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ABSTRACT 

ANALYSIS OF USING OFDM FOR SHORT- 

RANGE, MULTI-USER UNDERWATER 

ACOUSTIC COMMUNICATIONS 
 

Kemalettin Kerem Öktem 

M.S. in Electrical and Electronics Engineering 

Supervisor:  Prof. Dr. Hayrettin Köymen 

September, 2006 

 

 

Acoustic waves are being used in several underwater applications, such 

as SONARs, underwater communication systems. Most of already developed 

and deployed underwater communication systems use narrow band 

communication and lacks layered communication approach. In this thesis, we 

propose a spread spectrum, layered architecture for underwater communication 

system, such as for SCUBA divers. The communication device shall be 

designed such that divers can communicate with each other in shallow water, 

short range in a multi-user fashion and provide not only voice communication 

but also data transmission as well. The device shall use Orthogonal Frequency 

Division Multiplexing (OFDM) as a spread spectrum technique. The OFDM 

technique is selected from other spread spectrum techniques due to it’s inherent 

ability to combat the channel impairments and flexibility of implementing the 

communication system using software defined radio (SDR). The spread 

spectrum system shall operate in 100 kHz to 300 kHz frequency band using 

wideband acoustic transducers. In this work, we studied a layered architecture 

for the communication device. We mainly studied the application layer, data 
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link layer and physical layer in order to analyze the achievable data rate and 

performance. In this work, we tried to find the optimal communication 

parameters to achieve guaranteed communication performance for possible 

scenarios. The communication parameters are set in order to achieve best 

performance for the worst condition. Using the optimal parameters, the system 

shall occupy 5 users voice and data communication at the same time using the 

entire frequency band at the same time, however with certain Grade of Service 

(GOS) the capacity shall be increased. The capacity of the system shall further 

be increased if the system uses adaptive communication parameters that are 

adapted to changing channel and user conditions. The system using adaptive 

communication parameters shall provide at most 16 users’ voice and data 

communication using the entire frequency band at the same time.  
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ÖZET 

KISA MENZİL, ÇOKLU KULLANICILI, 

SUALTI AKUSTİK İLETİŞİMİ İÇİN OFDM 

KULLANIMI ANALİZİ 
 

Kemalettin Kerem Öktem 

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Hayrettin Köymen 

Eylül, 2006 

 

Akustik dalgalar, SONAR, sualtı iletişim sistemleri gibi birçok sualtı 

uygulamasında kullanılmaktadır. Geliştirilmiş ve kullanılmakta olan sualtı 

iletişim cihazlarının büyük çoğunluğu dar bant iletişim kullanıp, katmanlı bir 

iletişim yapısına sahip değildir. Bu tezde, tayf yayma tekniği kullanan, katmanlı 

bir yapıya sahip, SCUBA dalgıçlarının kullanabileceği bir sualtı iletişim sistemi 

tasarlamayı ön görüyoruz. İletişim sistemi dalgıçlar arasında, sığ suda, ve kısa 

menzilde bir çok kullanıcıya hizmet verecek şekilde, ses iletişiminin yanı sıra 

veri iletişimini de olanak sağlayacak şekilde tasarlanacaktır. İletişim cihazı 

Dikken Frekans Bölüşümlü Çoğullama (OFDM) tayf yayma tekniğini 

kullanacaktır. OFDM tekniği diğer tayf yayma tekniklerine göre tercih 

edilmesinin sebebi, OFDM’in iletişim kanalından kaynaklanan sinyal 

bozulmalarına karşı yapısal koruma sağlaması ve fiziksel uygulamasının sayısal 

tabanlı radyo kullanarak daha kolay gerçekleştirilmesidir. Tayf yayma tekniği, 

100 kHz ile 300 kHz arasında geniş bant akustik dönüştürücüler kullanılarak 

yapılacaktır. Bu çalışmada katmanlı bir iletişim sistemi inceledik. Başlıca, 

sistemden elde edilebilecek veri hızı ve performansını inceleyebilmek için 

uygulama, veri link ve fiziksel katmanlar üzerinde çalışmalar yapıldı. Bu 
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çalışmada, iletişim sistemi parametrelerini optimize ederek olası senaryolar için 

en iyi performansı yakalayabilmek amaçlanmıştır. İletişim sistemi parametreleri 

kötü koşullarda en iyi performansı sağlamak için optimize edilmiştir. Bu optimal 

iletişim parametrelerini kullanarak, sistem aynı anda aynı frekans spektrumunu 

kullanarak, 5 kullanıcının ses ve veri iletişimine izin vermektedir, bu kapasite 

belli bir Servis Derecelendirmesi (GOS) ile arttırılabilir. İletişim sisteminin 

kapasitesi, değişen kanal ve kullanıcı durumlarına uygunluk gösterebilen 

iletişim parametreleri kullanarak daha da arttırılabilir. Sistem değişken 

parametreler kullanarak en fazla 16 kullanıcının aynı anda aynı frekans bandını 

kullanarak ses ve veri iletişimine izin verebilmektedir. 
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Chapter 1 

1 Introduction 
 

 

 

Oceans and its belongings have been a great interest of human being. 

Scientists believe that life on Earth began from the sea and continued over the 

soil; therefore, investigations over how the earth, universe and life started on 

Earth should start from the oceans and the seas. 
 

It was made possible to gain extensive information about the oceans and 

seas, after it was understood that ocean could support signal transmission. The 

foundation of possibility of signal transmission in oceans made life for military, 

scientific and industrial life easier for underwater specific applications. There 

are several places and applications where underwater acoustic communication is 

used, namely; from military point of view, submarines and submersibles could 

communicate over long distances and scan the open waters, from scientific point 

of view, scientist could gather much greater information about the ocean and 

from industrial point view, people could use underwater remote controller 

vehicles instead of divers. 
 

In SCUBA diving activity, SCUBA divers use hand gestures during 

SCUBA diving. In most situations, the available alphabet of the gestures are 

enough, however it is sometimes hard to express feelings and in emergency 

cases more than gestures are needed; therefore a digital communication device 
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would provide SCUBA divers a better way of communication, safer and much 

better SCUBA diving sessions. 
 

In this thesis, we investigated an underwater acoustic communication 

system, which uses Orthogonal Frequency Division Multiplexing (OFDM) 

spread spectrum technique to achieve high data rate in good and bad channel 

conditions. The underwater communication system has multi-user capability and 

provides not only voice traffic but also other digitized data as well.  
 

The outline of the theses is as follows. In Chapter 1, we address the need 

for underwater acoustic communication and we also provide already developed 

and deployed underwater acoustic communication devices. We also provide 

communication system architecture that has to be used for the underwater 

communication system. In Chapter 2, we present the underwater acoustic 

channel, the frequency response, Doppler shift, multipath signal propagation and 

acoustic noise. In this chapter, we also investigate the acoustic medium 

impairments in frequency range of interest and specifications, such as range of 

mobility. In Chapter 3, we state our underwater communication system 

architecture that is composed of physical, data link, network and application 

layer. In this chapter, we state that the system shall use OFDM as the spread 

spectrum technique. We detailed the system architecture on physical layer, data 

link layer and application layer; while providing preliminary information on the 

network layer and Medium Access Control (MAC) layer. The system 

specifications and needs are stated in this chapter. In Chapter 4, the simulation 

procedure for finding suitable communication parameters is introduced. The 

physical layer and the data link layer of the communication system methods are 

explained. In Chapter 5, simulation results are explained and discussed. The 

effects of communication parameters on the communication system performance 

is discussed. Finally, in Section 6, conclusion and future work are stated. 

Communication system parameters, achievable communication performances 

are stated. 
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1.1 Ocean Transmission Medium 
 

 

The underwater communication and underwater acoustics are active 

branches, which have several applications in military, commercial, industrial 

and scientific areas. Some of applications of underwater acoustics for military 

usage, are active and passive SONARs; for civilian usage, are bathymetric 

sounders, fishery sounders, sidescan and multibeam SONARs, sediment 

profilers, acoustic communication systems, positioning systems [1, pp.8-10]. 
 

Underwater communication may rely on several techniques; namely 

wired, electromagnetic, optical and acoustical [2]. 
 

Wired communication is possible in most situations however; is limited 

with the wire infrastructure. Electromagnetic radiation, is an already established 

technique in air wireless communication, however the usability of the 

electromagnetic (EM) waves underwater is limited with the transmission 

frequencies. The reason EM waves cannot be used for underwater 

communication efficiently is the high absorption of electromagnetic energy in a 

conductive medium like sea water, which is about 45 f dB per kilometer, 

where f is frequency in Hertz [3]. Because of this high propagation absorption 

the communication can be done in extreme low frequencies (30 Hz – 300 Hz), 

which require long antennas and high transmission powers [2]. Optical waves 

are another way of underwater communication technique. The optical waves do 

not suffer as much absorption as EM waves however; they are affected by 

scattering and require high pointing precision [2]. The acoustic waves are the 

possible and most feasible means of underwater communication. By using the 

acoustic waves, desired communication performance and data rate can be 

achieved [2], [3]. Like wired, EM or optical communication, acoustic waves are 

affected by many problems even if the effects are not as severe as the others.  
 

The acoustic waves have orders of magnitude lower propagation speed 

than other communication ways, namely EM waves; this in turn creates latency 

of packets. The range is limited by both transmit power and signal attenuation, 
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which is a function of both range and frequency. Strong reflections from the 

surface and the bottom create multipath signals arriving at the receiver, thus 

creating multipath fading. Since acoustic wave’s wavelength in water is large, 

the Doppler shift becomes a dominant factor, which should be addressed in the 

system design [2], [3], [4], [5]. 
 

Even though, underwater acoustic communication has its own problems, 

it is the most suitable communication technique to achieve required data rate and 

performance [2].  

1.2 Interest in Underwater Ocean and Acoustic 
Systems 
 

 

Underwater acoustic systems are used in various fields, such as 

underwater environment monitoring, collection of scientific data, remote control 

of autonomous underwater vehicles (AUV), speech transmission between divers, 

underwater imaging, also known as SONARs, military communication and 

applications. 
 

Before the development and deployment of underwater acoustic systems, 

scientific exploration of underwater was possible by placing stationary sensors 

that could only record data. The recorded data could only be gathered after the 

sensors are brought off the water. With the advances in underwater acoustic 

communication systems, underwater sensors can gather data, transmit them to a 

surface buoy and the surface buoy can relay the data to the shore via an RF link. 

This way, the underwater exploration could be done almost in real time and 

since the data is not store in sensors, data loss is prevented until sensors fail [4]. 
 

Similarly, for systems that collect underwater data, wires can be used to 

connect the underwater sensors to the buoy. Using wires for sensor-buoy link 

has the possibility of link breakage. Therefore, instead of using wires for sensor-

buoy link, acoustic links can be established. The use of acoustic link can provide 

flexibility to the sensor network.  
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1.3 Emerging Needs for Underwater Acoustic 
Links 
 

 

Today wireless communications, such as Wi-Fi (802.11x) family 

networks, are all fighting for higher data rate. The data rate and performance are 

what users are looking for their applications in their lives. For underwater 

acoustic networks same principle works, however the data rate requirements are 

not as challenging as their air counterparts.  
 

Underwater communication data and error rate requirements depend on 

the type of application. In [2] it is stated that for control signaling, that might 

include navigation, status information and various on/off controls of an 

underwater robot would require up to about 1 kbps, with high reliability; for 

telemetry data collected from an underwater equipment from hydrophones, 

seismometers one to several tens of kbps with not so stringent reliability; for 

speech signals, that may be transmitted between divers and/or surface station 

several kbps with relaxed reliability and for a video signal transmission couple 

of 100 kbps with an error rate on the order of 10-3, 10-4 is required. 
 

The underwater acoustic system should be designed according to the data 

and error rate requirements. Since data and error rate is crucial in critical and 

high data bandwidth demanding applications, our concern in this work is to find, 

a communication system that would provide as much data rate as possible with 

high performance. 
 

We shall be investigating a communication scheme to achieve at first 

sight a suitable data rate that SCUBA divers need for voice communication, then 

the proposed system can be used with modification in other areas, such as 

underwater acoustic networks. The communication scheme shall have multi-user 

capability and shall be used at short range, in shallow water. Since the 

communication shall allow multi-users communication at the same time, wide 

bandwidth is required. A wide bandwidth on the order to 200 kHz would be 

achieved if the frequency of transmission is high. The frequency band that shall 



CHAPTER 1. Introduction 

 6

be used is between 100 kHz and 300 kHz using a wide bandwidth acoustic 

transducer. 

1.4 Developed and Deployed Underwater 
Communication Systems 
 

 

With the advances in underwater acoustics and electronics that would 

support complex algorithms, modulations and equalization techniques, 

communication system performances grew and several new applications areas 

became possible. In scientific and commercial applications, underwater 

acoustics are used to remotely control robots, take images of underwater, enable 

voice communications and enable underwater acoustic sensor networks to 

transmit monitored underwater environment data. 
 

One of the first underwater communication systems is an underwater 

telephone, which was developed in 1945 in United States for communicating 

with submarines [3]. The underwater telephone uses single-sideband suppressed 

carrier amplitude modulation (SSB-SC AM) in the frequency range of 8-11 kHz, 

the range capability of the system is several kilometers. Commercially available 

SCUBA diver communication device SCUBA-PHONE produced by 

ORCATRON is another example of an analog communication device that uses 

SSB-SC AM that operates at 30 kHz and has a range of 3 km [6].  
 

After the development of first underwater acoustic device, with the help 

of developments in electronics, digital acoustic systems started to be built. The 

first digital systems were based on non-coherent modulation using frequency 

shift keying (FSK) [2], [4]. In order to mitigate the problem of multipath signals, 

combining at the receiver, guard times are inserted between data burst. The 

insertion of guard times results in reduction of data rate. Despite the fact that 

FSK is far from a bandwidth efficient communication scheme, moderate data 

rates and robust performance makes it an easy and less expensive technique for 

underwater acoustic communication. A representative system using non-

coherent Multiple FSK (M-FSK) provides 5 kbps data rate, in the 20-30 kHz 
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band [7]. The system successfully used for telemetry over a 4 km shallow water 

horizontal path and 3 km vertical path. It was also used in 700 m shallow water 

path with 10-2-10-3 probability of error. 
 

Low bandwidth efficiency makes non-coherent communication an 

inappropriate scheme for high data rate and performance requirements. The need 

for high data rate resulted in usage of coherent modulation techniques [2], [4]. 

Today with the availability of powerful electronics, coherent communication 

systems using phase shift keying (PSK) or quadrature amplitude modulation 

(QAM) can be built. Coherent modulation, despite being more complex and 

costly, is bandwidth efficient and can support greater data rates. Like non-

coherent systems multipath propagation degrades the performance, in order to 

mitigate the multipath problem, equalizers are employed at the receivers with 

certain update algorithms. A representative coherent modulation system in [8] is 

tested in vertical path at short range of 60 m and achieved 500 kbps, using 16-

QAM. The transmission is at 1 MHz with 100 kHz bandwidth. The performance 

degradation due to multipath propagation was resolved with adaptive equalizer 

at the receiver under least mean square error (LMS) algorithm. 
 

Apart from narrowband single carrier communications systems, spread 

spectrum techniques, which are gaining much attention and popularity for 

wireless networking and air communication, are used for underwater acoustic 

communication. There are types of spread spectrum communication, Frequency 

Hopped Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum 

(DSSS) [9, pp.329-338], [10]. Orthogonal Frequency Division Multiplexing 

(OFDM) is another spread spectrum technique, however this technique can be 

considered as a spread spectrum technique that combines properties of 

Frequency Division Multiplexing (FDM) and Multi-Carrier modulation (MCM) 

[11, pp.20-24]. 
 

The spread spectrum systems are used in underwater applications due to 

their inherent resistance to the channel impairments, like multipath and Doppler 

shift. In DSSS, the narrow band data is multiplied with a higher frequency bit 
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sequence (chips) to have a larger bandwidth signal. DSSS has the capability of 

resolving multipath signals, is jam resistant due to large bandwidth occupancy, 

has the ability to transmit under the noise floor to gain counter detection and has 

the inherent security due to spreading sequence [9, pp.329-338], [10]. In FHSS 

systems, the narrow band data is transmitted through different frequency bands 

in a determined pattern. FHSS communication technique with carefully selection 

of the hopping sequence and parameters can reject multipath propagation, is jam 

resistant with suitable error correction coding and has inherent security due the 

predetermined frequency hopping sequence [9, pp.329-338], [10]. OFDM is a 

special type of FDM, in which in a certain time interval, the bit sequence is 

transmitted in parallel at the same time from different frequencies that are 

orthogonal to each other [11, pp.33-47]. 
 

A representative DSSS communication system in [12] uses DPSK and 

has a 10 kHz spread bandwidth using 16 chips/bit has 625 baud data rate. 

Similarly, in [13], an OFDM underwater acoustic communication system is 

depicted. The OFDM system operating in the 8-16 kHz band has 11.89 kbps 

data rate.  
 

In our work, we chose to use spread spectrum communications and 

designed the system with suitable properties and parameters. The reason for the 

choice is that, spread spectrum communications’ inherent properties to deal with 

channel impairments. The advantages of spread spectrum communication can be 

designed for use in underwater to achieve better data rate and performance.  

1.5 Underwater Communication System 
Architecture 
 

 

The design of an information network is of the form of a layered 

architecture [14, pp.49-57]. Underwater acoustic communication systems, 

specifically underwater acoustic networks, operate in a layered structure. The 

already developed air communication network layers and structures are not 

suitable for underwater acoustic communications due to long propagation times 
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acoustic waves therefore, the layer and structures are modified. The basic 

architecture of an underwater communication system, in terms of layers consists 

of physical layer, data link layer, network layer and application layer [5]. Figure 

1.1 depicts the basic architecture of the underwater communication system’s 

layered architecture. 

Figure 1.1: Layered architecture of underwater acoustic communication system 

1.5.1  Physical Layer 
 

 

The physical layer at the transmitter, converts (modulate) information 

bits, or more generally symbols, into analog signals and at the receiver side the 

received signals, which are corrupted by noise and affected by channel 

impairments, is converted (demodulate) to information bits or symbols [5]. 

1.5.1.1 Modulation 
 

The signals to be transmitted are modulated to a higher frequency, such 

that suitable communication is obtained. The modulation technique is chosen 

such that required bit rate, performance is achieved. The modulation methods 

also determine the required bandwidth and the methods should be such that 

communication is least affected by the channel impairments. There are several 

modulation schemes; FSK, in which data is encoded in different frequencies, 

PSK, in which the data is encoded into the phase of the signal, ASK, in which 

the data is encoded onto the amplitude of the signal and QAM, in which the data 

is encoded not only on the phase of the signal but also on the amplitude of the 

signal [9, pp. 294-328], [15, pp.340-398]. 

Acoustic 
Transducer 

Application Layer 

Network Layer 

Data Link Layer 

Physical Layer 
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FSK implementation is easier than the other methods due to non-

coherent demodulation; however has low bandwidth efficiency due to the 

insertion of the guard interval. PSK systems require coherent demodulation and 

the bandwidth efficiency is better than the FSK modulation however, the 

complexity of the system grows, albeit with high data rate. ASK has an easier 

implementation, however since, the data is encoded in the amplitude, due to 

channel impairments of underwater such as multipath, range and frequency 

dependent frequency response, the modulation scheme is not a good solution for 

underwater applications. QAM is a high bandwidth efficient modulation 

scheme, however it is not considered for underwater communications due to 

multipath propagation and frequency response. 

1.5.1.2 Multiple Access Methods 
 

In a network topology, users share the transmission medium. Whenever 

users have information to send, they should transmit to the shared medium. This 

scheme is well suited to a one transmitter and one receiver system, however in 

real life many users share the same transmission channel, therefore users have to 

share the available frequency and time in an efficient manner. This is 

accomplished by multiple access methods, like Frequency Division Multiple 

Access (FDMA), Time Division Multiple Access (TDMA), Code Division 

Multiple Access (CDMA) and Orthogonal Frequency Division Multiple Access 

(OFDMA) [9, pp.447-461], [11, pp.33-47]. 
 

FDMA divides the available frequency spectrum into sub bands, which 

are assigned to different users. Each user can transmit its own data in its 

allocated band. FDMA is an easy to implement scheme, however is not suitable 

for underwater communications. The available underwater spectrum is limited 

by range and frequency; therefore either there will be small number of channels 

available for each user or the data rate in each band will be too low to achieve 

desired communication. On the other hand, the bandwidth of the channels may 

be greater than the coherence bandwidth, in which case the users are vulnerable 

to frequency selective fading [4], [5]. 
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Time Division Multiple Access (TDMA) divides the time interval, called 

a frame, into time slots. Each time slot is assigned to a different user. In TDMA 

method strict time slot synchronization is required and since propagation delays 

are large in underwater communications, synchronization is hard to achieve; 

therefore TDMA is not a suitable technique to be used for underwater acoustic 

communication [4], [5]. 
 

Code Division Multiple Access (CDMA) on the other hand allows users 

to operate simultaneously over the entire frequency band at the same time. 

Different users are differentiated by assignment of different codes that are used 

to spread the messages. Each user’s code is selected such that they are 

orthogonal. This way receiver can reject the unintended users signal. In CDMA 

method the users’ bandwidth is much larger than the narrowband bandwidth; 

therefore this provides resistance to frequency-selective fading. CDMA appears 

to be a promising multiple access method for shallow water acoustic networks 

[4], [5]. 
 

Orthogonal Frequency Division Multiplexing (OFDM) or Coded-OFDM 

(COFDM), like CDMA allows multiple users to operate simultaneously over the 

entire frequency band at the same time. In OFDM, serial information data is 

transmitted in parallel like FDMA, however each frequency band is orthogonal 

to each other. OFDM is a burst and wait communication technique, whose 

implementation is easy with Fast Fourier Transform (FFT) algorithms. The 

channel impairments are addressed with use of guard time and cyclic extension 

[11, pp.20-24], [11, pp.33-47]. 

1.5.2  Data Link Layer 
 

 

In the data link layer, packetized information bits/symbols are formed 

into frames and error control coded [5]. The error control coding is applied to 

the information data in order to recover the corrupted data due to noise in the 

channel and channel impairments. Also in the data link layer, medium access 

control (MAC) is applied to coordinate the access of users’ to the shared 
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medium. The function of the MAC protocol is to orchestrate the devices in order 

to maximize the available data rate and to avoid collisions [9, pp.463-469], [14, 

pp.432-448]. There are several MAC protocols, namely; ALOHA, slotted 

ALOHA, carrier sense media access (CSMA), carrier sense media access with 

collision avoidance (CSMA/CA), multiple access with collision avoidance 

(MACA), MACAW, automatic repeat request (ARQ). 
 

From the MAC protocols, CSMA/CA and MACA medium access 

protocols are well developed protocols, which are used in Wi-Fi wireless 

Ethernet. The protocol provides desired data rate and has the ability to deal with 

hidden and exposed node problems, which are faced in wireless networks, using 

special packet exchange. The CSMA/CA and MACA protocols avoid collisions; 

this in turn increases the overall channel efficiency [4], [5], [9, pp.463-469], [14, 

pp.432-448]. Along with increase in channel efficiency, by using special packet 

exchange, channel properties, range can be determined and proper signal level, 

equalizer parameters can be adjusted to have the most reliable communication 

[4]. The details of the CSMA/CA and MACA protocols are discussed in 

APPENDIX A. 

1.5.3  Network Layer 
 

 

The major function of the network layer is to route the packets from the 

source to the destination [4], [5]. Routing is the algorithm to find the route of a 

packet from the source to the destination. In a static network or a dynamically 

changing network (ad-hoc networks) the routes that packets have to travel 

should be properly be set before packets are transmitted.  
 

The routing is done according to an optimization criterion, which may be 

based on shortest path, least congested path, minimum energy consumption path 

[4], [5]. The criterion may be based on overall energy consumption, in which 

case the optimum system would have the largest network lifetime. There are 

several routing algorithms that are used with ad-hoc networks, destination 

sequence distance vector (DSDV), temporally ordered routing algorithm 
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(TORA), dynamic source routing (DSR), ad hoc on-demand distance vector 

(AODV) [5].  
 

One of the routing algorithms should be chosen for underwater acoustic 

ad-hoc network deployment. The choice should consider the long propagation 

delay caused by the slow propagation speed of acoustic waves, variability of the 

network, power availability and data rate. The underwater communication 

system shall operate in an ad-hoc network architecture, due to several 

advantages of ad-hoc networking. In an ad-hoc network architecture, since each 

node hops its packets using neighbors, not only the energy of each node is 

conserved but also the range of the network is increased. Network topologies 

and advantages of ad-hoc networking are discussed in APPENDIX B. 

 



 

 

 

Chapter 2 

2 Underwater Acoustic Channel 
Properties 
 

 

 

The underwater acoustic communication relies on generation of acoustic 

waves with a suitable acoustic transducer, travel of the waves through the ocean 

and reception of the acoustical waves with the receiving acoustic transducer.  
 

The propagation of sound in water is a mechanical phenomenon and 

depends on the mechanical properties of the medium. In particular, the inertial 

and elastic properties of an elemental volume are of interest. A net force across a 

volume element results in an acceleration opposed by inertial properties, and 

mechanical strain is created in the element related to applied force and the 

elastic properties of the medium. The total energy involved in these mechanical 

effects includes the kinetic energy of motion and the stored potential energy 

represented by internal strain [16, pp.17-18]. 
 

A localized variable source of mechanical force imposes unbalanced 

forces on neighboring volume elements. The propagation of the resulting 

motion-strain effects away from the source results in a longitudinal compression 

wave that transmits mechanical, or acoustic, energy away from the source [16, 

pp.17-18]. 
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For an oscillating source, the wave consists of regions of compression, 

where the pressure exceeds the original equilibrium value, and regions of 

rarefaction with pressure less than the original value. These regions move, or 

propagate, away from the source at a constant rate determined by the properties 

of the medium [16, pp.17-18]. 
 

In ocean, sound transmission is affected by such factors as temperature, 

pressure, chemical composition, and details of the surface and bottom 

boundaries [16, pp.17-18]. 

