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ABSTRACT 

 

OPTICAL NEAR FIELD INTERACTION  OF 

SPHERICAL QUANTUM 

DOTS  

Togay Amirahmadov 

M.S. in Physics 

Supervisor: Assoc. Prof. Hilmi Volkan Demir 

July, 2012 

 

Nanometer-sized materials can be used to make advanced photonic devices. 

However, as far as the conventional far-field light is concerned, the size of these 

photonic devices cannot be reduced beyond the diffraction limit of light, unless 

emerging optical near-fields (ONF) are utilized. ONF is the localized field on the 

surface of nanometric particles, manifesting itself in the form of dressed photons 

as a result of light-matter interaction, which are bound to the material and not 

massless. In this thesis, we theoretically study a system composed of different-

sized quantum dots involving ONF interactions to enable optical excitation 

transfer. Here this is explained by resonance energy transfer via an optical near-

field interaction between the lowest state of the small quantum dot and the first 

dipole-forbidden excited state of the large quantum dot via the dressed photon 

exchange for a specific ratio of quantum dot size. By using the projection operator 

method, we derived the formalism for the transfered energy from one state to 

another for strong confinement regime for the first time. We performed numerical 

analyses of the optical near-field energy transfer rate for spherical colloidal 

quantum dots made of CdSe, CdTe, CdSe/ZnS and PbSe. We estimated that the 

energy transfer time to the dipole forbidden states of quantum dot is sufficiently 

shorter than the radiative lifetime of excitons in each quantum dot. This model of 

ONF is essential to understanding and designing systems of such quantum dots for 

use in near-field photonic devices. 

 

Keywords: optical near field, dressed photon, resonance energy transfer, 

excitons. 
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ÖZET 

 
KÜRESEL KUANTUM NOKTALARININ OPTİK YAKIN 

ALAN ETKİLEŞİMİ 
 

Togay Amirahmadov 

Fizik Bölümü, Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Hilmi Volkan Demir 

Temmuz 2012 

 

Nano ölçekli malzemeler ileri fotonik cihazlar yapmak için kullanılabilir. Yeni 

ortaya konulan optik yakın alanlardan (OYA) faydalanılmadıkça, bilinen uzak 

alan ışığı kullanılarak, fotonik cihazların boyutu kırınım sınırının altına 

indirilemez. OYA nanometrik parçacıkların yüzeyi üzerinde yerelleşmiş, 

malzemeye bağlı, kütlesiz olmayan ve ışık madde etkileşimi sonucunda kendisini 

döşenmiş fotonlar şeklinde gösteren  bir alandır. Bu tez çalışmasında, optik 

uyarılma transferi sağlamak için, farklı boyutlu kuantum noktalarından oluşan 

OYA etkileşimli bir sistemi teorik olarak inceledik. Burada, enerji aktarımı 

kuantum nokta boyutlarının belirli bir oranı için giyinmiş foton alışverişi yoluyla 

küçük kuantum noktasının taban seviyyesi ve büyük kuantum noktasının ilk 

uyarılmış dipol yasaklı seviyyesi arasındaki optik yakın alan etkileşimi 

aracılığıyla rezonans enerji aktarımı ile açıklanabilir. İzdüşüm operatörü 

yöntemini kullanarak, ilk kez güçlü sınırlandırma bölgesinde bir seviyyeden 

diğerine aktarılan enerji için gereken formalizmi türetdik. CdSe, CdTe, CdSe/ ZnS 

ve PbSe malzemelerinden yapılan küresel kolloidal kuantum noktaları için optik 

yakın alan enerji aktarım hızının sayısal analizini yaptık. Kuantum noktalarının 

dipol yasaklı seviyelerine enerji aktarım süresinin, kuantum noktalarında bulunan 

eksitonların ışınımsal ömür süresinden yeterince kısa olduğunu hesapladık. Bu 

OYA modeli, yakın alan fotonik cihazlarında kullanılacak kuantum nokta 

sistemlerinin tasarımı ve anlaşılması için çok önemlidir. 

 

Anahtar kelimeler: Optik yakın alan, döşenmiş foton, rezonans enerji aktarımı, 

eksitonlar. 
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To my father…
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Chapter 1 
 

 

Introduction 
 

 

 

 

1.1 The optical far field and diffraction limit of light 

One of the intrinsic characteristic of waves is diffraction. This phenomenon is 

explained as following. Imagine that we have a plate with very small aperture on 

the surface and plane light propagates on it. After the light passes through an 

aperture it is converted into a diverging spherical wave. This divergence is called 

diffraction. The divergence angle is a  for circular aperture where,   is the 

wavelength of an incident light and a  is aperture radius. When the distance 

between the aperture and the plane in which the pattern is observed is large 

enough than the wavelength of light then, this region is often called as a far field 

and expressed with a distance greater than 2 4D  , where, D  is the largest 

dimension in the aperture and  -is the wavelength of the incident light.  

 

As shown in the Figure 1.1.1 the plane wave incident on a positive lens is focused 

at a point by convex lens. Even if we focus the light to the convex lens due to the 

diffraction limit the spot size of the light cannot be zero. This phenomena is called 

defocusing.  

 

                    

Figure 1.1.1 The schematic representation of residual defocusing. 
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The spot size of the light is about NA  where, NA  is called the numerical 

aperture and usually is given as sinn  . Here, n  is the refractive index of the 

medium and the angle   is obtained from    
22sin 2 2a f a    where, f is 

focal length and a  is the diameter of the lens.[2]  

 

The semiconductor lasers, optical waveguides and related integrated photonic 

devices must confine the light within them for effective operation. However, as 

long as conventional light is used, the diffraction limit restrict the miniaturization 

of the optical science and technology. Therefore,  to go beyond the diffraction 

limit we need nonpropogating localized light that is free of diffraction. Since 

optical near fields is free of diffraction it has been proposed to transcend the 

diffraction limit of light. [1]-[4]   

 

1.2 What is optical near fields? 
 

The optical near felds are spatially localized fields on the surface of nanometric 

particles. It is generated when we excite the nanometric material by incident light. 

Figure 1.2.1a represents the generation mechanism of optical near fields. Here the 

radius a  of the sphere S  is assumed to be much smaller than the wavelength of 

incident light. In the Figure 1.2.1.a the scattered light represents the light scattered 

from the surface of the sphere S  and corresponds to the  far field light. However, 

as a result of light-matter interaction an optical localized field with thickness 

about a  is also generated on the surface of the sphere S . This localized field is 

called optical near-field. Since it is localized on the sphere S  it cannot be 

seperated from the sphere. The volume of this optical near field is smaller than the 

diffraction limited value because the size of a particle is much smaller than the 

wavelength of incident light    a  . Figure 1.2.1b represents generation of an 

optical near field by a small aperture. The scattered light in the figure corresponds 

to the far field light and propogaters to the far field. However, again the  localized 

field around the aperture corresponds to the near fields. The decay length of near 
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field is much smaller than the wavelength of incident light and it does not depends 

on the wavelength. It only depends on the size of the nanometric material.  

In figure 1.2.1a the thickness of the optical near field is about a . This can be 

explained as follow. By directing the light on the nanometric object S  we excite 

electrons in S . As a result, due to the Coulomb forces generating from the electric 

field of incident light, the nuclei and electrons in atoms of S  are displaced from 

their equilibrium position.  

 

 
       

              

                                      
Figure 1.2.1  The schematic representation of generation of  an optical near fields              

(a) Generation of optical near fields on the surface of the sphere S.  (b) Generation of 

optical near fields by a small subwavelength aperture 

 

 

        

Figure 1.2.2 Generation of optical near field and electric field lines. (Taken from 

M. Ohtsu Principles of Nanophotonics 2008.) 
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Since the nuclei and electrons are oppositely charged, their displacement direction 

are opposite. Therefore, electric dipoles are generated on the surface of the sphere 

S . The product of the charge and the displacement vector of electric dipole is 

called the electric dipole moment. These electric dipoles are oscillated with the 

oscillating electric field of incident light and attract or repel each other. As a result 

the spatially localized electric field with thickness a  is generated on the surface of 

the sphere. Figure 1.2.2 shows the electric field lines of the dipoles on the sphere 

A . Represented electric field lines on the surface of the particle A  corresponds to 

the optical near field. As shown in this figure the electric dipole moments are 

connected by these electric field lines. They represent the magnitude and 

orientations of the Coulomb forces. These electric lines tend to take possible 

shortest trajectory. They emanate from one electric dipole moment and terminate 

at another. This is the reason why optical near fields is very thin. As shown in the 

Figure 1.2.2 as we move away from the surface of the particle the optical near 

field potential decreases rapidly and at distance a  it becomes negligible small. 

This arises from the fact that the most of the electric field lines are located on a 

close distances to the surface of a particle. The two kinds of electric field lines is 

shown in Figure 1.2.2. One is the electric lines of the optical near field which are 

at close proximity to the surface of particle A . The other force lines which form a 

closed loop correspond to the far field. 

 
Figure 1.2.3 represents the nanometric and macroscopic subsystems. Nanometric 

subsystem consists optical near field and two particles. The macroscopic 

subsystem consists of the electromagnetic fields of scattered light incident light 

and substrate material. Since the optical near fields localized on the surface of the 

particle it does not carry energy to the far field, therefore it can not be detected. In 

order to detect the optical near fields the second particle P  is placed near the 

particle S . By placing the particle P  close to the near field of the particle S  

some of the force lines of the near field of the sphere S  is directed to the surface 

of P  and induces electric dipole moments on P . By this way, the near field of the 

particle S  is disturbed by the particle P  and disturbed near field is converted to 

the propogating light and its transferred energy can be detected by the 

photodetector. 
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 Figure 1.2.3 Nanometric subsystem composed of two nanometric particles and optical    

near fields generated between them.                                      

Here the two particles are considered interacting with each other by exchanging 

the exciton-polariton energies. Since the local electromagnetic interaction happens 

in a very short amount of time, the exchange of virtual exciton-polariton energies 

is allowed due to uncertainty principle. Optical near fields mediates this 

interaction, that is represented by Yukawa type function. [1]-[6]  In the following 

chapters the theoretical background of the optical near fields and the numerical 

analysis for the energy transfer rate for different quantum dots is discussed. The 

organization of the rest of this thesis is given as following: 

 

In Chapter 2 the theoretical background of optical near fields  is presented. The 

near field conditions is shown and the dipole-dipole interaction model is 

described. By using the projection operator method the effective near field 

interaction potential is derived and the nature of the optical near field is described 

as a virtual cloud of photons. 

 

In Chapter 3 the optical near field energy transfer is explained. The equation for 

the transfered energy from one state to another is derived for strong and weak 

confinement regime. The numerical analysis of the optical near-field energy 

transfer rate for spherical CdSe, CdTe, CdSe/ZnS and PbSe quantum dots was 

made. Finally, in Chapter 4 summarizing the thesis the application of the theory is 

briefly discussed. 
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Chapter 2 

Theoretical Background of Optical 

Near Fields 
 

 

2.1 Optical near field as a dipole-dipole interaction 

      model 
 

Let us investigate the optical near-field interaction in a viewpoint of dipole-dipole 

interaction model. For simplicity let us assume two separate nanometric particles 

with seperation distance R  and charge densities 1  and 2 . In this case the 

Coulomb interaction energy between these  two nanometric object  is given by  

 

3 31 1 2 2
12 1 2

0 1 2

( ) ( )1

4 | |

r r
V d rd r

r r

 




                                                        (2.1)  

 
If we assume that the extent of the charge distributions 1  and 2  is much 

smaller than their seperation R , we can expand the interaction potential 12V  in a 

multiple series as  

 

    

2

1 2 1 2 2 1 1 2 1 2
12 3 3 5

0

( ) ( ) ( ) 3( )( )1
( )

4

q q q p R q p R R p p p R p R
V R

R R R R

      
      

 
 

(2.2)  

where 2 1R r r  , and the multipole and dipole moments of the charge is defined 

as 3( )q r d r     and 3( )p r r d r     , respectively. Here the first term of 

expansion is the charge-charge interaction and it spans over along distances since 

the distance dependence is 1R . The next two terms correspond to the charge 

dipole interaction and has a distance dependence of 2R . Therefore, it has a 

shorter range than the first term. The fourth term shows the dipole-dipole 

interaction and decays with 3R . It is the most important interaction among 

neutral particles and strongly depends on the dipole orientations. This term gives 
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rise to Van der Waals forces and Förster-type energy transfer. In a similar way, 

the electric field vector can be given by [12],[33] 

 

 2

2 3

0

1 1 1
( ) 3 ( )

4

ikrik
E k n p n n n p p e

r r r

    
           

    
                (2.3)        

Since the magnitude of the first term is larger for kr >>1,  it  represents the 

component dominating in the far field region.  In contrast, the third term 

represents the electric  field component that dominates in the close proximity of 

p because it is the largest when kr <<1. 

 

Now let us assume two point light sources. The separation distance between these 

two sources is b  and it is assumed to be the size of material object as shown in 

Figure 2.1.1. The vector r  represents the seperation distance between the object  

and the detection point S. Since  we can treat the two particles as a point light 

source, the electric field ( , )E r t  at time t  and the position r  can be defined as a 

superposition of  the electric field vectors of the two point light sources  

 | 2| | 2|

0 0( , )
| 2 | | 2 |

i t ik r b i t ik r b

m m

e e
E r t E E

r b r b

      

 
 

                                   

(2.4)  

 
where 0E  is the electric field vector of incident light,  2   is the angular 

frequency  and 2k    is the wave number. The quantity | 2 |k r b represents 

the phase delay t . Here depending on the values of b  and r , we can consider 

three possible cases. 

 

 
Case 1.  1 << kb << kr      

         
In this case, since 1<<kb, the term proportional to  

1r  in (2.3) is larger than the 

other terms and, hence, the value of m  should be one. Therefore, (2.4)  

approximates to 

 

     0 0( , ) cos sin cos sin
2 2 2 2| 2 | | 2 |

i t ikr i t ikre kb kb e kb kb
E r t E i E i

r b r b

       
      

    
(2.5)  
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Figure 2.1.1 Two point light sources with separation distance b .  

