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ABSTRACT

ENSURING MULTIDIMENSIONAL FAIRNESS IN
PUBLIC SERVICE

Damla Akoluk

M.S. in Industrial Engineering

Advisor: Özlem Karsu

December 2020

In this study, we focus on service planning problems, in which decisions lead

to distributions of multiple benefits to multiple users, hence involve fairness and

efficiency concerns in a multidimensional way. We develop two mathematical

modeling-based approaches that incorporate these concerns in such problems. The

first formulation aggregates the multidimensional efficiency concerns and multi-

dimensional fairness concerns in a bi-objective model. The second formulation

defines an objective function for each benefit, which maximizes the total social

welfare obtained from that specific benefit distribution, hence results in an n-

objective model, where n is the number of benefits. We illustrate and compare

these approaches on an example public service provision problem.

Keywords: Fairness, Public service provision, Public education, Knapsack problem,

Equity, Epsilon constraint algorithm, Multi-criteria optimization.

iii



ÖZET

KAMU SERVİSLERİNDE ÇOK BOYUTLU
EŞİTLİKÇİLİK KAYGISI

Damla Akoluk

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özlem Karsu

Aralık 2020

Bu çalışmada, verilen kararların birden fazla kullanıcıya birden fazla fayda

tipinde fayda sağladığı, ve her tip fayda içn hem verimlilik, hem adillik gözetildiği,

yani çok boyutlu verimlilik ve eşitlikçilik kaygılarının olduğu hizmet servisi

planlama problemleri ele alınmıştır. Verimlilikten kasıt, toplam faydanın en

çoklanmasının istenmesi, eşitlikçilikten kasıt ise herhangi bir toplam faydanın farklı

kullanıcılara eşitlikçi bir şekilde dağıtılmasının istenmesidir. Bu kaygıları bu tür

problemlerde göz önüne alan, matematiksel modelleme tabanlı iki farklı yaklaşım

geliştirilmiştir. İlk yaklaşım, çok boyutlu verimlilik kaygılarını ve çok boyutlu

adalet kaygılarını iki amaçlı bir modelde bir araya getirir. İkinci yaklaşım, her

fayda için, o faydanın dağıtımından elde edilen toplam sosyal refahı ençoklamayı

amaçlar, yani n’nin fayda sayısı olduğu n-amaçlı bir model olarak tanımlanmıştır.

Önerilen bu yaklaşımlar örnek bir kamu hizmet servisi planlama problemi üzerinde

uygulanmış ve bu problemlerde verimlilik ve eşitlikçilik arasındaki ödünleşme in-

celenmiştir.

Anahtar sözcükler : Çok boyutlu eşitlikçi optimizasyon, çok amaçlı modelleme,

eşitlikçi tercihler, eşitlikçi verimlilik, kamu hizmet servisleri, halk eğitim, çok

amaçlı sırt çantası problemi, adillik, epsilon-kısıt yöntemi.
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Chapter 1

Introduction

In many real life applications such as public service facility location, task assign-

ment, bandwidth allocation and scheduling, the decision makers have fairness con-

cerns alongside efficiency concerns [1]. The need to incorporate these concerns has

been acknowledged by the OR/MS community, leading to a recent increase in the

number of studies on the topic. Efficiency is the concern for maximizing the total

benefit whereas fairness is the concern for distributing the total benefit to users

as equitable as possible. There is usually trade-off between these two concerns,

making the corresponding decision making problem challenging. The solution that

maximizes a system’s efficiency may be a bad one in terms of fairness. Therefore,

any decision support system should take such equity concerns into account when

making recommendations. This usually leads to the problem being defined as a

multiobjective optimization problem.

Multi-objective optimization problems (MOPs) have been studied in the Oper-

ations Research literature for a long time. These problems involve multiple com-

peting aims, implying that there is a trade-off between them. There is no specific

solution that concurrently optimizes all objectives, hence the optimality concept in

single objective optimization is replaced with Pareto optimality in multiobjective

optimization.
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To give an example of the trade-off between efficiency and equity, let us con-

sider a hospital location problem where users’ travel distance to possible hospital

locations is the output of concern. In this setting, the decision maker tries to

locate the hospital such that the resulting total distance is as minimum as possi-

ble (efficiency) and there is not much imbalance in the distances traveled by the

users (fairness). A solution that maximizes the system’s efficiency (minimizing the

users’ total distance to hospital location) may require some users to travel longer

distances compared to others. On the other hand, a solution that maximizes eq-

uity (trying to equalize each user’s distance to the hospital location) may lead to

a huge decrease in efficiency. To show this trade-off, suppose that the hospital

will be located in one of the two possible locations and there are three users (the

users could be different demand points, nodes or population groups). Assume

that for the two candidate locations, the distances that the three users will travel

are (5,5,5) and (8,2,3), respectively. While the total distance is less in the sec-

ond alternative (more efficient), the first alternative is equidistant to all neighbors

(more equitable). Which alternative will be chosen will depend on the priority and

preferences of the decision maker. As seen in this example, the alternative that

minimizes total distance can lead to an unbalanced distribution of resources or

utilities. On the other hand, an alternative that maximizes equity, where all users

benefit from equally or equal amount of resources, may not be the alternative that

maximizes total utility.

If the decision-maker is focused on the distribution of a single benefit to multiple

users, each distribution alternative corresponds to a vector as seen in the above

example. This allocation vector presents the distribution of that single benefit

to users/entities enjoys. In this case, there are single efficiency and single equity

concerns.

On the other hand, if the decisions will lead to allocation of multiple types

of benefits to multiple users, there will be a concern for efficiency (maximizing

the total utility) and equity (distributing that benefit equitably) for each benefit

type. To illustrate, let us expand the scope of the above example. Assume that

the healthcare facility provides service in two different areas, such as dental and

standard services. Moreover, this time, assume that the output of interest is not the
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distance; rather the benefit that the users (entities) will receive from each service

type. The outputs for the beneficiaries (users) change according to the location of

the hospital. In this kind of setting, alternatives become matrices where entities

and benefits correspond to rows and columns, respectively. To illustrate, let us

consider two alternatives,
(
6 9
5 2

)
,
(
5 5
5 5

)
, in which two different healthcare services

are allocated to two different beneficiaries. While total output in both benefits

are better in first alternative, the second alternative is more equitable. Which

alternative will be chosen depends on the priorities of the decision maker, in a

similar manner to the single benefit example above. In this thesis, we consider this

type of problems, which we call multidimensional equitable optimization problems.

Multidimensional equitable optimization problems are multiobjective optimiza-

tion problems by nature due to the existence multiple efficiency and fairness con-

cerns. However they are different from classical multi-objective optimization prob-

lems due to additional properties assumed for the underlying dominance relation.

Therefore handling such problems requires customized approaches. To be able to

incorporate these (multidimensional) efficiency and fairness concerns in the de-

cision making process, we propose multi-objective mathematical modeling based

approaches in this thesis. These approaches are generic in the sense that they

can be adapted to various settings, in which the decisions result in allocations of

multiple goods to multiple users. To keep the cognitive burden to the DM (De-

cision Maker) at a reasonable level, we first formulate bi-objective programming

problems, solving which would provide the DM with a set of Pareto solutions.

Hence we allow the DM to analyze the trade-off between efficiency and fairness

and choose the solution that she will implement. Our second approach maximizes

welfare functions, each of which is associated with one of the benefits distributed.

These functions are concave (Schur-concave), hence they encourage efficiency and

fairness in the allocations. We illustrate their use as solution approaches for ser-

vice planning problems that explicitly consider multidimensional fairness alongside

multidimensional efficiency.

Most of the current work in the literature focuses on settings where a single ben-

efit is allocated; hence we believe that this study extends these and contributes
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to the literature by suggesting ways of addressing these concerns in a multidimen-

sional domain.

The rest of the thesis is organized as follows:

In Chapter 2, we define the problem we address, and provide dominance rules

in agreement with the assumptions in equitable decision problems.