2.1 Shallow Underwater Acoustic System 
Operational Properties 
 

 

In this work, the underwater communication device shall be used in 

shallow water at maximum depth of 100 m, which is decided such that a 

SCUBA diver shall not in any circumstance pass beyond 66 meters with 

ordinary SCUBA equipment due to health safety regulations [17], [18]. The 

range shall be at most 100 meters, which should be maintained for health 

concerns and safety. The transmission frequency is around 200 kHz, having 200 

kHz bandwidth provided by specially designed wide bandwidth acoustic 

transducer. The relative motion between divers is assumed to at most 1 m/s, 

which is decided by most likely motion of divers. 

2.2 Underwater Acoustic Channel Properties 
 

 

The communication system has to be designed to provide desired data 

rate and performance. The acoustic channel properties, such as propagation 

speed, wavelength, frequency response, loss due to spherical spreading and 

attenuation, loss due to surface and bottom reflections and noise has to be 

defined and precisely calculated, in order to achieve the desired data rate and 

performance. 
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The underwater acoustic medium has various difficulties, in terms of 

communicationwise problems. These problems are related to range, depth and 

site of the device’s operational environment. The environment can be classified 

with respect to range and depth. The underwater acoustic frequency response is 

both frequency and range dependent; therefore the transmission frequency 

creates a limit on the range. The underwater acoustic communication range is 

classified by short range, less than 100 m, medium range, between 1 km-10 km, 

and long range, over 10 km – 100 km range [2]. The available bandwidth 

changes with the range and is more than 100 kHz for short range 

communication, in the order of 10 kHz for medium range communication and a 

few kHz for the long range communication [2]. The depth is classified by 

shallow and deep water. Even if the definition of shallow and deep water is not 

strict, shallow water can be considered depths less than 100 m, whereas deep 

water can be considered beyond the continental shelves [2]. Of the shallow and 

deep water communication, shallow water is more problematic than the deep 

water, due to possible strong reflections from the surface and bottom, strong 

ocean current and wind driven waves. 
 

The underwater communication can be done within two paths, vertical 

and horizontal. Communication, which is done in horizontal direction is a 

problematic one due to the multipath reflections from the surface and the bottom 

along with a line of sight (LOS) path, whereas in vertical communication path 

only LOS communication is present. In vertical path communication, higher 

data rates can be achieved without much of a device complexity, however in 

horizontal path communication, complex equalizers are needed or guard 

intervals should be inserted to mitigate the multipath reflection problem, in order 

to achieve desired data rate. In vertical channels there is little multipath, whereas 

in horizontal path the multipath spread is extremely long [2].  
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2.2.1  Acoustic Waves’ Propagation Speed and 
Wavelength 
 

 

Acoustic wave’s propagation speed is a function of several parameters, 

temperature, depth and salinity. Temperature is a function of depth, time, 

location and weather conditions. In [16, pp.126-130], [19] the propagation speed 

of acoustic waves is found from experimental and theoretical considerations and 

is defined as: 
 

( )( ) zSTTTTc 017.035012.039.10003.0055.06.41449 32 +−−++−+=  (2.1) 
 

In (2.1), c is the speed of sound in underwater (m/sec), T is the 

temperature (°C), S is the salinity (parts per thousand) and z is the depth (m). 
 

In [19], the propagation speed of sound is calculated and found to be 

between 1450 m/s and 1540 m/s. In our simulations and calculations, the 

propagation speed of sound is taken to be 1500 m/s for convenience.  
 

The wavelength of the transmitted waves is given by [9, pp.107]: 
 

f
c

=λ  (2.2) 

 

For underwater acoustic medium, the wavelength are orders of 

magnitudes shorter than the EM waves in air. The wavelength at 100 kHz, 200 

kHz and 300 kHz are 15 mm, 7.5 mm and 5 mm respectively. The short 

wavelength is a consequence of the slow propagation speed of the acoustic 

waves. 

2.2.2  Absorption of Sound in the Ocean 
 

 

Underwater acoustic waves have more complex path loss profile as 

compared to EM waves. The acoustic waves in underwater spread to the 

medium spherically; therefore spherical attenuation is part of the total 

attenuation. Apart from the spherical attenuation, there is also frequency and 
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range dependent attenuation [1, pp.11-59], [16, pp.126-156], [19]. The total path 

loss defined in [16, pp.126-156] is given as: 
  

RRPL α+= log20  (2.3) 
 

Where α is the absorption loss in the ocean in dB/m and R is distance in 

meters. The absorption loss is defined in [1, pp.11-59] and Francois-Garrison 

modeled this loss as in (2.4), (2.5), (2.6) and (2.7). 
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The contribution of Magnesium Sulphate ( )4SOMg is: 
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The contribution of pure water viscosity is: 
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2105
3 109.41083.31 zxzxP −− +−=  

CT °< 20 :
382754

3 105.11011.91059.210937.4 TxTxTxxA −−−− −+−=  

CT °> 20 :
3102754

3 105.61045.110146.1109464.3 TxTxTxxA −−−− −+−=  

(2.7) 

 

In (2.4), (2.5), (2.6) and (2.7), z is the depth (m), S is the salinity, T is the 

temperature (°C), f is the frequency (kHz) and pH is the acidity of the medium. 

In order to find absorption loss (α), instead of using complex equations, 

analytical graphs in [1, pp.11-59] and [16, pp.126-156] can be used. The 

absorption loss is shown in Figure 2.1.  
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Figure 2.1: Absorption loss in Ocean at 20 °C and 35% salinity. 

 

The absorption loss (α) can be observed from Figure 2.1. In the 

frequency range of interest, which is from 100 kHz to 300 kHz, the absorption 

loss can be approximated as a linear line.  

0.04 dB/m

0.06 dB/m

0.08 dB/m

@ 100 kHz 

@ 200 kHz 

@ 300 kHz 

Table 2.1: Approximate absorption loss between 100 kHz and 300 kHz 
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By approximation, the generality is not lost because in the frequency 

range of interest the absorption loss is approximately linear. After the 

linearization, the absorption loss is approximated as: 
 

02.0
10100

02.0 3x
f

+≅α mdB /  (2.8) 

 

In Figure 2.2, frequency and range dependent path loss is illustrated.  
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Figure 2.2: Total loss between 100 kHz and 300 kHz for several distances  

 

From the Figure 2.2, it can be concluded that when the acoustic path 

range is increased the path loss increases, however the increase is not only 

spherical but also range dependent too. When path loss at 100 m is observed it 

can be seen that there is almost 4 dBW power difference between the higher and 

lower frequency components, whereas for shorter ranges the difference is less. 

This high frequency difference has to be addressed when the communication 

system is designed.  
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2.2.3  Acoustic Loss Due to Surface and Bottom 
Reflections 
 

 

The underwater acoustic system shall be designed to operate in shallow 

water and at maximum range of 100 m. In these conditions, there will be 

multiple reflections from surface and bottom.  
 

If surface and the bottom are considered as flat boundaries, then signal 

incident on boundaries will be reflected differently, because of the acoustic 

mismatch between the water-air and water-bottom boundaries. In order to find 

the acoustic mismatch, acoustic impedance has to be defined. The acoustic 

impedance is defined as [16, pp.126-156]: 
 

BZ ρ=0 , 2cB ρ=  

( ) ccZ ρρρ == 2
0  

(2.9)

 

In (2.9), ρ is the medium density and c is the speed of acoustic waves in 

the medium. The unit of acoustic impedance is Rayl, which is equal to 1 Pascal-

second per meter. From (2.9), the acoustic impedances of the water, air and sea 

floor are found and approximated as: 
 

seaZ

airZ

bottomZ

MRayl5.1=  

0≈  

∞≈  

Table 2.2: Characteristic acoustic impedance of the water, air and the sea floor. 
 

When the acoustic waves are incident on the water-air or water-bottom 

interface the acoustic waves are subject to reflection through a reflection 

coefficient. In [20], the reflection coefficient defined as: 
 

ti

ti

ZZ
ZZ

θθ
θθ
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coscos
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22
12 +

−
=Γ  (2.10)
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In (2.10), Z1 and Z2 are the acoustic impedances of the two medium, θi 

and θt are the angle of incidence and transmission with respect to normal. From 

(2.10) the reflection coefficient between air-water and water-bottom boundary is 

approximated as: 
 

airsea−Γ12

bottomsea−Γ12

1−≅  

1≅  

Table 2.3: Reflection coefficient of the water - air and the water - sea floor 

boundary 
 

In an ideal case where the boundaries are flat surfaces, the signal will be 

reflected from the sea surface with a phase shift of 180° whereas from the sea 

floor without a phase shift. However, due to irregularities and corrugations on 

the sea floor, and ocean waves on the sea surface due to wind, acoustic waves 

lose their power per reflection. 
 

In [16, pp.126-156] and [21], the amount of power loss due to scattering 

from the sea surface and sea floor is given. The scattering loss on the sea surface 

is dependent on the Sea-State and frequency of transmission. The Sea-State is 

determined by the wind speed conditions. The scattering loss at the surface is 

defined as: 
 

( )[ ]2
3

0234.01log10 fHs −−=α  (2.11) 
 

In (2.11), αs is the surface reflection loss (dB), f is the frequency (kHz) 

and H is the average trough-to-crest wave height (ft). 
 

In [16, pp.126-156], the scattering loss due to wind at Sea-State at 

various frequencies and for various Sea-State conditions is given and depicted in 

Figure 2.3.  
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Figure 2.3: (a) Sea-State Conditions (b) Surface reflection loss (Courtesy of 

W.S. Burdic, Underwater Acoustic System Analysis, pp. 132-133) 
 

From Figure 2.3, it can be concluded that Sea-State (SS) has a great 

effect on the scattering loss from the surface, along with the frequency. It can be 

considered that a diving session in most of the occasions would be done in Sea-

State-0, where the sea is smooth. In these circumstances, from the Figure 2.3, 

the scattering loss at 200 kHz is 10 dB and 14 dB at SS-0 and SS-1 respectively. 

In simulations, the scattering loss is taken at 200 kHz. It can be seen from the 

figure that from 100 kHz to 300 kHz the loss changes by almost 2 dB however, 

taking loss at the middle frequency shall provide enough accuracy for our 

calculations.  
 

The sea floor loss depends on several parameters, namely structure of the 

sea floor, transmission frequency and angle of incidence [16, pp.126-156], [21]. 

The structure of the sea floor, which affects the loss parameter, is the porosity of 

the surface. Porosity is the ratio of volume in sample sediment to the volume of 

the sediment, which is defined as [21]: 
 

V
Vn w=  (2.12) 

 

Porosity parameters for some sea floor structures are provided in [21] 

and is tabulated in Table 2.4. 
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 n 

Coarse Sand 0.4 

Fine Sand 0.5 

Silt 0.6 

Clay 0.8 

Table 2.4: Porosity values for sample sea floor structures 
 

Sea floor loss is formatted by Naval Underwater Center (NUC) 

empirically for several sea floor structures; that is in terms of porosity. The 

empirical formula for sea floor loss for several sea floor structures are provided 

in (2.13). The formula provides direct loss in dB where n is the porosity value of 

the sea floor structure (0 < n <1) and θ is the angle incident measured in degrees, 

relative to the normal and f is the frequency of transmission in kHz. 
 

Sea Floor Loss (dB) = 

( ) ( )( )( ) ( )( )[ ]θθ 0117.01296.08.00724.055.6tanh025.15.17
5.13

1
−−+−−− nnfn n   

(2.13) 

 

Sea floor loss provided in (2.13) at 200 kHz is illustrated in Figure 2.4, 

with respect to porosity, frequency and angle of incidence.  
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Figure 2.4: Sea floor loss at 200 kHz for several porosity values with respect to 

angle of incidence 
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Sea floor loss in our simulations can be taken for incidence angles of 

90°. The maximum range of our system is limited to 100 m and reflected rays 

that shall be arriving the receiver at around 90°. At smaller incidence angles due 

to high absorption loss and due to high frequency and range, the reflected waves 

shall be attenuated sufficiently. At 200 kHz and at 90° angle of incidence the sea 

floor loss is around 15 dB, 35 dB and 70 dB for porosity values of 0.2, 0.4 and 

0.9 as depicted in Figure 2.4. 
 

For our simulations, porosity values of 0.2 and 0.4 shall be used with 15 

dB and 35 dB loss respectively. The sea floor loss is taken at middle frequency 

because the empirical formulation given by (2.13) states the mean sea floor 

losses. The total sea floor loss is more than these values, because the losses do 

not include the scattering of the acoustic waves, that is only the transmission 

loss is included. 

2.2.4  Doppler Spread and Coherence Time 
 

 

Due to relative motion between the transmitter and the receiver the 

transmitted signals are received by the receiver at different frequencies [9, 

p.179]. This is called Doppler Effect and the amount of change in frequency is 

represented by [9, p.179]: 
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The Doppler shift has two components, one is the relative motion 

between the receiver and the transmitter and the other is the ocean surface 

motion due to wind [2]. The acoustic waves have a Doppler spread due to wind, 

that is given by: 
 

θcos)0175.0( 2
3

fwcDS =  (2.15) 
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In (2.15), θ is the incidence angle (°), c is the speed of sound (m/sec), w 

is the wind speed (m/sec). Due to high absorption loss in the frequency range of 

interest, the multipath signals that reflect from surfaces with an angle close to 

90° with respect to normal, shall be received strongly. Since multipath 

components that are of interest shall reflect from the surface with an incidence 

angle close to 90°, the Doppler spread due to wind driven surface shall be very 

close to 0 Hz. For this reason, the component of Doppler spread due to surface 

motion is not our interest.  
 

The major component is the relative motion between the transmitter and 

the receiver. We are assuming that, a diver shall not in most of the cases swim or 

move with a speed more than 1 m/s and we are not expecting the relative motion 

between two divers shall exceed 1 m/s. Considering the situation, the maximum 

Doppler shift at incidence angle 0° due to transmitter and/or receiver motion is 

calculated using the (2.15), is depicted in Table 2.5. 
 

66.66 Hz 

133.33 Hz 

199.98 Hz 

@ 100 kHz 

@ 200 kHz 

@ 300 kHz 

Table 2.5: Doppler shift due to 1 m/s relative motion (θ=0°) 
 

The dominant Doppler shift is from the relative motion between the 

transmitter and the receiver and ratio of shift is considerably larger than their 

counterparts in air when the transmission frequency is concerned.  
 

We expect that we shall have different Doppler shifts however the 

maximum Doppler shift that we shall observe is 200 Hz (when the incidence 

angle between is 0°). This way we have a Doppler spread that is expected to 

have a maximum of 200 Hz. The 200 Hz maximum Doppler shift affects the 

communication severely because the transmission frequency is 300 kHz and the 

bandwidth of OFDM pulses (OFDM symbol of length 1 msec) around 2 kHz. 

The Doppler spread adds spectral broadening caused by the time rate of change 

of the underwater acoustic channel [9, p.179].  
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Coherence time is defined from the Doppler spread. Doppler spread and 

the coherence time describes the time varying nature of the channel [9, pp.197-

210]. Coherence time is defined as the time duration over which the channel 

impulse response remains invariant. If the baseband signal has larger bandwidth 

than the Doppler spread, then the effect of Doppler shift is negligible; however, 

in our case the effect might be large according to the bandwidth usage. The 

Doppler spread and the coherence time are inversely proportional to each other 

[9, pp.197-210]: 
 

m
C f

T 1
≈  (2.16) 

 

In (2.16), fm is the doppler shift and Tc is the coherence time. Using the 

(2.16), the coherence time is found to be 5 msec. 
 

The Doppler spread is the maximum of the Doppler shift over time. 

Since the relative motion might be changing over time, the Doppler shift has a 

statistics. The time over which the channel has 0.5 correlation is defined as [9, 

pp.197-210]: 
 

m
C f

T
π16
9

≈  (2.17) 

 

For modern communication devices the coherence time is the geometric 

mean of the (2.16) and (2.17) [9, pp.197-210]: 
 

mm
C ff

T 423.0
16

9
2 =≈

π
 (2.18) 

 

Using (2.17) as in (2.18), the time over which the channel has 0.5 

correlation and practical coherence time is found 8.95 10-4 sec and 2 msec 

respectively. 
 

If the pulse period is much less than the coherence time, then the 

communication shall not be affected severely from the Doppler shift, therefore 

complex algorithms and equalizers shall not be required. 
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2.2.5  Multipath, Delay Spread and Coherence 
Bandwidth 
 

 

The underwater acoustic communication system shall be operating in a 

severe multipath environment especially when the receiver and/or transmitter 

are very close the surface or sea floor boundaries.  
 

The underwater acoustic channel can be modeled as stratified surfaces as 

in [1, pp.11-59]. For the multipath propagation environment we consider direct 

acoustic rays bounced of from the surface and the bottom. The multiple 

reflections are modeled with image interpretation of the transmitter (src) and the 

receiver (dst), however in calculations the boundary reflection losses are taken 

according to Sea-State level and structure of the sea floor. The surface loss is 

taken 10 dB and 14 dB for Sea-State-0 and Sea-State-1 respectively and the sea 

floor loss is taken 35 dB and 15 dB for sea floor porosity of 0.4 and 0.2 

respectively. In our simulations 5 ray model is used, including 1 line of sight 

(LOS) path; 2 single boundary reflections and 2 double boundary reflections. 

The 5-ray acoustic underwater channel model is depicted in Figure 2.5.  
 

 
Figure 2.5: 5-Ray Underwater Acoustic Channel Model 

 

In Figure 2.5, the divers are named as source (src) and destination (dst); 

the depth as h, the direct distance as d and the multiple reflections from the 
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surface and the bottom as depicted as arrows, which are found by image 

reflections of the source and the destination from sea surface and floor. 
 

By using the channel model in Figure 2.5, the path loss model explained 

in the Section 2.2.2 , the surface and bottom reflection model explained in 

Section 2.2.3 , the multipath spread of the channel can be found by using (2.19) 

[9, pp.197-210].  
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The multipath spread is found by first simulating the underwater channel 

model to find the distance of the direct and multiple reflections. The arrival time 

of the reflections is found from the distance and the power level of the 

reflections is found from the path loss formula in (2.3) and Figure 2.1 along with 

the scattering power loss from the overall loss. The arrival time and power level 

of each reflection is then applied to the (2.19a) and (2.19b), which are the mean 

excess delay and rms delay spread respectively [9, pp.197-210]. The multipath 

delay spread is found by using the (2.19a) and (2.19b) in (2.19c) [9, pp.197-

210]. 
 

The depicted multipath spread formulation is for only one scenario, 

however in underwater there are infinitely many positions where two divers can 

be; therefore many scenarios have to be simulated.  
 

In order to gain more understanding of the multipath spread, multipath 

simulation is done. The simulation is done as follows; using the 5-Ray acoustic 

underwater channel model, depicted in Figure 2.5, the source at first is placed 

randomly on the vertical line along y axis and then the destination is placed 

(a) 

(b) 

(c) 
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randomly according the depth and the distance between the source and the 

destination. The path loss between the source and the destination is calculated 

according to the acoustic path loss formula also applying the scattering loss from 

the surface and the bottom. The simulation is repeated 5000 times, to find the 

multipath of different scenarios. This way several multipath spread values are 

found for several depth and distance values, however since the scenarios are 

random, the multipath spread histogram for each scenario shows a peak at some 

specific multipath spread value. This value is taken to be the most probable 

multipath spread at that specific condition, depth and distance. All the multipath 

spread values are found by changing the depth and the distance between the 

source and the destination. The obtained results according to this method for 

Sea-State-0 and sea floor porosity of 0.2 are illustrated in Figure 2.6. Expected 

delay spread graphs for the Sea-State-1 and porosity of 0.4 are provided in 

APPENDIX D.  
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Figure 2.6: Multipath Spread (a) dependence of depth, (b) dependence of 

distance  
 

Figure 2.6 shows the most probable multipath values of the underwater 

channel for Sea-State-0 and sea floor porosity of 0.2. The figure also shows the 

variation of the multipath according to the distance and range. The chosen sea-

state condition and the sea floor structure provide the least amount of loss 

therefore provides the worst delay spread conditions. The worst delay spread 

conditions are taken as a reference for the expected delay spread because the 

design for the communication system shall take account of the worst case 

conditions. The delay spread values for the Sea-State-1 and porosity 0.4 are less 

than the former case. 
 

It can be concluded from the graph that for shorter ranges, the delay 

spread is small. Multipath reflections arrive much later than the direct signal, as 

a matter of fact the received signal power levels of multipath signals are much 

smaller than the direct path. When the range is increased the delay spread tends 

to increase however, approaches to 5.4 msec as the range goes to 100 m. The 

same behavior is observed when the depth goes to 100 m. The delay spread 

value for the Sea-State condition and the sea floor structure that provide the 



CHAPTER 2. Underwater Acoustic Channel Properties  

 32

most expected attenuation (SS-1, porosity n=0.4), is 3.38 msec as given in 

APPENDIX C and APPENDIX D.  
 

Recreational SCUBA divers are most likely to be in the depth range of at 

most 60 m and communication range between the divers can be at most 100 m, 

therefore, the multipath spread can be taken 5.4 msec for the worst case 

conditions (SS-0, porosity n=0.2) [17], [18]. 
 

Reflected and scattered signals from surface and bottom create fading in 

certain parts of the overall spectrum. Coherence bandwidth is defined from the 

rms delay spread and it is statistical measure of the range of the frequencies over 

which the channel can be considered as flat [9, pp.197-210]. In other words, 

coherence bandwidth is the range of frequencies that have strong amplitude of 

correlations. The coherence bandwidth is defined in terms of percentage of 

correlation. If the correlation between the frequency components is higher than 

0.9 the coherence bandwidth is approximately given as: 
 

τσ50
1

=CB  (2.20) 

 

For 0.5 correlation the coherence bandwidth is: 
 

τσ5
1

=CB  (2.21) 

 

In (2.20) and (2.21), στ is the delay spread and BC is the coherence 

bandwidth.  
 

For 5.4 msec multipath spread 0.9 and 0.5 correlation coherence 

bandwidth is 3.70 Hz and 37.03 Hz respectively. The calculated values are the 

bandwidth over which the frequency response can be considered flat for the 

underwater communication channel.  
 

The coherence bandwidth, which is related with the delay spread, is a 

pulse design parameter. If 0.9 correlation is chosen the communication shall be 
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done without inter symbol interference (ISI), while for 0.5 correlation equalizer 

has to be used [9, pp.197-210]. 
 

When the delay spread is higher, the coherence bandwidth is lower. 

When the signal bandwidth is higher than the coherence bandwidth, signal faces 

frequency selective fading. Apart from the frequency selective fading multipath 

signals that arrive at the receiver along with the main path, creates inter symbol 

interference (ISI). The ISI may be much longer in the underwater acoustic 

channel especially when the transmission frequency is lower, since attenuation 

is less, resulting in longer sequences of the bits to be affected [2]. 
 

If symbol bandwidth is much less than the coherence bandwidth, then the 

communication shall not be affected severely from the delay spread, therefore 

complex algorithms and equalizers shall not be required. 

2.2.6  Coherence Time and Bandwidth and Design 
Criteria 
 

 

According to the Doppler and multipath spread, the underwater acoustic 

channel can be categorized. Time dispersion due to multipath causes the 

transmitted signals to undergo either flat or frequency selective fading while 

Doppler spread defines the fading properties as either fast or slow fading [9, 

p.179], [9, pp.197-210].  
 

The channel is said to be flat fading if the transmitted signal has a much 

smaller bandwidth than the coherence bandwidth of the channel, whereas in 

frequency selective fading the bandwidth of the signal is much larger than the 

coherence bandwidth, which is the inverse of the rms delay spread defined in 

(2.20) [9, pp.197-210].  
 

The channel is called a fast fading channel when the coherence time of 

the channel is much smaller than the symbol period of the transmitted signal; 

that is the signal bandwidth is much lower than the inverse of the coherence 

time. The channel is a slow fading channel if the channel impulse response 
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changes at much slower than the transmitted signal; that is the transmitted signal 

bandwidth is much larger than the inverse of the coherence time [9, pp.197-

210]. A summary of the channel properties can be found in Table 2.6. 
 

Flat Fading Frequency Selective Fading 

Coherence BW >> Signal Bandwidth 

BC >>BS, TS>>στ 

Coherence BW < Signal Bandwidth 

BC < BS, TS < στ 

Fast Fading Slow fading 

1/Coherence Time < Signal  Bandwidth 

BS < BD, TS > TC 

1/Coherence Time >> Signal  Bandwidth 

BS >> BD, TS << TC 

Table 2.6: Summary of channel properties and conditions 
 

In Table 2.6, BC, BS are the coherence bandwidth and signal bandwidth 

and TS, στ signal period and multipath spread; BD Doppler spread and TC 

coherence time. 
 

According to the coherence time and coherence bandwidth, Figure 2.7 

depicts the characteristics of communication channels [9, pp.197-210]. 
 

 
Figure 2.7: Characteristic of communication channel 
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The fading properties for underwater acoustic communication are much 

more severe than their counterparts in air. In a good communication channel, 

which is flat and slow fading, symbol length much larger than the multipath 

spread and bandwidth much larger than the Doppler spread can be used.  
 

For the underwater communication channel the situation is hard to 

achieve. The reason is that multipath spread is 5.4 msec, which yields 3.70 Hz 

coherence bandwidth and the Doppler spread is 200 Hz at 300 kHz, which yields 

5 msec coherence time. For a good communication channel the symbol period 

has to be larger than 5.4 msec and at the same time smaller than 5 msec. The 

condition is unachievable, therefore the communication system either needs 

sophisticated equalizers to achieve desirable data rate or a burst and wait 

communication scheme. 
 

In our work, we chose a non-coherent communication scheme with better 

bandwidth efficiency. The non-coherent communication scheme is OFDM or 

COFDM. In OFDM or COFDM, the coherence time limitation, which is caused 

by Doppler spread is solved by choosing shorter OFDM pulses and the 

coherence bandwidth limitation, which is caused by multipath spread is solved 

by insertion of guard intervals. The multipath problem is even further solved 

with use of cyclic extension [11, pp.33-47], [13]. 

2.2.7  Noise 
 

 

The communication reliability is affected by channel impairments as 

well as by the noise. The signal to noise ratio (SNR), determines the bit error 

rate (BER) of a digital communication system [15, pp.405-436]. There are two 

sources of noise in a digital communication system, one is the noise generated at 

the receiver amplifier, which is due to the input impedance of the receiver and 

the other is the noise in the channel. 
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2.2.7.1 Noise Due to Receiver Amplifier 
 

The electrical noise generated at the receiver amplifier is due to the 

random voltage generated by random motion of electrons in the amplifier [22]. 
 