 

where we used exp cos sin
2 2 2

kb kb kb
i i

 
   
 

. Noticing  that, 
| |

r
n

r
  ,

| |
b

b
n

b
  

and  b << r , thus (2.5)  becomes  

0

( )
( , ) 2 cos

2

i t ikr

bkb n ne
E r t E

r

  


                                             
(2.6)  

To estimate the value b let us assume that  | ( , ) |E r t  is maximum at the position 

0r  at which 0 0 0| | | |n r r  and 0( ) 0bn n  . If at any other  position 1r  the value of 

| ( , ) |E r t  is maximum again, the relation 1( ) 2bkb n n   .  From this relation we 

can find b  as 12 ( )bb k n n   

            

 

  Figure 2.1.2  Two positions 0r  and 1r  where | ( , ) |E r t reaches its maximum value. 
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Case 2.  kb <<1 << kr       

 
 

In this case, since kb << kr  again, the value of m  in (2.4)  takes unity. To 

estimate b  from (2.6) , the inequality | | 2bkb n n    should be satisfied. In other 

words the phase difference between the light waves of the two light sources has to 

be larger than   at the detection point. Since we have | | 1bn n  , the requirement 

above changes to 2kb  . This condition represents the diffraction limit of light. 

However, since kb  <<1 this requirement cannot be met and, therefore, the value 

of b cannot be obtained. In other words, since the phase difference between the 

two light waves is sufficiently small, we cannot measure the sub-wavelength-

sized object at the detection point r  in the far field.   

 

Case 3.  kb < kr << 1  

 

In this case, since  1kr  , the terms in (2.3) proportional to 1r  and 2r are very 

small and, thus, the term proportional to  3r  dominates. Therefore, we choose  

3m  . Also, since the phase delay | 2 |k r b  is sufficiently small, (2.4)  

approximates to 

0 3 3

1 1
( , )

| 2 | | 2 |

i tE r t E e
r b r b


 

  
                                            

(2.7)  

If we assume that the electric field amplitude at point 0r  is 1| |E and 0r  is normal 

to the vector b , then the value b  is derived from relation 0( ) 0bn n   as 

 
1 2

2 3

20
0

1

2 | |
2

| |

E
b r

E

  
   
                                                          

(2.8)  

 
From this relation, we find 1E  to be 

3 2
2 2

1 0 0| | 2 | | ( 2)E E r b    . It means that 

we can determine the value of b  by the near field measurement. To conclude, the 

relation 1kb kr   is called the near field condition and the range of r satisfying 

this condition 1kr  is called the near field. 
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Figure 2.1.3  Electric dipole moment induced in the spheres S and P located very close to 

each other. 

 

Now let us assume that we have two spheres (sphere S and sphere P) and incident 

light with electric field 0E  as shown in Figure 2.1.3. Here the sphere P can be 

used as probe and the sphere S as a sample. The electric dipole moments induced 

in the spheres S and P by the electric field 0E  of the incident light are pp  and sp  

respectively. The electric dipole moment sp  of the sphere S generates an electric 

field in the sphere P. This field induces the change Pp  in the electric dipole 

moment of the sphere P. In a similar way, the electric field generated by the 

electric dipole moment pp induces the change Sp  in the electric dipole moment 

of the sphere S. We can repeat this process infinitely. This process, which 

mutually induces electric dipole moments in the spheres S and P, is called dipole-

dipole interaction. In this case, the main controbution to the electric field comes 

from the terms proportional to 3r , which is  

 
3

0

3 ( )

4

n n p p
E

r

 


                                                                 

(2.9)  

Here since we have 1kr   we approximate the exponential part   
ikre  to 1. 

When we take ||r p , the expression becomes 

 

3

0

2

4

p
E

r
                                                              (2.10)  

 
Similarly, when  r is perpendicular to p  ( r p ), the equation turnes into [2],[32] 

 

3

04

p
E

r
                                                                       (2.11)  
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Equations (2.10)  and (2.11)  represent the optical near field generated around the 

spheres S and P. If we assume that the spheres S and P are dielectric, the electric 

dipole moment sp
 
induced by the incident electric field 0E  is  

 0S Sp E
                                                            

(2.12)
 

Here S is the polarizability of the dielectric.          

        

In the near field case, if the conditions 1kR   and ||R p are satisfied, the electric 

field generated in the sphere P by the electric dipole moment sp
 
can be written as  

                                                    
3

0

2

4

S
S

p
E

R
                                                         (2.13)  

Therefore, we can write the change in the electric dipole moment of the sphere P 

as  

03

0

2

4

P S
P P Sp E E

R

 



  

                                        

 (2.14)  

Since we can represent the change in the dipole moment as 0P Pp E   , the 

change in the polarizability of the sphere P can be given as  

3

02

P S
P

R

 



                                                             (2.15)  

where S  and P  are 3

i i ig a   and 0
0

0

4
2

i
i

i

g
 


 





 for (i=S,P), Sa

 
and Pa

 
are 

the respective radii, and S  and P  are the electric constants of the spheres S and 

P, respectively. If we replace the role of the spheres S and P, the discussion above 

will be still valid. The electric dipole moment 0P Pp E  will generate the electric 

field 
3

02 4P PE p R in the sphere S and induce the change 0S Sp E    in the 

electric dipole moment. Therefore, S  and P  takes the same value as 

3

02

P S
S P

R

 
  


     

                                     

(2.16)  

Since in the near field condition ( 1kR  ) we assume that the two spheres are 

very close to each other, they can be recognized as a single object for the far-field 

detection. Therefore, the intensity SI  of the scattered light generated from the 

total  electric dipole moment P P S Sp p p p    is  
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2| ( ) ( ) |S P P S SI p p p p   
                                       

(2.17)  

Taking into account that 0S Sp E  and 0S Sp E   , we have  

2 2 2

0 0( ) | | 4 ( ) | |S S P S PI E E        
                              

(2.18)  
 

Here the first term 
2 2

0( ) | |S P E  corresponds to the intensity of the light 

scattered directly by the spheres S and P, whereas the second term 

2

04 ( ) | |S P E   
 
represents the intensity of scattered light as a result of dipole-

dipole interaction. From the equation above, we obtain [2]  

3 3

3

02

P S P Sg g

R

 



 

                                                               

(2.19)  

Relation 2.19 shows that the optical near field intensity  strongly depends on the 

size of the spheres. 

 

 

 

 

 

2.2 Projection operator method, relevant nanometric 

     irrelevant macroscopic subsystems, P and Q spaces 
 
 

We can use the projection operator method to derive effective interaction in the 

nanometric material system illuminated by an incident light. This type of 

interaction is called optical near-field interaction. It is estimated that optical near-

field interaction potential between the nanometric objects with a separation 

distance R  is given as a sum of Yukawa potentials 

exp( )R

R


 

                                                   
(2.20)  

Here 1 

 represents the range of the  interaction and corresponds to the 

characteristic size of nanometric material system. It depends on the size of the 

nanomaterial and does not depend on the wavelength of the incident light.        

1 

 represents the localization of photons around the nanomaterial. [1], [7] 
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On the basis of projection operator method, we can investigate the formulation of 

the optical near-field system. In order to describe optical near-field interaction in a 

nanometric system, we think of the relevant nanometric subsystem N and 

irrelevant macroscopic subsystem M. The macroscopic subsystem M is mainly 

composed of the  incident light and the substrate. The subsystem N is composed 

of the sample, the probe tip, and the optical near-field. To describe the quantum 

mechanical state of matter in the subsystems N and M, the energy states of the 

sample and probe in the subsystem N are expressed as | s  and | p . The relevant 

excited states for the sample and probe tip are | s and | p . It is most reasonable 

to express the subsystem M as an exciton-polariton. The macroscopic subsystem 

M is composed of the mixed state of electromagnetic field and material excitation. 

Since the sample or the  probe tip is excited by the electromagnetic interaction, 

the state of the subsystem N can be expressed as the mixed states of the excited 

and ground states. Therefore, we define the P  space, which is spanned by the 

eigenstates 1|   and 2|  ,   1 2| ,|SpaceP     . [3],[7] Since it is expressed as a 

mixture of the excited and ground states, we can define 1| 
  
and 2|   as  

 

      1 ( )| | | | 0 Ms p             2 ( )| | | | 0 Ms p                                 (2.21)   

where | s  and | s  are the ground and excited eigenstates of the sample and 

| p and | p  are the ground and excited eigenstates of the probe tip. Here 

( )| 0 M  represents the vacuum state for exciton-polaritons to describe the 

macroscopic subsystem M. The complementary space to P  space is called Q  

space.  

     
 
Figure 2.2.1 The schematic representation of P space spanned by the eigenstates 

1|  and 2|   and its complementary space Q . 



 

14 

In Figure 2.2.1 we have the schematic representation of P  and its complementary 

space Q . The complementary Q  space is spanned by a huge number of basis that 

is not included in P space. This method of description is called projection 

operator method. 

 

The projection operator method is used to describe the quantum mechanical 

approach of the optical near-field interaction system that is nanometric materials 

surrounded by the incident light. The reason why 1|  and 2|   contain the 

vacuum state | 0 is to introduce the effect of the subsystem (M) by elimimating its 

degree of freedom. This treatment is useful to derive consistent expression for the 

magnitude of effective near-field interaction potential between the elements of the 

subsystem (N). As a result of this approach, the subsystem (N) can be treated as 

an independent system that is regarded to be isolated from the subsystem (M). 

[1],[3]. 

 

 

2.3 Optical near-field interaction potential in the 

      nanometric subsystem 

 
By using projection operator method, we can evaluate effective interaction in P  

space, which is derived in Appendix B, as 

1 2 1 2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( )effV PJ JP PJ VJP PJ JP    
                                

(2.22)  

 
This result gives us an effective interaction potential of the nanometric subsystem 

N, which can be found in Appendix A. The Hamiltonian for the interaction 

between a sample or a probe and electromagnetic fields as a dipole approximation 

can be expressed as  

       
 ˆ ˆˆ ˆˆ ( ) ( )s s p pV D r D r      

                                         
(2.23)  

 

The electric dipole operator is denoted by ˆ ( , )s p   , where the subscript s and 

p represent the physical quantities related to the sample and the probe tip, 
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respectively. sr and 
pr are the vectors representing the position of the sample and 

and the tip, respectively; 
ˆ

( )D r  is the transverse component of the quantum 

mechanical electric displacement operator . 
ˆ

( )D r  can be expressed in terms of 

the photons creation  ˆ ( )a k


 and annihilation ˆ ( )a k  
operators as follows 

 

           
 

1 2
2

1

2ˆ
ˆ ˆ( ) ( ) ( ) ( )ikr ikrk

k

D r i e k a k e a k e
V  



 
  



 
  

 


                    

(2.24)  

 

where k  is the wavevector, 
k

 is the angular frequency of photon, V is the 

quantization volume in which electromagnetic fields exist and ( )e k is the unit 

vector related to the polarization direction of the photon. [34] Since exciton-

polariton states as bases are employed as the bases to describe the macroscopic 

subsystem M, the creation and annihilation operators for photon can be replaced 

with the creation and annihilation operators of exciton-polariton. Therefore, after 

replacing photons creation and annihilation operators with exciton-polaritons and 

substituting  ˆ ˆ ˆ( ( ) ( ))s s B r B r      into (2.24) , we can change the notation from 

photon base to exciton-polariton base as 
 

     
  

1 2
2 ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

p

s k

V i B r B r K k k K k k
V

   



   



 
    

 


          

(2.25)  

Here ˆ( )B r and ˆ ( )B r


denote the annihilation and creation operators for the 

electronic excitation in the sample or probe ( , )s p   and ( )K k  
is the 

coefficient of the coupling

 

strength between the exciton-polariton and the 

nanometric subsystem N and it is given by 

 
2

1

( ) ( ( )) ( )
ikr

K k e k f k e 

  





 
                                        

(2.26)  

 we define ( )f k  as  

2 2

2 2 2

( )
( )

2 ( ) ( )( )

ck k
f k

k ckk

 


  
                             (2.27)   

( )k and  are the eigenfrequencies of both exciton-polariton and electronic 

excitation of the macroscopic subsystem M. [10],[31]  
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The amplitude of effective probe-tip  interaction exerted in the nanometric 

subsystem can be defined as  

 

2 1
ˆ(2,1) | |eff effV V   

                                                
 (2.28)  

 
In order to derive the explicit form of effective interaction (2,1)effV , the initial and 

final states ( 1 ( )| | | | 0 Ms p       and 2 ( )| | | | 0 Ms p       ) are employed in 

P space before and after interaction. The appoximation of Ĵ to the first order is 

(see Appendix B for derivations) given by 

 

0 0 1 0 0 1

2 1 2 1

2 1 0 0 0 0

1 2

ˆ ˆ ˆ ˆ(2,1) | ( ) | | ( ) |

1 1ˆ ˆ| | | |

eff P Q P Q

m P Qm P Qm

V PVQV E E P P E E VQVP

PVQ m m QVP
E E E E

   

 

         

 
        


      (2.29)  

where 0

PE  and 
0

QE  are eigenvalues of the unperturbed Hamiltonian 0Ĥ  in P and 

Q  spaces. The equation shows that the matrix element 0 0 1

1
ˆ| ( ) |P Qm Q E E VP     

represents a virtual transition from the initial state 1|   in P space to the 

intermediate state | m  in Q  space and 2
ˆ| |PVQ m   represents the virtual 

transition from the intermediate state | m  in Q  space to the final state 2|   in 

P space. So, we can transform (2.10)  to the following equation (please refer to 

Appendix B) 

            

3

2

0 0

( ) ( ) ( ) ( )1
(2,1)

(2 ) ( ) ( ) ( ) ( )

p s s p

eff

K k K k K k K k
V d k

k s k p

  
   

     
                   (2.30)  

where the summation over k  is replaced by k -integration, which is 

3

3(2 )k

V
d k


   and 0( )sE s   and 0( )pE p   are the excitation energies 

of the sample (between | s and | s ) and the probe tip (between | p  and | p ), 

respectively. Similarly, the probe-sample interaction (1,2)effV can be written as 

follows 
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3

2

0 0

( ) ( ) ( ) ( )1
(1,2)

(2 ) ( ) ( ) ( ) ( )

s p p s

eff

K k K k K k K k
V d k

k p k s

  
   

     
                    (2.31)  

 

The total amplitude of the effective sample-probe tip interaction can be defined as 

the sum of (1,2)effV  and (2,1)effV
 

 
2

3 2

2
, 1

3

, ,

,

1
( ) ( ) ( ) ( ) ( ) ( )

4

( ) ( )
( ) ( ) ( ) ( )

eff s p

s p

ikr ikr

eff eff

s p

V r d k r e k r e k f k

e e
d k V r V r

E k E E k E

 
 

 


 


 

 



 



       
   

 
          

 

          

(2.32)  

where 
2( )