In Chapter 3, we provide a literature review on different types of problems

involving fairness concerns. We provide a categorization of such problems and

discuss how the problem we consider fits into this categorization. We discuss

relevant studies from the OR literature and mention the key contributions of our

work.

In Chapter 4, we elaborate on the two frameworks to incorporate multidimen-

sional equity concerns into optimization settings, where the decisions lead to al-

locations of multiple benefits to multiple entities. Both approaches utilize multi-

objective optimization models with different structures: The first approach trades

fairness off against efficiency, while the second approach trades the welfare from

one benefit off against those of others.

In Chapter 5, we demonstrate the usage of our approaches on a case study.

The specifics of the case study are described, followed by a detailed analysis of the

results.

We conclude our work in Chapter 6 and and give recommendations for future

research that could be pursued.
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Chapter 2

Preliminaries and Problem

Definition

Equitable optimization is a method that is used when a decision maker is faced

with the problem of allocating scarce resources to multiple users in an equitable

manner. Various applications of equitable optimization are observed in the oper-

ations research literature, most of which consider settings where a single resource

or benefit is allocated to multiple users.

Problems where a single benefit is allocated to multiple entities can be conceptu-

alized as multicriteria decision making problems, where each criterion corresponds

to the amount that each entity receives. Dominance rules help to compare the

performance score vectors of alternatives for each criterion in multi-criteria deci-

sion making literature. These rules are for identifying “bad” alternatives that are

not preferred by rational decision-makers. The dominance relation used in the lit-

erature is rational (vector) dominance. If performance score vector of alternative

a is at least as good as that of alternative b in terms of all criteria and is strictly

better in at least one criterion, alternative a dominates alternative b. A similar

dominance rule can be defined for equitable problems where a single benefit is

distributed [2].
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In the definitions below, Z ⊆ Rm represents a set of alternatives and z ∈ Z, zt =

(zt1, z
t
2, ..., z

t
m) represents a typical alternative. Each alternative is a m dimensional

vector, showing the allocated amounts to m users and t shows the index of the

alternative. The aim is to maximize the output/benefit distributed to each user

(i.e. the problem is considered as a multi-criteria problem) [1]. Throughout the

text we will use the terms user and entity interchangeably.

The decision maker’s choice model can be characterized by a weak preference

relation denoted by � [3]. For two alternatives zt and zh ∈ Z, we can have zt is

preferred to zh (in the weak sense), is strictly preferred to zh or is indifferent to

zh. It is assumed in the literature that the preference relationship of a rational

decision-maker satisfies the following three axioms;

1. Reflexivity: zt � zt ∀zt ∈ Z

The reflexivity axiom suggests that each alternative is at least as good as itself.

2. Transitivity: zh � zt and zg � zh ⇒ zg � zt ∀zt, zh, zg ∈ Z

The transitivity axiom implies that if alternative zt is preferred to alternative

zh and alternative zh is preferred to alternative zg, then alternative zt is preferred

to alternative zg.

3. Strict Monotonicity: zt ≺ zt + eiε ∀zt ∈ Z, ei : m dimensional unit vector

whose the ith element is 1 and the other elements are 0, ε is a small number.

Strict monotonicity means that increasing the benefit of one entity while keeping

other amounts the same is better. For example, between two alternative allocation

vectors, (4, 8, 15, 16, 23) and (4, 8, 15, 16, 24), the second alternative is preferred

since the last entity gets more benefit and other entities are not worse-off.

In classical (i.e. asymmetric problems), if the preference relation satisfies these

three axioms, it is a rational preference relation. If an alternative vector zt is

rationally preferred to an alternative vector zh with respect to all rational prefer-

ence relations, zt rationally dominates zh, zh �r z
t. We need two more axioms to
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incorporate fairness concerns in equitable problems [3].

4. Symmetry (anonymity): zt ≈ Πi(zt) ∀i = 1, 2, ...,m! and ∀zt ∈ Z. Πi(zt)

shows the permutation vector of zt.

Symmetry (anonymity) axiom ensures that there is no difference between users.

As an example, alternative allocation vectors, (13, 11, 23) and (23, 11, 13) should

be the same for the decision maker since the alternatives are equivalent.

5. Pigou-Dalton transfers principle: ztj ≥ zti ⇒ zt � zt − εej + εei ∀zt ∈ Rm,

where 0 ≤ ε ≤ ztj − zti , where ei and ej are the ith and jth unit vectors in Rm.

Pigou-Dalton transfer principle is widely used in the economics literature fo-

cusing on income inequalities. This principle states that, for an allocation, any

new allocation created by taking some benefit from a relatively better off entity

and transferring it to the other(s), should be a more preferred alternative. As

an example, consider the allocation vector (60, 100, 70, 80). Transferring 20 units

of benefit from the second entity to the first one while keeping the other entities

the same, hence obtaining (80, 80, 70, 80), is more preferable since the resulting

allocation is more equitable than the first allocation.

If a preference relation satisfies the above five axioms, it is called “equitable

rational preference relation” [3]. If an alternative zt is preferred to alternative zh

for all equitable rational preference relations, then zt dominates zh in equitable

rational manner, and this is shown as zh �e z
t. Hence equitable dominance is the

intersection relation of all equitable preference relations.

The above relations consider allocations of a single benefit to multiple users

and hence are defined for vectors. In many real life applications, the decisions may

result in the distribution of benefits (outcomes) to the users. In such cases the

concerns for efficiency and fairness are multidimensional.

In this multi-benefit framework the rules and definitions should be extended

from vector dominance to matrix dominance, which is relatively harder since the

alternatives (z vectors) become matrices. In this work, we address such problems,

7



which we briefly introduce as follows:

Consider an optimization setting where any decision made results in allocations

of a set of benefits over a set of entities and the decision maker has efficiency and

fairness concerns for all benefits.

Let x denote the (generic) decision variable vector. Any decision x that belongs

to a feasible region X results in allocation of multiple benefits to multiple users.

Let sets I and K denote the sets of benefits and users, respectively. Then the

benefit allocations are defined through constraints of the following form;

zik = gik(x) ∀i ∈ I, ∀k ∈ K

where zik shows the amount of benefit i enjoyed by entity k.

We deliberately keep this formulation in a generic form and note that functions

gik(x) may have different forms depending on the dynamics of the specific problem

considered. Denoting the set of feasible decisions of the problem as X, our problem

becomes detecting good solutions in set X such that the resulting benefit allocation

(represented by the z matrices) is efficient and fair. Note that due to existence of

multiple beneficiaries and multiple benefits, the problem is a multicriteria decision

making problem by its nature. Moreover, the symmetry in the vectorial domain

is extended to row symmetry in our alternative matrices, which is illustrated in

Example 1 below. Similar to the single objective setting, we can compare some

pairs of matrices and conclude that one should always be preferred over the other.

However, for some pairs, trade offs will be observed, hence the choice would depend

on the decision maker, as shown in Examples 1 and 2 below.

Example 1. Consider an example of public healthcare projects selection problem,

where the DM tries to maximize the benefits for different patient groups and ensure

equity between these groups. I = {1, 2} denotes the different kind of benefits pro-

vided from health packages, while K = {1, 2} denotes patient types (entity). In this

case, the alternatives will be matrices where rows indicate the entities and columns

denote the benefits. This problem incorporates the multidimensional efficiency and

multidimensional fairness concerns.

8



Let us consider two alternatives,
(
6 6
6 6

)
and

(
7 7
7 7

)
. Clearly, the second alternative

is preferred to the first one by the DM since it distributes more benefit while all

beneficiaries in both alternatives take equal amount of output.

Let us consider other alternatives:
(
6 6
8 8

)
,
(
7 7
7 7

)
. The DM will prefer the second

alternative since it distributes same total amount of outputs more equitably. Let

us now consider the following alternatives:
(
3 4
5 6

)
,
(
5 6
3 4

)
. The DM will be indif-

ferent since we assume impartiality over users, rendering any row permutation of

a matrix equally desirable. The user anonymity in single benefit setting (alterna-

tives are vectors) is equivalent to row symmetry in multi-benefit setting where the

alternatives are matrices.

