h 1x+h 2h + { J2x 
-

x 
(P (u ) - <P(q) R(u ) ) du} 

(7.24) If we use (7.22), (7.23) and (7.5) in (7.24), we obtain (7.6). Also (7.2) follows from (7 .24) on using the prime number theorem (2.6) 
to estimate the integrals in (7.24) (when "I!_ ::; 1, S4 is void, and 
instead of the 0-term of (7 .24) there is 0(  h log 2 x ) .  Note also that 
<P!q ) 

� log log q [26, §18.4] to deal with the term ;;;) in (7 .24)) . 
Now note that by (7 .3) 

L I (x, h, q) = L I (x, h, q) + O(Q0 hx log2 x ), (7.25) 
q � Q Qo �q � Q 

so we must calculate L S4 . Letting 
Qo <q �Q 

Su (a) = L A(n) e (na), 
n<u 

(7 .26) 
Wv ,u (a) = L L e (-jqa), (7.27) 

Qo <q �v O<i � ! we can express 
L A (n)A (n + j q ) = la 1 1 Su (a) l 2 e (-j qa) da, (7.28) 

n�u-jq 0 
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and upon taking v = min( Q, u), 
f

h !\ 1 Su+zx(a) l 2 - I Su+x(a) l 2)Wv,u(a) da du }q 0 Jo +0(h2 log3 x) . 
(7 .29) We shall need an upper bound on the size of Wv,u(a). Changing the order of summation in (7.27) gives 

Wv,u(a) = L L e(-jqa) - L L e(-jqa). (7 .30) 

We now employ the estimate of Vinogradov and Vaughan (see [8, Chapter 25] )  

. u u 2ru L L e(-Jqa) � (- + - + r) log( y ) ,  (7 .31 ) O<j:S: v Y<q:S: ]' T' y 
which rests upon the assumption 

b a = - + /3, T' 1 
l /3 1  � Z' (b, r) = 1 ,  T' (7 .32 )  

to obtain for v � Q0 

Letting 
u u 2ru Wv,u(a) � (- + -

Q 
+ r) log(-Q ).  (7 .33) T' 0 0 

lu(/3) = L e(n/3), (7 .34) n<u we will consider separately each term on the right-hand side of 
fo 1 I S(a) l 2 W(a) da = fo1 1 1 1 2 w(a) da + fo 1 I S - l l 2 W(a) da 

+2 fo1 �e {(S - J)J} W(a) da 
(7 .35 )  where the subscripts (which are either u + 2x or u + x for S,  and 

v ,  u for W) have been suppressed . The range of integration is decomposed into Farey arcs of order R; MR(r, b) = (�!�'. , �!�',', ] , where 
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b' b b" 1 :S r :S R, ( b, r) = 1, and ;, < -; < -;,; are consecutive frac-tions in the Farey sequence. We call () R( r, b) the translated interval 
C(r-Jr ' ) , r ( r�r" ) ] .  Note that ( 2�k , 2;R] C ()R ( r, b) C ( ;�, rkJ , and 

(we will abbreviate ()R(r, b) as e). To estimate fo 1 
I S - J l 2W(a) da, recall Lemma 7. 1 of [ 11] which says upon GRH 

* J{j 
L I S - J l 2 d/3 « 8rx(log rx ) 4 , 
b( T )  -fi  

(8 2: �) . 
X 

(7.36) 

Taking 8 = rk (so that we must have R '.S xt), (7 .33) and (7.36) give 
1 1 2 X U 6 X U 5 5 I S - J I W(a) da « - log x + -

Q 
log x + xR log x. (7.37) 

o R o 

Next we have 
fo 1

91e { (S - J) J } W(a) da 
u u 2ru µ2(r) * i  

« I:(-+ - + ,) Iog(-Q ) --=z--( ) I: 1 1 1 1 s - 1 1 .  
r :'.5:R T' Qo O 'fl T' b (r )  B 

(7.38 ) 

Using I « min(x, 1 1 /3 1 1 - 1 ), and the Cauchy-Schwarz inequality we get from (7.36) 
1 1 I:* j � 1 1 1 1 s - J I « I:* xt(j � I S - J l 2)t « ,x t log2 X .  