( )
2

m

pol

k
E k E

m
 

 

 is the eigenenergy of exciton-polariton and polm
 
is 

effective mass of polariton. The integration gives us the following result  

 

      

2

, 2 3

2

2 3

( )1 1
( ) ( )

2

( ) 31 3
ˆ ˆ( )( )

2

r

eff f s p

r

s p

V r W e
r r r

r r W e
r r r





 
 

 


 

 





  
 

  


   
     

  

   
      

                    

(2.33)  

 

where 
1

2 ( )pol mE E E
c

   
 
 and W  

is defined as   

     

2 2

2( )( ) 2

pol m

m m pol m

E E E
W

E E E E E E E




  






  
                                  

(2.34)  

 After summing up and taking the angular average of ˆ ˆ( )( ) ( ) 3s p s pr r      , 

we have 

             

2 2

,

( )
( ) ( ) ( )

3

r r

A B
eff

s p

e e
V r W W

r r

 

   


    

   



 
     

 


        

(2.35)  

 
Equation (2.35) shows effective near-field interaction potential in the nanometric 

subsystem. The effective near-field interaction is expressed as a sum of Yukawa 

functions ( )
r

r e r




    with a heavier effective mass   (shorter 

interaction range) and a lighter effective mass   (longer interaction range). This 
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part of the interaction comes from the mediation of massive virtual photons or 

polaritons and this formulation indicates a “dressed photon” picture in which as 

result of light-matter interaction, photons are not massless but 

massive[1],[2],[3],[7]-[10]  

 

 

2.4 Optical near-fields as a virtual cloud of photons 

and locally excited states 
 

To investigate the behavior of optical near field in a viewpoint of virtual photons 

let us first calculate probe sample interaction potential ( , )effV p s
 

 

  

3

2

0 0

( ) ( ) ( ) ( )1
( , )

(2 ) ( ) ( ) ( ) ( )

p s s p

eff

K k K k K k K k
V p s d k

k s k p

  
   

     


               

(2.36)  

 
If we consider two infinitely deep potential wells with the widths 

pa  and sa , the 

eigenenergies of sample and probe are given as  

 

                             

2
2

0

3
( )

2 eS S

s
m a

 
   

                                                      

(2.37, )a  

                             

2
2

0

3
( )

2 eP P

p
m a

 
   

                                                       

(2.37, )b  

 
Where eSm  and ePm are the effective masses of electron in the sample and probe. 

Since the coefficient ( )K k  is expressed as 
2

1

( ) ( ( )) ( )
ikr

K k e k f k e 

  





  , the 

effective sample probe interaction is then 
 

               

2
( )2

3 1
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2

2
( )2

3 1

2
2

( ( ))( ( ))
1

( , )
(2 ) 3

2 2

( ( ))( ( ))
1

(2 ) 3

2 2

p s

s p

ik r r

s p

eff

p eS S

ik r r

s p

p eS P

e k e k f e

V p s d k
k

m m a

e k e k f e

d k
k

m m a

 


 


 

 

 

 









 
   
 

   
    

      
   

  


 

   
 





 2

 
 
 
 

  
  
                 

(2.38)  
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Defining heavy and light effective masses as   
and   

 where we have 
 

                              

1 2
2

2

3 2P P

eS P

m m

m a




 
   

    

1 2
2

2

3 2P P

eS S

m m

m a




 
   

             

(2.39)  

Therefore (2.38)  changes to

             

   

( ) ( )2
, 3 2

2
2 2 2 21

1
( ( ))( ( ))

(2 )

2 2

p s s pik r r ik r r

p s

eff s p

p p

e e
V d k e k e k f

k k
m m

 


 


 


 

 
 
     
 

   
 
 

  

                                                                                                                                                       

(2.40)   
where we approximate some of the terms as a constant and take ( )f k  as f . 

In Figure 2.4.1 the positions given by Sr  and Pr  represent the arbitrary positions 

in the sample and probe, respectively, and the position vector  is defined as 

| |P Sr r r  . The integration of complex integral with respect to k  gives us the 

following result for ( , )effV p s (refer to Appendix D for derivations) 

 

                  

3

, 1

exp( ) exp( )1
( , ) ( )

2

exp( ) exp( )

eff si pj ij

i j

r i r
V p s

r r

r i r

r r

    



 

  
    

 

 
 



                    

(2.41)  

and                 
exp( )exp( )

( , ) S SP P
eff

i r ar a
V p s

r r


 

                                   
(2.42)    

 

            

 

 Figure 2.4.1.  Schematic representation of near-field optical system. Sr  
and Pr   show 

 the arbitrary positions in sample and probe. 
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where                              
3 P

P

eP

m

m
   ,     

3 S
S

eS

m

m
                                                   (2.43)  

The first term in Equation (2.42) represents Yukawa function behavior. Its decay 

length is P Pa  and proportional to the probe size Pa . The first term 

exp( )P Pr a r
 
shows that there is optical electromagnetic field around the 

probe and the extent of spatial distribution of this field is equivalent to the probe 

size. This field localizes around the probe like an electron cloud localized around 

an atomic nucleus. However, since the real photon does not have a localized 

nature, it is considered that optical near fields contain massive virtual photons. As 

a result of light-matter interaction, the two particles are considered to be 

interacting by exchanging real and virtual exciton-polariton energies. 

 

Figure 2.4.2 represents the real and virtual transitions. In this energy transfer 

process, the virtual transition is mediated by the virtual exciton-polariton and does 

not follow the conventional energy conservation law. This can be explained by the 

fact that this virtual transition occurs in a sufficiently short period of time t  and 

satisfies the uncertainty principle 2E t   . In other words, since the required 

time for this local near-field interaction is sufficiently small, due to the 

uncertainty principle the exchange of virtual exciton-polariton energy between 

these two nanometric particles is allowed. [1],[2],[4] 

 

 

              

 Figure 2.4.2  Exchange of real and virtual exciton-polariton. 
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When the quantum dot is excited by propogating light, the conventional classical 

electrodynamics explains that an electric dipole at the center of QD is induced and 

the electric field generated from this electric dipole is detected in the far-field 

region. However, in a quantum theoretical view, the electron in the quantum dot is 

excited from the ground state to an excited state due to the interaction between the 

electric dipole and electric field of the propogating light, which is called electric 

dipole transition. It is assumed that two anti paralel electric dipoles are induced in 

a quantum dot and the electric field generated by one electric dipole is cancelled 

by the other in the far field region and thus the transition from the excited state 

cannot take place. Then the transition and excited state are said to be dipole 

forbidden [2]. 

 
Figure 2.4.3 illustrates the system composed of two coupled quantum dots with 

two arbitrary resonantly coupled energy levels. These two resonant energy levels 

are coupled as a result of the near field interaction and as a result of this coupling, 

the quantized energy levels of exciton are split in two parts. One half of them 

corresponds to the symmetric state of the exciton, and the other half corresponds 

to the antisymmetric state of the exciton in the quantum dot. These two symmetric 

and antisymmetric states correspond to the paralel and antiparalel electric dipole 

moments that is induced in these relevant quantum dots.[1],[2],[11].  

 

The ground and excited states of exciton in quantum dot S are expressed as | es   

and | gs  . Similarly, the ground and excited states in quantum dot P are expressed 

as | ep  and | gp  . The energy eigenvalues of the excited states | es   and | ep   are 

expressed as eE  while the energy eigenvalues of the ground states | gs   and | gp   

is gE . Since they have the equal energy eigenvalues, the states | es   and | ep   also 

| gs   and | gp   are said to be in resonance with each other.  

 
 
The Hamiltonian of this two level system is expressed as following  

0 int
ˆ ˆ ˆH H H                                                                  (2.44)  

where, 0Ĥ  and intĤ  represent the unperturbed and interaction Hamiltonian. 
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Figure 2.4.3 The system composed of QD S and P with two resonant coupled energy 

levels. | S  and | A  are correspond to symmetric and antisymmetric states. 

 
When two isolated quantum dots placed close enough in order to induce the 

effective near-field interaction ( )effV r , the energy eigenstate and eigenvalue for 

symmetric state | S  are expressed as  

 

 
1

| | | | |
2

e g g eS p s p s                                          (2.45. )a  

( )S g e effE E E V r                                                      (2.45. )b  

while for antisymmetric state | A  are 

 
1

| | | | |
2

e g g eA p s p s                                                (2.46. )a  

             ( )A g e effE E E V r                                                     (2.46. )b  

Equation (2.45. )a  means that since exciton exists in both quantum dot S and 

quantum dot P with equalt probabilities, an exciton in this system cannot be 

distinguished. 

 

Now, let us evaluate the scalar product of the transition dipoles s p   in terms of 

the states | S  and | A . For simplicity we take transition dipole moments parallel 

with magnitudes as | |  0i i    ( , )i s p . We can express the dipole moment by 

creation and annihilation operators as  

 
ˆ ˆ ˆ( )i i i ib b    , ( , )i s p                                       (2.47)   

 where                               
ˆ | |i g eb i i      and  ˆ | | 0i gb i                                       (2.48)  
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therefore we have 

   

 

ˆ ˆ ˆ ˆ| | | | | | ( )( ) | | | |
2

ˆ ˆ ˆ ˆ| | | | | | | | 0
2

s p

s p e g g e s s p p e g g e

s p

e g s p e g g e s p g e s p

S S s p s p b b b b p s p s

s p b b p s s p b b p s

 
 

 
 

 

 

              

           

 
| | 0s p s pS S                                                                (2.49)  

 
It indicates that the  transition dipole  moments s  and 

p  are paralel  in  

symmetric  state | S . Similarly for antisysmmetric state | A  we have 

 
| | 0s p s pA A                                                             (2.50)  

 
and shows that they are antiparalel in antisymmetric state. It follows from 

equations (2.49)  and (2.50)  that excitation of quantum dots with far field light 

leads to the symmetric state with paralel dipoles produced in QDs S and P. In 

contrast the near-field excitation of QDs can produce either one or both of the 

symmetric and antisymmetric states. Therefore, the symmetric state is called the 

bright state and antisymmetric state is called the dark state. This is one of the 

major differences between the near-field and far-field excitations. In particular 

locally excited states can be created in this two level system. These locally excited 

states can be expressed by a linear combination of symmetric and antisymmetric 

states as [1],[2],[5],[6],[7]   

 
1

| | | |
2

e gp s S A                                                      (2.51. )a  

                          
1

| | | |
2

g ep s S A                                              (2.51. )b  

 
The right-hand terms of (2.51. )a  and (2.51. )b  describes the coupled states via an 

optical near-field. Here, the optical near-field excites both of the coupled states. 

However, in the far field excitation the only symmetric state is excited. The state 

vector | ( )t   at time t  is  

 

1
| ( ) exp | exp |

2

S A
iE t iE t

t S A
    

         
   

                               (2.52)  
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where the state vectors | ( )t  are also normalized and at 0t   | (0) | |e gp s      

and 

( ) ( )
| ( ) exp cos | | sin | |

eff eff

e g g e

V r t V r tiEt
t p s i p s

     
             

      
   

(2.53)  
 

   
2

S A
g e

E E
E E E


                                                               (2.54)  

Then the occupation probability that the electrons in QD-P occupy the excited and 

the electrons in QD-S occupy the ground state is expressed as 

2 2
( )

| | || ( ) | cos
e g

eff

p s g e

V r t
s p t 

 
      

 
                             (2.55)  

Similarly, the occupation probability that the electrons in QD-P accupy the ground 

and the electrons in QD-S occupy the excited state is expressed as 

  

                                     

2 2
( )

| | || ( ) | sin
g e

eff

p s e g

V r t
s p t 

 
      

 
                             (2.54)  

The equations (2.55)  and (2.54)  shows that the  probability varies periodically 

with period of ( )effT V r . It means that the excitation energy of the system is 

periodically transfered between the coupled resonant energy levels of QD-S and 

QD-P. This process is called nutation. 
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Chapter 3 

 

Optical Near Field Interaction between 

Spherical Quantum Dots 

 

3.1 Introduction   

There are three regimes of confinement introduced depending on the ratio of the 

cristallite radius R  to the Bohr radius of electrons, holes, and electron-hole pairs, 

respectively. Very small quantum dots belong to strong confinement regime. In 

this confinement regime the Bohr radius of the exciton is several times larger than 

the size of quantum dot. In these quantum dots we can neglect the Coulomb 

interaction between the electron and the hole. Therefore, the individual motions of 

the electron and the hole are quantized seperately. The Bohr radius of PbSe 

nanocrystal  is 46 nm and it is a good example for strong confinement. 

   

If effective mass of the holes is much bigger than that of the electrons one can 

speaks of intermediate confinement regime. In this confinement regime the radius 

of the quantum dot has to be smaller than the Bohr radius of electron and larger 

than the Bohr radius of the hole because the mass of the electron is smaller than 

that of the hole [14]   

 

In weak confinement regime the radius of quantum dot is at least a few times 

larger than the Bohr radius of an exciton. In this case the Coulomb interaction 

potential between the electron and the hole is so strong that we can assume the 

electron-hole pair as a single particle called an exciton. Since the Bohr radius of 

CuCI nanocrystal is 0.7 nm, this can be a typical example of weak confinement 

regime. 
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3.2 Energy states of semiconductor quantum dots 

 

Quantum dots are nanostructures in which electrons and holes are confined to a 

small  region in all the three dimensions. An electron-hole pair created in these 

nanostructures by irradiating light has discrete eigenenergies. This assumption 

arises from the fact that the wave functions of electron-hole pairs are confined in 

these nanomaterials. This is called quantum confinement effect. 

 
Since the property of nanostructures is determined by a lot of electron-hole pairs, 

it is useful to employ the envelope function and effective mass approximation. 