We will try to explain difficulties of considering matrices as alternatives with

the following example.

Example 2. Let us say there are two different alternatives such as,
(
2 8
6 2

)
,
(
4 8
4 2

)
.

The second alternative is more equitable according to Pigou-Dalton principle. How-

ever, in order to reach this, two units of benefit 1 are transferred from the second

entity to the first entity. And as a result of this transfer, the second entity be-

comes worse-off than the first in terms of both benefits. In this case, the second

alternative is not necessarily preferred to the first one.

In the cases where alternatives have different efficiencies for both benefits, using

dominance rules becomes even more difficult. Consider two alternatives,
(
3 8
4 2

)
,(

6 4
2 4

)
. The first alternative is more equitable and less efficient in terms of first

benefit, and more efficient and less equitable in terms of second benefit.

We develop two different approaches to contribute the current know-how and

help improving the quality of the decisions made by the decision makers in such

settings. In both approaches, we work on incorporating fairness and efficiency

concerns in a multidimensional manner.

9



Chapter 3

Literature Review

In this chapter, we provide a review of the relevant literature. The problem con-

sidered in the thesis can be classified as multidimensional equitable optimization

problem. We first mention equitable optimization problems, in which single ben-

efit distributions are considered. Then, we discuss the solution methods used in

solving multiobjective resource allocation problems with efficiency concern.

The important role of fairness in real-life decisions has been acknowledged in

many operational research (OR) problems studied in recent years [1]. Especially in

applications related to social welfare, including fairness in the proposed solution

methods is a must. In line with this, there is notable increase in the reported

studies in the OR literature incorporating fairness concerns in various areas such

as supply chain [4, 5], logistics [6], allocation problems [7, 8, 9, 10, 11, 12], equitable

choice [13], network [14, 15, 16] and portfolio selection [17].

A significant challenge occurring in such applications is the fact that fairness

arises as an additional criterion to other, mostly system efficiency-related, crite-

ria such as total cost or total benefit, and that there is trade-off between these

concerns. This calls for the use of multiobjective programming approaches, which

enables the decision makers analyze such trade-offs. There are studies in the liter-

ature that acknowledge and address the trade-off between efficiency and fairness

10



concerns (see [18], [19], [20] and [21] ).

Figure 3.1 demonstrates a categorization of the equitable decision making prob-

lems. We refer to problems aiming equitable allocations of benefits (or resources)

to a set of entities as equitable decision making problems, which can be categorized

into two main sets based on whether a choice or an optimization setting is consid-

ered. In the choice settings, the options (alternatives) are explicitly given, hence

the problem is choosing the alternative to implement (see e.g, [22] for a choice

problem over alternative allocations of a single benefit and [13] for an extension

to settings with multiple benefits). When alternatives are implicitly denoted by

constraints, the problem becomes an equitable optimization problem.

Figure 3.1: Categorization of equitable decision making problems in the literature

We can categorize our study under equitable optimization problems in multi

benefit domain (see Figure 3.1). Most of the current work focuses on equitable

optimization problems with single benefit concern and there are not many works on

the multiple benefit domain. For that reason, we look at the equitable optimization

problems in the single benefit domain in the next section.

11



3.1 Equitable Optimization Problems (Single Benefit)

In these problems if the decisions are associated with distributions of a single

benefit across multiple entities, then efficiency and fairness concerns are single

dimensional and the allocation alternatives are vectors, showing how the benefit

is distributed across entities. Most of the current literature is concerned with

such settings and uses mainly three methods: using a fairness-related function in

addition to an efficiency-related one; combining these two in a welfare function;

or treating the problem as a multi-objective optimization problem and finding the

equitably nondominated solutions (see [3]).

3.1.1 Inequality Index Based Approaches

In this section, we discuss inequality index based approaches in equitable opti-

mization problems. These studies attempt to quantify the fairness degree of an

allocation using specific index, some of which are borrowed from the income in-

equality measurement literature. Our first approach follows this line of thought

and is an index based approach. In this method, various measures of inequality

(fairness) are used to assess the fairness level of a given distribution. In the mathe-

matical models, this index is either optimized as an objective function or restricted

through constraints in an efficiency maximizing setting. In the latter approach,

the inequality measure is ensured to be less than a certain threshold. Below, we

provide some examples from different application domains.

[23] considers optimal traffic assignment problems (vehicle routing problem)

with two concerns: minimizing total travel time on a set of paths and minimizing

the maximum travel time of the arc in the network of vehicle routing problem.

They use an index based approach so as to ensure a balance between minimizing

the average arc congestion travel time and the road network’s worst arc congestion

travel time.

[24] presents sequential appointment scheduling with service criteria. Differ-

ent fairness steps are recommended, such as decreasing the disparity between the
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amount of patients in each slot at the beginning of the system and minimizing the

deviation between arrival times of the patients at each slot.

[25] focuses on different kinds of information flow (bottom-up and top-down) in

a healthcare case study. The former is an analyst-driven mechanism that explores

the trade-off between the overall utility of a population and a particular utility

enhancement for the least well-off people.

[26] introduces a logistic problem with fairness concern. A case analysis of

the recyclable waste management scheme is the foundation of their work. Their

goal is to ensure equal distribution of the depots’ workloads while minimizing

the variable costs. They include an objective function to minimize the workload

variates between depots.

[21] shows scarce resource scheduling in a hospital case study, where there is a

unfair scheduling among physicians in long term. They introduce a satisfaction

indicator for preference fulfillment to eliminate imbalance issues in the hospital.

Examples of index-based approaches can be extended. It also can be seen in

the location problems, in which the total distance is minimized while limiting the

longest distance to any demand point by a certain threshold. In that setting, the

longest distance determines how unfair a distribution is [27]. Further examples of

this Rawlsian type of approach can be given from various applications including but

not limited to location [28, 29, 30], scheduling [31], logistics , resource allocation

[32, 33] and project selection [34].

3.1.2 Social Welfare Function Based Approaches

Rather than using separate inequality and efficiency functions in a model, some

studies use special types of functions that incorporate both efficiency and fairness

concerns [35, 36, 37]. Such functions are called social welfare (equitable aggre-

gation) functions. Maximizing a function which incorporates both efficiency and

equity is analogous to the multicriteria decision making methods that assume that
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the decision-maker has a known utility function and maximize this utility func-

tion. The welfare function must be an increasing function (to encourage efficiency)

and must be symmetric and satisfy the Pigou-Dalton transfers principle (see eg.

[38]), to promote egalitarian allocations. Such functions are selected from the

set of Schur-concave functions, which are symmetric by definition [39]. Ordered

weighted averaging (OWA) functions, in which weights are ordered such that rel-

atively worse-off entities receive relatively higher weights, are typical examples of

this type of social-welfare functions [40].

[41] studies ordered weighted averaging (OWA) aggregation for multicriteria

problems. They introduce two linear programming formulations to linearize OWA

type objective functions. [37] use ordered median functions which are symmet-

ric concave to address fairness concerns. [42] tries to allocate indivisible tasks

while using Minmax share approach. [43] proposes a social welfare function which

combines equity and efficiency concerns for two-person problem and many-person

problem. [36] works on a nurse rostering model with a welfare function that de-

termines shifts of nurses according to their skills.

Our second method is based on the same idea of using welfare functions, but

since there are multiple benefit allocations, the resulting optimization problems

are multiobjective.

The third group of methods formulate the a single benefit distribution problem

as a multi-objective optimization problem and suggest finding solutions that are

equitably nondominated. We will not discuss these in detail. The interested reader

is referred to [44] for more information on such approaches.