The wideband acoustic transducer has a finite impedance, due to this 

impedance electrical noise is generated. The noise power generated by acoustic 

transducer impedance is given in (2.22), where k is the Boltzman constant, T is 

the temperature in Kelvin, BW is the bandwidth and R is the impedance of the 

acoustic transducer [22]. 
 

kTBWR4  (2.22) 
 

When the transducer impedance is matched at the receiver amplifier 

input, the noise power flowing into the system is given (2.23), which is 

independent of the transducer impedance. 
 

kTBW  (2.23) 
 

The noise flow through the circuitry due to the receiver amplifier for a 1 

msec pulse occupying 2 kHz bandwidth at 20 °C is -170.92 dBW. 

2.2.7.2 Acoustic Noise 
 

The underwater acoustic noise, within our frequency range of interest is 

created by the molecular agitation [1, pp.107-112], [16, pp.297-302]. The 

spectrum level of the noise is provided in [16, pp.297-302]. The N0 is found as 

follows: 
 

The noise level is provided in [1, pp.107-112], [16, pp.297-302], [23], 

[24]. The noise level due to molecular agitation increases with frequency with 

the rate of 6 dB/octave [16, pp.297-302]. The noise level due to molecular 

agitation is tabulated in Table 2.7.  
 



CHAPTER 2. Underwater Acoustic Channel Properties  

 37

@ 100kHz 28 dB re uPa2/Hz 

@ 200kHz 34 dB re uPa2/Hz 

@ 300kHz 40 dB re uPa2/Hz 

Table 2.7: Noise Level due to Molecular Agitation 
 

We have the acoustic noise power; however, we need electrical noise 

power at the receiver. Electrical noise is found as follows: 
 

( ) BWN
c

ABWPP acuNoiseElectrical ×== 0
2

ρ
 (2.24) 

 

(2.24) can be used to calculate the electrical noise power generated by 

the underwater acoustic noise. In (2.24), Pacu is the acoustic noise power at the 

receiver, BW is bandwidth in Hz, A is water contact area of the transducer in 

m2, ρ is the density of water and c is the speed of acoustic waves in water. The 

contact area of the transducer is taken to be 1 cm2 and c is taken to be 1500 

m/sec. 
 

In our noise calculation, we took Pacu of the 300 kHz frequency, because 

worst case situations shall lead us better understanding of the achievable data 

rate. From (2.24), N0 is found to be -171.76 dB. The noise power can be found 

simply by NoxBW. For a 1 msec pulse, occupying 2 kHz bandwidth the acoustic 

noise power is -138.75 dBW. 

2.2.7.3 The Total Noise 
 

The two sources of noise are available to the circuitry flowing through 

the receiver. Even though they are both available, relatively the effect of 

acoustic noise power dominates over the receiver noise, therefore the receiver 

noise power can be ignored. The noise source in our simulations is only the 

acoustic noise, which is dominated in our frequency range interest by molecular 

agitation.  
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2.2.8  Overall Design Criteria Due to All Channel 
Properties 
 

 

The underwater acoustic communication system design shall be based on 

several parameters. The design requirements are data rate, bit error rate (BER), 

frame error rate (FER), battery life and multi-user capability. 
 

In order to achieve the requirements, OFDM/COFDM parameters has to 

be chosen such that desirable data with certain reliability and sufficient battery 

life is achieved.  

 



 

 

 

Chapter 3 

3 Underwater Acoustic System Needs 
and Architecture 
 

 

 

The underwater acoustic communication system shall be designed for 

SCUBA diving purposes at first approach; however in later work the system 

shall be designed for other underwater applications, such as underwater acoustic 

networks, remote control operations, environment monitoring.  
 

Since the first approach for the system design is for SCUBA divers, the 

system shall be designed to operate in shallow water, which does not exceed 

more than 100 m and short range, which shall not exceed more than 100 m. The 

system shall be a multi-user system, that is more than one user can occupy the 

channel at the same time.  
 

The system shall be a spread spectrum system, operating between 100 

kHz and 300 kHz. The spread spectrum technique shall be OFDM/COFDM. 

3.1 Underwater Acoustic System Layered 
Architecture 
 

 

The underwater communication shall have a layer based architecture. 

The system shall have application layer, which provides the information data, 

network layer, which shall route the packets from the source to the destination, 
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link layer, which shall do error control and medium access coordination, 

physical layer, which shall prepare the digital data for transmission and a wide 

band acoustic transducer, which shall convert the electrical signals to acoustical 

signals [5], [14, pp.49-57]. The basic underwater communication system 

architecture is depicted in Figure 1.1. 
 

In this work, we mainly focused on the physical layer to obtain the 

desirable data rate. While studying the physical layer, since the system shall 

have multi-user capability, application layer and data-link layer is taken into 

account. The application layer is studied in order to gain insight about the 

capacity of the system, while the data link layer is studied to have the end to end 

link reliability by having error coding and medium access control (MAC). 
 

The underwater communication system in our work shall be discussed in 

a top-down design approach, starting from the acoustic transducer and 

continuing with the physical layer, data-link layer and application layer. The 

network layer is omitted because no research was done for this layer. However 

for the overall system design a suitable network protocol should be chosen to 

complete the communication protocol architecture. 

3.1.1  Acoustic Transducer 
 

 

The underwater communication is made possible by acoustic wave 

emitting and receiving acoustic transducers. The acoustic transducers are 

devices that convert electrical waves to acoustic waves [1, pp.137-172], [16, 

pp.59-84]. 
 

The underwater acoustic system shall use an omni directional  wideband 

acoustic transducer, in order for the system to be spread spectrum. The acoustic 

transducer shall have 200 kHz bandwidth around 200 kHz, for transmission and 

reception. The transducers are made of ceramic material. The extra wide 

bandwidth of the transducer was achievable after the developments in ceramic 
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materials. The wide bandwidth of the transducer is studied by a still continuing 

work and additional information can be found in [25].  

3.1.2  Physical Layer 
 

 

In our work, we propose that the underwater communication system shall 

be a spread spectrum system, having 200 kHz bandwidth around 200 kHz. For 

the spread spectrum communication technique, we chose orthogonal frequency 

division multiplexing (OFDM) or Coded Orthogonal Frequency Division 

Multiplexing (COFDM). We propose to obtain as much data rate as possible 

with suitable modulation and error coding schemes. 
 

OFDM is a spread spectrum system that has great possibility of usage in 

the near future. The system has already been deployed and developed in Wi-Fi 

family 802.11a, digital video broadcasting (DVB), digital audio broadcasting 

(DAB), various digital subscriber lines (xDSL) [11, pp.20-24], [26], [27], [28], 

[29]. 

3.1.2.1 OFDM / COFDM 
 

OFDM and COFDM is a special case of multi-carrier transmission in 

which instead of transmitting the entire data over a single carrier, the data is split 

up to lower-rate data and the lower-rate data is transmitted simultaneously over 

a number of narrowband sub-carriers using the entire spectrum at the same time. 

Since the transmission is done in parallel, the symbol duration can be relaxed 

and it can be longer than single carrier transmission system, this in turn provides 

less time dispersion due to multipath. The main reason OFDM is used is for its 

robustness to frequency selective fading, due to multipath propagation. In single 

carrier narrowband transmission system, frequency fading affects the entire 

narrow band, however in OFDM only some part of the spectrum is affected from 

fading. The frequency selective fading is overcome with coding and 

equalization. For a single carrier narrowband system complex time domain 

equalizers are need however, for OFDM simple frequency domain equalizers are 
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sufficient. The fade affected OFDM symbols are recovered by using suitable 

error coding techniques [11, pp.20-24], [26], [30], [31], [32], [33], [34].  
 

Usually OFDM systems rely on the error correcting codes and 

interleaving to overcome frequency selective fading. OFDM, which is used in 

conjunction with channel coding, is known as Coded OFDM (COFDM) [26], 

[27]. 
 

OFDM can be seen as a special case of frequency division multiplexing 

(FDM), where the transmission is done over non-overlapping bands, whereas in 

OFDM the transmission is done over overlapping bands. By using overlapping 

channels in OFDM the bandwidth efficiency is increased, because the need for 

guard bands in FDM is avoided [11, pp.20-24], [26]. In Figure 3.1, the 

difference of OFDM and FDM and the bandwidth efficiency of OFDM is 

depicted.  

 
Figure 3.1: Comparison of FDM and OFDM. 

 

OFDM technique was made feasible after the developments in very 

large-scale integrated circuit (VLSI) technology. The generation and 

degeneration of OFDM signal relies on the Fast Fourier Transform (FFT) and 

inverse FFT (IFFT) algorithms. The orthogonal sub-carriers are generated using 

IFFT algorithms, which eliminates the use of bank of filters and modulators. 

Likewise, for demodulation of the OFDM signal, the FFT algorithms are used. 
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Therefore, usually one IC is sufficient for the modulator and the demodulator of 

the OFDM communication systems [11, pp.33-47], [26].  
 

The serial data stream is transmitted in parallel within overlapping 

channels in a single OFDM pulse. The overlapping channels are distinguished 

between each other by selecting the overlapping channels orthogonal to each 

other. The orthogonality is achieved in frequency domain, by separating each 

carrier 1/T (inverse of OFDM symbol duration) apart from each other [11, 

pp.33-47], [26], [32], [35]. The orthogonality is depicted in Figure 3.2. 
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Figure 3.2: Spectra of carriers in OFDM symbol 
 

The key advantages of OFDM are as follows [11, pp.20-24]:  
 

• Robustness to multipath fading: The OFDM need less complexity to deal 

with multipath signals than a single carrier system with an equalizer. 

Using simple frequency domain equalizers and suitable error coding 

techniques, resistance to fading is achieved.  
 

• Narrowband interference rejection: Since the system is a spread 

spectrum system, narrowband interference only affects certain part of the 

spectrum. The sub-carriers in the jammed spectrum are lost, however 

error coding techniques enable the lost sub-carriers to be recovered.  
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• Bandwidth efficiency: OFDM uses overlapping channels as compared to 

single frequency systems. The overlapping provides bandwidth 

efficiency as compared to FDM systems.  
 

Some disadvantages and tackling problems of OFDM are: 
 

• Sensitivity to frequency off-set and phase noise. 
 

• Large peak to average power ratio, which creates problems for the high 

power amplifiers linearity.  
 

The spread spectrum OFDM system can be analyzed through block 

diagrams. In an OFDM system the necessary blocks not only contain the 

physical layer, but also some part of the data link layer [11, pp.33-47]. Without 

the data link layer the performance and advantages of OFDM is decreased. The 

overall system diagram is depicted in the Figure 3.3. 

 
Figure 3.3: Block diagram of OFDM transceiver 

 

Within our work we studied on solid covered blocks in order to find the 

suitable transmission parameters for underwater communication. The dashed 

blocks are assumed to be operating perfectly in our system. 
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3.1.2.1.1 OFDM System Architecture 
 

Physical layer part of the OFDM system requires several blocks namely; 

generation and degeneration of sub-carriers; pilot tone insertion and 

equalization; cyclic prefix addition and removal; windowing and 

synchronization.  
 

Generation and degeneration of Sub-carriers: An OFDM signal consists 

of several sub-carriers that are modulated orthogonally to each other. The 

OFDM symbol is mathematically constructed in time and frequency domain 

according to (3.1) and (3.2) [11, pp.33-47]. 
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In (3.1) and (3.2), T is the OFDM symbol duration, Ns is the total 

number of sub-carriers, di is mapped symbols of the data stream according to 

complex baseband modulation techniques and fc is the center frequency.  
 

The orthogonality can be seen either in frequency domain or in time 

domain. In time domain, it can be seen from the (3.1) that the sub-carriers are 

generated such that for each sub-carrier exactly an integer number of cycles is 

occupied within interval T. At the demodulator, in order to extract one sub-

carrier the OFDM symbol is correlated with the intended sub-carrier, since there 

are integer multiple of cycles, the integration is zero for all sub-carriers other 

than the intended one [11, pp.33-47]. The orthogonality of the sub-carriers is 

depicted in (3.3) [11, pp.33-47]. 
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The other method to see the orthogonality is in frequency domain. The 

OFDM symbol has length of T seconds, each sub-carrier is separated from each 

other in frequency domain by the inverse of the symbol period (1/T). The 

frequency domain representation can be seen as dirac pulses at the sub-carriers 

frequencies and since the symbol is transmitted within rectangular pulses, the 

sinc(πfT) are located at each sub-carriers’ frequency. By 1/T separation, each 

sub-carrier is positioned in frequency domain orthogonally such that at the 

maximum of each carriers other sub-carriers contribution is zero; that is at the 

maximum of sub-carrier other sub-carriers sinc(πfT)s cross zero [11, pp.33-47], 

[31]. The orthogonality is depicted in Figure 3.2. The orthogonality means that 

there is no ISI. The criterion for zero ISI is formulated in Nyquist Theorem as 

[15, pp.492-496]: 
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T
mfX  (3.4) 

 

(3.4) is the condition for zero ISI. In (3.4), X is the Fourier transform of 

each carrier and T is the pulse period. 
 

Figure 3.2 depicts each orthogonal sub-carrier of OFDM pulse. When 

sub-carriers are applied to (3.4), it can be seen that the OFDM symbol fulfils the 

Nyquist Theorem; therefore the OFDM symbol is ISI free.  
 

If complex baseband OFDM symbol in (3.2) is analyzed, the 

representation is nothing more than the inverse Fourier transform of NS symbols. 

The time discrete equivalent is the inverse discrete Fourier transform as given in 

[11, pp.33-47], [36]. 
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The OFDM symbol can be generated simply by using Inverse Discrete 

Fourier Transform (IDFT). Likewise the detection of OFDM symbol is done 

with DFT. In practice the generation and degeneration can be done with FFT 

and IFFT ICs, instead of using several filter banks, modulators and 

demodulators [11, pp.33-47].  
 

Guard time and cyclic extension: The high rate data-stream is divided to 

lower rate data stream and the lower rate data is transmitted in parallel in a 

single OFDM symbol. In an OFDM symbol there are a total of Ns carriers. Since 

in OFDM, NS symbols are transmitted in parallel at the same time, the OFDM 

symbol might be NS times longer to achieve the same data rate.  
 

The multipath propagation affects the sub-carriers severely because it 

destroys the orthogonality of the sub-carriers. In order to avoid the intercarrier 

interference (ICI); guard interval is introduced after the OFDM symbol, so that 

the multipath propagation fades out before the new OFDM symbol is 

transmitted. The guard interval might be left blank, however when the multipath 

signal interferes the main OFDM symbol, ICI can not be avoided. The ICI in the 

presence of multipath can not be avoided because, the multipath signal does not 

have integer multiple of cycles within the integration interval. In order to avoid 

ICI completely, in the guard time, the OFDM symbol is cyclically extended [11, 

pp.33-47], [26], [32], [35]. The cyclic extension is basically, adding the first part 

of the OFDM symbol at the end of the symbol. The cyclic extension is depicted 

in Figure 3.4. 
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Figure 3.4 (a) Cyclically extended OFDM pulse (b) Cyclic Extension 

 

The guard time and the cyclic extension should be selected such that 

within the guard time all the multipath propagation signals are attenuated 

sufficiently, in other words the guard time should be related to the maximum 

delay spread of the channel.  
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Pilot Tone Insertion and Equalization: The channel impairments, 

frequency selective fading due to multipath propagation and Doppler shift 

affects the OFDM symbols severely causing ICI. The Doppler shift affects the 

OFDM symbol detection because like multipath propagation, when Doppler 

shift happens within the integration period, the sub-carriers do not have integer 

multiple of cycles [11, pp.33-47] . The reason for non integer multiple of cycles 

is that the low and high end of the frequency spectrum faces different doppler 

shifts. 
 

The channel impairments affects the communication, therefore in order 

to overcome the channel impairments, equalizers are employed. There are 

various kinds of equalization schemes, namely time domain and frequency 

domain. Time domain equalizers are more complex than frequency domain 

equalizers [33], [34]. For OFDM systems, frequency domain equalizers are 

preferred due to their less complexity and easier implementation than time 

domain equalizers [33], [34]. The equalizer parameters are obtained by insertion 

of pilot symbols in the OFDM frame. The pilot symbols can be either inserted 

using the whole OFDM frame or part of the OFDM frame. When pilots are 

inserted in part of the OFDM frame, the insertion has to be done carefully, in 

order to provide the channel frequency domain characteristics [33], [34]. 
 

In our work, equalization is done at the start of data exchange. We chose 

a less frequent equalization update scheme because it is assumed that diver 

position and speed shall not change frequently enough. 
 

In this respect, at the start of the data exchange an OFDM symbol is 

transmitted with a known sequence with a known complex baseband 

representation. After demodulation of the OFDM symbol, we obtain the 

transmitted complex baseband sequence that is affected from multipath, Doppler 

and noise. The ratio of the received complex baseband sequence to the 

transmitted complex baseband sequence can be considered as the frequency 

response of the channel. This ratio provides the frequency domain equalizer 
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parameters. The frequency response of the underwater acoustic communication 

channel is given in (3.6). 
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In (3.6), Δf is the Doppler shift that is a function of the transmission 

frequency. srx,dop contains the effect of Doppler effect to each carrier, Htx is the 

transmitted complex baseband sequence Hrx is the received complex baseband 

sequence and Hchan is the approximated mean frequency response equalizer 

parameters.  
 

After the equalizer parameters are obtained, the received complex 

baseband sequences are divided to channel frequency response to obtain the 

equalized received complex baseband sequences. 
 

Using the equalizer, the channel effects are equalized in order to obtain 

the corrected transmitted sequence. This statement is completely true in situation 

where there is no Doppler shift. The multipath propagation and the Doppler shift 

causes ICI. The ICI, due to frequency selective fading is overcome by the cyclic 

extension; however the ICI due to Doppler shift can not be corrected. The 

multipath propagation causes each sub-carrier to shift only its phase and 

amplitude, however since cyclic extension is used the orthogonality is still 

maintained. The multipath effect is depicted in (3.7) for a single sub-carrier. 
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In (3.7), multipath propagation for a single carrier is given. For the 

example, cyclic prefix maintains the orthogonality and there is no Doppler shift 

affecting the signal. It can be understood from the (3.7), that the effect of the 

multipath is to add phase shift and change amplitude. For instance for a=1 and 

for  τ = π + k2π, where k=0,1,2,3…the output is 0 that is the sub-carrier is 

completely in deep fade and for τ = k2π where k=1,2,3… the output is 2d1 that is 

the sub-carriers amplitude is doubled. The former case is known as destructive 

interference and the latter case is known as constructive interference.  
 

For the Doppler shift, the orthogonality of the sub-carriers are lost, due 

to non integer multiple of cycles occurring within the integration period. 
 

Since Doppler shift destroys the orthogonality and creates ICI, the 

obtained frequency response by (3.6), can not equalize the channel precisely, 

leaving certain level of error.  
 

Windowing: In our work, spectral occupancy is not taken into account 

however, transmitting rectangular pulses occupies unnecessary frequency 

spectrum. Therefore, time domain windowing is done in order to limit the used 

spectrum. The pulse is shaped within the windowing block. While the pulse is 

shaped, the Nyquist theorem should be taken into account because otherwise ICI 

shall affect the OFDM symbol detection. In order to fulfill the Nyquist criterion, 

several pulse shaping methods are being used; one of these methods is raised 

cosine filtering. Using a suitable raised cosine filtering the occupied frequency 

spectrum is limited.  
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3.1.2.1.2 Modulation, IQ mapping, Link Budget, Gray Coding 
 

The prospected Underwater Communication system is a digital system. 

The digital data is subject to multipath propagation, Doppler shift, frequency 

and range dependent attenuation and AWGN in the underwater acoustic 

channel. The received bits have to have certain signal to noise ratio (SNR) in 

order to obtain desired bit error rate (BER). The required SNR at the receiver 

sets the transmitter output power parameters. The selection of parameters 

include range, frequency of transmission and modulation scheme.  
 

In communication with OFDM method, the Link Budget (LB) is 

calculated such that required SNR is achieved for each sub-carrier. Since each 

sub-carrier is orthogonal to each other, the required SNR is the SNR of each 

sub-carrier. 
 

Modulation and IQ mapping: For digital communication systems several 

baseband modulation schemes are available, namely, M-PSK, FSK, QAM. The 

baseband modulation scheme has to be selected such that the channel 

impairments’ effect to the communication reliability is at minimum.  
 

The data is mapped either to the phase or the amplitude or both. In 

underwater communication the suitable baseband modulation scheme is M-PSK. 

The reason PSK is chosen for the modulation but not any other amplitude 

mapping schemes is that the underwater communication channel has a frequency 

and range dependent frequency response as given in (2.3), Table 2.1 and 

depicted in Figure 2.2; therefore mapping on the amplitude might lead to high 

errors in the receiver. For this reason the baseband modulation is selected to be 

M-PSK.  
 

In M-PSK modulation, the bits are grouped as symbols and the symbols 

are mapped on the in-phase and quadrature phase (IQ) components [9, pp.294-

328]. The baseband mapping is represented by: 
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In (3.8), x(n) is symbols calculated from the bit stream that is grouped 

according to the level of modulation, ie. 00, 01, 10, 11 as 0, 1, 2, 3 respectively. 

xc(n) is the baseband modulated stream and M is the level of modulation.  
 

The symbols contain various numbers of bits according to the level of 

modulation. If the symbol is 1 or 0 then modulation is BPSK, if the symbol 

contains two bits then the modulation is QPSK, if the symbol contains 3 bits 

then the modulation is 8-PSK. The modulation level of M-PSK is given in M, 

where the number is either 2, 3, 4 for our simulations.  
 

The mapping of the grouped bits are either placed regularly or coded to 

have better error rate. This mapping coding is called Gray coding. In Gray 

coding, the symbols are placed on the IQ plane such that each symbol that 

crosses the neighbor symbol region in IQ plane creates one bit error. Using Gray 

Coding better error rate is achieved. In our work, the source data is first Gray 

coded, then IQ mapped and modulated. The regular coding and gray coding is 

depicted in Figure 3.5. 

 
Figure 3.5: Regular and Gray Coding 
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The baseband signal is then transmitted after modulating to higher 

frequency. The passband and baseband conversion represented by [9, pp.294-

328]: 
 

( ) ( ) ( ){ }tfjtAmts cπ2expRe=  

( ) ( ) ( ) ( ) ( )[ ]tftmtftmAts cIcR ππ 2sin2cos −=  
(3.9) 

 

In (3.9), s(t) is the transmitted signal, A is the amplitude, fc is the center 

frequency and m(t) = mR(t) + jmI(t) is the complex envelope representation of 

the modulated signal which is represented in general complex form [9, pp.294-

328]. 
 

Link Budget: The link budget (LB) defines the required transmission 

power in order to achieve the desired SNR at the receiver at certain distance for 

required BER. The LB is a combination of parameters, such as required SNR for 

certain BER, path loss (PL), and noise power (NP). 
 

( ) NPddistkHzPLSNRLB required +−= .@300@  (3.10) 
 

The SNR to achieve the required bit error rate (BER) is provided in 

formulas in [9, pp.294-328], [15, pp.405-436]. The required SNR is dependent 

on the modulation scheme. In our work, the modulation scheme is PSK and we 

design our system to achieve 1 10-3 BER. The required SNR is obtained from [9, 

pp.294-328], [15, pp.405-436] and is provided in Table 3.1 and Figure 3.6 for 

several modulation levels (M) and BER values.  
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Figure 3.6: BER for M-PSK  

 

The path loss is defined in Section 2.2.2  and given in (2.3) and Table 

2.1. The PL is a function of both range and frequency. The required SNR has to 

be designed for the most attenuated part of the spectrum. In our work, the most 

attenuated part of the spectrum is 300 kHz, therefore the PL that is used for LB 

calculation has to be calculated at 300 kHz.  

 

NP is the noise power available at the front end of the receiver. The NP 

as discussed in Section 2.2.7 is due to the acoustic noise in the frequency range 

of interest is generated by the molecular agitation. The NP in (3.10) is 

formulated as in (3.11), where BW is the bandwidth of each sub-carrier and T is 

the OFDM symbol period. 
 

( )BWNNP log100 +=  

Where TBW /2=  
(3.11) 
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Figure 3.7: Required transmit power level to achieve the desired 1x10-3 BER for 

300 kHzth symbol in OFDM pulse (a) with respect to pulse length at a distance 

of 10 m (b) with respect to distance for QPSK modulation.  
 

Figure 3.7a shows how much transmission power has to be used for a 

symbol to obtain BER of 1x10-3 for the highest frequency component symbol at 

10m range and Figure 3.7b shows the required transmit power for BER of 1x10-3 

for symbol alphabet length of 4 (QPSK) at various distances and pulse lengths.  
 

The parameters of LB are the sub-carrier BW, distance and SNR. All the 

parameters but distance is fixed prior to transmission. The distance parameter 

that affects the PL has to be gathered prior to transmission. The distance is 
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obtained by the link layer MAC protocol, with the RTS/CTS packet exchange 

[4], [5]. 
 

The RTS, CTS packets are transmitted with a certain power level, and 

from the received power level the distance between the transmitter and the 

receiver is gathered. From the distance information, the PL is obtained and the 

LB is adjusted accordingly.  

3.1.2.1.3 OFDM Design Parameters for Underwater Acoustic 
Communication System 
 

The OFDM system parameters have to be designed such that desired 

performance and required data rate is achieved. There is a trade-off between the 

parameters. The choice starts with available bandwidth, bit rate, delay spread 

and Doppler spread. The delay spread and Doppler, which corresponds to 

coherence bandwidth and coherence time respectively creates limits on the 

symbol duration and level of modulation therefore achievable bit rate. 
 

The channel impairment creates trade-off for the OFDM parameters. The 

delay spread and Doppler as stated in Section 2.2.4 and Section 2.2.5 set a limit 

on the pulse duration. In Section 2.2.6 it is stated that for an ISI free 

communication the pulse length has to be larger than the multipath spread and at 

the same time the bandwidth of the pulse has to be larger than the Doppler 

spread. The two conditions are conflicting conditions to be met for underwater 

communications. The multipath spread is our environment is found to be 5.4 

msec, while the maximum Doppler shift is expected to be 200 Hz. For the stated 

condition the pulse length has to be larger 5.4 msec and bandwidth has to be 

greater than 200 Hz that is pulse length has to be smaller than 5 msec. This 

condition can not be met in underwater communication therefore special 

attention has to be given to the design of pulse length. 
 