Therefore, the one-particle wavefunction in a semiconductor nanostructure can be 

given by the product of the envelope function satisfying the boundary conditions 

of the quantum dot and one-particle wavefunction in bulk form of the same 

semiconductor material. Thus, the eigenstate vector for single electron is given by 

 
3 ˆ| ( ) ( ) |e e e gd r r r                                                   

 (3.1)  

 
where ( )e r  is the envelope function of the electron, ˆ ( )e r   is the field operator 

for  electron creation, and | g   is the crystal ground state. Here the field 

operators for the electron creation ˆ ( )e r   and annihilation ˆ ( )e r  satisfy the 

following Fermi anti-commitation relation 

ˆ ˆ ˆ ˆ ˆ ˆ( ), ( ) ( ) ( ) ( ) ( ) ( )e e e e e er r r r r r r r        


                               

 (3.2)  

where ( )r r   is the Dirac delta function. Since neither an electron in the 

conduction band nor a hole in the valence band exists, we can consider the ground 

state of a crystal as a vacuum state [13]. Therefore applying electron annihilation 

operator to the crystal ground state gives us zero    

 
ˆ ( ) | 0e gr   

                                                      
 (3.3)  

We can find the equation for envelope function ( )e r  by using the Schrödinger 

equation 

ˆ | |e e e eH E   
                                           

 (3.4)  

Here, eE  is the energy eigenvalue. From quantum mechanics we know that the 

Hamiltonian of non–interacting electron-hole system is  
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2 2
3

,

,

ˆ ˆ ˆ( ) ( )
2

e h g e

e h

H d r r E r
m


 

 



 
    

 
 

                                

  (3.5)  

Since we are looking for a single electron in the QD, the Hamiltonian will change 

to 

         

2
3 2 3ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

2
e e e g e e

e

H d r r r E d r r r
m

     
      

 
                      (3.6)  

 

where em  is the effective mass of electron and 
gE  is the energy band gap of the 

bulk semiconductor material. Substituting the Hamiltonian for a single electron 

into the Schrödinger equation, we obtain  
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2
3 2 3

2
3 3 3 2

3 3
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2
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e

g e e e e g e

e
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E d r r r d r r r d r r
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d r r r r r r E d r

    

    

    

 

  

 

 
         

 

 
           

 

        

 

  

 
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2

3 3 3

2 3 3

2
3 2 3

)

ˆ ˆ( ) ( ) ( ) ( ) | ( )
2

ˆ ˆ( ) ( ) | ( ) ( ) ( ) |

ˆ ˆ( ) ( ) | ( ) ( ) |
2

e e e g

e

e e g g e e g

e e g g e e g

e

r

d r r r r r r d r d r r r
m

r r E d r d r r r r r

d r r r E d r r r
m

    

    

   



 

 



           

          

 
        

 

  

 

 
      

(3.7)

  

 

 

Here we used the Fermi anticommutation relation. So, the Schrödinger equation 

simplified to the following expression 

      
2

3 2 3ˆ ˆ ˆ| ( ) ( ) | ( ) ( ) |
2

e e e e g g e e g

e

H d r r r E d r r r
m

      
         

 
 

   

(3.8)  

 
where we have                         

3 ˆ| ( ) ( ) |e e e e e gE E d r r r                                              (3.9)  

 
From Equations (3.7)  and (3.8)  it follows that the envelope function satisfy the 

following eigenvalue equation for a single electron 

 

 
2

2 ( ) ( )
2

e e g e

e

r E E r
m

                                          (3.10)  
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Similarly, we can obtain envelope function for one hole state as follows 

2
2 ( ) ( )

2
h h h

h

r E r
m

                                                   (3.11)  

where 0gE  is used for hole.  

 

Since we study spherical quantum dots, we assume that the envelope function 

satisfies the following spherical boundary condition. 

( ) ( ) 0e hr r    for  | |r R                                 (3.12)  

The Laplace operator in spherical coordinates is then   

2
2

2 2

2
2

2 2

1

1 1
sin

sin sin

L
r

r r r

L 
    


  



   
   

   

                                     (3.13)  

We can separate the envelope function ( )r  into radial and angular parts as 

follows  

( ) ( ) ( , )l lmr f r   
 

Here L  is the orbital angular momentum operator and satisfies the following 

eigenvalue equation 

2 ( , ) ( 1) ( , )lm lmL l l      
                                           

(3.14)  

 

where | |m l  ( 0, 1, 2,..)m     and functions ( , )lm    are the spherical 

harmonics with 0,1,2,..l   To find the envelope function we have to solve the 

eigenvalue equation (3.10) . Writing the Laplacian in the spherical coordinates the 

eigenvalue equation changes to  

 

 
2 2 2

2 2

1
( ) ( , ) ( ) ( , )

2
l lm e g l lm

e

L
r f r E E f r

m r r r
   

 
      

                   

(3.15)
 

and 

 
   

2
2

2 2 2

( ) 21
( , ) ( ) ( , ) ( ) ( , )l e

lm l lm e g l lm

f r m
rf r L E E f r

r r r
     


      

  
(3.16)  

 
taking the derivatives we have 

2
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( 1) ( )l l l
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df r d f r f r
l l f r
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and finally we have  

2
2

2

2
( 1) 0l l

l

d f df
l l df

dr r dr
      

                            
(3.17)  

with  2

2

2
( )e

e g

m
E E    for electron,  or  2

2

2 h
h

m
E 

  
for hole. [35] 

The solution for (3.17)  has the form of spherical Bessel function of order  l  as 

 

                                         
3

1

( )2
( )

( )

l nl
nl

l nl

j r R
f r

R j







                                        

(3.18)  

 
where lj  is the spherical Bessel function of order l  and nl  can be determined 

from the boundary conditions as  ( ) 0l nlj    for  ( 0,1,2,...)n   and  0n n  ,  

11 4.4934  . The energy eigenvalues are discrete and given by [15], [25], [26], 

[27]. 
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(3.19)  

 
These are the energy levels of one particle states in a semiconductor quantum 

dots.  

 

Next, let us concentrate on the electron-hole pair states in a quantum dot. The hole 

is a quasiparticle relevant to an electron in the valence band from which an 

electron is removed. The hole is characterized by the positive charge e , effective 

mass hm , spin 1 2  and kinetic energy with a sign opposite to that of electron’s 

kinetic energy. When an electron acquires enough energy to move from valence 

band to conduction band, a free hole is created in the valence band and electron-

hole pairs are generated. [13] 

 

Here, we consider crystal ground state as a vacuum state. In this state neither 

electron nor hole exists in the conduction and valence band, respectively. 

However, in the first excited state there exists one electron in the conduction band 

and also there is one hole in the valence band. Therefore one electron-hole pair is 

generated. The minimum energy which is sufficient for the creation of one 
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electron-hole pair is called band gap energy and defined by
gE . When electrons 

are excited across the gap, the bottom of the conduction band and the top of 

valence band are populated by the electrons and holes, respectively. 

                                      

Figure 3.2.1 Band sructure and energy band gap 
gE  of bulk semiconductor. The diagram 

shows the creation of one electron-hole pair as a result of photon absorption. 

 

 
Because of the photon absorption there occurs a transition from the ground state 

to the first excited state. The conservation of energy and momentum can be 

written as following 

 
e h

g kin kin

p e h

E E E

k k k

   

 
                                             (3.20)  

where e

kinE  and h

kinE  are the kinetic energy of the electron and hole. Similarly, 

k and hk
 
are the momentum of electron and hole, respectively. This is the 

process of electron-hole pair creation. The reverse process which is equivalent to 

the annihilation of the electron-hole pair and creation of photon is also possible. 

 
 

Sometimes to make calculations easier we ignore the interaction between 

electrons and holes. However, in reality, since electrons and holes are charged 

particles they interact with each other via the Coulomb interaction potential and 

form an extra quasiparticle called an exciton. Interacting electrons and holes can 

be described by the following Hamiltonian [13],[16] 
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2 2 2
2 2ˆ ( )

2 2 | |
e h

e h e h

e
H U r

m m r r 
      


                        (3.21)  

 
where 

em  and 
hm  are the effective mass of the electron and the hole, respectively, 

and   is the dielectric constant of the crystal. 

 

Now, to compute the energies and wavefunctions of electron-hole systems in 

spherical quantum dots, let us consider the following eigenstate vectors for an 

electron-hole pair 

3 3 ˆ| ( , ) ( ) ( ) |eh e h e h e e h h gd r d r r r r r                         
(3.22)  

 

where | g   is the crystal ground state, ˆ ( )e er   and ( )h hr   are the field operators  

for the electron creation in the conduction and hole creation in the valence band.  

( , )e hr r  is the envelope function for an electron-hole pair and satisfies the 

following equation 

 

                

2 2
2 2 ( , ) ( ) ( , )

2 2
e h C Conf eh e h g eh e h

e h

V V r r E E r r
m m

 
 
        
      

(3.23)  

 
where CV  is the Coulomb interaction potential and ConfV  is the confinement 

potential. İf the confinement region is a sphere  with radius R , ( ) 0ConfV r   for 

| |r R  [25]. 

 

İt might be useful if we examine electron-hole pair states by comparing the 

confinement radius R  with the Bohr radius of exciton.  Depending on the radius 

of the quantum dots and the exciton Bohr radius, we can introduce three types of 

confinement regimes. First is the strong confinement where the radius of quantum 

dot is smaller than the Bohr radius of exciton BR a . As an example 

intermediate confinement we consider the case where the radius of quantum dot is 

smaller than Bohr radius of electron and bigger than the Bohr radius of the hole 

h ea R a . The third is weak confinement regime in which the quantum dot size 

is a few times larger than the exciton Bohr radius BR a .  
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3.3 Quantum confinement regimes 
 

3.3.1 Strong confinement 

 

In strong confinement regime, the size of the quantum dot is smaller than the Bohr 

radius of exciton BR a . In this case the Coulomb interaction between an 

electron and hole pair is weak and each electron and hole can independently move 

in the corresponding electron or hole confinement potential [1]. For this quantum 

dots it might be a good approximation if we take Coulomb interaction potential to 

be zero. This is the basic assumption behind the strong confinement 

approximation. Since individual motions of the electron and the hole quantized 

seperately and the size quantization effect of the electron and the hole is much 

larger than the exciton effect, we can neglect the quantization effect of exciton. 

The envelope function in this case is then        

( , ) ( ) ( )e h nlm e n l m hr r r r     
                                         

(3.24)  

where ( )nlm er
 
and ( )n l m hr     are the envelope functions of an electron in the 

conduction band and the envelope function of  the hole in the valence band, 

respectively. The explicit form of these functions for spherical quantum dots is 

[27] 
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(3.25)  

 
The optical transitions is allowed between the conduction and valence band states 

only with the same quantum numbers ( )nlm n l m    and the energy levels are   

given as 
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(3.26)  

where rm
 
is the  reduced mass and defined as 

1 1 1

r e hm m m
 

 

By using variational approach the energy of the ground state (1 )s  of an electron-

hole pair can be expressed in the following form 
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(3.27)  

where the term 2e R  describes effective Coulomb interaction between electron-

hole pairs and   is the dielectric permittivity of the medium. PbSe, PbS, HgSe, 

GaAs, and InSb nanocrystals can be good example for strong confinement regime. 

 
 

3.3.2 Intermediate confinement  

 

The second confinement regime is known as intermediate confinement. For 

example,  in the case when the effective mass of the holes is much bigger than 

that of the electrons ( 1)e hm m  we can speak of intermediate confinement 

regime. In this particular situation the radius of quantum dot is smaller than the 

Bohr radius of the electron but still bigger than the Bohr radius of the hole 

h ea R a  where    
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2e

e

a
m e


           

2

1
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h

a
m e


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 (3.28)

 

Then one may assume that a hole can move in an average potential generated by a 

free-electron confined within a QD, and approximate the envelope function of the 

exciton in  the quantum dot as  

( , ) ( ) ( )n l m

e h nlm e nlm hr r r r    
 

                                           
(3.29)  

Using the orthonormalization of ( )nlm er  we can write the equation for the 

envelope function of the holes as  
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(3.30)  

Here 0confV   and spherical confinement is assumed. For spherical confinement  

the discrete energy levels are 
22

22

nl

em R


 and the envelope function of the electron is    
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( ) ( )e nlm er r  . When the electron is in the state ( , 0, 0)n l m   the hole 

experiences the following spherically symmetric potential 
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where           
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Here 0R

 
is the radius of a quantum dot. The explicit form of eigenfunction   

00

00 ( )n

n r


 solved with the potential (3.31)  is [15] 

 

           

1 4

00 2

00

1
( ) exp

22 !

h n
n

n h n h n
n

n

m
H r

m m
r r

rn



 










 
 

        
                 

(3.32)

             

where nH   is the n th order Hermite polynomial  and the energy states is defined as  
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3.3.3 Weak confinement 

In larger quantum dots when the dot radius R  is small but still a few times larger 

than the exciton Bohr radius, BR a  quantization of the exciton center-of-mass 

motion occurs [8]. The confinement effects in this size regime are relatively small. 

Because the Coulomb interaction between an electron and a hole becomes strong, 

it is good approximation to treat an electron-hole pair as a single particle, which is 

called an exciton. Defining the mass of exciton as e hM m m  , the center of 

mass coordinates as ( )CM e e h hr m r m r M  , and the relative coordinates as 

e hr r   , the approximate electron-hole-pair wavefunction is [1] 

 

( , ) ( ) ( )nlm e h nlm CMr r r                                         (3.34)  
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where the function 0
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   describes the relative motion in the lowest 

(1 )s bound state of the bulk material and ( )nlm CMr is the wavefunction for the 

confined motion of the mass center  ( )CM e e h hr m r m r M  . For spherical 

boundary conditions the wavefunction nlm  is 
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 The wavefunction (3.6)  is an exact solution of the one electron-hole pair 

stationary Schrödinger equation (Wannier equation). Corresponding exciton 

eigenenergies for spherical quantum dots are 
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nl
nlm g RE E E

MR


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(3.36)  

where RE  is the binding energy of the exciton in the bulk semiconductor 

nanocrystal. This is sometimes called Rydberg energy. Since for the lowest state 

quantum numbers satisfy ( 1, 0)n l  condition and ( 10  ), the exciton energy 

for this lowest (1 )s  state is expressed as   

22

1
2

s g RyE E E
M R

 
    

                                               

 (3.37)  

 
A weak confinement is realizable in wide-band semiconductors of I-VII 

compounds having a small exciton Bohr radius and large exciton Rydberg energy. 

Copper chloride (CuCI) nanoctystals is the typical example for weak confinement 

regime. Its exciton Rydberg energy is 200RyE meV and the Bohr radius is 

0.7Ba nm . 
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3.4 Optical near field interaction energy between 

spherical quantum dots for strong and weak 

confinement regimes 

  
There has been introduced various theories to investigate the excitation energy 

transfer between nanometric objects. Förster resonance energy transfer (FRET) is 

one of the typical modeling of excitation energy transfer from smaller quantum 

dot  to larger quantum dot. But since it is the point dipole modelings of excitation 

energy transfer between nanometric materials, the transitions to forbidden energy 

levels which is the case in the experimental conditions when the two quantum 

dots are placed very close to each other, doesnt allowed, [17] The novel theory 

based on dressed photon model can explain the allowance of this forbidden 

transitions. 