In this research, we focus on problems, where decisions result in distributions

of multiple benefits to multiple entities. Examples of this setting could be seen

in many public and private sector decision making problems, such as location,

task assignment, scheduling, bandwidth allocation, health investment, health-care

systems and course design. In these problems, the decision makers (DMs) have

efficiency-related concerns and try to maximize the total benefits. Moreover, in

most of these settings they also have fairness concerns, and hence would like to

distribute the benefits to users as fair as possible. Since multiple benefits exist,
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the concerns of efficiency and fairness are multidimensional. A typical example

occurs in public education course allocation settings, where a DM decides which

courses to be offered in different neighborhoods. The DM wants to open courses

so that the population can benefit as much as possible subject to a given budget,

while ensuring that fair service is offered to different population groups.

In such settings the DM is faced with the problem of evaluating alternative

distributions of multiple benefits to multiple users (see Figure 3.1). This problem

can be considered as extension of two different problem types in the literature:

The first one is the equitable optimization problems, whose applications in the

literature have focused on distribution of a single good or bad as fair and efficient

as possible. We mentioned this type above. The second one is multiobjective

resource allocation problems with only efficiency concern.

3.2 Multiobjective Resource Allocation Problems with

Only Efficiency Concern

So far, most of the optimization settings in the operations research literature for-

mulated multiobjective resource allocation problems so as to maximize the total

amount for each type of good (benefit), therefore, considering only efficiency.

In the optimization field, problems with more than one outcome, have been

studied for multiobjective knapsack problems, though without considering fairness.

[45] works on a branch and cut algorithm, and implements two-phase algorithm

to generate efficient solutions for bi-objective knapsack problems. [46] provides a

new dynamic programming algorithm and experimentally compares the method

with other exact solution methods proposed, and shows that their algorithm works

faster than the best algorithm ([47]) known to date.

These problems generalize the single benefit knapsack problems to multi-benefit

knapsack problems. However, in these problems, only the total output is maxi-

mized, while distribution is not addressed. In many real-life decision making pro-

cesses, however, maximizing efficiency may not be convenient in terms of equity.
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Our problem extends these problems as well, as it incorporates fairness concerns

into these settings.

The problem we define extends multiobjective resource allocation problems as

it concerns the distributions of multiple goods (bundles) across entities, hence

alternatives are matrices.
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Chapter 4

Mathematical Programming

Formulations

In this Chapter, we first introduce aggregate efficiency-fairness framework. It helps

to observe the trade-offs between efficiency and fairness. Then, we propose concave

welfare framework which aims to increase total social welfare in each benefit type

separately.

In the first approach, we aggregate the multidimensional efficiency concerns,

that is the concern for maximizing the sums of all types of benefits, using an

efficiency-related aggregation function. Similarly, the multidimensional fairness

concerns, that is the concern for distributing each type of benefit as equitable as

possible, are aggregated using a fairness-related aggregation function, resulting in

a bi-objective programming problem as follows:

max “Efficiency, Fairness”

Subject to :

zik = gik(x) ∀i ∈ I, ∀k ∈ K (4.1)

x ∈ X (4.2)
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In this generic formulation x is the decision variable vector and X is the set

of feasible decisions. Each decision x results in a distribution of multiple benefits

across a set of entities. zik is the amount of benefit type i enjoyed by entity k. gik(x)

is a function that determines the value of the enjoyed benefit of zik. “Efficiency”

and “Fairness” refer to the efficiency and fairness aggregation functions, the explicit

forms of which will be provided in the upcoming sections. This approach explicitly

focuses on the trade-off between these concerns.

In the second approach, we investigate the case where the aggregation is per-

formed over the efficiency and fairness concerns of each benefit allocation, resulting

in the following n-objective programming problem:

max “Welfare1, Welfare2, ..., Welfaren”

Subject to :

zik = gik(x) ∀i ∈ I, ∀k ∈ K (4.3)

x ∈ X (4.4)

(Welfare1, Welfare2, ..., Welfaren) is the vector of n objective functions

where Welfarei is the aggregation function used for benefit i, the exact form of

which will be given later.

We now provide the detailed descriptions of these two approaches.

4.1 Aggregate efficiency-fairness framework (AEF)

This approach aggregates the multidimensional efficiency concerns in one objective

and multidimensional fairness concerns in the other objective. The overall fairness

and efficiency levels of a decision are calculated as the sum of fairness and efficiency

scores assigned to each benefit allocation.

The efficiency score function is a function of total benefits distributed from each

benefit type. Since the benefits would typically take values on different ranges
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and are measured in different units, a scalarization would be needed to aggregate

the total amounts of different benefits. For scalarization purposes, we define lower

and upper bounds on the total amount of benefit i that could be enjoyed by the

entities (the upper bound is determined by solving the problem as if the only

concern were maximizing the total amount of that specific benefit) and denote

these as Li and Hi, respectively. Moreover, we assume that the DM would like

to avoid cases with very high level of total efficiency score but this score coming

only from a small subset of the benefit types, indicating very low totals in other

benefit types. We propose using an increasing concave function as aggregation

function to ensure balance in efficiency score values across multiple benefits. We

define this aggregation efficiency function as ki(x) which determines the value of

the efficiency score of the decision vector x. As mentioned above, we define Li

and Hi to calculate the scalarized value of each benefit type i (see (4.5)). We

use these scalarized values for each benefit type i, ti, to measure efficiency score

contribution. In other words, we show the aggregate efficiency function’s score

contribution for each benefit type i with ei which is the value of ti in the function

ki(x) (see (4.6)). (Note that ki(x) = ki(ti), ti is defined as in (4.5).)

ti =

(∑
k∈K zik

Hi − Li

)
∀i ∈ I (4.5)

ei = ki(ti) ∀i ∈ I (4.6)

We use piecewise linearization method to calculate score values of ti (ei) in the

aggregate efficiency function. To do so we use the following constraints, parameters

and decision variables;

Parameters for linearization method

K : the set of entities, K = {1, 2, ..., l}, index k

I : the set of benefits, I = {1, 2, ..., n}, index i

M : number of thresholds used for piecewise linearization of the concave functions

Li : a lower bound on the total amount of benefit i enjoyed by the entities

Hi : an upper bound on the total amount of benefit i enjoyed by the entities

∆T e
m : difference between two consecutive normalized benefit thresholds defining
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interval m in efficiency aggregation function, m = 1, ..., (M − 1)

∆U e
m : difference between efficiency scores of benefit thresholds defining interval

m in efficiency aggregation function, m = 1, ..., (M − 1)

W e
m : ∆U e

m/∆T
f
m , m = 1, ..., (M − 1).

Decision variables for linearization method

ti : scalarized value of total amount of benefit i

ei : efficiency score contribution of ti

X
e

im : amount of normalized total benefit obtained within interval m from benefit

type i in efficiency aggregation function

Linearization method for efficiency function

ti =
M−1∑
m=1

X
e

im ∀i ∈ I (4.7)

ei =
M−1∑
m=1

W e
mX

e

im ∀i ∈ I (4.8)

0 ≤ X
e

im ≤ ∆T e
m ∀i ∈ I , m = 1, ..., (M − 1) (4.9)

Constraint set (4.7) shows the equivalence of the total scalarized benefit in type

i’s in terms of X
e

im values. Constraint set (4.8) is used to calculate the aggregate

efficiency scores. Constraint set (4.9) makes sure that X
e

im is in the given range,

[0,∆T e
m]. ∆T e

m shows the difference between threshold values in x − axis for

efficiency score function.

The above three sets of constraints should be added to the mathematical model

so that the aggregate efficiency score contribution of the ti, ei can be found.

The fairness score function is a function of the benefit proportions, showing the

proportion of the total benefit distributed to each entity. Similar to the efficiency

case, we assume that the DM would like to avoid cases in which some benefits are

equitably distributed while there is extreme inequity in other benefit distributions.

Hence, we use an increasing concave function as an aggregation function to ensure
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equity in fairness score values across multiple benefits. We illustrate the aggrega-

tion function for fairness score as hik(x), where the benefit type is i and entity is

k. In this generic formulation x denotes the decision variable vector.