In our work, the condition on the delay spread is solved with the addition 

of the cyclic prefix and the condition on the Doppler spread is solved with the 

OFDM symbol duration. 
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While selecting the pulse duration, including the guard interval, the 

parameter has to depend on the delay spread. If the pulse duration is longer than 

the delay spread the narrowband sub-carriers experience independent flat fades. 

The delay spread creates limit on the guard time [13], [37]. In [11, pp.33-47] and 

[30], it is stated that the guard time should be about two to four times the delay 

spread. However, the condition is mostly suitable for air EM communication. 

For underwater communication, especially in our frequency range of interest the 

delayed signals are attenuated heavily, therefore in our work we design our 

OFDM systems’ guard interval to be equal to the most expected delay spread. 

Multipath signal arriving later than 5.4 msec multipath arrival will vanish or 

attenuated sufficiently not to interfere with the next OFDM symbol.  
 

After the guard time is set according to the delay spread of the channel 

the OFDM pulse length and therefore the total number of sub-carriers has to be 

fixed. In [11, pp.33-47] and [30], it is stated that the OFDM pulse length has to 

much larger than the guard time to minimize the SNR loss due to guard time and 

to have more bit rate. However the OFDM pulse duration cannot be arbitrarily 

large because larger the OFDM pulse length, the greater the implementation 

complexity and more sensitivity to phase noise and frequency offset. On the 

other hand, if the OFDM pulse length is larger than the inverse of the Doppler 

spread (larger than coherence time) the system is more sensitive to the Doppler 

shift. When coherence time is taken into account, the OFDM pulse length has to 

be smaller than 5 msec [11, pp.33-47] and [30].  
 

In [13], a representative OFDM underwater communication system is 

presented. The presented system operates at 12 kHz having 8 kHz bandwidth. 

The multipath spread is taken to be 50 msec and the Doppler spread at 16 kHz is 

0.64 Hz. This system can be said to be a highly reverberant, however the 

Doppler shift does not have considerable effect as our underwater 

communication system. For the delay spread and Doppler spread the system 

parameters are selected. The guard interval is taken to be equal to the delay 

spread of the channel. The OFDM pulse is taken to be 5 times the guard interval, 
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256 msec. The represented system uses QPSK modulation and manages 11.8 

kbps. The rule stated in [11, pp.33-47] and [30] that symbol pulse should be 5 

times the guard interval could be applied here due to low Doppler shifts. 

However, in our system environment the rule cannot be applied.  
 

After the OFDM pulse length is set according to the Doppler spread the 

total number of sub-carriers and therefore baud rate can be calculated. The total 

number of sub-carriers in the allocated spectrum is found as in (3.12). In (3.12), 

BW is the total allocated bandwidth for the communication and T is the OFDM 

pulse length.  
 

 # of sub-carriers = Ns = BWxT
T

BW
=

1
 (3.12) 

 

(3.12) provides the total number of sub-carriers that can be transmitted 

within an OFDM pulse. The design of the pulse length must be done according 

to the Doppler spread. (3.12) is the baud rate that is symbol rate per OFDM 

pulse. The data is modulated according to several modulation schemes. The 

level of modulation that is the number of bits encoded within a symbol provides 

the number of bits that can be transmitted within an OFDM symbol. (3.13) 

provides the amount of bits contained in an OFDM symbol. In (3.13), M is the 

level of modulation that is the total number of symbols. 
 

Bits/OFDM symbol = MBWxTxM
T

BW
22 loglog

1
=  (3.13) 

 

In (3.13), the effect of level of modulation can be observed. The 

bits/OFDM symbol can be larger with increasing level of modulation. However, 

the level of modulation cannot be arbitrarily large, due to transmit power and 

ICI considerations. For the transmit power condition, the SNR has to be larger 

with larger level of modulation. For the ICI considerations, the concern is the 

effect of orthogonality loss with the Doppler spread. It is stated in Section 

3.1.2.1.1 that when Doppler affects the communication the effect cannot be 

compensated completely using an frequency domain equalizer. For this reason, 
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when the level of modulation is higher the level of ICI is much higher and the 

equalizer cannot compensate for the Doppler shift. 
 

The achievable data is the combination design parameters over the guard 

interval, OFDM pulse length and the level of modulation. The raw data rate is 

calculated over the total bits contained in an OFDM symbol divided by the pulse 

length and guard interval as represented by (3.14): 
 

Raw data rate =  
gg TT

MBWT
TT

M
T

BW

+
=

+
2

2
log

log
1

 
(3.14) 

 

In (3.14), T is the OFDM pulse length, Tg is the guard interval. 

The raw data shall have payload along with data link layer headers and 

the error correcting codes that will be discussed in Section 3.1.3 . 

3.1.2.1.4 Multi-user OFDM 
 

The underwater acoustic communication system in our work is intended 

to be designed for multi-user systems, such as for a group of SCUBA divers. For 

SCUBA diving activities, more than one diver is present in underwater and the 

communication system should allow many users to communicate with each 

other at the same time. 
 

In communication using OFDM method, the transmission is done using 

the entire spectrum. However, the available data rate is more than one user need 

for the communication. As it will be discussed in Section 3.1.5 , a diver shall 

require on the average 5 kbps data rate for voice communication. Using the 

entire allocated spectrum, excessive data rate can be achieved; therefore the 

overall data rate should be distributed between users, to have a multi-user 

system.  
 

The multi-user communication in OFDM is discussed in [38]. In an 

OFDM symbol, there are Ns number of sub-carriers. When all Ns sub-carrier is 

used at the same time, excessive data is achieved. However, if Ns sub-carriers 
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are distributed to users such that each user shall use certain number of sub-

carriers for transmission then multi-user communication is achieved. The multi-

user communication obtained by this method creates multiple access to the 

shared medium. The multiple access technique obtained from OFDM is called 

Orthogonal Frequency Division Multiple Access (OFDMA) [33], [38]. 
 

The distribution of sub-carriers are done in several ways, one of these 

ways is grouping as discussed in [38]. By grouping the sub-carriers to each user, 

each user can independently transmit data from the other users. However, due to 

multipath fading the grouping must be done over the entire spectrum. By 

grouping using the whole spectrum, possible faded carriers are distributed over 

the entire spectrum.  
 

The grouped carriers might also be overlapping, so that there is a certain 

probability of some sub-carriers to collide with each other. However, since the 

OFDM system uses FEC, the collided carriers are corrected.  
 

The use of multi-user OFDM, demands MAC. The MAC protocol for the 

multi-user OFDM has the duty of assigning sub-carriers to users and 

commanding the transmit and receive of the grouped carriers. 

3.1.3  Data Link Layer 
 

 

The major function of the data link layer is to packetize the data. Also in 

the link layer, error coding is done to achieve desired reliability and MAC is 

done to coordinate the access of each user to the shared medium [4], [5], [14, 

pp.419-447].  

3.1.3.1 Forward Error Correction (FEC) 
 

The error correction codes are used to correct the corrupted data due to 

channel impairments. Upon all error correcting codes, namely; block codes, 

convolutional codes, turbo codes, we chose block codes, specifically Reed-

Solomon (RS) block codes for error correction in our system. 
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Block codes are Forward Error Correction (FEC) codes that enable the 

detection and correction of corrupted data without requiring any retransmission 

[9, pp.394-412]. In block codes, parity bits are added to the end of the packet to 

make codewords or code blocks. In a block encoder, k information bits are 

encoded into n code bits. A total of n–k redundant bits are added to k 

information bits in order to correct certain amount of bits in error. The reed-

solomon block code is referred as RS(n,k) code [9, pp.394-412], [39], [40, 

pp.102-103].  
 

In OFDM spread spectrum modulation system, due to multipath 

propagation, the sub-carriers are affected in bursts. In our work, we chose reed-

solomon (RS) codes because of the codes ability to correct burst of errors [9, 

p.400], [39], [40, pp.103-106], [41], [42]. 
 

Reed-Solomon codes are non-binary codes, which can be capable of 

correcting errors appearing in bursts. The block length of these codes is n=2m–1, 

which can be extended to 2m or 2m+1, where m is the symbol length that is most 

commonly 8, which is 1 byte. The number of parity symbols that must be used 

to correct e symbol errors is n–k=2e [9, p.400], [39], [40, pp.103-106], [41]. For 

instance, in computer-based systems 1 byte, 8 bits can be taken as symbol 

length. The code length is in this case n=28–1=255 and in order to correct 16 

symbols (16 bytes) 32 of 255 symbols (bytes) have to be parity symbols. In this 

case, within the code only 255–32 =223 symbols (bytes) contain payload. The 

code is denoted as RS(255,223). 
 

The underwater communication system requires FEC because the data to 

be sent is compressed, coded. Since the data is coded with certain voice coding 

algorithms, any bit error in the packet would require the packets to be 

retransmitted or dropped. Retransmission, as will be discussed in the following 

section reduces the data rate because the propagation times underwater are high. 

Dropping a packet means that the communication cannot be done without 

interruption. 
 



CHAPTER 3. Underwater Acoustic System Needs and Architecture  

 63

The FEC rate should be chosen such that neither any excessive 

redundancy is added nor packets are lost due to excessive errors in the packets. 

The criterion taken for the FEC rate is the frame error rate (FER); that is the rate 

of frames (OFDM pulses) that are dropped due to error detection in the frames. 

When errors are detected in the frames the frame is dropped. The rate is chosen 

to be 1% over the all transmitted frames. The percent is also the FER for GSM, 

mobile telephone networking system [43]. Dropping 1% of the transmitted 

frames due to error shall not create any considerable interruption in the 

communication.  
 

In order to determine the required redundancy for the FEC, excessive 

simulations are performed. Over the simulation interval, numbers of packets 

containing error are collected, along with the number of errors in the packets. 

The collected data is then examined in a histogram according to how many 

errors are detected in the packets. Over the histogram 1% of the packets is left to 

have packet dropping, the others are corrected by using the FEC algorithm. The 

amount of redundancy is chosen to have the 1% of the packets to the dropped.  

3.1.3.2 Medium Access Control (MAC) 
 

MAC coordinates the access of users’ transmission to the shared 

medium, in order to avoid collisions and avoid waste of available bandwidth [4], 

[5], [14, pp.419-447], [44]. 
 

In underwater communication system, the access to the shared medium is 

coordinated by the MAC layer protocol that is located in the link layer. In our 

work, the underwater communication system took its roots from the already 

developed and deployed air wireless Ethernet protocol, Wi-Fi family. However, 

the air protocol has to be modified to accommodate the high propagation times.  
 

In [4] and [5], collision sense multiple access/collusion avoidance 

(CSMA/CA) based multiple access with collision avoidance (MACA) and 

MACAW are discussed for underwater acoustic communication and proven to 

provide reliable, collision free communication. The protocol also solves the 
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hidden and exposed node problem [4], [5]. By using the RTS/CTS signaling 

channel properties can be acquired, distance between the transmitter and the 

receiver can be gathered, power control can be done and channel parameters can 

be adjusted [4], [5]. The operational SEAWEB acoustic network uses MACA 

protocol, RTS/CTS signaling for the MAC layer [45]. The details of MACA 

protocol, RTS/CTS signaling and hidden and exposed node problem and its 

solution are given in APPENDIX B.  
 

MACA protocol is far from an efficient MAC protocol for underwater 

communication in terms achievable data rate due to long propagation times. In 

[46], it is stated that for certain level of throughput MACA protocol is not 

suitable for underwater communications, due to long waiting times between the 

RTS/CTS exchange. CSMA media access control is highly specialized to 

produce high throughput when packet transmission time is 100 times bigger than 

the propagation time [46]. In [12], it is stated that propagation delay in 

underwater acoustic communications is a critical problem. The discussion of the 

long propagation times and the suitability of MACA protocol can be done over 

defined rations, namely packet duration and flight time.  
 

Packet Duration = Packet Length / Data rate (3.15) 
 

Flight Time = Distance / Speed of Waves (3.16) 
 

The packet duration, given in (3.15), is defined as the time it takes for a 

packet to transmit when the propagation delay is neglected; that may also be 

seen as the time it takes between departures the first bit of the packet and the last 

bit of the packet. The flight time given in (3.16) is the time it takes for the 

packet it to reach the destination; that is the time it takes for the first bit of the 

packet to reach the destination. 
 

A comparison of the packet duration and the flight time in underwater 

and air shall reveal the suitability of MACA protocol for air communications 

inconveniency for high-speed underwater communications. For the discussion, 

the packet length and flight time is done with the following parameters for 
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several distances: packet length 1 kbits, bit rate 50 kbps, the speed of acoustic 

waves underwater 1500 m/s, the speed of electromagnetic waves 3 108 m/s. 
 

Flight Time 

Distance 10 m 50 m 100 m 

Air (EM) 3.3 10-8 sec 1.66 10-7 sec 3.33 10-7 sec 

Underwater (Acoustic) 6.7 10-3 sec 33.3 10-3 sec 66.7 10-3 sec 
 

Packet Duration 

Air (EM) 

Underwater (Acoustic) 
20 10-3 sec 

 

Table 3.2: Ratio of packet duration to flight time 
 

In Table 3.2, the ratio of packet duration to flight time is calculated for 

distances of 10 m, 50 m and 100 m. It can be stated that the higher the ratio the 

less suitability of MACA protocol for the communication channel to achieve 

high data rate.  
 

The MACA protocol as used in Wi-Fi wireless Ethernet technology is a 

powerful MAC algorithm that overcomes the hidden and exposed node problem, 

provides collision free communication, however for the underwater acoustic 

communication channel the protocol is inconvenient to achieve high data rates 

due to long waiting periods, even though it provides reliable, collision free 

communication.  
 

The MACA would restrict the available data bandwidth; however 

modification of the protocol would bring good advantages. In [4], [5] and [45] it 

is stated that RTS/CTS packet exchange solves the hidden and exposed node 

problem, within the exchange, the channel properties, the distance between the 

transmitter and the receiver can be gathered, the required power level are 

Packet Duration / Flight Time 

Distance 10 m 50 m 100 m 

Air (EM) 1.65 10-6 8.3 10-6 1.66 10-5 

Underwater (Acoustic) 0.33 1.66 3.33 
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obtained and adjustments to the equalizer parameters can be done. For this 

reason, instead of RTS/CTS exchange for every other message, the protocol 

shall be modified to exchange RST/CTS packets during the link establishment 

and prior message transmission. During the link establishment the channel and 

equalizer parameter would be adjusted and the adjusted parameters would stay 

fixed for certain period of time. This way MACA protocol is used partially for 

equalizer and power adjustment, while still providing high data rate. The 

communication parameters shall be adjusted less frequency using RTS/CTS 

exchange such that the communication link and reliable communication is 

maintained. 

3.1.4  Network Layer 
 

 

In our work, we did not have detailed study over the network layer; 

however, we gained some information about the major underwater specific 

properties.  
 

The underwater communication system shall be deployed in network 

based architecture. Since the underwater communication system shall be 

deployed freely, without any preparation, the network shall have a multi-hop 

peer-to-peer topology. By deploying a multi-hop network, the communication 

range is increased. The multi-hop, peer-to-peer networks are called ad-hoc 

networks. The routing in ad-hoc networking is done using specific network 

optimization criteria. The optimization criterion is based on several points, 

namely; minimum distance, minimum delay, minimum energy consumption, 

least congestion. The routing algorithm shall be considered according to the 

needs of the underwater communication system and underwater acoustic 

communication properties [4], [5], [14, pp.293-317].  
 

Another advantage of deploying ad-hoc networks besides the range 

increase is that the network lifetime is longer than single hop networks. A 

discussion of the advantages and disadvantages of the ad-hoc networking is 

discussed in APPENDIX B.  
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3.1.5  Application Layer 
 

 

In the application layer, the information data is multiplexed for 

transmission and for reception the received data is demultiplexed. The 

multiplexing/demultiplexing is done because there are various types of data to 

be transmitted along with voice data. The information data can be classified into 

two, as low bit rate and high bit rate. The low bit rate data contains messaging, 

quick messaging, environmental information, diver information, vital diver 

information, whereas the high bit rate data contains voice. A basic diagram of 

the function of the application layer is depicted in Figure 3.8. 
 

 
Figure 3.8: Architecture of the application layer 

3.1.5.1 Low Bit Rate Data 
 

The low bit rate data can be classified as the data that does not have 

excessive information and does not have to be exchanged frequently. The low 

bit rate information data contains quick messages, which are sent with only a 

push button like “I’m running out of air” or “I’m cold”; messages, which is 

SMS type messaging done between the divers, environmental information, 

which is the water temperature, salinity, water current information exchanged 

either between the divers or the surface station, diver information, which is the 
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diver depth, left air in the tank, compression table information, position 

information exchanged between either with the divers or the surface station and 

also within the  diver information, vital diver information, which is the diver 

heart rate, respiration rate and body temperature information exchanged between 

either divers or the surface station.  
 

The low data rate information as compared to high data rate voice is not 

frequent and the information is not as complex or large either, therefore the 

required data rate for this information data is not high. The environmental 

monitoring does not have to be done frequently because the environment does 

not change a lot. The diver information does not have to be done frequently 

however, the vital information, left air in tank and compression table monitoring 

might have to be done more frequently due to safety reasons. 
 

The required data rate for the low data rate information can be found 

simply by the sampling frequency, data length and bit resolution as in (3.17). 
 

Data rate (bps)= Sampling Frequency x Data Length x Bit Resolution (3.17) 
 

The prospected data rate for the low data rate information, considering 

the safest diving conditions, is depicted in Table 3.3. 
 

Information Type Sampling 
Frequency 

Bit  
Resolution 

Data  
Length 

Required 
Data Rate 

Temp, Salinity, Water Current 30 sec 8 bit 3 bytes 48 bps 

Depth, Air in tank, 

compression table info 
10 sec  8 bit 4 bytes 192 bps 

Position 10 sec 8 bit 3 bytes 144 bps 

Heart rate, respiration rate, 

body temp 
10 sec 8 bit 3 bytes 144 bps 

Quick message 15 sec 8 bit 1 byte 32 bps 

SMS message (160 characters) 60 sec 8 bit 160 bytes 1.25 kbps 

Total    1.75 kbps 

Table 3.3: The required data rate for low data rate information 
 

The prospected data rate for the low data rate communication is no more 

than a few kbps.  



CHAPTER 3. Underwater Acoustic System Needs and Architecture  

 69

3.1.5.2 High Data Rate Data, Voice Data 
 

The high data rate can be classified by mainly voice data. The voice data 

rate is larger than the low data rate information, however since the available 

bandwidth underwater is limited, it cannot be excessively large. Since the 

available bandwidth underwater is limited, instead of transmitting the voice 

directly, the data is compressed with certain voice coding algorithm, in order to 

require less data rate. Even though voice coding results in less data rate 

requirement, the cost of coding is the reduction in voice quality.  
 

In [2], it is given that the required data rate is on the order of several 

kbps using Linear Predictive Coding (LPC). Representative underwater acoustic 

phone systems studied in the literature are given in [47] and [48]. In [47], voice 

data is coded with LPC algorithm reducing the transmission rate to 2.4 kbps 

with error coding included. In [48], the speech signal is compressed to 5.45 kbps 

using Code Excited Linear Prediction (CELP) algorithm. The required data rate 

after source and channel coding is 8 kbps.  
 

In our work, we shall take already deployed and successfully proven 

algorithms used in GSM and CDMA, mobile telephone network systems, as 

voice coding algorithms.  
 

In GSM, mobile telephone network system, the voice is coded and 

compressed to around 13 kbps, using Residual Excited Linear Predictive coder 

(RELP), which is enhanced by including a LONG-term Predictor (LTP). The 

coder provides constant bit rate and provides 260 bits for each 20 msec blocks of 

speed [9, p.563][40, p.94]. 
 

In CDMA digital cellular standard (IS-95), unlike GSM the data rate 

changes depending on the voice activity and requirements in the network. The 

speech coder in IS-95 is the Qualcomm 9600 bps Code Excited Linear 

Predictive (QCELP) coder. The QCELP coder in IS-95 detects the voice activity 

and reduces the data rate to 1200 bps during the silent periods. The coder 

supports intermediate data rates of 2400, 4800 and 9600 bps [9, p. 567]. The IS-
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95 also supports higher data rate services for Personal Communication System 

(PCS). In higher data rate services in IS-95, a variable rate speech coder, 

QCELP13 is used. QCELP13 is a modified version of QCLEP and the coder 

provides 14.4 kbps [9, p. 580].  
 

The CDMA, IS-95 is an already established and developed mobile 

cellular network technology. The technology bring greater abilities to users over 

GSM. Since CDMA IS-95 technology is an already developed and proven 

system, using the already developed voice coder of IS-95 shall bring us 

promising results in terms of voice quality along with reduced data rate. In IS-

95, the voice coder is a variable rata rate coder that has data rates from 1.2 kbps 

to 9.6 kbps, according to the voice activity, therefore the bit rate requirement in 

our underwater communication system that uses IS-95, QCELP voice coder, 

shall require at most 9.6 kbps data rate and on the average around 5 kbps data 

rate.  



 

 

 

Chapter 4 

4 Methods and Simulations 
 

 

 

In order to choose the suitable OFDM parameters, computer aided 

simulation were performed. Even if there are communication tools devoted to 

digital communication and OFDM, a dedicated simulation tool to be used for 

underwater could not be found in the literature. The difficulty is that the 

underwater communication channel is more troublesome than air, having longer 

multipath delay spread, frequency and range dependent frequency response and 

relatively greater Doppler spread.  
 

In order to simulate the OFDM communication technique and to choose 

the communication parameters for underwater acoustic channel, a dedicated and 

underwater specific simulation program is written in MATLAB. The simulation 

details, which will be explained below is for 1 msec OFDM pulse length, 

however the simulation program can incorporate with changes of variables other 

pulse lengths as well, providing greater simulation details.  
 

The simulation incorporates 5 rays, line of sight, 2 one reflection from 

the surface or the sea floor and 2 double reflections. The simulation first 

simulates the direct path, taking account of the frequency and range dependent 

frequency response along with Doppler shift and then the multipath signals are 

simulated similarly way as direct path. The total signal received by the receiver 

is then demodulated to obtain the transmitted data stream. According to the 
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received signal and the data stream, OFDM parameters are selected. A block 

diagram of the OFDM simulation and OFDM parameter selection procedure is 

depicted in Figure 4.1. 

 
Figure 4.1: OFDM simulation procedure 
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4.1 Simulation of Direct path OFDM Signal 
 

 

Some user application of the underwater communication system such as 

voice or telemetry data generates the data, bit stream. The bit stream shall 

consist either symbols or bits. The bit stream is grouped into OFDM pulse 

symbols, that is a function of the OFDM pulse length and the total frequency 

spectrum as given in (3.12). The grouped bitstream is either 1’s and 0’s or 

integers, designated by symbols, which carry more than one bit per symbol; that 

is an alphabet of symbols are used to assign bits. 
 

The grouped bitstream is converted into complex baseband 

representation having in-phase and quadrature-phase (IQ) components to have 

points in the constellation plane. The modulation technique that is used to create 

the IQ components is Mary-PSK where M is the number of symbols to be used.  
 

As discussed in Section 3.1.2.1.1, baseband representation of the 

grouped bitstream provides the DFT of the OFDM pulse. This way the 

frequency domain representation of the OFDM pulse is obtained.  
 

While generating the complex baseband representation of the OFDM 

symbol, channel attenuation, provided in Section 2.2.2 , is added, according to 

the frequency and the path the waves travel underwater. The pulse length is 

chosen 1 msec, leading to frequency difference between the carriers 1 kHz in the 

spectrum, therefore THE DFT length and sampling time, Ts is chosen such that 

frequency resolution is 1 kHz, so that each carrier is separated by 1 kHz. Since 

each carrier is separated by 1 kHz there a total of 200 symbols that can be 

transmitted in 1 msec period and within 200 kHz bandwidth.  
 

In underwater channel, the Doppler shift is prospected to be as high as 

200 Hz, therefore in order to simulate the Doppler shift we need much smaller 

resolution than 1 kHz. After the frequency domain representation of the OFDM 

symbol is created, inverse DFT is taken to obtain the time domain signal. The 

time domain signal is zero padded with 64 times the time signal length, 
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providing a high resolution DFT of the time domain signals has 1/64 times more 

resolution than before, which is 15.642 Hz. With this resolution Doppler shift 

can be integrated to the simulation in a quantized manner. 
 

The frequency domain representation of the time domain signal with 

higher frequency resolution is Doppler shifted to according to how much each 

frequency component should face Doppler shift. The measure of how much 

Doppler shift each frequency component should face is found by (2.14). 
 

The frequency domain resolution after taking DFT of zero padded signal 

is 15.64 Hz, therefore the Doppler shift can not be integrated exactly, because 

we have a quantized frequency domain. Even if we have a quantized frequency 

domain, this resolution and application of Doppler shift provides us sufficient 

insight about how much the Doppler shift affects the communication.  
 

In order to maintain the orthogonality in the multipath environment, as 

stated in Section 3.1.2.1.1, cyclic prefix is added at the end of the OFDM 

symbol. The addition of cyclic prefix in our simulations is not physical rather 

conceptional. For the direct path signal no addition is made, however the 

addition of the cyclic prefix is more apparent for the multipath signals. The 

cyclic prefix addition shall be explained more detailed for the multipath signals. 
 

After the Doppler shift is applied to the frequency domain, another 

inverse DFT is taken to obtain time domain signal. In order to obtain the IQ 

components back, this time a low resolution DFT is taken to obtain a 1 kHz 

resolution frequency domain representation of the Doppler shifted signal. This 

obtained frequency domain representation of the signal gives the complex 

baseband representation of the bit stream that is transmitted, attenuated in the 

channel and affected by Doppler shift.  
 

After the IQ components at the receiver are obtained, underwater 

acoustic noise is added as AWGN. The spectral density of the noise is provided 

in Section 2.2.7.2. The addition of AWGN noise does not only include the noise, 

but also the required transmission power to achieve required BER at the specific 
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distance as well. The distance between the transmitter and the receiver can be 

obtained by using RTS/CTS packet exchange. Using the distance between the 

transmitter and the receiver required transmission power can be found. The 

required transmission power and the acoustic noise at the receiver dictates the 

signal to noise ratio (SNR). SNR is added in the noise addition function as 

provided in (3.10). The addition of AWGN underwater acoustic noise degrades 

the communication. After this stage, PSK demodulation is done to recover the 

transmitted symbols. 