b ( r )  - ;;;  b (r )  - ;;;  

On the rest of ()R(r, b) , calling Uj = (2JrRt 1 , we similarly see that 
I:* j�1 I I I I S - J I « u;-1  I:* j_

u1 I S - J I « ,x t log2 x.  
b ( r )  2 b (r )  uJ 

There are O(log x) such uj s. So (7.38) gives 
1 / 1  __ 1 ux2R 1 

4 

Jo 9'-te { (S - J) J }  W( a) da « ux2 log5 x+
Qo 

log4 x+ R2x2 log x . 
(7 .39 )  
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Next 

fo
1 l lu+x l 2 Wv,u (a) da = 

� µ2 ( r ) �* j q b r � � � 
L., -- L., e ( - -) JR L., L., L., e (n  - m - J q/3 ) d/3 .  r ":5.R cp2 (r ) b (r ) T' 8 n,m""5_u+x Q o< q""5_v O<j""5_ � 

Thinking of { as f
1 

- { , we will first consider upon changing 
le lo l[o,1]\B the order of summations 

µ2 ( r ) * j q b [ 1  L L L -2- L e ( - - ) Jn L e ( (n - m - J q) /3) d/3 . Q o< q""5.v O<j""5. � r""5.R cp (r ) b (r )  T' O n,m""5_u+x 
With 

cr ( k ) = L* e ( k b ) = L dµ ( J ) = 
µ ( "F,k}; cp(r) , 

b (r )  T' d l (r , k) cp( (r ,k) ) 
for Ramanujan's sum (see [8, Chapter 20]), one has 

We define 
oo µ2 (r ) � cp2 (r ) Cr ( k ) = 6(k).  

µ2 (r ) 6R ( k ) = r� cp2 ( r ) Cr ( k ) , 
and (7.40) becomes 

L L L µ: (r ) Cr (j q ) L 1 Q o< q<v O<j< '.'!:. r<R cp ( r ) n ,m:S:u+x 
- - q - n-m=jq 

(7.40) 

= L L { ( 6 (j q ) - 6R(j q ) ) (u + x - j q) + O ( l 6 R(j q ) j ) } . Qo <q":5.v 0<j""5_  � 
Recall from (7.29) that we need fo 1 ( l lu+ 2x l 2 - l lu+x l 2 ) Wv,u ( a) da , so we should calculate 

x L L { ( 6 (j q ) - 6R(j q) ) + O(u log 2 x), (7 .41) Qo<q""5_v O<j""5_ � 
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where the last error term is deduced from 6R(j q) � log R. From the 6 R term we have 

Now we estimate 
L I:* f I Ju+x l 2 W(a) da 
r 'S_ R  b (r )  J[o , 1 ] \ B 

� L I:* <(r) f ! I (f1) 1 2 1 W(  � + /J) I djJ 
r'S_R b (r )  q> ( r) j[0 , 1 ] \B r 

(7.42) 

(7.43) 

by taking a finer Farey decomposition of order T with T > R. Then ()y(r, b) C BR(r, b) , so that 
f I I (/1 ) 1 2 I W( � + /J) I djJ J[o , 1 ] \ BR(r ,b )  r 

< 
= 

f I I ( a - � ) 1 2 j W (a) I da l[o , 1 ] \MR(r,b)  r 

f I I ( a - � ) 1 2 j W (a) I da J[o , 1 ] \Mr(r ,b)  r 

L I:* f I I (� - � + f1) 1 2 1 W(� + /J) I djJ 
t 'S_T c( t )  Jor ( t ,c) t r t 

f;ie � 

On Br(t, c), we have I /J I  � t� � z�t if T 2: 2R, so that 
c b c b er - bt 

I I ( - - - + /J) I � I I - - - + /1 1 1 - 1 
� 2 1 1  1 1 -

1
. t r t r rt 
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Hence by (7.33) 