We find the proportion of the total amount of benefit i enjoyed by a specific

entity k, zik, to the total amount of benefit i enjoyed by all of the entities, which is

shown as zNik (see (4.10)). We calculate the zNik ’s contribution to fairness score,fik,

using aggregate fairness function (see (4.11)).

zNik =

(
zik∑
k∈K zik

)
∀i ∈ I , ∀k ∈ K (4.10)

fik = hik(zNik) (4.11)

We linearize aggregate fairness score function by using piecewise linearization. The

linearization method for the fairness score function contribution is as follows;

Additional parameters for linearization method

∆T f
m : difference between two consecutive normalized benefit thresholds defining

interval m in fairness aggregation function, m = 1, ..., (M − 1)

∆U f
m : difference between fairness scores of benefit thresholds defining interval m,

in fairness aggregation function, m = 1, ..., (M − 1)

W f
m : ∆U f

m/∆T
f
m , m = 1, ..., (M − 1).

Additional decision variables for linearization method

zik : amount of benefit i enjoyed by entity k

zNik : normalized zik ( zik∑
k∈K zik

)

fik : fairness score contribution of zNik
X

f

ikm : amount of normalized benefit obtained within interval m for entity k from

benefit type i in fairness aggregation function
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Linearization method for fairness function

zNik =
M−1∑
m=1

X
f

ikm ∀i ∈ I , ∀k ∈ K (4.12)

fik =
M−1∑
m=1

W f
mX

f

ikm ∀i ∈ I , ∀k ∈ K (4.13)

0 ≤ X
f

ikm ≤ ∆T f
m ∀i ∈ I , ∀k ∈ K, m = 1, ..., (M − 1) (4.14)

Constraints (4.12) are used to identify the benefit values within the intervals.

Constraints (4.13) demonstrate the calculation of fairness score value of zNik . In

other words, constraint sets (4.12) and (4.13) are used to calculate the fairness

score value of the entity k’s share from benefit type i (zNik). Constraint set (4.14)

makes sure that X
f

ikm is less than or equal to the corresponding interval, [0, ∆T f
m].

∆T f
m shows the difference between threshold values for fairness score function in

x−axis. For that purpose, the range of normalized benefit values, [0,1], is divided

into M − 1 intervals as seen in Figure 4.1, which shows an example fairness score

function with 10 intervals.

The above three sets of constraints should be added to the mathematical model

so that the aggregate fairness score contribution of the zNik , fik can be found.
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Figure 4.1: An example fairness score function

Note that the aggregated fairness function considers proportions and hence does
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not incorporate any efficiency concerns, i.e. there is no difference between alter-

native allocations with different totals as long as the users enjoy the total with

the same proportions. To illustrate, the following two benefit distributions over

three entities would have the same fairness score : (10, 10, 20) and (25, 25, 50), al-

though their efficiency levels are different. We incorporate the (multidimensional)

efficiency preferences only in the first objective.

The formulation is as follows:

Aggregate efficiency-fairness model (AEF-C)

Max
∑
i∈I

ei, Max
∑
k∈K

∑
i∈I

fik (4.15)

Subject to :

x ∈ X (4.16)

zik = gik(x) ∀i ∈ I , ∀k ∈ K (4.17)

zNik =

(
zik∑
k∈K zik

)
∀i ∈ I , ∀k ∈ K (4.18)

fik = hik(zNik) ∀i ∈ I , ∀k ∈ K (4.19)

ti =

(∑
k∈K zik

Hi − Li

)
∀i ∈ I (4.20)

ei = ki(ti) ∀i ∈ I (4.21)

Constraint set (4.16) ensures that x, the decision vector, is an element of X,

which is the feasible set in the decision space. The decisions and the feasible

decision space are problem specific, hence we give them in generic form. Constraint

set (4.17) is used to calculate total amount of benefit i enjoyed by entity k as a

result of decision x. Constraint set (4.18) scales the total amount of benefit i

enjoyed by entity k to a [0,1] interval by converting zik to the proportion of the

total amount, zNik . Note that a concave fairness function is used to ensure that these

fairness scores are allocated equitably across entities. This function is linearized

using piecewise linearization as explained above.
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We perform a similar linearization for the concave efficiency function. Con-

straint set (4.20) is used to calculate scalarized total value for each benefit. To

linearize, we replace constraints (4.19) and (4.21) with constraint groups [(4.12),

(4.13), (4.14)] and [(4.7), (4.8), (4.9)] respectively. For the sake of completeness,

we give the full formulation in Appendix A.

We call the above model AEF-C (Aggregate efficiency-fairness model with con-

cave efficiency score function). For comparative purposes we also consider another

variant (AEF-L), where the efficiency aggregation function is a linear function in-

stead of a concave one. This implies that the DM is only concerned with the total

amounts, hence decisions with very high totals in one benefit and low totals in

others are also deemed acceptable. Parameters and decision variables of AEF-L

are the same as in AEF-C. We delete constraints (4.7), (4.8), (4.9), i.e. (4.21), and

replace the first objective function with
∑

i∈I ti.

4.2 Concave welfare framework

Recall that, when allocation alternatives are vectors and fairness concerns exist,

the DM’s preference relation is assumed to be an equitable preference relation,

which satisfies axioms of symmetry and Pigou-Dalton principle of transfers. If the

DM’s equitable preference relation can be represented by a function, the function

should be an equitable aggregation function, which satisfies Pigou-Dalton transfer,

anonymity and strict monotonicity properties. It is well-known that equitable

aggregation functions should be Schur-concave [3], which are defined as follows [1]:

Definition 1. A bistochastic (doubly stochastic) matrix is a square matrix (Q) of

nonnegative numbers in which each of rows and columns sums up to 1.

A function f(.) : Rm → R is Schur-concave if and only if for all doubly stochas-

tic matrices Q, f(Qz) ≥ f(z).

Note that Schur-concave functions are symmetric and they satisfy the Pigou-

Dalton principle of transfers, by definition. In this approach, we use Schur-concave
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welfare functions for single benefit allocations to incorporate efficiency and fairness

concerns. Also, we define the objective functions based on the benefit types and

separately maximize social welfare obtained from each benefit distribution.

To encourage fairness, each such function is defined as a Schur-concave function

of the form;

SWi =
∑
k

ui(zik) (4.22)

Where ui(.) shows the welfare gained by providing zik units of benefit i to entity

k. Note that any entity k receives utility from benefit i with respect to the same

function ui(.), hence the function is a symmetric function of the allocation vector

of benefit i. Using concave welfare (ui(.)) functions encourages fair distribution of

the benefits.

We use piecewise linearization to calculate the ui(.) values for the benefits from

concave welfare function. In the linearization method, additional decision variables

uik and Y ikm are defined so that the contribution to social welfare score can be

calculated. In other words, Let M be the number of thresholds for the linearization

where the possible intervals are m = 1, ..., (M − 1).

Additional parameters for linearization method

∆Tm : difference between two consecutive benefit thresholds defining interval m,

m = 1, ..., (M − 1)

∆Um : difference between welfare scores of benefit thresholds defining interval m,

m = 1, ..., (M − 1)

Wm : ∆Um/∆Tm , m = 1, ..., (M − 1).

Additional decision variables for linearization method

uik: contribution to social welfare from the share of user k in benefit i, i.e. ui(zik)

Y ikm: amount of benefit type i obtained by entity k within interval m
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Linearization method for concave welfare function

zik =
M−1∑
m=1

Y ikm ∀i ∈ I, ∀k ∈ K (4.23)

uik =
M−1∑
m=1

WmY ikm ∀i ∈ I, ∀k ∈ K (4.24)

0 ≤ Y ikm ≤ ∆Tm ∀i ∈ I, ∀k ∈ K, m = 1, ..., (M − 1) (4.25)

As in the aggregate efficiency-fairness model, Y ikm denotes the amount of benefit

gained within the interval m for entity k in benefit type i. Constraint set (4.23)

determines the Ȳ values for each interval with respect to gained total benefit, zik.

Constraint set (4.24) is used to calculate the score contribution. Constraint set

(4.25) ensures that Ȳ values are all in the corresponding interval.