4.2 Simulation of Multipath OFDM Signals 
 

 

It was stated earlier that multiple echoes reach the receiver. Multipath 

signals combining at the receiver destroys the orthogonality in OFDM symbol, 

however use of cyclic extension preserves the orthogonality. With the use of 

cyclic extension the effect of multipath signals creates only frequency selective 

fading, which is easily overcame by use of simple frequency domain equalizers.  
 

In order to simulate the multipath effect on the system, the same 

procedure with the direct OFDM pulse is followed however this time; the path 

loss is altered with extra distance the waves have to travel and also with the 

scattering loss from the surface or sea floor. The reflection from the surface also 

adds a phase shift of 180 degrees.  
 

Late arrival of the OFDM pulse and the cyclic extension can easily be 

added by including phase shift to the frequency domain representation of the 

OFDM pulse according to the guard interval, which is determined by most likely 

delay spread values of the underwater environment as discussed in Section 2.2.5 

. Like direct path signal, path loss and surface or sea floor loss is included in the 

complex baseband representation of the bit stream. After the frequency domain 

representation of the OFDM symbol is obtained the cyclic prefix is applied by 

adding phase to each frequency component in the frequency domain. After 

phase is added, inverse DFT is taken to obtain the time domain signal. The time 

signal is then, multiplied with a time window according to the arriving 
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multipath. The time window multiplication is applied because there might be 

multipath signals arriving after the guard interval. The rest of the procedure is 

the same with the direct path signals. 
 

The addition of multipath signals is done at the high resolution time 

domain part. After the time domain addition of the direct and multipath signals, 

the low resolution frequency domain IQ conversion is done and then the AWGN 

noise is added. After the noise is added, the PSK demodulation takes place to 

recover the transmitted symbols. 

4.3 Gray Coding 
 

 

In order to achieve better BER, Gray coding is done in communication 

systems, as discussed in Section 3.1.2.1.2. In our underwater acoustic 

communication system simulation, gray coding is applied. The block diagram of 

gray coding application to our simulation is depicted in Figure 4.2. 

 
Figure 4.2: Gray coding and BER calculation simulation procedure 
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4.4 Equalization Parameter Selection 
 

 

The equalization procedure is discussed in Section 3.1.2.1.1. In our 

simulations, the equalization is done by dividing received complex baseband 

data to the frequency domain equalizer parameters. The block diagram of 

obtaining the frequency domain equalizer parameters is depicted in Figure 4.3. 
 

 
Figure 4.3: Equalization parameter selection and Equalization procedure 

 

The frequency domain equalizer parameters are obtained by RTS/CTS 

packet exchange. Before transmission of the bitstream a known bit sequence is 

transmitted with higher transmission power. At the receiver the received 

complex baseband data is divided by the known complex baseband data. This 

way the frequency domain equalizer parameters are obtained. After the equalizer 

parameters are obtained, the latter received data is equalized with parameters 

until the next RTS/CTS packet exchange. 

4.5 Reed-Solomon Coding Parameter Selection 
 

 

Reed-Solomon coding is applied to the underwater acoustic 

communication simulation. As discussed in Section 3.1.3.1, the RS parameters 

have to be selected in order to obtain the required FER. The addition of RS 
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coding is not physical but conceptional. The block diagram of RS coding 

parameter selection is depicted in Figure 4.4. 
 

 
Figure 4.4: RS code parameter selection and RS coded data rate calculation 

procedure 
 

The RS coding parameters are selected such that required FER is 

achieved. As discussed in Section 3.1.3.1, RS coding recovers symbols of length 

8, therefore after the transmitted bitstream is passed over the channel and 

demodulated, the demodulated bitstream is grouped into 8 bits of symbols. For 

example for modulation level of 4 (M=4), 4 symbols are grouped into an 8 bit 

symbol. After this grouping, symbol error rate (SER) of each OFDM pulse is 

calculated. The SER shows a histogram and by using the required FER the 

number of symbols to be recovered is found. The total redundancy to add in 

order to obtain the required FER is found from the histogram as depicted in 

Figure 4.5.  
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Figure 4.5: RS code parameter selection procedure 

 

In Figure 4.5, an example of an histogram of number of RS symbol 

errors to number of OFDM symbols is given. For the example, 100.000 bits are 

used, for M=16 there are total of 25.000 symbols and for pulse period of 0.5 

msec there are a total of 250 OFDM packets. Each OFDM packet contains 50 

RS symbols. The FER is 1 % of packets, therefore 2.5 packets are assumed to be 

lossed or dropped due to corruption. For 1% FER, 19 RS symbols has to be 

recovered and RS code length has to be designed according to the total 

redundancy. In this particular example, the RS code is RS(50,12). 

 



 

 

 

Chapter 5 

5 Results and Discussions 
 

 

 

In order to find the suitable OFDM communication parameters for the 

underwater acoustic communication system, simulations were performed; 

however investigation special cases shall provide how the communication 

performance is affected from the challenging underwater impairments, namely 

multipath, Doppler shift, frequency and range dependent frequency response and 

acoustic noise. 

5.1 Special Cases Study of OFDM Simulation 
 

 

 The performance of the underwater communication system shall be 

investigated over how the complex baseband representation of the transmitted 

bit stream is affected from the channel impairments, how the equalizer recovers 

the impairments and how the FEC provide suitable correction of corrupted bits 

or symbols. 
 

Before the performances are investigated, the performance metrics have 

to be defined: 
 

• Baseband complex representation: The transmitted bits or more 

generally symbols are modulated with certain modulation scheme. In our 

simulations PSK modulation is done. As discussed in Section 3.1.2.1.2, 
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the symbols are modulated into phase of the carrier. The baseband 

complex representation can be viewed in In-phase quadrature-phase (IQ) 

diagram. From the IQ diagram, the effect of channel impairments, 

multipath and Doppler shift can be observed. 
 

• Data rate and BER: The data rate and BER is calculated from data bits 

or symbols that are correctly detected in the receiver.  
 

• Gray coded data rate and BER: The data is gray coded. With gray 

coding the BER performance of the system is improved. The gray coded 

data rate and BER is calculated from data bits or symbols that are 

correctly detected in the receiver.  
 

• Gray coded trueput: The underwater communication system as discussed 

in Section 3.1.3.1, does not tolerate errors in OFDM packets when there 

is no FEC; therefore the gray coded trueput is the data rate that includes 

only the OFDM packets are received without any bit or symbol error.  
 

• RS coded data rate: The data bit stream has to be forward error coded 

(FEC) in order to tolerate corrupted bits and symbols. The calculation of 

RS coded data is discussed in Section 3.1.3.1. 
 

• Data / packet in RS coding: With RS coding some part of the OFDM 

packets are used as a redundancy in order to recover the corrupted bits or 

symbols. The data / packet is the data part of the OFDM packet, leaving 

the redundancy. 
 

• Confidence Interval: The BER rate and the data rate have certain 

statistics that in real life the same performance shall be observed. The 

confidence interval (CI) is an interval between two numbers, where there 

is a certain specified level of confidence that a population parameter lies. 

With the confidence interval, the BER and data rate shall have statistical 

confidence. In our simulations 95% confidence is taken for BER and 

data rate data. 
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The special cases shall depict the effect of multipath, Doppler spread and 

the underwater acoustic channel properties. The effect of multipath, Doppler 

spread and underwater acoustic channel properties shall easily be seen with 

noiseless case simulations, whereas noisy case simulation shall reveal the real 

communication performances.  

5.1.1  Noiseless Simulations 
 

 

For the noiseless simulations, underwater diver scenario of both diver 

being 1 m below the surface, being 1 m and 100 m apart; OFDM pulse length of 

0.4 msec and 1 msec and modulation level of M=4 is used. For the noiseless 

case scenarios, sea surface and sea floor losses are chosen for the Sea-State-0 

and porosity 0.2 to have 10dB and 15dB losses respectively. The chosen 

scenario has the least reflection attenuation from surface and floor, which would 

affect the communication most. For the simulations 100.000 bits/simulation is 

used to observe the effects of channel impairments. For the simulations the 

cyclic extension is used to help frequency domain equalizer, the length of the 

cyclic extension is 5.4 msec, which is the maximum expected delay spread as 

discussed in Section 2.2.5 . 
 

• Multipath Effect 

The effect of multipath as depicted in Section 3.1.2.1.1 is to change the 

phase and the amplitude of the carriers and create frequency selective fading. 

The underwater communication scenario and approximate frequency response 

are depicted in Figure 5.1. For the scenario, the delay spread is 0.13556 msec. 
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Figure 5.1: Diver scenario, approximate frequency response and zoomed 

frequency response 
 

For the scenario, only surface reflection shall be received strongly with 

10 dB power loss along with the LOS path. 
 

The baseband complex representation of the received sequence is shown 

in Figure 5.2. 
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Figure 5.2: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(1,39), 

depth=40 m SS=0, porosity=0.2 Noiseless and motionless case, OFDM symbol 

length 1 msec, cyclic extension 5.4 msec 
 

From Figure 5.2, the frequency selective fading is observed. The 

complex baseband representation of the transmitted sequence shows a circle 

around the transmitted complex point. The received signal is equalized perfectly 

because the orthogonality is maintained by addition of cyclic prefix. 
 

For the scenario, the communication performances are depicted in Table 

5.1. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 0 0 36.8 10-6 0 0 36.8 10-6 

Gray Coded Data Rate 62.49 103 62.5 103 62.5 103 62.49 103 62.5 103 62.5 103 

Trueput 62.5 103 62.5 103 

RS coded Data Rate - 62.5 103 

RS Code - No coding 

Table 5.1: Communication performance of the depicted scenario 
 

From Table 5.1, it can be concluded that for the depicted scenario, in 

which only frequency selective fading affects the communication, the equalizer 
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perfectly equalizes the affected signal with the use of cyclic extension. For this 

scenario, data rate as high as 62.5 Kbps can be achieved with equalizer. 
 

A second case shall depict the frequency and range dependent frequency 

response of the underwater acoustic channel as well as the frequency selective 

fading due to multipath propagation. The underwater communication scenario 

and approximate frequency response are depicted in Figure 5.3. In this scenario, 

the divers are 100 m apart from each other and the delay spread is 2.2 msec. 
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Figure 5.3: Diver scenario and the approximate frequency response 

 

For the scenario, only surface reflection shall be received strongly with 

10 dB power loss along with the LOS path.  
 

The baseband complex representation of the received sequence is shown 

in Figure 5.4. 
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Figure 5.4: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(100,39) 

depth=40 m SS=0, porosity=0.2 Noiseless and motionless case, OFDM pulse 

length 1 msec, cyclic extension 5.4 msec 
 

From Figure 5.4, the frequency and range dependent frequency response 

and frequency selective fading is observed. The complex baseband 

representation of the transmitted sequence shows a spiral like shape around the 

transmitted complex point narrowing to the origin. The reason for the spiral is 

due to frequency and range dependent frequency response. In this scenario the 

distance between the divers is 100 m and as discussed in Section 2.2.2 , there is 

4 dB power difference between 100 kHz and 300 kHz. This frequency 

difference is observed in this scenario. In this scenario, the received signal is 

equalized perfectly because the orthogonality is maintained by addition of cyclic 

prefix. 
 

For the scenario the communication performances are depicted in Table 

5.2. 
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 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 0 0 36.8 10-6 0 0 36.8 10-6 

Gray Coded Data Rate 62.4 103 62.5 103 62.5 103 62.4 103 62.5 103 62.5 103 

Trueput 62.5 103 62.5 103 

RS coded Data Rate - 62.5 103 

RS Code - No coding 

Table 5.2: Communication performance of the depicted scenario 
 

From Table 5.2, it can be concluded that for the depicted scenario, in 

which frequency selective fading and frequency and range dependent frequency 

response affects the system, the equalizer perfectly equalizes the affected signal. 

For this scenario, data rate as high as 62.5 Kbps can be achieved with equalizer. 
 

For the two depicted scenarios, the communication performances are the 

same. The effect of multipath is completely equalized with the use of frequency 

domain equalizer. The frequency domain equalizer with the cyclic extension 

provides perfect reconstruction of the transmitted sequence in the absence of 

noise, as long as the multipath OFDM signals are within the cyclic extension 

period. 
 

• Doppler Effect 

Doppler shift in an OFDM communication system as discussed in 

Section 3.1.2.1.1, destroys the orthogonality of the carriers. The loss in 

orthogonality, avoids equalizers to equalize the affected signal perfectly. The 

effect of Doppler shift is depicted in the following scenario, in which no 

significant multipath signals exists within the OFDM pulse. Diver #1 and diver 

#2 are positioned at (0,50) and (1,50) respectively where the depth is 100 m. 

This way only Doppler effect is observed. Since there is no significant 

multipath, the frequency response of the channel is flat. The relative velocity 

between the divers is 1 m/s. The OFDM pulse is selected 1 msec for this case. 

The underwater communication scenario is depicted in Figure 5.5.  
 



CHAPTER 5. Results and Discussions 

 88

 
Figure 5.5: Diver scenario 

 

The baseband complex representation of the received sequence is shown 

in Figure 5.6. 
 

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Q
ua

dr
at

ur
e

In-Phase

Scatter Plot without Equalizer

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Q
ua

dr
at

ur
e

In-Phase

Scatter Plot with Equalizer

 
Figure 5.6: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,50), Diver#2@(1,50) 

depth=100 m SS=0, porosity=0.2 Noiseless and relative velocity v=1 m/sec , 

OFDM pulse length 1 msec, cyclic extension 5.4 msec 
 

From Figure 5.6, the effect of Doppler shift is observed. Doppler shift 

destroys the orthogonality, creating a noise like behavior as well as shifting the 

phase of the signal. Since the orthogonality is lost, frequency domain equalizers 

cannot equalize the affected signal perfectly, leaving considerable amount of 

error. 
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For the scenario, the communication performances are depicted in Table 

5.3. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 32.2 10-3 33.3 10-3 34.4 10-3 2.5 10-3 2.8 10-3 3.2 10-3 

Gray Coded Data 

Rate 
60.34 103 60.41 103 60.48 103 62.30 103 62.32 103 62.34 103 

Trueput 0 18 103 

RS coded Data Rate - 51.97 103 

RS Code - RS (50,42) 

Table 5.3: Communication performance of the depicted scenario 
 

From Table 5.3, it can be concluded that for the depicted scenario, in 

which only Doppler shift affects the communication, low communication 

performance is achieved without equalization or FEC. The equalizer cannot 

equalize the effect of Doppler shift, because the orthogonality is lost. For this 

scenario in the absence of noise and with relative velocity between the divers, no 

trueput is achieved without the use of equalizer, using the equalizer 18 kbps is 

achieved and using the FEC around 52 kbps is achieved. 
 

A second case shall depict effect of OFDM pulse length on the Doppler 

effect. The OFDM pulse length for this scenario is 0.4 msec. The divers are in 

the same positions. The underwater communication scenario is depicted in 

Figure 5.7. 
 

 
Figure 5.7: Diver scenario 
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The baseband complex representation of the received sequence is shown 

in Figure 5.8. 
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Figure 5.8: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,50), Diver#2@(1,50) 

depth=100 m SS=0, porosity=0.2 Noiseless and relative velocity v=1 m/sec 

case, OFDM pulse length 0.4 msec, cyclic extension 5.4 msec 
 

From Figure 5.8, when compared with Figure 5.6, the effect of OFDM 

pulse length on Doppler Effect is observed. When the OFDM pulse length is 

shorter, the bandwidth of each carrier is wider; therefore, the effect of Doppler 

shift is less. It can also be observed from the figures that the phase shift is less as 

compared to 1 msec OFDM pulse case. The noise like behavior is less as 

compared to 1 msec case, leaving less error.  
 

For the scenario the communication performances are depicted in Table 

5.4. 
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 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 0 0 36.8 10-6 0 0 36.8 10-6 

Gray Coded Data 

Rate 
14.28 103 14.28 103 14.28 103 14.28 103 14.28 103 14.28 103 

Trueput 14.28 103 14.28 103 

RS coded Data Rate - 14.28 103 

RS Code - No coding 

Table 5.4 Communication performance of the depicted scenario 
 

From Table 5.4, it can be concluded that for the depicted scenario, in 

which only Doppler shift affects the communication, the Doppler shift destroys 

the orthogonality. The equalizer closely equalizes the affected signal; however 

due to loss in orthogonality, not perfectly. For this scenario, data rate as high as 

14.2 Kbps can be achieved. Even though, having shorter OFDM pulses provide 

resistance to Doppler shift, the trade off is that the data rate is smaller. The data 

rate is decreased because shorter OFDM pulses have fewer carriers; therefore 

less data rate. Having smaller OFDM pulses provide good BER, however lack 

data rate. 
 

From the two Doppler shift case scenarios, the effect of OFDM pulse 

length is observed. As discussed in Section 2.2.4 , the OFDM pulse length has to 

be much smaller than the inverse of the maximum Doppler shift. The OFDM 

pulse length of 0.4 msec provides much better error performance, however the 

problem is that the data rate reduces with the OFDM pulse length decrease. 
 

• Multipath and Doppler Shift Effect 

In normal communication scenarios, both multipath and Doppler shift 

affects the communication. The effect of multipath can be equalized; however 

the effect of Doppler shift can not, because Doppler shift destroys the 

orthogonality. The combination of multipath and Doppler shift shall leave worse 

data and error rate performances than the previous scenarios.  The combined 

effect of multipath and Doppler shift is depicted in the following scenario. Diver 

#1 and diver #2 are positioned at (0, 39) and (100, 39) respectively, where the 
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depth is 40 m. The relative velocity between the divers is 1 m/s. The OFDM 

pulse is selected 1 msec for this case. The underwater communication scenario 

is depicted in Figure 5.9. For the scenario the delay spread is 2.2 msec. 
 

 
Figure 5.9: Diver scenario 

 

The baseband complex representation of the received sequence is shown 

in Figure 5.10. 
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Figure 5.10: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(100,39) 

depth=40 m SS=0, porosity=0.2Noiseless and relative velocity v=1 m/sec, 

OFDM pulse length 1 msec, cyclic extension 5.4 msec 
 

From Figure 5.10, the combined effect of multipath Doppler shift is 

observed. From the complex baseband representation, it is observed that 

orthogonality is destroyed due to Doppler shift. Even though multipath path 

h = 40 m
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effect can be equalized individually, the combined effect cannot be equalized 

perfectly. As before, the Doppler shift, shifts the phase of the signal. Since the 

orthogonality is lost, frequency domain equalizer cannot equalize the signal 

perfectly, leaving considerable amount of error. 
 

For the scenario the communication performances are depicted in Table 

5.5. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 51.5 10-3 52.9 10-3 54.3 10-3 2.8 10-3 3.1 10-3 3.5 10-3 

Gray Coded Data 

Rate 
59.10 103 59.19 103 59.28 103 62.28 103 62.30 103 62.32 103 

Trueput 0 18.5 103 

RS coded Data Rate - 51.97 103 

RS Code - RS (50,42) 

Table 5.5: Communication performance of the depicted scenario 
 

From Table 5.5, it can be concluded that for the depicted scenario, in 

which both multipath and Doppler shift affects the communication, low 

communication performance is achieved without equalization and FEC. The 

equalizer cannot equalize the combined effect of multipath and Doppler shift, 

because the orthogonality is lost. For this scenario in the absence of noise and 

with 1 m/sec relative velocity between the divers, no trueput is achieved without 

the use of equalizer. Using the equalizer 18.5 kbps and using the FEC around 52 

kbps is achieved. 
 

A second case shall depict effect of OFDM pulse length on the Doppler 

effect. The OFDM pulse length for this scenario is 0.4 msec. The divers are in 

the same positions. The underwater communication scenario is depicted in 

Figure 5.11. 
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Figure 5.11: Diver scenario 

 

The baseband complex representation of the received sequence is shown 

in Figure 5.12. 
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Figure 5.12: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(100,39) 

depth=40 m SS=0, porosity=0.2 Noiseless and relative velocity v=1 m/sec case, 

OFDM pulse length 0.4 msec, cyclic extension 5.4 msec 
 

From Figure 5.12, when compared with Figure 5.10, the effect of OFDM 

pulse length on multipath and Doppler effect is observed. When the OFDM 

pulse length is shorter, the bandwidth of each carrier is wider; therefore, the 

effect of Doppler shift is less. It can also be observed from the figures that the 

phase is shift is less as compared to 1 msec OFDM pulse case. The noise like 

behavior is less, leaving less error.  
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For the scenario the communication performances are depicted in Table 

5.6. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 0 0 
36.88 10-

6 
0 0 

36.88 10-

6 

Gray Coded Data 

Rate 
27.58 103 27.58 103 27.58 103 27.58 103 27.58 103 27.58 103 

Trueput 27.58 103 27.58 103 

RS coded Data Rate - 27.58 103 

RS Code - No coding 

Table 5.6: Communication performance of the depicted scenario 
 

From Table 5.6, it can be concluded that for the depicted scenario, in 

which both multipath Doppler shift affects the communication, the Doppler shift 

destroys the orthogonality. The equalizer closely equalizes the affected signal. 

For this scenario, in the absence of noise, data rate as high as 27.5 Kbps without 

the need of FEC is achieved.  
 

The effect of OFDM pulse length is observed when complex baseband 

representations in Figure 5.12 and Figure 5.10 are observed. When the OFDM 

pulse length is smaller, the bandwidth of each carrier is wider, providing 

resistance to Doppler shift. For shorter OFDM pulses the complex baseband 

representation is less cloudy and the phase shift is less. This, in turn leads to 

better error performance. Even though, having shorter OFDM pulses provide 

resistance to Doppler shift, the trade off is that the data rate is smaller, because 

for shorter OFDM pulses there are fewer carriers. Having smaller OFDM pulses 

provide good BER, however lack data rate. 

5.1.2  Noisy Simulations 
 

 

For the simulations in the presence of noisy, the same scenarios and 

same OFDM parameters are used. The only difference is that in these cases the 

acoustic noise is present at the front end of the receiver of the system. The 
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system is designed such that 1 10-3 BER is achieved for the LOS, ideal 

communication channel, without taking account of any channel impairments. 

The transmission power is calculated in order to achieve the desired BER. The 

transmission power is calculated from the modulation type, distance between the 

divers, using the RTS/CTS packet exchange as discussed in Section 3.1.2.1.2. 

The noise shall decrease the performance of equalizers because the equalization 

parameters now include the noise. The same scenarios, as simulated in noiseless 

cases shall be simulated in order to find the real life communication 

performances. 
 

• Multipath Effect 

The simulation scenario is that divers are 1 m below the surface and the 

distance between is 1 m. The Sea-State and porosity are 0 and 0.2 respectively. 

The OFDM pulse length is 1 msec.  
 

The baseband complex representation of the received sequence is shown 

in Figure 5.13. 
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Figure 5.13: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(1,39) 

depth=40 m SS=0, porosity=0.2 Noisy and motionless case, OFDM pulse length 

1 msec, cyclic extension 5.4 msec 
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From Figure 5.13 the effect of multipath and noise is observed when 

compared with Figure 5.2. The equalizer in the noisy case cannot equalize the 

received signal perfectly, leaving some error.  
 

For the scenario the communication performances are depicted in Table 

5.7. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 2.2 10-3 2.5 10-3 2.8 10-3 1.6 10-3 1.9 10-3 2.2 10-3 

Gray Coded Data 

Rate 
62.32 103 62.34 103 62.36 103 62.36 103 62.38 103 62.39 103 

Trueput 23.75 103 30.25 103 

RS coded Data Rate - 54.45 103 

RS Code - RS(50, 44) 

Table 5.7: Communication performance of the depicted scenario 
 

From Table 5.7, it can be concluded that the BER and data rate 

performances decreased. In the absence of noise, data rate of 62.5 Kbps is 

achieved. The achievable data rate in the presence of noise after FEC is 54.4 

Kbps. The equalized simulation has BER close to expected however due to 

noise the expected BER cannot be achieved, because the noise affects the 

equalizer parameters. 
 

The second scenario is the case when the divers are 100 m distant from 

each other. In this scenario, the frequency and range dependent frequency 

response affects the channel along with the multipath propagation and noise. 
 

The baseband complex representation of the received sequence is shown 

in Figure 5.14. 
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Figure 5.14: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(100,39) 

depth=40 m SS=0, porosity=0.2 Noisy and motionless case, OFDM pulse length 

1 msec, cyclic extension 5.4 msec 
 

In this scenario, similar complex baseband representations are obtained 

as with the previous case. The un-equalized complex baseband representation is 

now wider than the previous case due to spiral shape as explained for the 

noiseless case. However, the received signal is equalized closely, leaving some 

error. 
 

For the scenario the communication performances are depicted in Table 

5.8. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 3.5 10-3 3.9 10-3 4.3 10-3 1.1 10-3 1.3 10-3 1.5 10-3 

Gray Coded Data Rate 62.23 103 62.25 103 62.28 103 62.40 103 62.41 103 62.43 103 

Trueput 14.25 103 36.50 103 

RS coded Data Rate - 54.45 103 

RS Code - RS(50, 44) 

Table 5.8: Communication performance of the depicted scenario 
 

From Table 5.8, it can be concluded that the BER and data rate 

performance are decreased. Data rate in the absence of noise is 62.5 kbps. The 
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achievable data rate after FEC is 54.4 Kbps. The BER is close to expected 

however is not, due to noise and noise affected equalizer parameters. 
 

For the two scenarios, the BER performances are close to expected and 

the data rate performances decreased due to noise. The received signal is 

equalized; however, due to noise the equalizer parameters contain some error. 

This in turn causes the equalization to leave certain amount of error. The FEC 

recovers the corrupted data and provides for the two scenarios 54.4 Kbps data 

rate. 
 

• Doppler Effect 

The Doppler effect for the noiseless case is observed in the previous 

section. In this section the effect of noise and Doppler shift be observed. The 

scenario to observe only the Doppler shift, without the multipath effect is that 

divers are at (0, 50) and (1, 50) where the depth is 100 m. For this scenario the 

OFDM pulse length is 1 msec and the relative velocity between the divers is 1 

m/sec. 
 