 

3.4.1 Strong confinement 

 
To calculate the optical near-field energy transfer driven by the exciton dynamics  

between two quantum dots we can begin with the interaction Hamiltonian. The 

interaction Hamiltonian between photons and nanomaterial is given by [19] 

int

ˆˆ ( ) ( ) ( ) ( )H r r r D r dr                                         
(3.38)  

where ( )r  and ( )r are the field operators for the electron creation in the 

conduction band and annihilation in the valence band. ( )r  and 
ˆ
( )D r are the 

dipole moment and the electric displacement operators. The explicit form of 

displacement operator in exciton-polariton base (in terms of exciton-polariton 

creation and annihilation operators ˆ
k

 

 
and ˆ

k
 ) is

 
[19]    
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D i e k f k e e
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


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

 
                  

(3.39)

 

In the case of strong confinement regime the Coulomb interaction is weak and  the 

electron and the hole can move independently. Therefore, the wave function of 

electron-hole pair can be written as 
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( , ) ( ) ( )e h e hr r F r F r  
                                          

(3.40)
 

where ( )eF r  is the envelope function of conduction-band electron and ( )hF r  is 

the envelope function of  valence-band hole. ( , , )m n l   and ( , , )m n l     are 

the set of quantum numbers corresponding to electron and hole, respectively. 

Therefore,  the exciton state |   is [15]  

,

ˆ ˆ| ( ) ( ) |e h gcR R
R R

F r F r a a   



 
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(3.41)  

Here, ( , )    and ˆ
cR

a


, ˆ

R
a


 are the electron creation operator at R  in the 

conduction band and hole annihilation operator at R  in the valence band, and 

| g   is the crystal ground state. Thus, to estimate the effective interaction 

between two quantum dots, we must first calculate transition matrix elements 

from the exciton state |  
 
to the ground state | g  . The expansion of exciton-

polariton field in terms of plane wave is then given by 
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(3.42)

             

Since we are looking at the near field here, we do not use long wave 

approximation 1ikre  , which is usually used for the far field [19]. Optical near-

field interaction energy between two quantum dots in the lowest order is given by    

   0 0 0 0

1 1ˆ ˆ| | | |P Q Q P

eff f i P Q P Q
m i m f m

V U PVQ m m QVP
E E E E

 
 

         


    

(3.43)

 

where 0

P

iE  and 0

P

fE  are the eigenenergies of  the unperturbed Hamiltonian in P  

space for initial and final states and 0

Q

mE  is the eigenenergy in Q  space for 

intermediate state [1]. We set the explicit form of initial and final states in P  

space as | | | | 0
A A

P A B

i g        
 

and | | | | 0
B B

P A B

f g           whereas the 

intermediate states in Q  space that involve exciton-polariton wave vector k  can 

be defined as the combination of the ground and excited states as 
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| | | |Q A B

g gm k        and | | | |
A A B B

Q A Bm k           , respectively. Using the 

explicit form of transition matrix elements (3.42) , we obtain the effective 

interaction energy between two quantum dots as follows (for derivation, see 

Apppendix C) 
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(3.44)  

here ( , )A B  ,
 AB A Br r r   and ( )ABr  is defined as 
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(3.45)
 

where   
is transition dipole moment and E  is the exciton energy in QD , and 

( )E k  is the eigenenergy of the exciton-polariton defined by  

2( )
( )

2 pol

k
E k

m
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  (3.46)  

mE  is electronic excitation energy of the macroscopic subsystem and 
polm

 
is the 

effective mass of the exciton-polariton. After integration, the Equation (3.45) can 

be converted to  
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where W  and   are e constants defined as (refer to Appendix B) 
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 and                  
1

2 ( )pol mE E E
c

    ,  ( )mE E                                  (3.49)  

 
Here ( )ABr  is the optical near-field interaction potential between two quantum 

dots located in close proximity. Depending on the magnitudes of mE  and E , 

  can be real or imaginary, which corresponds to the localized or propogation  

modes of the light. 
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The spatial integral 3( )F r d r  in Equation (3.44)  provide the criterion whether 

the electric dipole transition is allowed or forbidden between the crystal ground 

state | g   and the exciton state |   . It follows that it is forbidden if the spatial 

integral is zero 3( ) 0F r d r   and allowed if the integral is not zero 

3( ) 0F r d r   

  
The integration of spatial integral for spherical quantum dots gives us the delta 

function 
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(3.50)  

 

The delta function shows that only the transition to the state specified by the 

quantum numbers 0l m   is allowed [1]. 

 

 

3.4.2 Weak confinement 

 
In a similar way, since in weak cofinement regime the Coulomb interaction 

between electron and hole is strong, we can threat an electron-hole pair as a single 

particle i.e., exciton. Therefore, the mass of exciton can be defined as 

e hM m m 
 
and the center of mass coordinates as  ( )CM e e h hr m r m r M 

 
and 

relative motion as e hr r    and the envelope function of the exciton is then  

( , ) ( ) ( )nlm e h m CMr r F r  
                                         

(3.51)
 

where the function 0

3

0

1
( )

a
e

a



 


 
  
 

 

represents the relative motions of 

excitons and  ( )m CMF r  is the envelope function for center of mass motion defined 

as  
 

  

 

 3

1

2
( ) ( )

l nl

m CM lm

l nl

j r R
F r

R j






  

                                  

(3.52)  
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Therefore, the excitonic states in a quantum dot can be defined by the quantum 

numbers m  and    and in a Wannier representation it can be expressed as a 

superposition of excitons as 

,

ˆ ˆ| ( ) ( ) |m m CM gcR R
R R

F r c c  
  




    
                              

(3.53)  

where ˆ
cR

c
 is the creation operator of an electron at R  in the conduction band and 

ˆ
R

c
 

 is the annihilation operator of an electron at R  in the valence band. | g   is 

the crystal ground state. Then the transition matrix elements from the exciton state 

| m   to ground state is defined by  

 
2

int

1

2 ˆ ˆˆ| | ( ) ( ) ( ) ( ) (0) ikR ikR

g m uc m k k
R k

H i f k r e k F R e e
V

  



     



         
 

(3.54)  

where 
3( ) ( ) ( ) ( )uc vR cRuc

r r r r d r      is the transition dipole moment for each 

unit cell and ˆ
k

  and ˆ
k

   are the exciton-polariton creation and annihilation 

operators, respectively. The optical near-field interaction energy between two 

quantum dots in the lowest order is defined by Equation (3.43) . Here, we define 

the initial and final states in the  P  space as | | | | 0P A B

i m g       
 

and 

| | | | 0P A B

f g m         
 

and intermediate states in the Q  space as 

| | | |Q A B

g gm k        and | | | |Q A B

m mm k        [15],[19],[20]. 

 

Using the transition matrix elements in Equation (3.43) , we find the optical near-

field interaction energy between two coupled quantum dots as 

             3 3(0) (0) ( ) ( ) ( ) ( )A B A B

m A m B A AB B AB A BU F r F r r r d r d r    

           
(3.55)  

where ( )ABr  is given by Equation (3.45)  
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3.5 Numerical results for CdSe, CdTe, CdSe/ZnS and   

      PbSe quantum dots 

 

Here we investigate optical near-field interaction between spherical quantum dots 

for strong confinement regime. Based on the previous theory of optical near fields 

(which was proposed by M. Ohtsu Group from the University of Tokyo), we 

theoretically estimated  the magnitude of the optical near-field interaction 

potential between (1,0,0)  and (1,1,0)  energy levels of the first and second 

quantum dots, respectively. In conventional electrodynamics for the case where 

we consider spherical quantum dots, only transitions to the states defined by 

( 0)l m   are allowed. Here, l  and m  are the orbital angular momentum and 

magnetic quantum numbers. Note that the propogating far field generates a 

symmetric states from the interaction of two resonant energy levels of excitons. 

Therefore, for conventional far-field light the state (1,1,0) is dipole-forbidden 

energy level for exciton and according to the selection rules, optical transition 

from (1,0,0) state of small quantum dot (QDS) to the (1,1,0) state of large 

quantum dot (QDL) is prohibited.  However, since the quantum dots are very 

close to each other, due to the localized nature and large spatial inhomogeneity of 

optical near-fields localized on the surface of nanoparticles, transitions to the 

dipole forbidden energy levels is allowed.  

                  
 
Figure 3.5.1 Optical near-field interactions between two spherical quantum dots with the 

size ratio of 
2 1 1.43R R  .There is a resonance between (1,0,0) level of QDS and (1,1,0) 

level of QDL. 
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There exists a resonance between (1,0,0) energy level of (QDS) and (1,1,0) energy 

level of (QDL) when the ratio of the radius of QDL and QDS satisfies the 

condition of 2 1 1.43R R   [17],[18], [47],[48] 

 
Figure 3.5.1 is the  schematic representation of dipole-forbidden transition where 

the local dipoles at the near side of the quantum dot is excited by optical near field. 

In the figure we introduce the optical near-field energy transfer mechanism 

between (1,0,0)  and (1,1,0) levels of the first and second spherical quantum dots 

based on dressed photon model. 

 
 

The energy transfer is explained via the optical near-field interaction between the 

excitons lowest excited state 1SE  in QDS and the second-lowest excited state 2LE   

in QDL. These two levels are electric dipole allowed and forbidden energy levels. 

However, in the case of the resonance condition 1 2S LE E , due to the localized 

nature of optical near-fields, the energy transfer to the forbidden state is allowed. 

Thus, we observe optical near-field excitation transfer from one state to other. 

Since the sublevel transition to the lowest state is much shorter than the energy 

transfer time, the transferred energy dissipated from 2LE  to 1LE
 

very fast.       

[21], [32], [42]. The energy eigenvalues in the QD with size R  are expressed as 

 
2

2

nl
nlm g

r

E E
m R

 
   

                                         

(3.56)

 

 and represent discrete energy levels, where mr  is the reduced mass of the exciton, 

Eg is the bandgap of the bulk semiconductor and R is the size of quantum dot. 

 

We numerically estimate the optical near field energy transfer from ground state 

to the first dipole forbidden energy state. We used different quantum dots such as 

CdSe, CdTe, CdSe/ZnS, and PbSe with different sizes, Bohr radius and excitation 

energies. We examine strong dependence of optical near-field energy transfer on 

size, and structure of the quantum dots. Also, near field potential strongly depends 

on the distance between the two quantum dots and by changing the composition it 

changes drastically. We analysed the strong confinement regime in different 

quantum dots. [43], [44] 
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Figure 3.5.2 Optical near-field energy and distance relation for CdSe spherical quantum 

dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m    state of QDL. 

 

Figure 3.5.2 represents optical near field interaction energy between two spherical 

CdSe quantum dots. The parameters for this coupling are set to 2.6DL  nm , 

3.72AL  nm , 3.3mE  eV , 1.74gE  eV , 2.17A BE E  eV , 
3

0.08 ( )D eV nm   , 

3
0.12 ( )A eV nm   , 

3
16 10CdSeRy

 
  eV , 5.6BR  nm

  
,
 

0.1rm  em . 

 

The coupling corresponds to the resonant transition from the state (1,0,0) to the 

state (1,1,0). The Bohr radius for CdSe quantum dots is estimated as 5.6BR  nm . 

Since the Bohr radius is larger than the size of the particle, we can assume it as an 

example of the strong confinement regime. For the distance 1.5d  nm  the  

coupling strength between the quantum dots is estimated as 0.245U  eV . 

This distance is in a range of the particle’s radius and corresponds to the near field 

of the particle. The energy transfer time for this local electromagnetic interaction 

is estimated as 2.69  ns . Figure 3.5.3 represent the energy transfer rate. The 

transfer rate for the distance of 1.5d  nm  is estimated as 0.37  1 ns . The 

graph shows that the energy transfer rate for CdSe quantum dots is very small and 

after the distance  1.5d  nm  it become even smaller. [45] 
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Figure 3.5.3 Optical near-field transfer rate and distance relation for CdSe spherical 

quantum dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m    state of QDL.  

                 

      

                                        

Figure 3.5.4 Optical near-field energy and distance relation for CdTe spherical quantum 

dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m     state of QDL. 

 

The Figure 3.5.4 shows the coupling strength and distance relation between 

(1,0,0) and (1,1,0) states of spherical CdTe quantum dots.  
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Here, the parameters are set to 2.6DL  nm , 3.7AL  nm , 3.3mE  eV , 1.5gE  eV , 

2.08A BE E  eV , 
3

0.13 ( )D eV nm   , 
3

0.19 ( )A eV nm   , 
3

10 10CdTeRy
 

  eV , 

6.9BR  nm , and 0.082rm  em .
  

 

Since the Bohr radius is larger than the quantum confinement it can be treated as an 

example of the strong confinement regime. For CdTe quantum dots the interaction energy 

and the energy transfer time for the distance 2d  nm  is estimated as 

0,773U eV and 852  ps . Figure 3.5.5 shows the energy transfer rate and 

distance relation. From the rate distance relation, for the distance 2d  nm  the energy 

transfer rate is estimated as 1,173  1ns . The numerical results show that after 

the distance of 2d  nm  the graph decays faster. As we know from the Chapter 1 this 

distance corresponds to the near-field of the quantum dot. After the distance of 10 nm  the 

rate decreases even faster and after 40 nm it approximately goes to zero. The 

composition of the quantum dots also affect the transfer rate. Although the 

particle sizes is almost the same for both cases, the transfer rate for CdTe is five 

times larger than that of CdSe. [22],[23],[24] 

 

 

            
 
Figure 3.5.5 Optical near-field transfer rate and distance relation for CdSe spherical 

quantum dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m    state of QDL.  
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Figure 3.5.6 Optical near-field energy and distance relation for CdSe/ZnS spherical 

quantum dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m    state of QDL. 

Here the parameters are set to 2.8DL  nm , 4AL  nm , 3.3mE  eV , 1.84gE  eV , 

2.55A BE E  eV , 
3

0.14 ( )D eV nm   , 
3

0.2 ( )A eV nm   , 3

/ 16 10CdSe ZnSRy
 

  eV , 

4.9BR  nm , and 0.088rm  em   

 
The figure 3.5.6 shows the distance dependence of coupling strength between 

(1,0,0) and (1,1,0) states of spherical CdSe/ZnS core-shell quantum dot structures. 

Since the expression we derived is not for core/shell structures it can give us 

unreliable result for CdSe/ZnS quantum dots. However, since the electron and the 

hole is assumed to be in the core, we can treat it as strong confinement.  