The above three sets of constraints should be included to the mathematical

model so that the zik’s contribution to social welfare score, uik can be found.

The formulation of the mathematical model, in general, is as follows;

Concave welfare model (CW)

Max “
∑
k∈K

u1k, ... ,
∑
k∈K

unk” (4.26)

Subject to :

x ∈ X (4.27)

zik = gik(x) ∀i ∈ I, ∀k ∈ K (4.28)

uik = ui(zik) ∀i ∈ I, ∀k ∈ K (4.29)

As in the aggregate efficiency-fairness model, x and X denote the decision vector

and feasible decision space, respectively. Constraint set (4.28) is used to calculate

the amount of benefit i enjoyed by the entity k as a result of decision x. To

linearize, we replace (4.29) with constraints (4.23), (4.24) and (4.25). For the sake

of completeness, we give the full formulation in Appendix A.

26



The following section will discuss a real-life based problem that can be tackled

using the structure discussed above.
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Chapter 5

Case Study

In this Chapter, we demonstrate the two approaches on a real-life based public

service provision problem, in which the decision makers seek to allocate various

public education services as fair and efficient as possible.

We now introduce a real-life case study on a problem that public service planners

face in Turkey. Public Education Centers (PEC) organize courses in almost all

provinces of Turkey. These courses are offered all over the year and are run for

seven days of the week, and are free of charge. They can be offered as full day

sessions as well as morning, lunch, evening and weekend sessions (groups).

Ankara, as the capital city of Turkey, hosts many of these courses. With a

population of nearly 5.5 million [48], the city consists of many districts, each

with residents with various demographic characteristics. Hence, planning public

education to ensure that the residents are offered courses based on their needs, in

a fair and efficient manner is a substantial concern. We consider the problem of

planning PECs in the districts of Ankara such that the benefits of the courses are

distributed among different district groups in an equitable and efficient manner.

For demonstration purposes we define the entities as district groups categorized

based on poverty rates (see Figure 5.1). It is, however, possible to use the proposed

methodology on the same planning problem with different entity definitions (e.g.
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population groups can be constructed based on neighborhood or based on age.)

Figure 5.1: Poverty rate level map of districts of Ankara

The problem is also challenging as there are multidimensional trade-offs, both

between efficiency and fairness levels of alternative plans for the same type of

service, as well as across different types of services. Since the resources are limited,

it is important for public planners to evaluate alternative solutions and make

decisions based on a transparent mechanism that reveals gains and losses.

5.1 Data for the case study

There are different types of possible courses that can be offered (see webpages [49]

and [50] for the list of courses). These courses can be gathered into two main

groups: hobby courses (H) and vocational assistance courses (VA).

The data for the model are based on factors deemed important for the illustra-

tive case study and are estimated using publicly available information [51]. We
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consider 16 districts with residents that are in the first and second most socio-

economically developed categories1 [53]. These are: Etimesgut, Çankaya, Yenima-

halle, Sincan, Çubuk, Keçiören, Polatlı, Pursaklar, Mamak, Beypazarı, Gölbaşı,

Altındağ, Şereflikoçhisar, Kahramankazan, Elmadağ and Akyurt (see Appendix

B). We divide these districts into three groups of similar population size (see Fig-

ure 5.1) based on relative poverty rate2 [53] and consider these groups as entities

of the allocation problem, as shown in Table 5.1. We use abbreviations to increase

the legibility. Please see Appendix B.1 for full names. The sizes of district-based

population groups are estimated using publicly available data [54].

Table 5.1: Categorization of districts into income level based groups1

District Poverty Rate Group District Poverty Rate Group
ET 0.4

1

MA 10

3

ÇA 2 BE 17

YE 4 GÖ 17.1

Sİ 5.9

2

AL 17.9
ÇU 6.5 ŞE 25.9
KE 6.7 KA 30
PO 9.6

3
EL 32.9

PU 9.7 AK 36.5

Each public educational unit serves only the region it is located in. We as-

sume that the demand for the courses will be 1% of the district’s population and

the courses have capacity to satisfy this demand. Cost of opening a new course

mainly consists of venue and instructor costs, and varies from district to district.

We estimate the venue cost by calculating an approximate rental cost of the area

that would be required for the course, which is directly proportional to the dis-

trict’s population. We also use district-based rental rates for this estimation. The

teaching cost is calculated by multiplying permanent instructors’ salaries by the

number of instructors that would be needed in the district 3. In districts with

1Since the population of third and fourth groups are below 20000, their poverty rates cannot
be calculated and they are referred to as upper-rural and lower-rural, respectively [52].

2The individual or household that has income and spending below a certain limit(a specific
rate of the average welfare level of the society) is defined as relatively poor. The relative poverty
rate, in our data, is the share of individuals or households living with less than half of the median
disposable personal income in Ankara.

3We assume that the instructors are already recruited. Hence costs associated with recruiting
and training teachers are not taken into account.
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higher population, the course classrooms are assumed to accommodate 25 people,

otherwise they are assumed to serve 20 people. We assume that the available

budget is approximately 50% of the total cost of the courses.

We expect that whether people would prefer hobby or vocational courses would

depend on the average poverty level of the district residents. Therefore, we esti-

mate attendance rates to the hobby and vocational assistance courses accordingly,

as presented in Table 5.2. To be more specific, we assume that around 1% of the

district’s population (see Table 5.3) would be attending the courses and the par-

ticipants’ preference for hobby and vocational courses would be determined by the

rates given in Table 5.2. For example, in the second group, a total of 15,177 people

would be participating, 8,965 of whom are expected to chase hobby courses (see

Table 5.3). The cost of opening a new course is district-specific since it is evalu-

ated by examining both the rental prices and the salaries of the course instructors

in the districts. We measure the benefit of a course in terms of the number of

participants.

Table 5.2: Rates used to reflect course participation preferences of districts

District Group 1 (G1) District Group 2 (G2) District Group 3 (G3)
District VA H District VA H District VA H District VA H District VA H

ET 0.35 0.65 Sİ 0.4 0.6 PO 0.45 0.55 GÖ 0.45 0.55 EL 0.45 0.55
ÇA 0.35 0.65 ÇU 0.4 0.6 PU 0.45 0.55 AL 0.45 0.55 AK 0.45 0.55
YE 0.35 0.65 KE 0.4 0.6 MA 0.45 0.55 ŞE 0.45 0.55

BE 0.45 0.55 KA 0.45 0.55

Table 5.3: Cost and benefit (outcome) values of courses

Hobby Courses Vocational Assistance Courses
Outcome Outcome

District Cost (1000 TL) G1 G2 G3 District Cost (1000 TL) G1 G2 G3
ET 1947 3339 0 0 ET 1947 1998 0 0
ÇA 3740 5387 0 0 ÇA 3740 3223 0 0
YE 2429 4313 0 0 YE 2429 2323 0 0

Sİ 1480 0 3061 0 Sİ 1480 0 2127 0
ÇU 275 0 525 0 ÇU 275 0 365 0
KE 2803 0 5368 0 KE 2803 0 3730 0
PO 379 0 0 673 PO 379 0 0 550
PU 514 0 0 787 PU 514 0 0 644
MA 1877 0 0 3560 MA 1877 0 0 2913
BE 153 0 0 266 BE 153 0 0 217

GÖ 584 0 0 739 GÖ 584 0 0 605
AL 1128 0 0 2035 AL 1128 0 0 1665
ŞE 106 0 0 188 ŞE 106 0 0 154
KA 173 0 0 294 KA 173 0 0 241
EL 140 0 0 249 EL 140 0 0 204
AK 100 0 0 190 AK 100 0 0 156

We organize the courses so that the benefits are distributed efficiently and fairly
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to district groups generated based on the poverty rate. This choice is without loss

of generality, one can easily use the same structure for another problem in which

the entities are defined in a different manner. We do not allow a course to be

partially initiated, hence formulate the problem as a binary knapsack problem.

5.2 Mathematical models solved in the case study

We now give the mathematical models that are solved in the two frameworks we

consider.