The baseband complex representation of the received sequence is shown 

in Figure 5.15. 
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Figure 5.15: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,50), Diver#2@(1,50) 

depth=100 m SS=0, porosity=0.2 Noisy and relative velocity v=1 m/sec, OFDM 

pulse length 1 msec, cyclic extension 5.4 msec 
 

The effect of Doppler shift and noise is observed in Figure 5.15. Since 

Doppler shift destroys the orthogonality, the complex baseband representation of 

the received signal has a noise like behavior. As explained for the noiseless case, 

equalizer cannot perfectly equalize the received signal. In the presence of noise, 

the equalizer parameters are corrupted with noise; therefore, the equalization 

leaves certain amount of error. 
 

For the scenario the communication performances are depicted in Table 

5.3. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 66.2 10-3 67.7 10-3 69.3 10-3 17.9 10-3 18.7 10-3 19.6 10-3 

Gray Coded Data Rate 58.16 10 58.26 103 58.36 103 61.27 103 61.32 103 61.38 103 

Trueput 0 0 

RS coded Data Rate - 29.7 103 

RS Code - RS (50,24) 

Table 5.9: Communication performance of the depicted scenario 
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From Table 5.9, it can be concluded that for the depicted scenario, in 

which both Doppler shift and noise affects the communication, low 

communication performance is achieved without equalization and FEC. The 

equalizer cannot equalize the effect of Doppler shift, because the orthogonality 

is lost. For this scenario, in the presence of noise and with relative velocity 

between the divers, no trueput is achieved with the use of equalizer. Data rate of 

29.7 Kbps can be achieved with the use of RS codes. Without FEC, no 

communication is possible. As compared to noiseless case, the BER and data 

rate performance degrades from 51.9 Kbps to 29.7 Kbps., 
 

A second case shall simulate the effect of shorter OFDM pulse length in 

the presence of noise and Doppler shift. The OFDM pulse length is 0.4 msec. 

The diver scenario is the same as the previous case. 
 

The baseband complex representation of the received sequence is shown 

in Figure 5.16. 
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Figure 5.16: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,50), Diver#2@(1,50) 

depth=100 m SS=0, porosity=0.2 Noisy and relative velocity v=1 m/sec case, 

OFDM pulse length 0.4 msec, cyclic extension 5.4 msec 
 

When Figure 5.16 is compared with Figure 5.15, the effect of shorter 

OFDM pulse length is observed. When the OFDM pulse length is shorter, the 
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effect is that the complex baseband representation is narrower; leaving less error 

and better performance and the phase shift is less as compared to longer OFDM 

pulse. 
 

For the scenario the communication performances are depicted in Table 

5.10. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 4.4 10-3 4.8 10-3 5.3 10-3 2.0 10-3 2.3 10-3 2.6 10-3 

Gray Coded Data Rate 27.44 103 27.45 103 27.46 103 27.51 103 27.52 103 27.53 103 

Trueput 12.93 103 18.84 103 

RS coded Data Rate - 21.84 103 

RS Code - RS(20,16) 

Table 5.10: Communication performance of the depicted scenario 
 

From Table 5.10 when compared with Table 5.9, it is observed that the 

BER performance increased from 18.7 10-3 to 2.3 10-3, this is due to fact that 

shorter OFDM pulse results in resistance to Doppler shift. In this case, since the 

BER is low, trueput without the use of FEC and even equalizer is achieved. 

However, the data rate performance with FEC decreased from 29.7 kbps to 21.8 

kbps. The decrease in data rate, despite better BER is that shorter OFDM pulse 

has fewer carriers; therefore, the achievable data rate is less than the longer 

OFDM pulse case. There is a trade of between the OFDM pulse length, data rate 

and BER performance. 
 

• Multipath and Doppler Shift Effect 

In this scenario, multipath and Doppler shift shall be simulated along 

with noise. The noise shall degrade the performance of equalizer and the 

communication. The scenario is that diver #1 is at (0,39) and diver #2 (100,30) 

where the depth is 40 m. The OFDM symbol length is be 1 msec. The relative 

velocity between the divers shall be 1 m/sec. 
 

The baseband complex representation of the received sequence is shown 

in Figure 5.17. 
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Figure 5.17: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(100,39) 

depth=40 m SS=0, porosity=0.2 Noisy and relative velocity v=1 m/sec, OFDM 

pulse length 1 msec, cyclic extension 5.4 msec 
 

In Figure 5.17, the effect of multipath, Doppler shift and noise is 

observed. As stated before, the equalizer cannot perfectly equalize the corrupted 

signal, because the Doppler shift destroys the orthogonality. Along with the loss 

of orthogonality, the noise corrupts the signal and the equalizer parameters; 

therefore, this leaves considerable amount of error at the output. 
 

For the scenario the communication performances are depicted in Table 

5.11. 
 

 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 70.6 10-3 72.2 10-3 73.8 10-3 16.4 10-3 17.2 10-3 18.1 10-3 

Gray Coded Data Rate 57.88 103 57.98 103 58.08 103 61.37 103 61.42 103 61.47 103 

Trueput 0 0 

RS coded Data Rate - 34.65 103 

RS Code - RS (50,28) 

Table 5.11: Communication performance of the depicted scenario 
 

From Table 5.11, it can be concluded that in this scenario, no 

communication is possible without the use of FEC. For this scenario, the 
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Doppler shift destroys the orthogonality also the noise affects the equalizer 

parameters; therefore perfect equalization is not possible. In this scenario, data 

rate of 34.6 Kbps is achieved with the use of FEC. 
 

Second case shall depict the effect of OFDM symbol length on the 

communication performance. For the scenario, Doppler shift, multipath and 

noise affect the communication. For this case, the OFDM symbol length is 0.4 

msec. All the other parameters are the same. 
 

The baseband complex representation of the received sequence is shown 

in Figure 5.18. 
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Figure 5.18: Received baseband complex representation with and without 

equalizer for underwater scenario of Diver#1@(0,39), Diver#2@(100,39) 

depth=40 m SS=0, porosity=0.2 Noisy and relative velocity v=1 m/sec case, 

OFDM pulse length 0.4 msec, cyclic extension 5.4 msec 
 

From Figure 5.18, when compared with Figure 5.17, the complex 

baseband representation is narrower, so that there is less error. The carrier 

orthogonality is lost due to Doppler shift; however the loss is not as much as the 

previous case. Shorter OFDM pulse has the property of having resistance to 

Doppler shift, leaving less error. 
 

For the scenario, the communication performances are depicted in Table 

5.12. 
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 CImin  CImax CImin  CImax 

 Without Equalizer With Equalizer 

Gray coded BER 8.7 10-3 9.3 10-3 9.9 10-3 1.6 10-3 1.8 10-3 2.1 10-3 

Gray Coded Data 

Rate 
27.31 103 27.32 103 27.34 103 27.52 103 27.53 103 27.54 103 

Trueput 60.46 103 20.65 103 

RS coded Data Rate - 21.84 103 

RS Code - RS(20, 16) 

Table 5.12: Communication performance of the depicted scenario 
 

From Table 5.12, it can be concluded that for the depicted scenario, in 

which multipath, Doppler shift and noise affect the system, the Doppler shift 

destroys the orthogonality. Since the orthogonality is lost due to Doppler shift 

and noise, the equalizer parameters cannot be set properly; leaving certain 

amount of error at the output. In this scenario, data rate of 21.84 Kbps is 

achieved with the use of FEC. 
 

When Table 5.12 and Table 5.11 are compared, it is observed that the 

BER improves with shorter OFDM pulse lengths. For the scenarios, the BER 

decreased from 17.2 10-3 to 1.8 10-3, this performance provides 0 and 27.53 

Kbps trueput respectively with equalizer. Using FEC, data rate of 34.6 Kbps and 

21.8 Kbps is achieved for 1 msec and 0.4 msec OFDM pulse length respectively. 

It is concluded that even if the BER performance improves for shorter OFDM 

pulse lengths, the data rate performance decreases. The decrease in data rate is 

because of the fact that there are fewer OFDM carriers for shorter OFDM 

pulses. In this respect, there is a trade of between the OFDM pulse length and 

data rate. 

5.1.3  Comparison and Discussion of Special Case 
Simulations 
 

 

The underwater OFDM communication system performances, namely 

BER and data rate depends on the channel conditions. The Doppler shift and 
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multipath are main concerns that an underwater communication system faces. 

Investigation of the noisy scenarios shall reveal the trade of between the OFDM 

parameters and how the channel impairments and OFDM parameters affect the 

system. 
 

• Multipath Effect: Cyclic extension preserves the orthogonality of 

carriers in multipath environment. The performance figures for the 

equalized, multipath and noise affected scenarios are shown in Table 

5.13. 
 

Scenario: Diver #1 (0, 39) Diver #2 (x, 39) h = 40 m 

OFDM pulse length 1 msec, cyclic extension 5.4 msec 

BER 1.9 10-3 

Gray coded Data Rate 62.38 Kbps 

Trueput 30.25 Kbps 
x = 1 m 

RS Coded Data Rate 54.45 Kbps RS(50,44) 

BER 1.3 10-3 

Gray coded Data Rate 62.41 Kbps 

Trueput 36.50 Kbps 
x = 100 m 

RS Coded Data Rate 54.45 Kbps RS(50,44) 

Table 5.13: Performances comparison of multipath affected scenarios 
 

The performance of the systems are close to the expected BER, which is 

1 10-3. This is achieved with the use of cyclic extension and preservation of the 

orthogonality. The BER and data rate performances of the two scenarios are 

close, however not the same. The reason for this kind of behavior is because of 

the noise affected equalizer parameters and transmission power characteristics. 

The equalizer parameters are affected from noise while setting the equalizer 

parameters. Since the parameters are not ideal, the equalization leaves some 

error at the output. The other reason is; as discussed in Section 2.2.2 , the 

frequency response of the acoustic channel is both frequency and range 

dependent. When the distance is 100 m, the frequency response varies 4 dB 

between 100 kHz and 300 kHz. Since the transmission power is adjusted 
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according to the most affected frequency carrier, lower frequency carriers have 

better BER; therefore, the 100 m scenario performs better than the 1 m scenario.  
 

• Doppler Effect: As discussed in Section 2.2.4 , the Doppler shift 

affects the OFDM pulses irreversibly, because Doppler shift destroys 

the orthogonality. The performance figures for the equalized, 

Doppler and noise affected scenarios are in Table 5.14. 
 

Scenario: Diver #1 (0, 50) Diver #2 (1, 50) h = 100 m 

OFDM pulse length T msec, cyclic extension 5.4 msec 

BER 18.7 10-3 

Gray coded Data Rate 61.32 Kbps 

Trueput 0 
T = 1 msec 

RS Coded Data Rate 29.7 Kbps RS (50, 24) 

BER 2.3 10-3 

Gray coded Data Rate 27.52 Kbps 

Trueput 18.84 Kbps 
T = 0.4 msec 

RS Coded Data Rate 21.84 Kbps RS(20, 16) 

Table 5.14: Performances comparison of Doppler affected Scenarios 
 

The performance of the systems are low because of the effect of Doppler 

shift. The Doppler shift destroys the orthogonality of the carriers. The BER and 

data rate performances of the two scenarios are very different. The reason for 

this kind of behavior is because of system’s different resistivity to Doppler shift. 

Shorter OFDM pulses have wider carriers in the frequency domain therefore, 

more resistance to Doppler shift. Therefore, the BER performance of the shorter 

pulse length system is better. However, the data rate performance of the longer 

pulse length system is better. The reason is that longer OFDM pulse system has 

more carriers; therefore have more data carrying capability. With the use of FEC 

longer OFDM pulse system provides more data rate. This way, it is observed 

that there is a trade of between the pulse length and data rate.  
 

• Multipath and Doppler Effect: The multipath, Doppler and noise 

affected scenarios are simulated and performance figures compared 

in Table 5.15. 
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Scenario: Diver #1 (0, 39) Diver #2 (100, 39) h = 40 m 

OFDM pulse length T msec, cyclic extension 5.4 msec 

BER 17.2 10-3 

Gray coded Data Rate 61.42 Kbps 

Trueput 0 
T = 1 msec 

RS Coded Data Rate 34.65 Kbps RS(50, 28) 

BER 1.8 10-3 

Gray coded Data Rate 27.53 Kbps 

Trueput 20.65 Kbps 
T = 0.4 msec 

RS Coded Data Rate 21.84 Kbps RS(20, 16) 

Table 5.15: Performances comparison of Doppler and multipath affected 

scenarios 
 

The performance of the systems is low because of the combined effect of 

multipath and Doppler shift. The effect of multipath is compensated with the use 

of cyclic extension and frequency domain equalizer; however, the effect of 

Doppler shift cannot because Doppler shift destroys the orthogonality of the 

carriers. The BER and data rate performances of the two scenarios are very 

different. The reason for this kind of behavior is like the previous scenarios, 

systems, different resistivity to Doppler shift. Shorter OFDM pulses have wider 

carriers in the frequency domain therefore more resistance to Doppler shift. 

Therefore, the BER performance of the shorter pulse length system is better. 

However, the data rate performance of the longer pulse length system is better. 

The reason is discussed for the previous scenarios. With the use of FEC the 

longer data rate system provides more data rate.  
 

When Table 5.14 and Table 5.15 are observed, the BER performance of 

the latter scenario is better. Even tough, in the second scenario, there is both 

multipath and Doppler shift, the BER performances are better. The reason 

behind this point is explained for the first scenario. The multipath effect is 

closely compensated with the use of cyclic extension and frequency domain 

equalizer. However, since for the last scenario, the lower and higher frequency 

component carriers are affected differently and the transmission power is 

adjusted for the higher frequency components, the BER of the second scenario, 
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which is multipath and Doppler shift affected, has better BER performance 

despite having both multipath and Doppler shift effects. 

5.2 Discussion of Simulation Results 
 

 

In order to find the compromise between the OFDM communication 

system parameters, simulations were performed using MATLAB. The 

simulations were done with several scenarios and several communication system 

parameters. The information data is random sequence of bits, consisting of 

100.000 bits. Several levels of modulation were performed, namely M=2, 4, 8 

and 16. The underwater acoustic loss is taken into account along with sea 

surface and sea floor losses. The sea surface and sea floor losses are taken as 

worst and better case; that is worst case scenario is the one that has the least 

attenuation; whereas better case is the most expected attenuation. The worst case 

scenario is Sea-State-0 and sea floor porosity 0.2 having 10 dB loss from surface 

and 14 dB loss from sea floor respectively and better case scenario is Sea-State-

1 and porosity 0.4 having 15 dB loss from surface and 35 dB loss from sea floor 

respectively. The boundary state scenarios are summarized in Table 5.16. 
 

 Sea-State (SS) Porosity (n) 

Boundary state scenario #1 SS : 0 10 dB loss n : 0.2 14 dB loss 

Boundary state scenario #2 SS : 1 15 dB loss n : 0.4 35 dB loss 

Table 5.16: Boundary state scenarios 
 

For the underwater communication system, the transmission power is 

adjusted according to the line of sight (LOS) acoustic loss, by using the distance 

between the divers. The distance between the divers is acquired using RTS/CTS 

packet exchange. The transmission power guarantees 1 10-3 BER for the most 

attenuated OFDM carrier, which is 300th kHz carrier. 
 

For the simulations, the maximum expected delay spread is taken as 5.4 

msec, resulting in OFDM cyclic extension length of 5.4 msec. 

The diver scenarios are selected such that worst and better case 

conditions are achieved. The scenarios are categorized worse for the larger delay 
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spread cases, and better for less. The diver scenarios are selected for the most 

probable diver positions. Distance between the divers is selected to span the 

maximum expected distance between the divers; namely 1 m, 5 m, 10 m, 50 m 

and 100 m. Figure 2.5 depicts the 5-Ray paropagation model. Table 5.17 shows 

the simulated diver scenarios. 
 

 Depth h (m) x1 (m) y1 (m) x2 (m) y2 (m) 

Diver Scenario #1 40 0 39 x 39 

Diver Scenario #2 40 0 20 x 20 

Diver Scenario #3 40 0 39 x 2 

Diver Scenario #4 40 0 1 x 1 

Diver Scenario #5 100 0 20 x 20 

Diver Scenario #6 100 0 80 x 80 

Table 5.17: Underwater communication simulation scenarios 
 

The Doppler shift is added in the simulations with relative velocity 

between the divers 1 m/sec. 1 m/sec relative velocity is the most expected 

motion between the divers. 
 

The underwater communication system parameters should be selected 

according to the worst case performance; that is worst BER and least data rate 

performance. Choosing the parameters this way, we provide guaranteed 

performance of the system in good and bad sea conditions and scenarios.  
 

The simulation results are graphed with respect to distance between 

divers with fixed OFDM pulse length and with respect to OFDM pulse length 

with fixed distance between the divers. The former graphs explain the effect of 

distance between the diver on the performance of the system in motionless cases 

and the latter graphs explain the effect of OFDM pulse length on the system in 

cases in motion. 
 

The simulation results in graphs contain the following information: 
 



CHAPTER 5. Results and Discussions 

 111

• Bit Error Rate (BER): Provides the bit error rate information of the 

communication system in certain diver, boundary scenarios and 

conditions. 
 

• Bit Rate: Provides the data bit rate over the total transmitted 

information bits. The bit rate is calculated over correctly received 

bits. 
 

• Trueput: Provides the data rate of the communication system. The 

rate is calculated over correctly received transmitted OFDM 

symbols. This measure is essential because the system shall be digital 

and compressed data; therefore, successful reception of each packet 

is essential. 
 

• RS Coded Data Rate: Provides the Reed-Solomon (RS) error coded 

data rate of the communication system. The Reed-Solomon code 

parameters are set using the Frame error rate (FER) of 1%. The RS 

coded data rate is the achievable data rate of the communication 

system using RS forward error correction. 
 

• Confidence Interval (CI): The certainty of the BER and data rate 

results is depicted within the confidence interval of 95 %. The CI is 

graphed in the figures by dashed lines around the main solid lines. 

Using CI we provide certainty of the result. 
 

Simulation findings are explained below: 
 

• Effect of frequency domain equalizer on communication 

performance: 
 

For diver scenario #1 and boundary state scenario #1, the delay spread 

profile with respect to distance between the divers is at most 2.2 msec, as 

depicted in Figure 5.19.  
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Figure 5.19: Delay Spread profile for diver scenario#1 and boundary state 

scenario#1 
 

The BER performance for the OFDM communication system having 

pulse length 1 msec in motionless case is depicted in Figure 5.20. 
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Figure 5.20: BER performance of frequency domain equalized and non-

equalized system 
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Figure 5.21: Bit rate performance of frequency domain equalized and non-

equalized system 
 

From Figure 5.20 and Figure 5.21, the BER and bit rate performance of 

equalized and non equalized system is observed. The BER performance 

improves as distance between divers increase because the transmission power is 

adjusted according to the most affected carrier and less affected part of the 

spectrum performs better. This way, as the distance increases the performance 

increases. For modulation level of M=16 the BER of equalized system is below 

4 10-3 providing around 125 kbps bit rate whereas for non equalized system the 

BER is around 140 10-3 providing around 118 kbps bit rate. 
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In the presence of Doppler shift, where the relative velocity is 1 m/sec, 

for diver scenario #1 with boundary state scenario #1, the need for equalizer is 

even more crucial. In APPENDIX E.1, the BER and data rate performance of 

the Doppler shift affected communication is depicted. For 1 msec OFDM pulse 

length the BER with equalizer is 180 10-3 and without equalizer 260 10-3for 

modulation level of M=16.  
 

It can be concluded that the OFDM system in the presence of multipath 

propagation within the OFDM pulse period need either low level of modulation 

or a frequency domain equalizer, whose parameters are set using a known bit 

sequence. Lower level of modulations lead to low data rate, therefore simple 

frequency domain equalizer is needed for underwater communication systems 

that use OFDM. 
 

• Effect of diver scenarios on the communication performance:  
 

Diver positions underwater define the multipath signals arrival and 

frequency selective fading. It is found that scenarios having divers just beneath 

the sea surface or just above the sea floor provides the worst performance, 

namely diver scenarios #1 and #3, due to strong multipath reflections from the 

boundaries. Scenarios that have divers towards the middle of depth of the sea; 

namely diver scenario #2 provide better performance because the multipath 

reflections are received with considerable power attenuation as compared to the 

direct OFDM pulse and the multipath signals are received outside of the main 

OFDM pulse. 
 

For diver scenario #1 and diver scenario #2 with boundary state scenario 

#1, the delay spread profile with respect to distance between the divers is at 

most 2.2 msec and 1.8 msec respectively, as depicted in Figure 5.19 and Figure 

5.22.  
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Figure 5.22: Delay spread profile of diver scenario#1 and #2 with boundary state 

scenario#1 
 

The BER performance for the diver scenario #1 and # 2 of OFDM 

communication system having pulse length 1 msec using equalizer in motionless 

case is depicted in Figure 5.23. 
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Figure 5.23: BER performance of the diver scenario#1 and #2 
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Figure 5.24: Bit rate performance of the diver scenario#1 and #2 

 

From Figure 5.23 and Figure 5.24, the effect of diver scenarios on the 

communication system is observed. The BER performance of the 

communication system for diver scenario #1 and diver scenario #2 are less than 

4.5 10-3 and 1.5 10-3 providing around 125 kbps bit rate for modulation level of 

M=16 respectively. 
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Figure 5.25: Trueput performance of the diver scenario#1 and #2 
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Figure 5.26: RS Coded data rate performance of the diver scenario#1 and #2 

 

From Figure 5.25 and Figure 5.26 the trueput and RS coded data rate 

performance of the two scenarios is observed. The trueput performance results 

are low, therefore error coding is necessary. With suitable RS error coding 

parameter, better data rate performance is achieved. For diver scenario #1 

around 110 Kbps data rate using RS(100,90) and for diver scenario #2 around 

120 Kbps data rate is achieved using RS(100,96) error coding for modulation 

level of M=16. 
 

For diver scenario #3 with boundary state scenario #1 in motionless case, 

the communication system performance is depicted in APPENDIX E.2. The 
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system with 1 msec OFDM pulse length modulation level of M=16 has less than 

3.5 10-3 BER and achieves 114 Kbps using RS(100, 92) error coding.  
 

Diver scenario #2 provides much better communication performance 

than diver scenario #1 because the multipath signals arrive at the receive much 

later than the main OFDM pulse and with considerable level of attenuation. For 

diver scenario #1, the multipath signals arrive within the main OFDM pulse with 

less attenuation. Since for diver scenario#1 there is multipath propagation the 

equalizer parameters cannot be set perfectly due to present noise in the system, 

therefore the BER performance is worse than the diver scenario #2. 
 

The simulation results reveal that diver scenarios affect the performance 

of the systems. The scenarios having considerable multipath signal provides 

worse performance, namely diver scenario#1. Therefore, communication system 

parameters shall be selected according to worst diver scenario. 
 

• Effect of boundary state scenarios on the communication 

performance:  
 

Boundary state scenarios define the boundary reflection losses due to 

wind on the surface and floor structure on the sea floor. In our simulations there 

are two boundary state scenarios as given in Table 5.16. It is found from the 

simulation results that worse Sea-State and more porosity sea floor conditions 

provide better performance. The reason for the better performance is that for 

worse conditions, the boundary losses increases, therefore the multipath 

reflection is received with less power. Since multipath reflection power is less, 

the equalizer parameters can be set more precisely and therefore better BER and 

data rate performance is achieved.  
 

For boundary state scenario #1 and #2 with diver scenario #1, the delay 

spread profile with respect to distance between the divers is at most 2.2 msec 

and 1.8 msec respectively, as depicted in Figure 5.27.  
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Figure 5.27: Delay spread profile of diver scenario#1 for boundary state 

scenario#1 and #2 
 

The BER performance of diver scenario #1 for boundary state scenario 

#1 and #2 of OFDM communication system having pulse length 1 msec using 

equalizer in motionless case is depicted in Figure 5.28. 
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Figure 5.28: BER performance of the diver scenario#1 for boundary state 

scenario#1 and #2 
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Figure 5.29: Bit rate performance of the diver scenario#1 for boundary state 

scenario#1 and #2 
 

From Figure 5.28 and Figure 5.29, the effect of boundary state scenarios 

on the communication performance is observed. The BER performance of 

communication system for boundary state scenario #1 and #2 are less than 4 10-3 

and 2.2 10-3 respectively providing both 125 Kbps bit rate for modulation level 

of M=16 respectively. 
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Figure 5.30: Trueput performance of the diver scenario#1 for boundary state 

scenario#1 and #2 
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Figure 5.31: RS Coded data rate performance of the diver scenario#1 for 

boundary state scenario#1 and #2 
 

From Figure 5.30 and Figure 5.31 the trueput performance and RS coded 

data rate performance is observed. The performance of boundary state 

scenario#2 is better than #1. For boundary state scenario#2, error coded data rate 

around 115 Kbps data rate is achieved whereas for scenario#1 around 110 Kbps 

data rate for modulation level of M=16. 
 

Boundary state scenario#2 provides better BER and bit rate because the 

multipath signals for boundary state scenario#2 arrive with less power than 
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scenario #1. Since the multipath signals are attenuated more, the equalizer 

parameters are set much precisely and better BER performance is achieved. 
 

The simulation results reveal that boundary state scenarios affect the 

performance of the systems. The scenarios with more boundary losses provide 

better performance. Boundary state scenarios#1 provides worse performance. 

Therefore, communication system parameters shall be selected according to 

worst boundary state scenario. 
 

• Effect of Doppler Shift on communication performance in Doppler 

shift only environment: 
 

Doppler shift greatly affect the communication performance in OFDM 

communication systems because Doppler shift destroys the orthogonality of the 

carriers; therefore simple frequency domain equalizers fail to equalize the 

affected signal. Diver scenario #2 shows the effect of Doppler shift only because 

the multipath signals are attenuated sufficiently.  
 

For diver scenario #2 with boundary state scenario #1 the delay spread 

profile with respect to distance is 1.8 msec, as depicted in Figure 5.22. 
 