I: I:* r 1 1(� - � + ,e) l 2 1w(� + ,e) 1 d,B t5:T c ( t ) }Br ( t ,c) t T' t 
% # �  

u u * 1 ( r t  )2 

� :�:::) -t + -Q + t) log x L tT I - bt l2 ' t5:T o c ( t ) er 
% # �  

where from each pair of residue classes b ( mod r) and e ( mod t) the 
b and e which minimize l e, - bt l is chosen. For given r, t the number 
of representations of m as m = er - bt is ( ,, t) if (,, t) l m, and 0 
otherwise. So 

I:* I:* 1 
2 

:s; 2((2) � 1. 
b ( r )  c( t ) l e, - bt l ( r, t) 

% # �  

Using these in (7 .43) we get 

'"""' '"""'* { I J  l 2 W( ) d log x '"""' ,2 /l
2 ( ,) '"""' uT 

2 � � Jr, u+x a a � � 2 � u + + t 
r S: R  b (r )  [O , l ] \ B T r S:R <P ( 1 ) t S:T Qo 

uR2 
� Ru log x + Qo 

log x + R3 log x, 

(7 .44) 
if we take T = 2R. Combining Eq .s (7 .35) , (7 .37) , (7 .39-44) m 
(7 . 29) , and recalling that R :s; x !  we have 

L S4 x l
h 

L I: 6 (jq) du 
Qo < q S:Q Qo Qo <q <v O<j < !.!. - - q  

xh2 xh2 
+0 ( - log6 x) + O(xhR log5 x) + O ( - log5 x) .  R Qo 

(7 .45) 
The integral in (7 .45) is evaluated by pulling the summations outside 
the integral sign as 

I: I: ( h - j q )6 (j q) 
Qo < q 5' Q  O<j < ll - q  
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which in turn is, by Proposition 3 and Lemma 6.1 of [ 1 1], 
h2 h log p � L { - - h log(-) - h(,+ log 2?T - l+ L --)} 

Q o < q � Q </>( q) q p l q p - l 
+O(min(Q t hix log t Q, Qhx)) 
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(7.46) Hence by (7.24), (7.25), (7.45) and (7.46) we obtain 
L I (x, h, q) 

(2x + h )2 (2x )2 

Q {  2 log(2x + h) - -2- Iog 2x 
(x + h) 2 x2 3xh - log(x + h) + - log x - - } 2 2 2 

Q l� p 
+Qxh log -1 - Qxh(, + log 2?T + L ( ) ) 1, p p p - l +O(min(Q i h } x logi Q, Qhx)) 

xh2 xh2 +0( R log6 x) + O(xhR log5 x) + 0( Qo 
log5 x)  

+0( Q hx} log3 x) + 0( Q0 hx log2 x ). (7.47) In writing (7.47), we have used the RH estimate (2.7) for R(u) and 
1 h2 P(u )  of (7.24). Choosing Q0 = R = 2, the 0-terms in (7.47) can be 

gathered in O(min(Q f h}x log ! Q, Qhx)) + O(xhi log6 x) ,  and (7.47) may be recast as 
xQ ( l  + -1!,_ ) 2 

L I(x, h, q) = Q hx log(-1 ) + Qx2 log( tx 1 )+ 
< Q 1, (1 + -)2 q _  X 

( 1 + .l!:...)2 log p Q hx( log( l 2* ) - � - "( - � )+ 
7r 1 + ; 2 7 p(p - 1) 

Q h 2 2x + h 3 1 3 3 6 - log( l ) + O(min(Q 2 /1, 2x log2 Q, Qhx)) + O(xh'i log x) . 2 X + 1, (7.48) This completes the proof of the theorem. The result of this theorem is expected to be related to the distribution and simplicity of zeros of Dirichlet's L-functions as was recounted on p. 319. 
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Further notes 

Section 1 :  The book of Hardy and Wright [26] contains almost all of the classic results of number theory. For an exposition of the theory of the Riemann zeta-function, Dirichlet's £-functions and distribution of primes we refer the reader to the books of Davenport [8] and Ingham [31]. Titchmarsh's book (revised by Heath-Brown) [52] is an extensive treatise on the Riemann zeta-function. 
From the work of Conrey [4] at least � of the zeta zeros are known to lie on er = ! . 

Section 2: We note that with more work involving estimates on exponential sums a greater region than de la Vallee Poussin's has been shown to be free of zeta zeros by Vinogradov, so (2.6) can be written with any number less than � replacing ! (see [52, Chapter 
6]) . 