Therefore, the results gives sense. For these quantum dots the coupling strength 

and energy transfer time for the distance 3d  nm  is estimated as 

5U  eV and 132  ps . Figure 3.5.7 represents the energy transfer rate for 

CdSe/ZnS quantum dots. In a distance d=3 nm, the transfer rate is estimated as          

7.57  1ns . The graph shows that, after the distance of 3d  nm  the fast decay 

is observed for the transfer rate and after the distance of d=40 nm it approximately 

goes to zero. From the comparison of the transfer rates for CdSe and CdSe/ZnS 

we realize the huge difference. The results show that, as we change the structure 

of a particle, the rate changes drastically. [46]   



 

47 

                
Figure 3.5.7 Optical near-field transfer rate and distance relation  for CdSe/ZnS  

spherical quantum dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m    state 

of QDL.  

 

            
 
Figure 3.5.8 Optical near-field energy and distance relation for PbSe spherical quantum 

dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m     state of QDL. 

           

The figure 3.5.8 shows the coupling between (1,0,0) and (1,1,0) states of spherical 

PbSe quantum dots. Here, to estimate the energy transfer rate the experimental 

values for the dipole moment of PbSe quantum dots is used. [28],[29]. 
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Figure 3.5.9 Optical near-field transfer rate and distance relation for   PbSe  spherical 

quantum dots from ( , , ) (1,0,0)n l m  state of QDS to ( , , ) (1,1,0)n l m    state of QDL.  

The parameters for PbSe QDs are set to 2.3DL  nm , 3.39AL  nm , 3.3mE  eV ,   

0.28gE  eV , 2.15A BE E  eV ,
3

0.75 ( )D eV nm   , 
3

1 ( )A eV nm   , 46BR  nm , 

3
2.05 10PbSeRy

 
  eV ,  and 0.035rm  em .

 
 

  

               
Figure 3.5.10 Comparison of optical near-field energy transfer for PbSe, CdSe/ZnS, 

CdTe and CdSe spherical quantum dots from (1,0,0) state of QDS to (1,1,0) state of  

QDL.  
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Since the Bohr radius of PbSe quantum dots is 46BR  nm , it is the typical 

example of strong confinement regime and we can treat the electron and the hole 

as an independent particles from each other. The Figure 3.5.8 and and Figure 3.5.9 

represent the distance dependence of near field potential and the energy transfer 

rate respectively. For spherical PbSe QDs, the interaction energy and energy 

transfer time for the distance 1.5d  nm  is estimated as 18U  eV  and 

37  ps . The transfer rate for 1.5d  nm  is 37  1ns . For the distance  

3d  nm  the interaction energy and energy transfer time is 13.6U  eV  and 

48.5  ps . On the other hand the time for sublevel transition from the state 

(1,0,0) to (1,1,0) of large quantum dot is estimated as a few picoseconds. 

Calculations show that the stronger confinement we choose the better result we 

get. This is very fast energy transfer between two resonant energy levels and 

suitable for the operation of nanophotonic devices. 

 

Here, the dipole moments for quantum dots is estimated by using the known 

formula for radiative lifetime [22],[30] 

3 2 2
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2 3
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3( )

exc exc

rad

eff

e d

h c
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(3.57)  

Therefore, we find the dipole moment of quantum dots as follows 
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(3.58)  

where, 0(2 ) 3eff     is the effective dielectric constant, excE  is the excitation 

energy of quantum dots, and  the radiation lifetime is  

0 1
rad

D




 

                                                   

(3.59)  

 
where   is the quantum yield and D  is the exciton lifetime in donor. 

 

To estimate the transition dipole moment the Equation (3.58)  is used. For 

example, the experimental results for CdTe quantum dots are 5.54A  ns ,   

7.13D  ns . By using the radiative lifetime of excitons in quantum dots we 
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estimated the the transition dipole moments for both quantum dots. For the 

seperation distance of 2d  nm  the energy transfer time to the dipole forbidden 

energy level is calculated as 852  ps . The calculations show that the transfer time 

to the dipole-forbidden energy level is shorter enough than the radiative lifetime 

of the excitons in each quantum dot. Also, the time for sublevel transition to the 

first excited state of the QDL is estimated as a few picoseconds. Therefore, 

excitation transfer by an energy dissipation process occurs and the unidirectional 

energy transfer to the first dipole-forbidden energy level of the QDL is 

achieved.[36],[37],[38],[41]

   

 

                     

Figure 3.5.11  Optical near-field interactions between two cubic CuCI quantum dots  

with the size ratio  of 
2 1 1.41R R  . There is a resonance between (1,1,1) level of QD-S 

and (2,1,1) levels of QD-L 

 

Figure 3.5.11 shows optical near–field interaction of CuCI quantum cubes. There 

occurs resonant coupling between (1,1,1) and (2,1,1) states of  the quantum dots 

with side lengths d and √2d.  The excitation energy levels of the exciton in a 

quantum cubes is represented by 

           

 

 
2 2

2 2 2

, , 22x y zn n n B x y zE E n n n
Md


   

       
, , 1,2,..x y zn n n 

             
(3.60)

 

Note that the propogating far field generates a symmetric states from the 

interaction of two resonant energy levels of excitons. Therefore, for conventional 

far field light, the state (2,1,1) is dipole forbidden energy level for exciton and it is 
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prohibited for the far-field excitation. However, due to a steep electric field of 

optical near-fields, in the close proximity of quantum dots, the dipole forbidden 

transition that violates conventional optical selection rules, is allowed. Therefore, 

the exciton can move to the (2,1,1) state of the large quantum dot [52]. In the 

second quantum dot due to exciton phonon coupling  the intersublevel energy 

relaxation occurs. The sublevel transitions is generally a few picoseconds and 

much shorter than the energy transfer time from one state to other. Therefore, the 

unidirectional exciton transfer from one state to other is occured for cubic CuCI 

quantum dots. [39], [40], [47]- [51] 

Figure 3.5.12 (a) shows the distance dependence of the near field coupling 

between (1,1,1) and (2,1,1)  states of CuCI quantum dots. The Figure 3.5.12 (b) 

represents the transition rate for the energy transfer from (1,1,1)  state of the first 

quantum dot to (2,1,1)  state of the second quantum dot. [21], [32]

 

For cubic CuCI 

quantum dots for the distance 3d  nm  the interaction energy and energy transfer 

time is estimated as 46.7U  eV  and 14  ps . This is a very high speed for 

the operation of the advanced photonic devices. 

 
 

      
 

Figure 3.5.12.a Optical near-field energy transfer for cubic CuCI quantum dots from 

( , , ) (1,1,1)x y zn n n n  state of QDS to  ( , , ) (2,1,1)x y zn n n n      state of QDL 
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Both CuCI and PbSe are the typical examples of weak and strong confinement 

regimes respectively. In both cases we have good results for transfer rates. 

However, in the case of CuCI quantum dots the excitation energy is 6.9mE  eV . It 

is high energy and it corresponds to the UV range excitation while, for PbSe 

spherical quantum dots we set the excitation energy as 3.3mE  eV which is two 

times smaller. Having a lower excitation energy is suitable for the application. 

 

                                                                   
Figure 3.5.12.b  Optical near-field  energy  transfer rate  for  cubic CuCI quantum  dots  

from ( , , ) (1,1,1)x y zn n n n  state of QDS to  ( , , ) (2,1,1)x y zn n n n      state of 

QDL.  

 

Here, the parameters are set to 10DL  nm , 14.1AL  nm , 6.9mE  eV , 3.2gE  eV , 

2.207A BE E  eV , 0.7BR  nm , 
3

0.0173 ( )D eV nm   , 
3

0, 0241 ( )A eV nm   , 

3
190 10CuCIRy

 
  eV , 2.3rm  em  
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Conclusions 

In this thesis the excitation energy transfer between two different  quantum dot is 

discussed. The energy can be transfered from one quantum dot to other by optical 

near field interaction. The optical near fields are localized fields on the surface of 

nanometric particles, that is, dressed photons, where the photons are not massless 

as a result of light-matter interaction. It can be expressed as a sum of Yukawa 

functions with different kind of effective masses and interaction ranges and allows 

transitions to dipole forbidden energy levels which is optically forbidden for 

conventional far field light.  

Involving the optical near field interactions, we studied a system with different-

sized quantum dots in order to induce effective optical excitation energy transfer. 

We derived the equations for the energy transfer for strong and weak confinement 

regimes and showed that dipole-forbidden energy levels can be accessed by using 

the optical near fields. However, since the energy levels are in resonance, there 

should be a nutation process and back energy transfer between two resonance 

energy levels. In order to guarantee irreversibility of the transferred energy 

between QDs, the sublevel energy relaxation from (1,1,0) state to (1,0,0) state of 

the second quantum dot has to be in the order of 10s or less of ps. 

 

We numerically analysed the optical near-field energy transfer rate for spherical 

CdSe, CdTe, CdSe/ZnS and PbSe quantum dots. We estimated that the energy 

transfer time to the dipole forbidden states of quantum dot is shorter enough than 

the radiative lifetime of the excitons in each quantum dot. Therefore, the 

unidirectional energy transfer between two resonant energy levels of quantum 

dots is achieved. Transfer rate for different quantum dots gives us different values. 

The numerical analyses show that the energy transfer rate to the dipole forbidden 

energy levels is quite fast in order to enable optical excitation transfer, and it is 

strongly depends on the shape, size, and structure of the quantum dots. 

 
The use of optical near-fields is proposed for design and operation of 

nanophotonic devices for their low power consumption, high efficiency and small 
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size. Ohtsu group from the University of Tokyo, use the optical near fields under 

the nonresonant condition to fabricate the nanophotonic devices with the 

photochemical vapor deposition. By using this approach the technology of optical 

excitation transfer including efficient long-range signal transfer and fabrication 

technology of geometry-controlled quantum nanostructures is under development. 
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Appendix A 

 
Projection operator method: Effective 

operator and effective interaction 

 

If we consider an interacting system as a system of consisting an electromagnetic 

field and isolated quantum system, the Hamiltonian operator Ĥ  for the total 

system can be represented as the sum of the Hamiltonian of isolated system 0Ĥ  

and the interaction potential V̂ as follows 

0
ˆ ˆ ˆH H V 

                                                       
( 1)A  

Let us denote eigenstates and eigenvalues of the Hamiltonian Ĥ  as | j   and jE . 

Then the following Schrödinger equation holds 

ˆ | |j j jH E                                                       ( 2)A  

Similarly, let us denote eigenstates of the Hamiltonian
 0Ĥ  as

 
| j  . Then the 

projection operator
 
P  can be defined as

                                                               

1

| |
N

j j

j

P  


 
                                                   

  ( 3)A  

where N is an arbitrary integer. Acting P on an arbitrary state |  , we obtain 

1

| | |
N

j j

j

P    


                                                   ( 4)A  

This relation shows that the projection operator transforms the arbitrary state  |    

into the P space spanned by the eigenstate | j  . The projection operator is defined 

based on steady states of the Schrödinger equation. We can use the projection 

operator P  to derive an effective operator ˆ
effO  of an arbitrary operator 

Ô corresponding to a physical observable. Due to the orthonormalization of the 

eigenstate | j  , the projection operator P  satisfies the following relation 

P P ,
   

2P P                                                    ( 5)A  
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The complimentary operator Q  is then given by 

1Q P                                                              ( 6)A  

Similarly, Q  satisfies the following relations  

Q Q ,     2Q Q                                                                ( 7)A  
 

Here, any state in the P space is orthogonal to any state in the Q space 

0PQ QP                                                          ( 8)A  

Since | j   is an eigenstate of 0Ĥ , the commutation between the projection 

operator and 0Ĥ  is zero 

0 0 0

0 0 0

ˆ ˆ ˆ, 0

ˆ ˆ ˆ, 0

P H PH H P

Q H QH H Q

    
 

    
 

                                              ( 9)A  

Now, let us divide the eigenstates | j   into two groups and define 
(1)| j   in the 

P  space and 
(2)| j   in the Q  space as follows 

(1)

(2)

| |

| |

j j

j j

P

Q

 

 

  

  
                                                       ( 10)A

 

Then, from Equation ( 6)A  for 
(1)| j  and 

(2)| j  , we obtain the following equation 

(1) (2)| | |j j jP Q                                                   ( 11)A  

 From Equations ( 1)A  and ( 2)A , we have
 

0
ˆ ˆ( ) | |j j jE H V                                                 ( 12)A

 

 
Inserting ( 11)A  into ( 12)A , we have got the following relation 

(1) (2) (1) (2)

0 0
ˆ ˆ ˆ ˆ( ) | ( ) | | |j j j j j jE H P E H Q VP VQ                     ( 13)A  

 If we operate P  from the left side of Equation ( 13)A , we can obtain  

2 (1) (2) (1) (2)

0 0
ˆ ˆ ˆ ˆ( ) | ( ) | | |j j j j j jE H P E H PQ PVP PVQ           

 

and using Equations ( 5)A and ( 8)A , we have  

(1) (1) (2)

0
ˆ ˆ ˆ( ) | | |j j j jE H P PVP PVQ                                            ( 14)A  

Similarly operating Q from the left side on Equation ( 13)A , we obtain 
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(2) (1) (2)

0
ˆ ˆ ˆ( ) | | |j j j jE H Q QVP QVQ                                          ( 15)A  

From Equation ( 15)A , we can express 
(2)| jQ    by 

(1)| jP    as follows  

(2) (1)

0
ˆ ˆ ˆ( ) | |j j jE H QV Q QVP                                         ( 16)A  

and dividing both sides by 0
ˆ ˆ( )jE H QV  , we arrive at  

                 

 

(2) 1 (1)

0

1
1 (1)

0 0

1 (1)

0

ˆ ˆ ˆ| ( ) |

ˆ ˆ ˆ ˆ( ) 1 ( ) |

ˆ ˆ ˆ( ) |

j j j

j j j

j j

Q E H QV QVP

E H E H QV QVP

J E H QVP

 












    

     
 

  

                            ( 17)A
 

where the operator Ĵ  is defined by      

1
1

0
ˆ ˆ ˆ1 ( )jJ E H QV


   

 
                                                  ( 18)A  

If we substitute Equation ( 17)A  into the second term on the right hand side in 

Equation ( 14)A , we obtain the equation for 
(1)| jP    as follows

 

          

 

(1) (1) 1 (1)

0 0

1 1 (1)

0

(1)

ˆ ˆ ˆ ˆ ˆ ˆ( ) | | ( ) |

ˆ ˆ ˆ ˆ ˆ( ) |

ˆ ˆ |

j j j j j

j j

j

E H P PVP PVJ E H QVP

PVJ J E H QV P

PVJP

  







 

      

   

 

               ( 19)A  

Further, inserting Equation ( 17)A  into Equation ( 11)A , the following equation for  

| j   is obtained 

         
 

(1) (2) (1) 1 (1)

0

1 1 (1) (1)

0

ˆ ˆ ˆ| | | | ( ) |

ˆ ˆ ˆ ˆ ˆ( ) | |

j j j j j j

j j j

P Q P J E H QVP

J J E H QV P JP

    

 



 

         

     
             ( 20)A  

Therefore, we can rewrite Equation ( 20)A  as (1)ˆ| |j jCJP     where C  is the 

normalization constant. Taking the conjugate, we have (1)ˆ| |j jC PJ     . From 

orthogonality we can find C as follows 

(1) (1)ˆ ˆ| ( ) |j j j jC C PJ JP          

2 ˆ ˆ| | ( ) 1C PJ JP    and we have  1 2ˆ ˆ( )C PJ JP   

Finally  

1 2 (1)ˆ ˆ ˆ| ( ) |j jJP PJ JP                                              ( 21)A
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Since | j   has been expressed in terms of 
(1)| j  , we can obtain the effective 

operator ˆ
effO  from the following relation 

(1) (1)ˆ ˆ| | | |i j i eff jO O                                              ( 22)A  

Substituting Equation ( 21)A  into the left-hand side of Equation ( 22)A and 

comparing it with the right-hand side, we arrive at 

1 2 1 2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( )effO PJ JP PJ OJP PJ JP    
                                

( 23)A  

Taking V̂  as Ô  the effective interaction operator  

1 2 1 2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( )effV PJ JP PJ VJP PJ JP    
                              

( 24)A  

where ˆ
effV  operates only on any states in the P space.  Having the bare interaction 

V̂ , we can find ˆ
effV  by obtaining the unknown operator Ĵ .  