The BER and bit error performance for the diver scenario # 2 of OFDM 

communication system having pulse length 1 msec using equalizer in Doppler 

shift environment, where the relative velocity between the divers is 1 m/sec is 

depicted in Figure 5.32. 
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Figure 5.32: BER and bit rate performance of the diver scenario#2 and boundary 

state scenario#1 with Doppler shift (v=1 m/sec) 
 

From Figure 5.32, the effect of Doppler shift on the communication 

performance is observed. The BER performance of communication system for 

diver scenario #2 with boundary state scenario #1 are around 150x10-3 providing 

around 110 Kbps bit rate for modulation level of M=16. 
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Figure 5.33: Trueput and RS coded data rate performance of the diver 

scenario#2 and boundary state scenario#1 with Doppler shift (v=1 m/sec) 
 

From Figure 5.33, it is observed that the trueput performance of the 

communication system in Doppler shift environment is very low; therefore error 

coding is necessary. Using RS error coding with suitable parameters 

communication is made possible. At 50 m for modulation level of M=4, around 

37 Kbps data using RS(50,30) error coding is achieved. It is worth mentioning 

that without using error coding for modulation level of M=8 and M=16, no 

communication is achieved without errors. Also it is observed from Figure 5.33 

that using error coding, higher level of modulation does not always provide 
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better data rate performance, in this scenario QPSK modulation provides the 

best communication performance. 
 

In a Doppler shift environment, the BER performance is very low for 

higher order modulations. BER performance of this rate is not acceptable for 

digital communication systems unless special care is taken. The solution is 

either using lower modulation schemes or using error coding or changing the 

OFDM pulse length. 
 

It was discussed in previous chapters that there is a trade of between the 

OFDM pulse length and the achievable data rate. Using shorter OFDM pulses 

provides resistance to Doppler shift and provides better BER. The pulses cannot 

be arbitrarily short because the achievable data rate decreases. The following 

figures depict the communication performance with respect to OFDM pulse 

length for distance between the divers 50 m. 
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Figure 5.34: BER and bit rate performance of the diver scenario#2 and boundary 

state scenario#1 with Doppler shift (v=1 m/sec) with respect to OFDM pulse 

length 
 

From Figure 5.34 the effect of OFDM pulse length on OFDM 

communication system in a Doppler shift environment is observed. As the 

OFDM pulse length increases the BER performance degrades considerably; 

therefore choosing OFDM pulse length long or level modulation higher does not 

guarantee higher data rate.  
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Figure 5.35: Trueput and RS coded data rate performance of the diver 

scenario#2 and boundary state scenario#1 with Doppler shift (v=1 m/sec) with 

respect to OFDM pulse length 
 

From Figure 5.35, it is observed that the trueput performance of the 

communication system in Doppler shift environment is poor. At 50 m using RS 

error coding data rate around 37.6 Kbps data rate using RS(45,38) error coding 

is achieved for modulation level of M=8 for OFDM pulse length 0.6 msec.  
 

At 100 m the communication system performance is depicted in 

APPENDIX E.3. The system under Doppler shift of relative velocity 1 m/sec, 
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with 1 msec OFDM pulse length modulation level of M=4 achieves 39.6 Kbps 

using RS(50, 32) error coding.  
 

At 100 m the communication system performs maximum RS coded data 

rate at 0.6 msec using modulation level of M=8 and achieves 39.6 Kbps using 

RS(45,40) error coding.  
 

The trade of between the OFDM pulse length and BER and coded data 

rate is observed from Figure 5.34 and Figure 5.35. When OFDM pulse length is 

shorter, the system is more resistant to Doppler shift; therefore has better BER; 

however the data rate is lower. When OFDM pulse length is longer there are 

more carriers that carry data; however the resistance to Doppler shift is lower; 

therefore the data rate performance is poor. The performance is also dependent 

on the level of modulation. When the level of modulation is high, the ideal data 

rate is higher; however, the BER is poor therefore the overall data rate 

performance is poor. 
 

The simulation results reveal that BER and data rate performance in a 

Doppler shift environment is very low, due to fact that Doppler shift destroys the 

orthogonality of the carriers. Since the orthogonality between the carriers is lost, 

the frequency domain equalizers fail to recover the affected signal, leaving 

considerable amount of error at the output. The communication performance is 

dependent on the OFDM pulse length, level of modulation and error correcting 

codes. There is a trade of between the pulse length and achievable data rate. This 

way the underwater communication system parameters have to be selected for 

the scenarios containing Doppler shift because it provides the worst case 

condition. When the system is designed for the worst case conditions, it provides 

that the system shall guarantee the same performance for all scenarios. 
 

• Worst case scenarios; effect of Doppler Shift and multipath on 

communication performance: 

We expect that the communication performance under the effect of 

Doppler shift and multipath with bad boundary state conditions shall provide the 
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worst expected channel conditions. The reason is that the Doppler shift destroys 

the orthogonality of the carriers, and multipath propagation creates frequency 

selective fading. The frequency selective fading is overcame using frequency 

domain equalizers however due to Doppler effect, the frequency domain 

equalizers fail to equalize the OFDM signals. 
 

For diver scenario #1 with boundary state scenario#1, the delay spread 

profile with respect to distance is 2.2 msec, as depicted in Figure 5.19. 
 

The BER and bit error performance for the diver scenario # 1 of OFDM 

communication system having pulse length 1 msec using equalizer in Doppler 

shift environment where the relative velocity between the divers is 1 m/sec and 

multipath propagation is depicted in Figure 5.36. 
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Figure 5.36: BER and bit rate performance of the diver scenario#1 and boundary 

state scenario#1 with Doppler shift (v=1 m/sec) and multipath 
 

From Figure 5.36, the effect of Doppler shift and multipath propagation 

on the communication performance is observed. The BER performance of 

communication system for diver scenario #1 with boundary state scenario #1 are 

around 160 10-3 providing around 110 Kbps bit rate for modulation level of 

M=16. 
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Figure 5.37: Trueput and RS coded data rate performance of the diver 

scenario#1 and boundary state scenario#1 with Doppler shift (v=1 m/sec) and 

multipath 
 

From Figure 5.37, it is observed that the trueput performance of the 

communication system in Doppler shift environment and multipath is very low; 

therefore error coding is necessary. Using RS error coding with suitable 

parameters, communication is made possible at 50 m for modulation level of 

M=4, around 35 Kbps data rate is achieved using RS(50,30) error coding. Like 

the previous case, without using error coding for modulation level of M=8 and 

M=16 no communication is achieved without errors. It can be observed from 

Figure 5.37 that using error coding, higher level of modulation not always 
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provides better data rate performance, in this scenario QPSK modulation 

provides the best communication performance. 
 

Like the previous case, the communication is possible either using error 

coding or using low level of modulation or short OFDM pulse length selection. 
 

The effect of OFDM pulse length shall reveal the effect under both 

Doppler shift and multipath propagation. The trade of between the OFDM pulse 

length and achievable data rate is depicted in the following graphs for distance 

50 m. 
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Figure 5.38: BER and bit rate performance of the diver scenario#1 and boundary 

state scenario#1 with Doppler shift (v=1 m/sec) and multipath with respect to 

OFDM pulse length 
 

From Figure 5.38, it is observed that the BER increases with OFDM 

pulse length like the previous case. The reason for BER increase is that for 

longer pulse lengths, the resistivity to Doppler shift decreases. For Doppler shift 

and multipath propagation scenarios, the BER performance is very close to only 

Doppler shift case because the effect of multipath propagation is almost 

overcame using frequency domain equalizer. However, from the trueput and RS 

coded data rate performances the difference shall be observed. 
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Figure 5.39: Trueput and RS coded data rate performance of the diver scenario 

#1 and boundary state scenario #1 with Doppler shift (v=1 m/sec) and multipath 

with respect to OFDM pulse length 
 

From Figure 5.39, it is observed that the trueput performance of the 

communication system in Doppler shift environment is poor like the previous 

case. The performance is slightly worse than the previous case, because the 

frequency domain equalizer almost has the same equalization capability with the 

previous case. However there is slight difference, which is due to the fact that 

the lost orthogonality by Doppler shift affects the frequency domain equalizer 

parameters. Using RS(45,38) error coding data rate around 37.6 Kbps data rate 

is achieved for modulation level of M=8 at OFDM pulse length 0.6 msec.  
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At 100 m the communication system performance is depicted in 

APPENDIX E.4. The system under Doppler shift of relative velocity 1 m/sec, 

with 1 msec OFDM pulse length modulation level of M=4 achieves 34.6 Kbps 

using RS(50, 28) error coding.  
 

At 100 m the communication system performs maximum RS coded data 

rate at 0.6 msec using modulation level of M=8 and achieved 39.6 Kbps using 

RS(45,40) error coding.  
 

For diver scenario #3 with boundary state scenario #1 at 50 m in Doppler 

shift environment, the communication system performance is depicted in 

APPENDIX E.5. The system under Doppler shift of relative velocity 1 m/sec, 

with 1 msec OFDM pulse length modulation level of M=4 achieves 32.1 Kbps 

using RS(50, 26) error coding.  
 

At 50 m the communication system performs maximum RS coded data 

rate at 0.6 msec using modulation level of M=8 and achieved 35.6 Kbps using 

RS(45,36) error coding.  
 

For diver scenario #3 with boundary state scenario #2 at 50 m in Doppler 

shift environment, the communication system performance is depicted in 

APPENDIX E.6. The system under Doppler shift for relative velocity 1 m/sec, 

with 1 msec OFDM pulse length and modulation level of M=4 achieves 37.1 

Kbps using RS(50, 30) error coding.  
 

At 50 m the communication system performs maximum RS coded data 

rate at 0.6 msec using modulation level of M=8 and achieved 37.6 Kbps using 

RS(45,38) error coding. 
 

Comparing this case with the previous case, which contains only Doppler 

shift, both performances are low, however the performance is lower with the 

Doppler shift and multipath propagation case. The reason is that the Doppler 

shift destroys the orthogonality. The loss in orthogonality avoids the frequency 

domain equalizers’ parameters from being set accordingly. This leads to 

considerable BER and low trueput. In order to overcome the low performance, 
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error coding has to be used along with frequency domain equalizer. The problem 

can also be overcame using shorter OFDM pulses that shall have more 

resistivity to dopper shift, however shorter pulses leads to fewer carriers; 

therefore less data rate. There is a trade of between the data rate and OFDM 

pulse length, which defines the resistance to Doppler shift as depicted in Figure 

5.39. 

5.3 Discussion 
 

 

The underwater acoustic communication system is a wideband multi-

user digital system that uses OFDM spread spectrum technique. The 

communication system has several parameters that have to be optimized to get 

guaranteed performance in every condition and scenario. The parameters to be 

set are transmission power, OFDM pulse length, level of modulation and error 

correcting code parameters. There is trade of between the communication 

parameters and the achievable data rate.  
 

The spread spectrum OFDM technique is selected for its inherent 

capability of rejecting multipath signals. The capability is made possible by 

using frequency domain equalizers. In order to preserve the orthogonality 

between the carriers, cyclic extension has to be added at the end of the OFDM 

pulses. The cyclic extension has to be as long the maximum expected delay 

spread of the communication system. In our environment, where the total 

distance between the divers shall be at most 100 m and the depth shall be as long 

as 100 m, the maximum expected delay spread is 5.4 msec, for boundary state 

scenario #1 and Sea-State-0. The cyclic extension therefore is selected 5.4 msec 

for the OFDM communication system. 

The acoustic transmission power shall be adjusted according to the 

distance between the transmitter and the receiver. The distance between the 

users is gathered using RTS/CTS packet exchange.  
 

The simulation results shows that in motionless case for diver scenario 

#1 and boundary state scenario #1 at using 1 msec OFDM pulse length and 
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modulation level of M=16 the BER decreased from 140 10-3 to less than 4 10-3 

providing 118 Kbps error coded data rate using a frequency domain equalizer. 

Similarly with the same scenario for Doppler shift environment the BER 

decreased from 250 10-3 to less than 180 10-3. The underwater communication 

system shall employ a simple frequency domain equalizer, whose parameters are 

set using RTS/CTS packet exchange. 
 

The communication scenario and conditions shall vary during the 

operational usage. According to the scenarios and conditions, the 

communication channel and therefore the achievable data rate shall change. If 

we find the worst conditions and set the communication parameters accordingly, 

we shall have guaranteed performance for all operational usage. In order to find 

the worst conditions several simulations are performed, including changing 

divers’, positions varying Sea-State and sea floor conditions and changing 

mobility of the users. 
 

To find the worst diver positions, diver state scenarios are created. The 

BER performances of the communication system, which has 1 msec OFDM 

pulse length and modulation level of M=16, for scenarios #1, #2 and #3 are less 

than 4.5 10-3, 1.5 10-3 and 3.5 10-3 providing 110 Kbps, 120 Kbps and 114 Kbps 

error coded data rate respectively. It is observed from the results that diver 

scenario #1, for which both divers are 1 m beneath the surface, is the worst diver 

position for the communication system performance. 
 

Similarly the boundary state conditions affect the communication 

performance. For diver scenario #1, OFDM pulse length 1 msec and modulation 

level of M=16, BER performance of boundary state scenario #1 and #2 are less 

than 4 10-3 and 2.2 10-3 providing 110 Kbps and 120 Kbps error coded data rate 

respectively. It is concluded from the results that the good Sea-State and rigid 

sea floor conditions provide poor communication performance. 
 

When the conditions are not stationary, the communication system 

performances degrade considerably. This is due to the fact that relative velocity 
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between the divers create Doppler shift at the received signals. The Doppler 

shift destroys the orthogonality of the carriers, which can not be perfectly 

equalized with simple equalizers. 
 

For diver state scenario #2, which has only the Doppler shift effect to the 

communication, BER performance of around 115 10-3 is achieved for 

modulation level of M=16 and OFDM pulse length of 1 msec. At 50 m distance, 

for modulation level of M=4 and OFDM pulse length of 1 msec, error coded 

data rate of 37 Kbps is achieved. At 50 m distance, maximum data rate of 37 

Kbps is achieved for 0.6 msec OFDM pulse length and M=8 level of 

modulation. For 100 m distance, maximum data rate of 39 Kbps is achieved for 

0.6 msec OFDM pulse length and M=8 level of modulation. 
 

The communication channel in general has both the mobility and 

multipath impairments. For diver state scenario #1, for OFDM pulse length of 1 

msec and modulation level of M=16, 160 10-3 BER is achieved. At 50 m 

distance, for pulse length of 1 msec and modulation level of M=4, 35 Kbps is 

achieved. At 50 m distance, the maximum error coded (RS(50,38)) data rate of 

37 Kbps is achieved for OFDM pulse length of 0.6 msec and modulation level 

of M=8. At 100 m distance, maximum error coded (RS(50,40)) data rate of 39 

Kbps is achieved for 0.6 msec OFDM pulse length and M=8 level of 

modulation. 
 

For diver state scenario #3 with boundary state scenario #1 at 50 m 

distance using 0.6 msec OFDM pulse length and modulation level of M=8, 35.6 

Kbps error coded (RS(50,36)) data rate is achieved. Similarly for boundary state 

scenario #2 using 0.6 msec OFDM pulse length and modulation level of M=4, 

37.6 Kbps error coded (RS(50,38)) data rate is achieved. 
 

The OFDM communication system performance is poor when users are 

mobile. The performance is even worse when users are mobile beneath the 

boundaries because this way there is considerable multipath propagation from 

the boundaries. The frequency domain equalizers fail to equalize the affected 
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signal and for error free communication, forward error correcting codes has to 

be used. For our system, we shall use RS error codes. 
 

From the simulation results, the worst diver condition is at diver scenario 

#1 and #3. For diver scenario #1 and #3, with OFDM pulse length 0.6 msec and 

modulation level of M=8, 37 Kbps and 35.6 Kbps error coded data rate at 50 m 

respectively. System performance in diver scenario #3 is worse than scenario #1; 

however, scenario #3 is not much probable diver scenario that can be experience 

in normal diving conditions.  
 

The specifications of the underwater communication system and 

optimum communication parameters to achieve guaranteed performance are 

listed in Table 5.18. 
 

Transmission center frequency 300 KHz 

Total Bandwidth 200 KHz 

Transducer Wideband Acoustic Transducer 

OFDM pulse length 0.6 msec 

Level of Modulation (M) 8 

RS code parameters RS(50,38) 

Transmission power 
Adjusted for 300th KHz carrier  

at certain distance for 1 10-3 BER 

Channel Sounding and 

Equalization 

RTS/CTS Packet Exchange 

Frequency Domain Equalization 

Maximum relative velocity 1 m/sec 

Maximum expected Doppler Shift 200 Hz @ 300 KHz 

Maximum expected Delay Spread 5.4 msec 

Cyclic Extension 5.4 msec 

BER 15 10-3 

Achievable Data Rate 37.6 Kbps 

Table 5.18: Optimum communication system parameter for guaranteed 

performance 
 

Choosing communication system parameter for diver scenario #1 in 

Doppler shift environment shall provide guaranteed performance for every 

condition and scenario in a diving session. 
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The underwater communication system shall have multi-user capability. 

In a network based topology more than one user shall occupy the shared 

spectrum and shared medium at the same time. In Section 3.1.5 , the needed data 

rate for user applications is discussed. For low bit rate data applications, each 

user shall require around 2 Kbps. For high bit rate data application, which is 

voice, each user shall require at most 9.6 Kbps and on the average 5 Kbps using 

IS-95 QCELP voice coding algorithm. Totally, one user shall approximately 

require on the average 7 Kbps data rate.  
 

The communication system is capable of providing 37.6 Kbps data rate 

using the overall spectrum for the worst case scenarios. Since each user require 

only 7 Kbps, the shared spectrum can be allocated to different users by assigning 

different carriers to different users, and provide multi-user communication. A 

rough estimation of how many users can be occupied at the same time within the 

total spectrum is given in (5.1). 
 

Number of Users ≈ 37.6 Kbps / 7 Kbps ≈ 5 Users (5.1) 
 

The system shall support on the average 5 user to communicate at the 

same time by assigning different users, different OFDM carriers. In normal 

diving session, it is expected that users shall occupy the channel for periods of 

time and within the remaining time shall remain silent. This way the 

communication system, like a trunk radio system, could occupy more than 5 

users with certain Grade of Service (GOS) [9, 77-86]. 
 

(5.1) depicts a pessimistic expression for how many users can occupy the 

channel at the same time because it is achieved for the worst case conditions. 

For better conditions, where the users are stationary or a mobile with a relative 

velocity much less than 1 m/sec, better communication performances are 

achieved. For example for M=16 and pulse length 1 msec, motionless, however 

frequency selective fading case, 110 Kbps data rate is achieved. When the 

system can support 110 Kbps then total number of users that can communicate 

at the same time would be around 16.  
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From the discussion, it can be concluded that the communication system 

can provide more than 5 Users if the system can adopt its parameters according 

to the changing conditions. The adaptive algorithm shall require more payload 

for MAC protocol, however in the end shall occupy more users’ communication 

at the same time. 
 

For changing conditions, the channel conditions shall be gathered using 

RTS/CTS packet exchange, like gathering the distance between the divers. 

During the packet exchange channel properties, such as distance, multipath and 

mobility parameters can be obtained and the communication system shall be 

adapted to the changing conditions. The adaptive algorithm shall decide on the 

communication parameters by measuring the bit error rate performance of the 

current system. 



 

 

 

Chapter 6 

6 Conclusion 
 

 

 

In this work, a spread spectrum digital, multi-user communication 

system for SCUBA divers is investigated and proposed. The system shall 

provide divers communication within total distance of 100 m and total depth of 

100 m. The communication system investigated in this work provides not only 

voice  communication but also telemetry and diver specific data as well. 
 

The spread spectrum communication is made available by specially 

designed wideband acoustic transducer. The acoustic transducer allows 

wideband communication by the help of the recent developments in ceramics. 

The system shall have 200 kHz bandwidth around 200 kHz center frequency. 
 

The proposed system in this work has a layered architecture, comprising 

of application layer, network layer, link layer and physical layer. In this work, 

we mainly focused on application layer, link layer and physical layer. 
 

The top layer of the system, application layer, contains the data source, 

which is voice, telemetry and diver specific data. The voice shall be compressed 

and coded with IS-95 QCELP voice coder, which is already a proven voice 

coder for IS-95 CDMA communication systems. The voice coder shall compress 

voice and adjust the data rate according to the voice activity and silent periods. 

The coder shall provide at most 9.6 Kbps and on the average 5 Kbps voice data. 
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The telemetry and diver specific data shall require at most 2 Kbps. On the 

average the data rate shall be around 7 Kbps for a regular diving session for a 

SCUBA diver. 
 

The network layer of the communication shall provide routing of the 

packets within the divers. In this work, we have little research on network layer. 

Network layer architecture and design of network parameters are left as a future 

work. Even though we have little work on the network layer, the design 

parameters are that the system shall have an ad-hoc network architecture, 

providing better battery life time, more coverage, better traffic allocation by 

restricting the coverage of each user.  
 

The data link layer of the communication system shall coordinate the 

access of each user to the shared medium by issuing a suitable MAC protocol. 

The data link layer shall also provide error correcting capability by adding FEC 

codes to the data. For the MAC protocol, we took account of propagation time 

of the acoustic waves and considered already proven MAC protocols for the air 

EM wave communication systems; namely CSMA/CA. The CSMA/CA, also 

know as MACA, protocol provides good performance for air communication 

system by avoiding hidden, exposed terminal problem and packet collisions; 

however it is far from an efficient protocol for underwater communication due 

to long propagation times of acoustic waves. The MACA protocol avoids the 

hidden, exposed terminal problem by issuing RTS/CTS packet exchange 

between the transmitter and the receiver. The RTS/CTS packets are exchanged 

for every message for air communication systems. For the underwater 

communication system instead of using MACA protocol with its entire features, 

some properties of the protocol are used for our advantage and others are 

omitted. Within the RTS/CTS packet exchange, channel properties are gathered. 

Distance between the divers, transmission power level, equalizer parameters can 

be set prior transmission of the data by issuing RTS/CTS packet exchange. The 

RTS/CTS packets can be used to probe the acoustic channel and adjust the 

communication parameters, such as level of modulation, FEC parameters. The 
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channel probing packets, RTS/CTS are transmitted at a much higher power in 

order to set the communication parameters more precisely, such as frequency 

domain equalizer parameters. Instead of exchanging RTS/CTS packets for all 

the messages, the exchange shall be done with a certain repeating frequency to 

maintain the certain communication performance. For the underwater 

communication system, the MACA protocol shall be modified in order to take 

account of the long propagation times of the acoustic waves, to provide better 

performance and better access of each user to the shared medium. The details of 

the modified protocol are left as a future work. The repeating frequency of the 

RTS/CTS packet exchange in order to maintain the required performance, the 

equalizer parameters and the packet structure are left as a future work. 
 

The data link layer also provides error correction. The underwater 

communication system is a digital system and the digital data is compressed 

audio and low data rate data; therefore, an error in the received packet means 

that the packet shall be dropped. On the other hand dropping a packet for the 

real time communication system shall lead to latency in voice communication; 

therefore, FEC codes are needed to maintain the integrity of each packet. In our 

work, we chose Reed-Solomon FEC codes to maintain required performance in 

bad channel conditions. The RS code parameters are chosen according to the 

channel properties and frame error rate. The frame error rate is the rate of 

dropped frames due to errors. Dropping 1% of the frames in a voice 

communication shall not interrrupt the communication; therefore, RS code 

parameters are selected in order to provide 1% FER. 
 

In this work, we mainly focused on physical layer and spread spectrum 

communication method. We chose OFDM or COFDM spread spectrum 

technique. COFDM is a special kind of OFDM system, where the data is error 

coded to gain communication performance. OFDM is selected upon several 

spread spectrum systems such as CDMA, FHSS because of it inherent ability of 

combating channel imperfections, like multipath fading, Doppler shift and 

channel frequency response. Due to pulse design criteria condition a burst and 
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wait communication is required. Multi-user communication requirement dictates 

the use and feasibility of OFDM. OFDM is a special kind of multi-carrier 

communication technique, where the entire spectrum is split up into carriers and 

all the carriers are used at the same time to transmit data. OFDM systems have 

inherent ability of resolving multipath signals using frequency domain 

equalizers. Frequency domain equalizer makes the system much easier than time 

domain equalizer systems. The frequency domain equalizer parameters shall be 

set by using RTS/CTS packet exchange that contains a known sequence of data. 
 

OFDM communication systems are preferred over single carriers 

systems or other spread spectrum systems because OFDM systems’ easier 

implementation. Since data is carried over several carriers in frequency domain, 

DFT and IDFT algorithm are used to modulate and create the data packets. With 

today’s electronics technology, DFT and IDFT algorithms are easily 

implemented using field programmable gate arrays (FPGA); therefore, the 

modulator and the demodulator of the communication are contained mostly in a 

single IC. This makes the communication system easier as compared to other 

techniques. Implementing the communication system using software know as 

software defined radio (SDR). In SDR, the baseband and intermediate frequency 

(IF) of the communication system is implemented in software and the high 

frequency components are implemented separately. For underwater acoustic 

communication the overall communication system can be implemented in 

software due to the fact that the transmission frequency is not as high as air EM 

communications. Since OFDM requires DFT and IDFT for the modulator and 

demodulator, the implementation of the communication system for underwater 

communication that uses OFDM is easier to implement than the other spread 

spectrum techniques. 
 

OFDM has inherent ability to avoid frequency selective fading using the 

frequency domain equalizer. For the equalizer to perfectly equalize the faded 

signal, the orthogonality of the carriers have to be maintained. The orthogonality 

of the carriers are maintained using the cyclic extension of the OFDM pulse. 
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When the OFDM pulse is cyclically extended, the multipath pulses arriving 

within OFDM pulse does not destroy the orthogonality. When the orthogonality 

is maintained, using a known sequence of data, frequency domain equalizer 

parameters are set. The transmitted data are equalized in frequency domain 

using the equalizer parameters. The orthogonality cannot be maintained when 

there is motion between the divers, because the Doppler shift destroys the 

orthogonality of the carriers. In certain scenarios some carriers can be in deep 

fade. In these circumstances, other techniques like using error correcting codes 

or pulse length reduction is used to avoid the errors. The OFDM system that 

uses error correcting codes is called COFDM. 
 

Simulations are performed in order to find the performance of the OFDM 

communication system while changing the communication parameters. For 

simulations the underwater communication channel is modeled as 5-Ray 

propagation, a line of sight path along with 4 multipath signals. The channel 

frequency response is frequency and range dependent. The multipath signal 

behavior from the boundaries is modeled according to Sea-State and porosity. 

The motion between the divers is modeled in the simulations. The maximum 

relative velocity between the divers is 1 m/sec. According to the model the 

maximum expected delay spread is found to be 5.4 msec. and the maximum 

Doppler shift that the received signal will face is 200 Hz at 300 kHz. 
 