Problem Parameters

K : the set of district groups, index k

I : the set of course types, index i

J : the set of districts, index j

M : number of thresholds used for piecewise linearization

Li : a lower bound on the total amount of enrollment in course i

Hi : an upper bound on the total amount of enrollment in course i

∆T f
m : difference between two consecutive normalized benefit thresholds defining

interval m in fairness aggregation function, m = 1, ..., (M − 1)

∆T e
m : difference between two consecutive normalized benefit thresholds defining

interval m in efficiency aggregation function, m = 1, ..., (M − 1)

∆U f
m : difference between fairness scores of benefit thresholds defining interval m,

in fairness aggregation function, m = 1, ..., (M − 1)

∆U e
m : difference between efficiency scores of benefit thresholds defining interval

m in efficiency aggregation function, m = 1, ..., (M − 1)

W f
m : ∆U f

m/∆T
f
m , m = 1, ..., (M − 1).

W e
m : ∆U e

m/∆T
f
m , m = 1, ..., (M − 1).

pijk : number of participants from district group k to course type i in district j

cij : cost of opening course type i in district j

C : total available budget

Decision Variables
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zik : total number of people in district group k that are enrolled in course type i

zNik : normalized zik ( zik∑
k∈K zik

)

fik : fairness score contribution of zNik
ti : scalarized value of total amount of benefit in course type i

ei : efficiency score contribution of ti

X
f

ikm : amount of normalized benefit obtained within interval m = 1, ..., (M − 1)

for district group k from course type i in fairness aggregation function

X
e

im : amount of normalized total benefit obtained within interval m = 1, ..., (M−
1) from course type i in efficiency aggregation function

yij =

{
1, if course type i is offered at district j

0, otherwise.

aikj : auxiliary variable (yij × zNik)

Aggregate efficiency-fairness model (AEF-C) ;

max
∑
i∈I

ei, max
∑
k∈K

∑
i∈I

fik

Subject to :

(4.5), (4.7), (4.8), (4.9), (4.12), (4.13), (4.14), (4.18), (4.20)∑
j∈J

∑
i∈I

cijyij ≤ C (5.1)

zik =
∑
j∈J

pijkyij ∀i ∈ I , ∀k ∈ K (5.2)∑
j∈J

∑
k′∈K

pijk′aikj = zik ∀i ∈ I , ∀k ∈ K (5.3)

aikj ≤ yij ∀i ∈ I , ∀k ∈ K, ∀j ∈ J
(5.4)

aikj ≤ zNik ∀i ∈ I , ∀k ∈ K, ∀j ∈ J
(5.5)

aikj ≥ zNik − (1− yij) ∀i ∈ I , ∀k ∈ K, ∀j ∈ J
(5.6)

yij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J (5.7)
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Constraint (5.1) ensures that the budget is not exceeded. The set of constraints

(5.2) is used to calculate the total number of district group members benefiting

from a specific course type, for each course type-district group pair. Constraint sets

(5.3) - (5.6) are for linearization. We set ∆T f
m = ∆T e

m = 0.1 ∀m = 1, ..., (M − 1)

in constraint sets (4.14) and (4.9). Finally, constraints (5.7) define the binary

variables.

Parameters and decision variables are the same as in the concave efficiency

model for variant (AEF-L). We delete constraints (4.20), (4.7), (4.8), (4.9) and

replace the first objective function with
∑

i∈I ti.

Additional parameters for concave welfare model

∆Tm : difference between two consecutive benefit thresholds defining interval

m, m = 1, ..., (M − 1)

∆Um : difference between welfare scores of benefit thresholds defining interval

m, m = 1, ..., (M − 1)

Wm : ∆Um/∆Tm , m = 1, ..., (M − 1).

Additional decision variables for concave welfare model

uik: contribution to social welfare from the share of district group k in service

related to course type i, i.e. ui(zik)

Y ikm: amount of benefit from course type i obtained by district group k within

interval m
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Concave welfare model (CW);

max “
∑
k∈K

u1k,
∑
k∈K

u2k”

Subject to :

(4.23), (4.24), (4.25), (5.2)∑
j∈J

∑
i∈I

cijyij ≤ C (5.8)

yij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J (5.9)

Constraint (5.8) ensures that the budget is not exceeded. Constraint set (5.9)

defines the binary variables.

5.3 Solution method implemented in the case study

Note that the aggregation based framework is a bi-objective framework, irrespec-

tive of the number of benefit types. In the second framework, though, the number

of objective functions is equal to the number of benefit types. Since we consider

two benefit types (hobby and vocational-related benefit), all formulations result in

bi-objective programming problems, the details of which are provided in the above

section.

We solve these models using the epsilon-constraint approach [55], as described

in Algorithm 1 below. The models are coded in Eclipse JAVA Oxygen and solved

by CPLEX 12.6 on a dual core (Intel Core i7 2.81 GHz) computer with 16 GB

RAM. All solution times are reported in central processing unit (CPU) seconds.

Given a biobjective programming problem:

P: max z1(x), max z2(x)

subject to;

x ∈ X
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The pseudo-code of the ε-constraint method is provided in Algorithm 1. The

algorithm returns the set of nondominated points (N ) of problem P.

Algorithm 1: ε-constraint method

1 Set ε = 0 and determine a desired stepsize. Set N = ∅.
2 Let xi ∈ arg maxx∈X zi(x), zIi = zi(x

i), zNi = arg minx∈X zi(x) for i=1,2;

3 Let δ = 10−5[
zI1−zN1
zI2−zN2

]

4 Solve P1: max z1(x)+ δz2(x)

5 subject to;

6 x ∈ X
7 if P1 is feasible then

8 Set feasible = true

9 Let x∗ be an optimal solution to P1.

10 N = N ∪ {(z1(x∗), z2(x∗)).
11 else

12 Set feasible = false

13 end

14 while feasible do

15 Set ε = z2(x
∗) + stepsize

16 Solve P2: max z1(x)+ δz2(x)

17 subject to;

18 x ∈ X
19 z2(x) ≥ ε

20 if P2 is feasible then

21 Let x∗ be an optimal solution to P2.

22 N = N ∪ {(z1(x∗), z2(x∗)).
23 else

24 Set feasible= false

25 end

26 end

We use this algorithm to solve both of our models. At the initialization step,
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we determine stepsize and set epsilon to zero (see line 1). At the beginning of

the algorithm we find initial solution with the help of P1 (see line 4-6), then we

implement the main loop to find new Pareto-optimal solutions (lines 14-26) in

which we optimize z1(x) (with augmentation term to avoid dominated solutions)

while restricting the z2(x) with a lower bound (lines 16-19). In each iteration

we systematically change ε values (see line 15) to find different nondominated

solutions. Algorithm terminates when the solution of P1 is infeasible (line 24).

5.4 Results

In this section, we discuss the results of our case study. Before providing the

details, we first explain a potential issue with the aggregated efficiency-fairness

approach and how we address this issue.

A common drawback to all approaches relying on inequality indices is the fact

that these indices only focus on how the total benefit is distributed regardless of

the level of total benefit: even an allocation not distributing any benefit to any of

the entities is a perfectly fair one.

The aggregated efficiency-fairness approaches suffer from the same drawback as

they quantify fairness based on proportions of benefit distributed to the entities.

To give an example, consider the following two solutions that allocate two benefits

and three entities (the rows correspond the allocation vectors of the benefits):[
100 300 200
100 300 200

]
,
[
150 100 100
150 100 100

]
when AEF-C approach is used, the aggregated fairness

and efficiency scores of these matrices are (73.50, 130.64) and (65.00, 134.86),

respectively; hence none dominates the other in the bi-criteria sense. However,

when the allocation matrices are investigated in detail, it is observed that the first

allocation is better. This is because anonymity is assumed across entities, implying

that an allocation matrix is equally good as its column permutations (Anonymity

assumption implies column permutation in a multi-benefit setting where benefits

correspond to rows and entities correspond to columns).