There are many problems about the prime counting functions which have not been included in this survey, a few of which will be mentioned briefly here. By (2.9) it is clear that '1j;( x) - x changes sign infinitely often as x � oo. This is less involved than the problem that gave rise to it, the sign changes of 7r(x) - li(x), because 
'ljJ(x) is more directly related to ((s) than is 7r(x). Riemann had asserted that 7r( x) < li( x) for x > 2, which was proved to be false by Littlewood's result 

1 

X 2  7r(x) - li(x) = !1±(-- log log log x) (x � oo). log X 

Skewes succeeded in giving an upper bound (a huge number) as to where the first change of sign occurs. The frequency of the sign changes was considered by P6lya, Ingham, Turin, Knapowski, Levinson, Pintz and others. There are also estimates concerning 
'ljJ( x ;  q, a 1 )-'ljJ( x ;  q, a2) ( or with 7r instead of '1j;) originated by Landau, Ingham, P6lya and continued by Turin, Knapowski, Stas, Wiertelak. In these estimates generally q is taken to be either fixed or very small compared to x .  For all these we refer the reader to Ingham 's tract [31], Turin's Collected Works Vol. 3 [53] and Pintz's review articles therein. 
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Section 3: The prime r-tuple conjecture was put forth by Hardy and Littlewood [25] . Gallagher's paper [ 14] contains results related to this conjecture . The methods of attacking problems of an additive nature, and the conjectures on the distribution of primes mentioned in this section are treated in the books by Halberstam and Richert [24] , Richert [47] and Vaughan [54]. 
Section 4: The latest studies related to the Barban-DavenportHalberstam theorem were conducted by Friedlander and Goldston [ 1 1] ,  and Goldston and Vaughan [21]. For in-depth comments on the error terms in the prime number theorems we refer the reader to Friedlander's survey article [ 10] . 
Section 5: With a better choice of r(  u)  Montgomery showed ( upon RH) that at least 0.6725 .. of the zeros of (( s) are simple. Conrey, Ghosh and Gonek [5] , assuming RH and an upper bound for averages of sixth moments of Dirichlet's L-functions , improved this to �� The sixth moment estimate is implied by the Generalized Lindelof 

Hypothesis that for any E > 0 
L(s,x) � f 

(q (l + l t l ) Y  

The Generalized Riemann Hypothesis implies the Generalized Lindelof Hypothesis. The entirely different approach in [5] rests upon using appropriate Dirichlet polynomials instead of some of the Dirichlet series involved, thus being able to handle certain higher-moment calculations. 
For the theory of correlation functions and relations of zeta zeros to eigenvalues of a Hermitian operator the reader may consult the book by Mehta [39]. The links between the Gaussian unitary ensemble of random matrix theory and quantum chaology are recounted by Bogomolny and Keating [2]. 

p 
Section 6: For the convergence properties of I: :._ we refer the 

p reader to Ingham [31 ,  Chapters 4, 5]. It was remarked after Eq . (6 .9) that one may consider x E (0 , 1) as well. In this case the explicit 
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formula is 

' A(n) 1 xP l 1 + x L - = log ---:- - 1 + L - - x + - log --
1 n x P p 2 1 - x  n< -

- x  

(2=' means that when t E Z, the term corresponding to n = t 
p 15 is � A�n) ; 1 is Euler 's constant) . The series I:(:_ + 

x_ )  exhibits 
'Y>O p p 

a Gibbs phenomenon in the neighbourhood of the points p±m . At 
x = l this series is absolutely convergent, but no explicit formula is 
valid. This series cannot be boundedly convergent on either side of 
x = l because of the logarithmic terms in (2.5) and the last formula. 
It is this infinite jump at x = l that Jurkat [32] exploited remarkably. 

Section 7: It was Selberg [51] who first obtained an upper bound 
( assuming RH) for the second moment on primes. The integral Sel
berg considered was similar to (5 .9), but its integrand was clamped 
by an extra factor of y- 2 . The result expressed in (7.48) and other re
lated results will be in a forthcoming paper by Goldston and Yrlclmm 
[22] . 
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