In our work, we assumed that the maximum expected delay spread is 5.4 

msec. The OFDM pulse is cyclically extended to maintain the orthogonality. 

The cyclic extension is set to the maximum expected delay spread, which is 5.4 

msec, to allow the maintenance of orthogonality for all cases. We also assumed 

that the distance between the divers is known by use of RTS/CTS packet 

exchange. The frequency domain equalizer parameters are set within the 

RTS/CTS packet exchange using a known sequence of data. According to the 

distance between the divers, the transmission power is adjusted in order to have 

1 10-3 BER for the 300th kHz carrier. The OFDM pulse length, level of 
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modulation and RS error code parameters are the communication parameters to 

be set in order to achieve the best performance for all conditions.  
 

After the simulation results are observed, the worst conditions are 

observed when Sea-State is 0; that is there is little wind and therefore there are 

strong multipath signals from the sea surface and porosity is 0.2; that is the sea 

floor is rigid and therefore there are strong multipath signals from the sea floor; 

also the relative velocity between the divers is 1 m/sec. The multipath affected 

signals are closely equalized using the frequency domain equalizer because the 

orthogonality is maintained; however, the Doppler shift affected signals can not 

be equalized using frequency domain equalizers because the orthogonality is lost 

due to Doppler shift. 
 

From the simulation results, it is observed that there is trade of between 

the OFDM communication parameters; namely between OFDM pulse length, 

level of modulation and achievable error coded data rate. 
 

The OFDM pulse length defines the number of carries and number of 

carriers define the achievable data rate. Increasing in OFDM pulse length 

provides better data rate performance; however performance degrades when the 

divers are in motion and the received signal is affected by Doppler shift. In 

Doppler shift environment, increasing OFDM pulse length results in decreased 

performance, because the resistivity to Doppler shift decreases. On the other 

hand when the OFDM pulse length is decreased the resistivity to Doppler shift 

increases; however this time there are fewer carriers that carry data therefore the 

data rate performance is poor. Similarly, increasing the level of modulation 

provides better data rate performance; however, in non-stationary scenarios the 

performance of the system is lower than low level modulation cases due to high 

level of errors. Therefore, increase in level of modulation does not provide better 

data rate performance in non-stationary conditions.  
 

When the communication system performance are observed from the 

simulation results, it is concluded that the scenarios that have only multipath 
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propagation have good performances and the scenarios, which have both 

multipath and Doppler shift have the worst performance. For multipath only 

scenarios the performance is marginally better when the Sea-State conditions are 

bad and sea floor structure is soft.  
 

Choosing the OFDM communication in this kind of trade off needs 

careful consideration. The reason is that the optimum parameters may vary from 

scenario to scenario. For this reason, the communication parameters should be 

chosen for the worst case performance scenarios. When the parameters are set 

for the worst case performance; namely multipath and Doppler affected 

scenarios then guaranteed performances are achieved for better cases. From the 

simulations, the worst performance is achieved when there is both multipath and 

Doppler shift; namely diver scenario #1 with boundary state scenario #1 and 

when the relative velocity between the divers is 1 m/sec. The error coded data 

rate in this circumstance is 37.6 Kbps with 15 10-3 BER. The data rate is 

achieved when OFDM pulse length of 0.6 msec, M=8 and RS code parameters, 

RS(50,38). 
 

Each user on the average requires 7 Kbps data rate for voice and data 

communication. Since the achievable data rate performance is 37.6 Kbps the 

overall spectrum can be shared between many users. The share of the spectrum 

is achieved by allocating each user different sets of carriers. This way many 

users can use the shared spectrum at the same time. 
 

When the communication system parameters are chosen for the worst 

case performance, the system may occupy 5 user’s simultaneous communication 

assuming that each user creates 7 Kbps data on the average. It is not likely for 

each user to generate traffic at the same time simultaneously all the time; 

therefore, with certain GOS more users can be occupied in the same spectrum at 

the same time. 
 

From the simulation results, it is observed that the communication 

system performance is better when the divers are stationary. For M=16, 
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RS(100,90) and pulse length 1 msec case, motionless case, around 110 Kbps 

data rate is achieved for diver scenario #1 with boundary state scenario #1. For 

this case, around 16 users can occupy the channel at the same time, by allocating 

different users different carriers.  
 

When the system parameters are set to worst case performance, the 

system guarantees to achieve the same performance for all cases. However, this 

statement may be relaxed. The worst case performance shall not always be 

faced. In circumstances where better channel conditions are available, the need 

for setting the communication system parameters for the worst performance is 

unnecessary. The communication system could adapt its parameters to changing 

conditions. 
 

The communication system can adapt its OFDM pulse length, level of 

modulation, error correction code parameters according to the changing 

conditions. Achieving the adaptation is simply provided by using the RTS/CTS 

packet exchange. RTS/CTS packet exchange is discussed in previous chapters to 

provide frequency domain equalizer parameters to be set, along with distance 

gathering and transmission power level setting. The packet exchange can also be 

used to probe the channel for the communication channel properties, like 

multipath fading or Doppler shift. After the RTS/CTS packet exchange, the 

communication system parameters are set and higher data rate performance is 

achieved. In case the conditions are bad, guaranteed 37.6 Kbps data rate is 

achieved and when the conditions are better at most 110 Kbps is achieved. 
 

The adaptive communication system adds overhead to the overall 

communication system. The reason is that the adaptive system not only adds 

extra overhead on RTS/CTS packets exchange but also adds MAC overhead, 

which is due to allocating carriers to different users in an adaptive system and 

adapting to the communication parameters to changing conditions. The network 

topology, algorithms and MAC algorithms for adaptive communication system 

need considerable research and are left as a future work. 
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In this work a spread spectrum underwater acoustic communication 

system using OFDM as spread spectrum technique, supporting multi-user 

capability is proposed. The main research is made on the data link layer, the 

physical layer and application layer. The research about other layers is left as a 

future work. The proposed communication system is set to provide around 37 

Kbps data rate for the worst case conditions and guarantees to provide the same 

performance for the better case performances as well. The proposed 

communication system provides multi-user communication. Around 5 users can 

occupy the spectrum at the same time, by assigning different carriers to different 

users.  
 

For the future work, network and MAC algorithms shall be studied and 

the resulting work shall provide an adaptive communication system according to 

the changing conditions for underwater communication. After the related future 

work, it is expected to propose a communication system that has the same 

capabilities with the current proposed system; however providing better data rate 

performance up to 110 Kbps according to the changing conditions. 

 



 
APPENDIX A  
 
Carrier Sense Media Access (CSMA) Based Media Access 
Control (MAC) Protocols 
 

 

 

Carrier sense media access (CSMA) based protocols such as carrier 

sense media access with collision avoidance (CSMA/CA) and media access with 

collision avoidance (MACA) protocols coordinates the access of users to the 

shared medium by taking account of the channel state information. The channel 

state information is taken into account by listening to the carrier in the medium 

[5], [44]. 
 

The CSMA based protocols especially CSMA/CA and MACA provides 

collision free communication, while avoiding the hidden and exposed node 

problem [4], [5], [44], [49], [50]. The hidden and exposed node problems are 

depicted in Figure 6.1. 
 

 
Figure 6.1: Hidden and exposed node problem scenario 

 

In a communication scenario depicted in Figure 6.1, A and C can hear 

B’s transmission while they cannot hear each other. Using CSMA protocol, each 

node senses the medium whether or not there is an ongoing transmission. When 

A has a packet to send B, it listens to the carrier and if there is no ongoing 

transmission it transmits immediately, however at the same time if C has a 

packet to send to B, it senses the medium and if there is no ongoing transmission 

A B C D 
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it transmits immediately. Since A and C has no information about their 

transmission, A’s and C’s transmission collide at B, this in turn creates loss of 

packets. In this case, C and A are hidden from each other [5], [49], [50]. 
 

The exposed node problem can be defined with the similar scenario 

depicted in Figure 6.1. When A has a packet to send to B and C has a packet to 

send to D, C should defer its transmission not to interfere B’s reception. 

However, deferring a transmission to D is not necessary because the intended 

transmission is not on B. This case is called exposed node problem. C should not 

defer its transmission provided that B has the capability to deal with the 

interference generated by node C [5], [49], [50]. 
 

CSMA protocol cannot solve hidden and exposed node problem, because 

the protocol only listens to the carrier before transmission. However, with some 

modification CSMA/CA protocol can solve the problem. In CSMA/CA 

protocol, when a node has a packet to send it first initiates Request to Send 

(RTS) packet in order to inform the receiver that the node has a packet to send. 

After the receiver receives the RTS packet, the receiver transmits a Clear to 

Send (CTS) packet in order to inform the transmitter that the receiver is ready to 

receive the packet. The purpose of RTS, CTS packet exchange is to inform the 

neighboring nodes that there shall be a transmission and the neighbors should 

defer their transmission while packet transmission. MACA protocol is a 

modified version of CSMA protocol, which includes the length of the packet in 

the RTS and CTS packets. During the packet exchange, for the case depicted in 

Figure 6.1, when C has a packet to send to B, however receives a CTS from B, it 

knows that B shall receive a packet from A and its transmission shall interfere at 

B if it transmits its packet. This way hidden terminal problem is avoided. 

Similarly, if C receives a CTS and C has a packet to send to D, C does not have 

to defer its transmission to D because the intended receiver is not B, provided 

that B can separate two transmissions. This way, C can transmit to D without 

interrupting B’s reception. This way exposed terminal problem is avoided [5], 

[49], [50]. 
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Using the MACA protocol, the packet duration is included in the 

RTS/CTS packets.  Any node receiving RST and/or CTS packet defers their 

transmission knowing how long the ongoing transmission shall take place [5], 

[49], [50]. 
 

After RTS, CTS packet exchange, the data packet is transmitted. In order 

to know the packet is received perfectly, acknowledgment (ACK) has to be used 

in order to let the transmitter that the receiver received the packet successfully. 

When an ACK is included in the transmission the media access protocol is 

called MACAW [4], [5], [49], [50]. 
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APPENDIX B  
 
Network Topologies and Ad-Hoc Networking 
 

 

 

There are different types of networks topologies, centralized, distributed 

and multi-hop [4], [5]. In centralized topology, all data packets are routed 

through a central node, which is called the hub. This topology is suitable for 

deep water acoustic networks, because at the surface a sensor with both an 

acoustic and an RF transceiver transmits the collected data from the underwater 

to the shore. A major disadvantage of this configuration is that when the hub 

fails, the whole communication fails. In decentralized routing, each node has the 

information about the router, to which the node is connected and does not know 

the overall network architecture. It’s the routers duty to forward the packets to 

destination. In multi-hop topology, also known as ad-hoc network, each node 

has the information about its neighbors and communication is established 

through the neighbors. Messages are transferred from the source to the 

destination by hopping from node to node. The advantage of ad-hoc networking 

is that when a node fails on the route, the message can be transferred to the 

destination via another node. On the other hand, by hopping, overall network 

energy lasts longer because at each hop, node has to transmit its messages to 

shorter distances than direct communications. The scenario for an ad-hoc 

network is depicted in Figure 6.2. 
 

 
Figure 6.2: Single hop and multi-hop networking topology 

 

For the network topologies depicted in Figure 6.2, communication 

between ni and nj is done for the single-hop topology directly and for the multi-

dkj dik 

dij 

nk nj ni 

nj ni 
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hop topology over neighbor nk. The transmission powers for the ni node for the 

two scenarios are different. For the underwater communication the transmission 

power level of each node can be calculated given that the nodes know the 

distance between it neighbors. The transmission power level is provided in 

Table 6.1. 
 

ni   nj ijijtx ddP α+∝ log20  

ni   nk ikiktx ddP α+∝ log20  

Table 6.1: Transmission power for node ni for the single hop and multi-hop 

network scenarios 
 

The transmission power depicted in Table 6.1, states that the node 

lifetime of ni in in multi-hop topology is greater. However, in multi-hop network 

case, there is a need for an intermediate node; therefore the overall energy 

consumption including the intermediate node has to be calculated. 
 

ni   nj ijijtx ddP α+∝ log20  

ni   nk  nj ( ) ( )kjkjikiktx ddddP αα +++∝ log20log20  

Table 6.2: Overall transmission power need of the single hop and multi-hop 

network scenarios 
 

In Table 6.2, overall transmission power need for the scenarios is 

provided. It can be proved that the overall network lifetime can be longer for the 

multi-hop network topology. The transmission power levels for the multi-hop 

network is lower, however for the overall network lifetime calculations, node 

processing power needs and the initialization of the multi-hop network should 

be addressed. Multi-hop networks are often built with suitable routing and 

initialization protocols that also includes the processing power needs and 

network initialization. With suitable routing and initialization protocols, ad-hoc 

networking not only brings longer network lifetime, but also brings longer 

network range [4], [5], [51]. 
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APPENDIX C  
 
Rms Delay Spread and Mean Delay in the Underwater Acoustic 
Channel at 200 kHz at Maximum Range of Depth and Range 
 

 

 

Sea-State-0 10dB loss       
Porosity n=0.4 35dB loss       
       
Depth 

(m) 
Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec) 

 Depth 
(m) 

Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec) 

h=1 d=1 6.2 10-6 1.6 10-5  h=50 d=1 1.78 10-4 2.5 10-7 
 d=10 2.2 10-6 0.5 10-7   d=10 1.28 10-3 1.43 10-4 
 d=30 7.5 10-7 2.0 10-8   d=30 2.77 10-3 3.54 10-4 
 d=50 4.5 10-7 1.5 10-8   d=50 2.2 10-4 5.08 10-4 
 d=70 2.7 10-7 1.0 10-8   d=70 2.7 10-4 6.25 10-4 
 d=90 2.2 10-7 0.9 10-8   d=90 2.8 10-4 7.2 10-4 
 d=100 1.9 10-7 0.7 10-8   d=100 2.5 10-4 7.6 10-4 
         
h=10 d=1 1.78 10-4 2.85 10-6  h=70 d=1 1.78 10-4 1.5 10-7 
 d=10 6.8 10-5 1.43 10-4   d=10 1.28 10-3 1.0 10-5 
 d=30 5.0 10-5 1.5 10-6   d=30 2.77 10-3 3.55 10-4 
 d=50 3.8 10-5 1.4 10-6   d=50 3.75 10-3 5.0 10-4 
 d=70 2.9 10-5 2.5 10-6   d=70 4.47 10-3 6.25 10-4 
 d=90 2.4 10-5 0.7 10-6   d=90 3.2 10-4 7.2 10-4 
 d=100 2.2 10-5 0.6 10-6   d=100 3.2 10-4 7.6 10-4 
         
h=20 d=1 1.78 10-4 1.15 10-6  h=90 d=1 1.78 10-4 1.0 10-7 
 d=10 1.24 10-3 1.43 10-4   d=10 1.28 10-3 5.0 10-6 
 d=30 1.2 10-4 3.54 10-4   d=30 2.77 10-3 3.53 10-4 
 d=50 1.2 10-4 3.0 10-6   d=50 3.76 10-3 5.07 10-4 
 d=70 9.0 10-5 2.0 10-6   d=70 4.5 10-3 6.25 10-4 
 d=90 8.0 10-5 2.0 10-6   d=90 5.05 10-3 7.2 10-4 
 d=100 7.5 10-5 6.0 10-6   d=100 5.32 10-3 7.65 10-4 
         
h=40 d=1 1.78 10-4 3.5 10-7  h=100 d=1 1.78 10-4 1.0 10-7 
 d=10 1.28 10-3 1.43 10-4   d=10 1.28 10-3 4.0 10-6 
 d=30 2.77 10-3 3.54 10-4   d=30 2.77 10-3 3.54 10-4 
 d=50 2.2 10-4 5.07 10-4   d=50 3.76 10-3 5.06 10-4 
 d=70 2.1 10-4 6.25 10-4   d=70 4.5 10-3 6.25 10-4 
 d=90 2.1 10-4 6.0 10-6   d=90 5.07 10-3 7.2 10-4 
 d=100 2.1 10-4 5.0 10-6   d=100 5.32 10-3 7.65 10-4 
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Sea-State-0 10dB loss       
Porosity n=0.2 15dB loss       
       
Depth 

(m) 
Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec) 

 Depth 
(m) 

Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec) 

h=1 d=1 6.0 10-5 1.85 10-5  h=50 d=1 1.92 10-4 8.0 10-7 
 d=10 1.35 10-5 3.45 10-6   d=10 1.48 10-3 7.15 10-5 
 d=30 4.55 10-6 1.18 10-6   d=30 2.82 10-3 4.54 10-4 
 d=50 2.7 10-6 7.2 10-7   d=50 2.22 10-3 6.72 10-4 
 d=70 1.94 10-6 5.1 10-7   d=70 2.36 10-3 7.56 10-4 
 d=90 1.51 10-6 3.9 10-7   d=90 2.24 10-3 7.65 10-4 
 d=100 1.36 10-6 3.6 10-7   d=100 2.16 10-3 7.9 10-4 
         
h=10 d=1 2.09 10-4 6.6 10-6  h=70 d=1 1.37 10-4 5.0 10-7 
 d=10 5.7 10-4 1.68 10-4   d=10 1.42 10-3 4.1 10-5 
 d=30 3.8 10-4 8.2 10-5   d=30 3.17 10-3 4.05 10-4 
 d=50 2.5 10-4 6.2 10-5   d=50 3.81 10-3 6.55 10-4 
 d=70 1.88 10-4 4.8 10-5   d=70 4.55 10-3 8.3 10-4 
 d=90 1.46 10-4 3.75 10-5   d=90 2.96 10-3 9.3 10-4 
 d=100 1.33 10-4 3.45 10-5   d=100 3.04 10-3 9.54 10-4 
         
h=20 d=1 2.06 10-4 3.0 10-6  h=90 d=1 1.2 10-4 2.0 10-7 
 d=10 1.29 10-3 1.87 10-4   d=10 1.37 10-3 2.5 10-5 
 d=30 1.05 10-3 3.66 10-4   d=30 3.2 10-3 3.78 10-4 
 d=50 8.35 10-4 1.56 10-4   d=50 4.14 10-3 5.94 10-4 
 d=70 6.6 10-4 1.48 10-4   d=70 4.54 10-3 8.0 10-4 
 d=90 5.42 10-4 1.29 10-4   d=90 5.14 10-3 9.55 10-4 
 d=100 4.96 10-4 1.19 10-4   d=100 5.4 10-3 1.01 10-3 
         
h=40 d=1 1.95 10-4 1.2 10-6  h=100 d=1 1.12 10-4 2.0 10-7 
 d=10 1.49 10-3 9.4 10-5   d=10 1.35 10-3 2.0 10-5 
 d=30 1.64 10-3 4.74 10-4   d=30 3.14 10-3 1.64 10-4 
 d=50 1.97 10-3 6.06 10-4   d=50 4.3 10-3 5.65 10-4 
 d=70 1.89 10-3 6.56 10-4   d=70 4.55 10-3 7.65 10-4 
 d=90 1.66 10-3 2.66 10-4   d=90 5.12 10-3 9.4 10-4 
 d=100 1.59 10-3 2.66 10-4   d=100 5.4 10-3 1.01 10-3 
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Sea-State-1 14dB loss       
Porosity n=0.4  35dB loss       
       
Depth 

(m) 
Dist. 
(m) 

Delay  
Spread  

(sec) 

Mean  
Delay 
(sec)  

Depth 
(m) 

Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec) 

h=1 d=1 6.8 10-6 6.45 10-6  h=50 d=1 1.12 10-4 1.0 10-7 
 d=10 1.9 10-6 8.0 10-8   d=10 8.1 10-4 5.78 10-5 
 d=30 6.6 10-7 3.0 10-8   d=30 1.76 10-3 1.44 10-4 
 d=50 4.0 10-7 1.5 10-8   d=50 2.1 10-4 2.06 10-4 
 d=70 2.5 10-7 1.2 10-8   d=70 2.6 10-4 2.54 10-4 
 d=90 2.2 10-7 0.9 10-8   d=90 2.4 10-4 2.92 10-4 
 d=100 1.8 10-7 1.0 10-8   d=100 2.4 10-4 3.09 10-4 
         
h=10 d=1 1.13 10-4 1.15 10-6  h=70 d=1 1.12 10-4 0.6 10-7 
 d=10 6.5 10-5 5.8 10-5   d=10 8.1 10-4 4.4 10-6 
 d=30 5.0 10-5 2.0 10-6   d=30 1.76 10-3 1.43 10-4 
 d=50 3.4 10-5 1.4 10-6   d=50 2.38 10-3 2.07 10-4 
 d=70 2.6 10-5 1.0 10-6   d=70 2.85 10-3 2.55 10-4 
 d=90 2.05 10-5 1.0 10-6   d=90 3.0 10-4 2.94 10-4 
 d=100 1.9 10-5 0.8 10-6   d=100 3.05 10-4 3.1 10-4 
         
h=20 d=1 1.13 10-4 5.0 10-7  h=90 d=1 1.12 10-4 4.0 10-8 
 d=10 7.75 10-4 5.8 10-5   d=10 8.1 10-4 2.6 10-6 
 d=30 1.2 10-4 1.43 10-4   d=30 1.76 10-3 1.43 10-4 
 d=50 1.04 10-4 3.0 10-6   d=50 2.39 10-3 2.06 10-4 
 d=70 0.9 10-4 3.0 10-6   d=70 2.85 10-3 2.55 10-4 
 d=90 7.0 10-5 2.5 10-6   d=90 3.21 10-3 2.94 10-4 
 d=100 6.5 10-5 2.0 10-6   d=100 3.38 10-3 3.1 10-4 
         
h=40 d=1 1.12 10-4 2.0 10-7  h=100 d=1 1.12 10-4 0.5 10-7 
 d=10 8.1 10-4 5.8 10-5   d=10 8.1 10-4 2.2 10-6 
 d=30 1.76 10-3 1.44 10-4   d=30 1.76 10-3 1.43 10-4 
 d=50 2.2 10-4 2.06 10-4   d=50 2.39 10-3 2.06 10-4 
 d=70 2.1 10-4 2.54 10-4   d=70 2.85 10-3 2.55 10-4 
 d=90 2.2 10-4 4.0 10-6   d=90 3.22 10-3 2.94 10-4 
 d=100 2.1 10-4 0.9 10-5   d=100 3.38 10-3 3.11 10-4 
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Sea-State-1 14dB loss       
Porosity n=0.2 15dB loss       
       
Depth 

(m) 
Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec)  

Depth 
(m) 

Dist. 
(m) 

Delay  
Spread 

(sec) 

Mean  
Delay 
(sec) 

h=1 d=1 5.3 10-5 9.55 10-6  h=50 d=1 1.25 10-4 5.0 10-7 
 d=10 1.03 10-5 2.44 10-6   d=10 1.09 10-3 4.4 10-5 
 d=30 3.48 10-6 8.3 10-7   d=30 1.78 10-3 2.42 10-4 
 d=50 2.1 10-6 4.95 10-7   d=50 2.13 10-3 3.67 10-4 
 d=70 1.48 10-6 3.6 10-7   d=70 2.09 10-3 3.72 10-4 
 d=90 1.15 10-6 2.8 10-7   d=90 1.89 10-3 3.08 10-4 
 d=100 1.04 10-6 2.48 10-7   d=100 1.79 10-3 3.21 10-4 
         
h=10 d=1 1.53 10-4 3.8 10-6  h=70 d=1 1.09 10-4 2.6 10-7 
 d=10 5.15 10-4 9.3 10-5   d=10 1.01 10-3 2.54 10-5 
 d=30 2.95 10-4 6.9 10-5   d=30 2.33 10-3 1.92 10-4 
 d=50 1.94 10-4 4.6 10-5   d=50 2.42 10-3 3.52 10-4 
 d=70 1.44 10-4 3.4 10-5   d=70 2.9 10-3 4.58 10-4 
 d=90 1.13 10-4 2.68 10-5   d=90 2.8 10-3 5.06 10-4 
 d=100 1.02 10-4 2.42 10-5   d=100 2.75 10-3 5.16 10-4 
         
h=20 d=1 1.5 10-4 1.78 10-6  h=90 d=1 9.5 10-5 1.50 10-7 
 d=10 8.21 10-4 1.0 10-4   d=10 9.1 10-4 1.54 10-5 
 d=30 8.85 10-4 1.5 10-4   d=30 2.34 10-3 1.43 10-4 
 d=50 6.6 10-4 1.43 10-4   d=50 3.02 10-3 2.91 10-4 
 d=70 5.2 10-4 1.19 10-4   d=70 2.88 10-3 4.3 10-4 
 d=90 4.25 10-4 9.8 10-5   d=90 3.28 10-3 5.26 10-4 
 d=100 3.85 10-4 9.0 10-5   d=100 3.43 10-3 5.56 10-4 
         
h=40 d=1 1.33 10-4 6.8 10-7  h=100 d=1 8.95 10-5 1.2 10-7 
 d=10 1.09 10-3 5.9 10-5   d=10 8.62 10-4 1.24 10-5 
 d=30 1.79 10-3 2.6 10-4   d=30 2.28 10-3 1.33 10-4 
 d=50 1.77 10-3 3.34 10-4   d=50 3.21 10-3 2.68 10-4 
 d=70 1.57 10-3 2.68 10-4   d=70 3.05 10-3 3.96 10-4 
 d=90 1.36 10-3 2.98 10-4   d=90 3.27 10-3 5.08 10-4 
 d=100 1.27 10-3 2.46 10-4   d=100 3.42 10-3 5.52 10-4 
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APPENDIX D  
 
Delay Spread Profile of Various Boundary Condition Scenarios 
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APPENDIX E  
APPENDIX E.1  
 
Communication Performance of Diver State Scenario#1 and 
Boundary State Scenario#1 with Doppler Shift 
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APPENDIX E.2  
 
Communication Performance of Diver State Scenario#3 and 
Boundary State Scenario#1  
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APPENDIX E.3  
 
Communication Performance of Diver State Scenario#2 and 
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APPENDIX E.4  
 
Communication Performance of Diver State Scenario#1 and 
Boundary State Scenario#1 with Doppler Shift 
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APPENDIX E.5  
 
Communication Performance of Diver State Scenario#3 and 
Boundary State Scenario#1 with Doppler Shift 
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APPENDIX E.6  
 
Communication Performance of Diver State Scenario#3 and 
Boundary State Scenario#2 with Doppler Shift 
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