To obtain the form of Ĵ , let us consider operator relation 0
ˆ ˆ,J H P 

 
 and operate 

it on the state | j   

      0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, | | |j j j j jJ H P JH H J P E H J J E H P            

    ( 25)A  

 

  Since 0
ˆ ˆ ˆH H V   and  0

ˆ ˆ| |j j jE H V      replacing the first term 

 0
ˆ

jE H in   Equation  ( 25)A  by V̂  we have got 

 

 0 0
ˆ ˆ ˆˆ ˆ ˆ, | | |j j j jJ H P VJ J E H P         

 
                              ( 26)A  

 

Using Equations ( 11)A , ( 14)A and ( 17)A , the second term of Equation ( 26)A can 

be changed to 

 

     

     

(1) (1) (2)

0 0

1 1
(1) (1) 1 (1)

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ| | | |

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ| | |

j j j j j j

j j j j j

J E H P J E H P J PVP PVQ

JPV P J E H QVP JPVJ J E H QV P

   

  
 



        

        

( 27)A  

Using the relations 
1

1

0
ˆ ˆ ˆ1 ( )jJ E H QV


   

  and  
(1)| |j jP P    , we have 

 

  (1)

0
ˆ ˆ ˆ ˆ ˆ| |j j jJ E H P JPVJP                                                ( 28)A  

          
So, we can rewrite Equation ( 26)A as 
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0
ˆ ˆ ˆˆ ˆ ˆˆ, | | |j j jJ H P VJP JPVJP        

 
                                 ( 29)A    

Therefore, for operator Ĵ , we have 

0
ˆ ˆ ˆˆ ˆ ˆˆ,J H P VJP JPVJP   

 
                                               ( 30)A  

To solve Equation ( 30)A  perturbatively, let us assume 

( )

0

ˆ ˆn n

n

J g J




                                                          ( 31)A  

where the n th term contains n  V̂ s and 
(0)Ĵ P . If we substitute Equation ( 31)A  

into equation ( 30)A  and equalize the terms of order ng  on both sides, we obtain  

(1)Ĵ ,..
( )ˆ nJ .  

 

For  example, by using the identity ( 30)A , we can write the following identity 

(1) (0) (0) (0)

0
ˆ ˆ ˆˆ ˆ ˆˆ ˆ,Q J H P QVJ P QJ PVJ P QVP    

                             
( 32)A  

where, we have used the following identities 

(0)Ĵ P    0PQ QP   

 Taking the matrix elements of Equation ( 32)A with state ket | j  , we have 

(1) (1) (1)

0 0 0

(1) 0 0

ˆ ˆ ˆ ˆ ˆ ˆ| , | | ( ) |

ˆ ˆ| ( ) | | |

i j i j

i P Q j i j

Q J H P Q J H H J P

QJ E E P QVP

   

   

      
 

      
               ( 33)A  

where 0

PE  and 
0

QE  are the eigenvalues of the Hamiltonian 0Ĥ
 
in the P and 

Q spaces, respectively. From Equation ( 33)A , we have  

(1) 0 0ˆ ˆ| ( ) | | |i P Q j i jQJ E E P QVP        
                            

 ( 34)A  

and for 
(1)Ĵ , we obtain (1) 0 0ˆ ˆ( )P QJ E E QVP  . Multiplying both sides from the 

right  by
0 0 1( )P QE E  , we obtain the final expression for 

(1)Ĵ  as follows. 

 
(1) 0 0 1ˆ ˆ( )P QJ QV E E P                                             ( 35)A
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Appendix B 

 

Derivation of the interaction potential 

The effective interaction in the P  space is given by 

                 
1 2 1 2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( )effV PJ JP PJ VJP PJ JP    

                                 
( 1)B

 

The bare interaction between the two subsystems in a dipole approximation is 

                 
 ˆ ˆˆ ˆˆ ( ) ( )s s p pV D r D r      

                                            
( 2)B  

we can represent electric displacement operator  
ˆ
( )D r  in terms of vector potential 

( )A r and conjugate momentum 
ˆ

( )r  

2

1 1 1 1 1ˆ ˆ ˆ ˆ ˆˆ
( ) ( ) ( ) ( ) ( ) 4 ( )

4 4 4

A
r P r E r P r E r P r

c t c c c c


  

             
  

 

( 3)B  

Since         
ˆ ˆ ˆ

( ) ( ) 4 ( )D r E r P r    ,  we  have    
1 ˆˆ

( ) ( )
4

r D r
c

    

where 
ˆ

( )P r  and 
ˆ

( )E r are the transverse components of the polarization and 

electric fields. The mode expansion of 
ˆ
( )A r  and 

ˆ
( )r  in terms of the electron 

creation and annihilation is 

                   

 
1 2

22

1

2ˆ
ˆ ˆ( ) ( ) ( ) ( )ikr ikr

k k

c
A r e k a k e a k e

V
  







 



 
   

 

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Since we have   
ˆ ˆ

( ) 4 ( )D r c r   , 
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( 6)B  

where ˆ ( )a k  and ˆ ( )a k


are the creation and annihilation operators of photon, k  

is wavevector, 
k

  is angular frequency, ( )e k  is unit vector in polarization 

direction and V  is quantization volume. 

Rewriting the creation and annihilation operators of photon, ˆ ( )a k  and ˆ ( )a k


, in 

terms of the exciton-polariton creation ˆ ( )k   and annihilation ˆ( )k  operators 

and defining ˆ ˆ ˆ( ( ) ( ))s s B r B r     , we have 
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where ˆ( )B r  and ˆ ( )B r  are the creation and annihilation operators leading to 

electric dipole transitions, and creation and annihilation operators are defined by 

    
ˆ( ) ( ) ( ) ( ) ( )a k W k k y k k         ˆ ( ) ( ) ( ) ( ) ( )a k y k k W k k              ( 8)B  

Taking the first part of Equation ( 7)B , we obtain 
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 by changing  k k ,we have 
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where we have the following relations  
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where ( ) ( )E k k   and mE    are the eigenenergy of exciton-polariton and 

excitation energy of macroscopic subsystem. So, we have got 
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Here ( )k k ck    and we define ( )f k  function as follows 
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where ( ) ( ) ( )f k f k f k   . So,  the last expression changes to 
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So, Equation ( 10)B  changes to  
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Inserting the summation over  , we obtain 
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where K and K



 
are the coupling coefficients  between the probe (sample ) and 

the exciton-polariton and defined as  
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Finally, after simplifications, we have 
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Taking the summation for S and P, we have  
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The effective sample probe tip interaction in the P  space is defined as 
                                      

 

                               2 1(2,1) | |eff effV V                                                ( 20)B  
 

Inserting the expression ( 1)B  in Equation ( 20)B , we have  
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Since  1 2ˆ ˆ( )C PJ JP   is a normalization constant and the first order 

approximation of Ĵ  gives 
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Therefore, 
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and finally the effective interaction in the P  space is 
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where 0

1PE  and 0

2PE  are the eigenenergies of 1|   and 2|   in the P  space and 

0

QmE  is the eigenenergy of | m   in the Q  space. The matrix element 1
ˆ| |m QVP    

in Equation ( 24)B  represents the virtual transition from the initial state 1|   in the 

P  space to the intermediate state | m  in the Q  space, while the matrix element 

2
ˆ| |PVQ m   represents the subsequent virtual transition from the intermediate 

state | m  in the Q  space to the final state 2|   in the P  space. To find the bare 

interaction in the P  space, we have to calculate transition matrix elements shown 

above. First, note that among arbitrary intermediate states only two intermediate 

states can contribute to nonzero matrix elements. We define 1|  and 2|   states in 

the P  space as 1 ( )| | | | Ms p O     
 

and 2 ( )| | | | Ms p O       and 

intermediate | m  states in the Q  space as | | | |m s p k      and 

| | | |m s p k      .  

Inserting Equation ( 18)B  and 1|  , 2|   and | m  states in to ( 24)B , we obtain 
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( 25)B  
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Since  ˆ( ) | ,| 0B r s p    ,  ˆ ( ) | ,| 0B r s p

     , ˆ ( ) | 0k k    , 

and ( )
ˆ( ) | 0Mk O         the only terms survived in ( 25)B  are 
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( 26)B  
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
 









1
( ) ( )

( ) ( ) ( )
s p

k

K k K k
E p E p k




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

( 27)B  

where ( )E s , ( )E s  and ( )E p , ( )E p  are the ground and excited energies of | s  

and | p states, respectively. 
0( ) ( ) ( )E s E s s     and 

0( ) ( ) ( )E p E p p     

are the differences between the excited and ground state energies and 

( ) ( )E k k   is the excitation energy. Replacing summation over k  by 

integration 3

3(2 )

V
d k

  , we have 

 

              

3

2

0 0

( ) ( ) ( ) ( )1
(2,1)

(2 ) ( ) ( ) ( ) ( )

p s s p

eff

K k K k K k K k
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k s k p
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   

     


                

( 28)B
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Similarly, we can calculate 
1 2(1,2) | |eff effV V     as

 

 

   

                   

3

2

0 0

( ) ( ) ( ) ( )1
(1,2)

(2 ) ( ) ( ) ( ) ( )

s p p s

eff

K k K k K k K k
V d k

k p k s

  
   

     


                 

( 29)B  

The total amplitude of effective interaction potential is defined as a sum of 

(1,2)effV and (2,1)effV  as follows  

  
2

3 2

2
1 ,

1
( ) ( ) ( ) ( )

4 ( ) ( ) ( ) ( )

ikr ikr

eff s p

p s

e e
V r d k e k e k f k

E k E E k E
 

 

 
  



 

 
           

  
                                                                                                                                                              

( 30)B

 
The summation over   is 

2

1

ˆ ˆ( ) ( )i j ij i je k e k k k 





  . Therefore, we obtain 

     
2 2

1 1 , ,

ˆ ˆ( ) ( ) ( ) ( ) ( )s p si i sj j si pj ij i j

i j i j

e k e k e k e k k k   

 

      
 

         ( 31)B  

Here k̂  is the unit vector and defined as k̂ k k . Since we have  

3 2 2 sind k k dkd k dk d d      then 

     

 
2 1

cos

0 1

2
(cos )ikr ikr ikr ikr

ij ij ije d e d d e e
ikr



 
      



     
             

( 32)B  

 and 

  

3
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 
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                
 

              

( 33)B  

Here from p k  and p i    we have k i    

So, we arrive at

                            

 

     

  3
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 

                    ( 34)B  

Taking into account that ˆ( )i ir r    and ˆ( )i j ijr    , we get
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( 35)B
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Putting Equation ( 35)B  into ( 30)B , we have 
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( 36)B  

 

where mE     and 
2

pol polE m c  are the excitation energy of macroscopic 

subsystem and exciton–polariton energy and  
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m
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m E
   

                                          

( 37)B  

To calculate the integration we can simplify the energy terms as  
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Therefore, Equation ( 36)B  then changes to 
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 ( 39)B                                                                                                                                                  
   

 

where                                 
 

                           

1
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( )mE E

 

Finally, the the integration of Equation ( 39)B  gives us 
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where 
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( 41)B
 

 

Taking the angular avarage of ˆ ˆ( )( ) ( ) 3s p s pr r      , we find

 
 

     

2 2

,

( )
( ) ( ) ( )

3

r r

A B
eff

s p

e e
V r W W

r r

 

   


    

   



 
     

 


     

( 42)B

 

 
for the effective or optical near-field potential. It consist of  the sum of the Yukawa

 

functions ( )
r

r e r




    with a shorter interaction range   (heavier effective 

mass) and a longer interaction range   (lighter effective mass). 
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Appendix C 

 

Optical Near Field Interaction between 

Quantum Dots for Strong Confinement 

 

The interaction Hamiltonian between  an electron and electric field can be written 

as  

int

ˆˆ ( ) ( ) ( ) ( )H r r r D r dr                                              
( 1)C  

Here, ( )r 

 is the field operator for electron creation  and ( )r  represents the 

field operator for electron annihilation, ( )r is the dipole moment and 
ˆ
( )D r is the 

electric displacement vector operator at the position r . We can expend field 

operators in terms of basis functions as follows
 

,

ˆ( ) ( )n n

v c n

r a r 


 


 
     ,

ˆ( ) ( )n n

v c n

r a r 


   



 
                          

( 2)C

 

where in quantum dot, ( )n r and
 

( )n r
 are the basis functions that satisfy the 

boundary conditions for the electron. Here, ˆ
na
  is the creation operator for the 

electron in the conduction band and ˆ
na  is the annihilation operator for the 

electron in the valence band. They are specified by the quantum numbers ( , )n  

where ( , )c   and indices c and   correspond to the conduction and valence 

bands, respectively. The quantum number n denotes discrete energy levels in 

semiconductor quantum dot where ( 1,2,3,..)n  . The completeness condition or 

orthonormalization for the basis functions can be written as  

,

( ) ( ) ( )n n

v c n

r r r r 


  



  
                                       

( 3)C
 

The electric displacement operator 
ˆ
( )D r  in exciton-polariton base can be written 

as follows (please refer to Appendix B for derivations)
 

 
2

1

2ˆ ˆ ˆ( ) ( ) ikr ikr

k k
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D i e k f k e e
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



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( 4)C
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where                              
2 2

2 2 2

( )
( )

2 ( ) ( )( )

m

m

E k Eck
f k

E k E ckE k




 
                     ( 5)C  

Here, ˆ
k

 and ˆ

k  are the creation and annihilation operators of the exciton-

polariton and ( )e k , V and k are the unit vector related to the polarization 

direction, quantization volume and the  exciton-polariton wavevector, 

respectively. Here mE is the excitation energy of the macroscopic material and 

( )E k is the energy related to the exciton-polariton with the wavevector k . 

Substituting Equations ( 2)C and ( 4)C into ( 1)C  gives us the interaction 

Hamiltonian. 
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 
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So, the second quantized form of the interaction Hamiltonian in exciton-polariton 

base is 

 int

, , , , ,

ˆ ˆˆ ˆ ˆ ˆ ˆ
n n n n k n n n n kk k

n n k
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       
 
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( 6)C

 

where  

             

2
( ) ( ) ( ) ( ) ( ) ikr

n n k n ng i f k r r e k r e dr
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     


   

   
   
 

       
( 7)C

                                               

We can use Wannier function basis to describe the creation and annihilation of 

electron-hole pairs in a quantum dot because, it represent, the localization of   

 

electrons in an atomic site R . Therefore, we can expand the electron field 

operators in terms of Wannier functions as 

            ,

ˆ( ) ( )
R R

v c R

r a w r
 


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
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
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( 8)C  
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Here, ˆ
R

a



 is the creation operator of an electron at the position R  in the 

conduction band and ˆ
R

a
 

 is the annihilation operator of an electron at the site R  

in the valence band energy band  . We can rewrite these operators in the Wannier 

representation in terms of ˆ
na  and ˆ

na
 . Integrating both sides of Equation ( 8)C , 

we have 

,
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R R R R
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                                            ˆ( ) ( ) ( )
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 

 


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                                     ˆ ( ) ( )
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
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( 9)C  

So, we can write creation and annihilation operators in the Wannier representation 

as  

 ,

ˆ ˆ ( ) ( )n nR R
v c n

a a w r r dr  

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 
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 
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( 10)C  

In strong-confinement regime, the Bohr radius of an exciton is greater than the size 

of a quantum dot, the Coulomb interaction is very weak and both electron and hole 

can move independently. Therefore, the electron-hole states in a spherical quantum 

 

dot specified by the quantum numbers ( , )    (where ( , , )n l m   and  

( , , )n l m    ) can be represented by superposition of electrons and holes in 

Wannier representation as
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  

 




  


      

     

  

 



 

           

( 11)C

 
So, we have        

,,

ˆ ˆ| ( ) ( ) |e h cn n gRnR n
n nR R

F r F r h a a   



  


     
                        

( 12)C  

where ( )A

m eF r and ( )A

m hF r denote the envelope functions for electron and hole in 

the   quantum  dot A , and the overlap integrals are defined as 

 

                     2 1 1 2 1 2( ) ( ) ( ) ( )cn nRnR n R cR
h w r w r r r drdr

  

  
                     

( 13)C  
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Using Equations ( 6)C and  ( 12)C , we can obtain transition matrix elements from 

the exciton state |    to the crystal ground state | g  as follows 

 

 

1 1 1 2 1 21 1

1 1 1 2

1 2

int

, , , , ,

,,

ˆ ˆˆ ˆ ˆ ˆ ˆ| | |

ˆˆ ˆ ˆ ˆ( ) ( ) | | (

ˆ ˆ

g m g n n n n k n n n n kk k
n n k

A A

e h cn n g g n cn n cn kRn R n k
n n n cn kR R

n cn

H a a g a a g

F r F r h a a a a g

a a

          
  

     
 



 



  

       
 

 

  




        

      





   

1 2 3 43 4

3 4

1 2 1 2 1 4 2 33 4

1 2 3 4

,,

,,

ˆ ˆ ˆ) ( ) ( ) |

ˆ ˆ( ) ( ) ( )

A A

n cn k e h cn n gRn R nk
n nR R

A A

n cn k n cn k e h n n n nRn R nk k
n cn k n nR R

g F r F r h a a

g g F r F r h

    

     
 



   

 

 




 


    

   

 

   

( 14)C  

 
where, the expectation value leads the delta function  

       

                 
1 2 3 4 1 4 2 3

ˆ ˆ ˆ ˆ| |g n cn cn n g n n n na a a a          

1 2 1 2 3 4

1 2 3 4

1 2 3 4 1 2 1 2

1 2

2

int

, 1 ,,

2

, 1,

ˆ ˆˆ| | ( ) ( ) ( )

ˆ ˆˆ ˆ ˆ ˆ| | ( ) ( ) ( )

A A

g m e h n cn k n cn k Rn R nk k
n n n nR R k

A A

g n cn cn n g e h n cn k n cn kk k
n n R R

H F r F r g g h

a a a a F r F r g g

      


       


 

 



  
 

  

 

 

     

    

  

 

1 4 2 33 4

3 4,

k

n n n nRn R n
n n

h  










 

 
So, we find the expression for transition matrix elements as

 

            

1 2 1 2 2 1

1 2

2

int

, 1,

ˆ ˆˆ| | ( ) ( ) ( )A A

g m e h n cn k n cn k Rn R nk k
n n R R k

H F r F r g g h      


  

  
 

     

( 15)C  

Using the orthonormalization property of the functions ( )n r  and ( )n r
 , the 

product of g and h  can be simplified to 

1 2 1 22 1

1 2 1 2

1 2 1 2

1 2

, ,

2 1 1 2 1 2

,

2

2
( ) ( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ikr

n cn k n cnRn R n
n n n n

cn n n cnR cR
n n c

R c

g h i f k r r e k e r dr
V

w r w r r r drdr i f k r r dr
V

w r r w

   

 





  


   







  







     

   



  

 

1 2

1 2

1 1 1 2 2

,

1

2
( ) ( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

ikr

cn nR
n n c

ikr ikR

R cR RR

r e k e dr r r dr i f k
V

w r r w r e k e dr i f k r e k e
V

 


 


 


  





 

  

     

 



( 16)C  
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where the spatial locality of the Wannier functions provides 
RR



. So, we have 

 

1 2 2 1

1 2,

2
( ) ( ) ( ) ikR

n cn k Rn R n RR
n n

g h i f k r e k e
V

  


 

 
   
 

                  

( 17)C  

where the transition dipole moment is defined as 

( ) ( ) ( )
R cR

w r r w r dr


                                            ( 18)C  

 Therefore, Equation  ( 14)C  can be reduced to 

          

1 2 1 22 1 2 1

1 2 1 2

2

int

1 , ,,

ˆ ˆˆ| | ( ) ( ) ( )A A

g m e h n cn k n cn kRn R n Rn R nk k
n n n nR R k

H F r F r g h g h      


  

  
 

           

  and 
 

   

1 2 1 2 2 1

1 2

2

int

, 1,

2

1,

,

ˆ ˆˆ| | ( ) ( ) ( )

2 ˆ( ) ( ) ( ) ( ) ( )

( ) (

g e h n cn k n cn k Rn R nk k
n n R R k

ikR

e h RR k
R R k

e h

R R

H F r F r g g h

F r F r i f k r e k e
V

F r F r

      


  


 

 


  



   
 

 
 





     

 
        

 



 

 



 

2

1

2

1,

2

1

2 ˆ) ( ) ( ) ( )

2 ˆ ˆ( ) ( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

k

k

ikR

RR
k

ikR ikR

e h RRk
R R

e

R k

i f k r e k e
V

i f k r e k F r F r e e
V

i f k r e k F r F
V




  


  



  


   




 




 

 
 





 
       

 

       
 

   
 



 

  ˆ ˆ( )
k

ikR ikR

h k
r e e     

( 19)C

 

             

  So, finally we have 

          

 
2

int

1

2 ˆ ˆˆ| | ( ) ( ) ( ) ( ) ( ) ikR ikR

g e h k k
R k

H i f k r e k F r F r e e
V

   



    

 



         
 

 

Here the long wave approximation  1ikRe   is not applied, which is usually used 

for far-field light. The optical near-field interaction in the lowest order can be 

written as follows 

    0 0 0 0

1 1ˆ ˆ| | | |P Q Q P

eff f i P Q P Q
m i m f m

V U PVQ m m QVP
E E E E

 
 

         


   

 ( 20)C  
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0

P

iE  and 0

P

fE  are the eigenenergies of initial | P

i   and final | P

f   states of the 

unperturbed Hamiltonian in the P  space and 
0

Q

mE is the eigenenergy of the 

intermediate state | Qm   in the Q  space. Here we set the initial and final states in 

the P space as   

| | | | 0
A A

P A B

i g               | | | | 0
B B

P A B

f g                               ( 21)C  

The intermediate states in the Q  space include the exciton-polaritons with the 

wavevector  k  

  
| | | |Q A B

g gm k            | | | |
A A B B

Q A Bm k                               ( 22)C  

Using these states in Equation ( 20)C , we have   

                      

0 0 0 0

0 0 0

ˆ ˆ0 | | | | | | | | | | | | 0

1 1 ˆ0 | | | | | |

1 1ˆ| | | | | | 0

B B A A

B B A A B B

A A B B A A

A B B A B A A B

g g g g g g

B A A B

gP Q P Q

i m f m

A B B A

g P Q

i m f

U V k k V

V k
E E E E

k V
E E E

   

     

     

 

  

  

               

 
              

        
 0

P Q

mE

 
   

( 23)C  

Inserting the expression of  matrix elements ( 19)C into Equation ( 23)C , and 

operating the exciton-polariton creation 
k

 

 
and annihilation ˆ

k
  operators from 

the left hand side to the k  state, we obtain 

   

2
2

1

( )

2
( ) ( ) ( ) ( ) ( )

1 1
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
( ) ( )

A A

B A

B B

A A

A B e h

R k

ik r rB B

e h

A B

U e k e k f k F r F r
V

F r F r e
E A E A k E B E B k

e k e k f
V

   


 

 


 


 





 

  

              

 
   
      
 

             



   

2
2

1

( )

( ) ( ) ( )

1 1
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

A A

A B

B B

A A

e h

R k

ik r rB B

e h

k F r F r

F r F r e
E B E B k E A E A k

 


 





 

  



 
  
      
 



 ( 24)C

 

since 
 

3

3
2k

V
d k


     and  0( ) ( ) ( )E A E A A   

 0( ) ( ) ( )E B E B B     ,
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we have 

  

2
3 2

3
1

( ) ( )

0 0

3

3

2
( ) ( ) ( )

(2 )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
(

(2 )

A B A B

A A B B

A B

R

ik r r ik r r
A A B B

e h e h

A

V
U d k e k e k f k

V

e e
F r F r F r F r

A k B k

V
d k e

V

 


   




 










   
 

 

              

 
          

 
  
 




2

2

1

( ) ( )

0 0 0 0

) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

A B A B

A A B B

B

R

ik r r ik r r
A A B B

e h e h

k e k f k

e e
F r F r F r F r

k B k A




   




 
 

 

    
   

 
          



   

( 25)C
 

    and 

2
3

2
1

2 3 3

2

1
( ) ( ) ( ) ( ) ( )

(2 )

( ) ( )
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

(2 )

A A B B

AB AB

A A B B

A A B B

e h e h A

ikr ikr

B A B

A A B B

e h e h

U F r F r F r F r d k e k

e e
e k f k d r d r

E k E A E k E A

F r F r F r F r

    




   








 

 





 

 

    
 

 
          



 


2

3

1

2 3 3

( )

( ) ( )
( ) ( ) ( ) ( )

AB AB

A

ikr ikr

B A B

d k e k

e e
e k f k d r d r

E k E B E k E B














  
 

 
         

 

      

( 26)C     

Finally, we arrive at  

         
  3 3( ) ( ) ( ) ( ) ( ) ( )

A A B B

A A B B

e h e h A AB B AB A BU F r F r F r F r r r d r d r   

 

          
( 27)C

 

 where we have 

2
3 2

2
1

3

1
( ) ( ) ( ) ( )

4

( ) ( ) ( ) ( )

AB AB

AB A B

ikr ikr

r d k e k e k f k

e e
d k

E k E E k E

  


 


 





        
   

 
     



                  

( 28)C

 

Here, ( , )A B  , | | | |AB AB A Br r r r   ,   is transition dipole moment and E  is  

the exciton energy in  QD , and ( )E k denotes the eigenenergy of  exciton-

polariton with  

2 2( ) ( )
( )

2 2
m

pol pol

k ck
E k E

m E
   

                                     

 ( 29)C  
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mE
 
is the electronic excitation energy of the macroscopic subsystem, 

polm  and 

2

pol polE m c
 
are the  effective mass and the energy of exciton-polariton. 

After taking the integration over  k  and approximations, Equation ( 28)C  can be 

simplified to (refer to Appendix B and Appendix D) 

2 2

,

( )
( ) ( )

3

r r

A B

A B

e e
W W

r r

 

   


    

   



 
      

 
                 ( 29)C  

where  W  and   are the constants and defined as  

 
2 2

2( )( ) 2
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Appendix D 

 

Derivation of the probe sample interaction 

potential 

 

The prope sample interaction potential ( , )effV p s  defined as 
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where we approximate some of the terms as a constant, define ( )f k as f and  

heavy and light effective masses 
 
and 
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Now let us change the coordinate system from cartesian coordinates to spherical 

coordinates and take into account that 3 2 sind k k dk d d    in spherical 

coordinates.
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the first part of the integral is evaluated as 
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 so we have 
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To obtain the last integral we use the complex integration,. The residue at k im  

gives 
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Finally we have 
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In a similar way  the following integral can be derived for light effective mass 
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Finally effective probe-sample interaction is derived as 
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Since the eigenenergies of sample( 0 ( )s ) and probe ( 0 ( )p ) is larger than the 

energy of macroscopic matter excitation  ,   and   can be approximated as  
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Finally, it follows that  
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where we have 
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