When we permute the second matrix swapping the first and the second columns,
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it is seen that in the first alternative, each element is at least as much as its

counterpart in the second one. Since the second matrix distributes the benefits

in a less efficient but relatively fairer way, the fairness score of this option is

higher than that of the first, making it a nondominated alternative. This can

also be observed looking at the fractional distributions as follows:
[
0.17 0.5 0.33
0.17 0.5 0.33

]
,[

0.42 0.29 0.29
0.42 0.29 0.29

]
, leading to the second matrix having a higher aggregated fairness

score. This is the reason why any approach incorporating fairness concerns using

inequality indices should also account for efficiency.

The relation between the above allocation matrices is called equitable matrix

dominance [13] and is defined below. Note that in the definitions below, rows and

columns correspond to benefits and entities, respectively.

Definition 2. Given two alternatives f j, f j′ ∈ R(n×l) where n is the number of

benefits and l is the number of entities, I = {1, 2, ..., n} and K = {1, 2, ..., l}:

f j′ �d f
j(f j weakly matrix dominates f j′) ⇐⇒ f j′

ik ≤ f j
ik for all i ∈ I, k ∈ K.

Let πr(f
j′) be a column permutation of f j′ and R = {1, 2, ..., l!} :

f j′ �em f j(f j equitably matrix weak dominates (em-dominates) f j′) ⇐⇒
πr(f

j′) �d f
j for at least one r ∈ R.

To remedy the issue of obtaining em-dominated alternatives, we perform post-

processing and eliminate such solutions. All the results reported in the following

analysis correspond to the solutions obtained after post-processing; hence to non-

dominated solutions in the em-dominance sense. For each method, we perform

dominance check among the solution set returned by that specific method, i.e. we

do not cross-check with the solutions returned by the other methods. That is, if a

solution is em-dominated by solutions returned by an alternative approach we do

not eliminate it since it would not be traceable in a real-life application.

We first investigate the Pareto solutions returned by the aggregate efficiency-

fairness approach. Recall that we have two variants of this approach based on

the form of aggregate efficiency function: concave and linear. Figures 5.2 and
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5.3 show the Pareto solutions of concave (AEF-C) and linear (AEF-L) efficiency

function variants, respectively and Figure 5.4 shows the solutions of the concave

welfare approach (CW). In each figure, in addition to the Pareto solutions of the

corresponding approach, we provide the images of the solutions returned by the

other two approaches so as to enable a detailed comparative analysis.

AEF-C, AEF-L and CW return 29, 17 and 17 solutions, with total solution times

of 12.03, 8.21 and 0.88 seconds, respectively. For clarity purposes we excluded two

of the fairest solutions of AEF-C and AEF-L from all of the graphs. These two

solutions were also problematic as they failed to provide any vocational benefit

to the groups, hence are removed from the analysis.4 One of these problematic

solutions was also obtained in CW (as the hobby welfare maximizing extreme),

hence it is also removed from the CW set. We provide the results of the three

approaches in detail in Tables D.1 and D.2 (Appendix D).

When aggregate efficiency-fairness approach variants are compared, it is seen

that the variant using a concave efficiency aggregation function outperforms the

other variant in terms of the number and diversity of the solutions obtained. Specif-

ically, AEF-C helps us to find more solutions on both edges of the Pareto frontier.

Moreover, while CW provides solutions covering the range between the vocational

benefit maximizing solution and the hobby benefit maximizing one, hence illus-

trating the trade-off between the two benefit types; AEF-C and AEF-L reveal the

trade-off between (aggregated) fairness and efficiency.

It is observed that all approaches return a core set of solutions, which are

common, as well as additional solutions which perform worse with respect to the

objective functions of the other methods (as seen in Figures 5.2, 5.3 and 5.4.)

One sees in Figure 5.4 that AEF-C avoids extreme solutions that put too much

emphasis on one benefit while sacrificing from the other one and provides solutions

which have similar welfare scores for the two benefit types, hence the range of AEF-

C solutions are narrower than that of CW. The proposed solutions are around the

4Recall the discussion we had on the drawback of using a fairness indicator that only focuses
on the proportions. Even an allocation in which no one receives anything is considered perfectly
fair.
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center of the CW Pareto frontier. Similarly, since CW does not put emphasis on

balance, the resulting aggregated efficiency and fairness scores of CW solutions

are lower compared to AEF variants, making most of these solutions dominated

in Figures 5.2 and 5.3.
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Figure 5.2: Pareto optimal solutions of the aggregate efficiency-fairness model:
AEF-C
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Figure 5.3: Pareto optimal solutions of the aggregate efficiency-fairness Model:
AEF-L
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Figure 5.4: Pareto optimal solutions of the concave welfare model: CW

To investigate the trade-off between efficiency and fairness, we present the two

extreme solutions (1 and 27) for AEF-C, which correspond to the solutions with

the best levels of efficiency and fairness in Figure 5.2, respectively, as well as a

moderate solution (15) in Figure 5.5.

Solution 1
G1 G2 G3

H
V A

[
0 8429 0
0 2127 4782

] Solution 15
G1 G2 G3

H
V A

[
4313 3061 1317

0 2492 3836

] Solution 27
G1 G2 G3

H
V A

[
3339 3061 1611
1998 2127 1665

]
Figure 5.5: Extreme and moderate solutions of AEF-C

There are striking differences between the solutions. Solution 27 uses the bud-

get to ensure a more equal distribution of the benefits across groups. As one

approaches to the maximum efficiency extreme, solution 1, the total number of

people served increases (15,338 vs. 13,801), but this occurs at the expense of fair-

ness as we see that no benefit is provided to group 1 and no hobby courses are

offered to group 3. Solution 15 is in between the two extremes: it offers a more

balanced distribution of hobby course service to the population groups compared

to solution 1, while still suffering from imbalance in vocational assistance courses.

This solution uses a higher portion of the budget on hobby courses compared to

solution 27, resulting in an increase in the number of people offered hobby courses,

while sacrificing from the benefit of vocational assistance courses.
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The extreme solutions of AEF-L are shown in Figure 5.6. Similar observations

can be made regarding this variant. However, unlike AEF-C solutions, even the

fairest solution (Solution 15) cannot ensure that all groups have at least benefited

from both benefit types.

Solution 1
G1 G2 G3

H
V A

[
0 3586 3560
0 2127 5729

] Solution 9
G1 G2 G3

H
V A

[
4313 3061 922

0 2127 4578

] Solution 15
G1 G2 G3

H
V A

[
3339 3061 3826

0 2492 2483

]
Figure 5.6: Extreme and moderate solutions of AEF-L

Solutions 2 and 17, which correspond to the solutions with the best hobby

welfare and vocational welfare in Figure 5.4 are given below in Figure 5.7. Solution

8 is an example solution lying in the middle of the Pareto frontier. This approach

moves from a hobby welfare maximizing solution towards a vocational welfare

maximizing one, hence the interpretation of the extreme solutions is different.

The Pareto frontier shows the trade-off between a hobby course service prioritizing

approach and a vocational course service prioritizing one, rather than the trade-

off between overall fairness and efficiency. As expected, in solution 2 almost all

budget is devoted to hobby courses while in solution 17, almost all of it is used for

vocational courses. Solution 8 provides a compromise between these two extremes,

offering a more balanced distribution of benefits.

Solution 2
G1 G2 G3

H
V A

[
4313 5893 5595

0 0 551

] Solution 8
G1 G2 G3

H
V A

[
4313 3061 3999

0 2127 2060

] Solution 17
G1 G2 G3

H
V A

[
0 525 705

1998 4095 4888

]
Figure 5.7: Extreme and moderate solutions of CW

To observe how the two benefits (H and VA) are allocated across the three

groups, we summarize all allocations in Figures 5.8 and 5.9, which show allo-

cations of the hobby course and vocational course benefits in AEF-C solutions,

respectively. As seen in these figures, the shares of the groups get closer as one
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moves from most of efficient solution (1) to the fairest one (27) in both benefit

types. We show how the benefits are distributed for each group in the solutions

of the AEF-C model (see Appendix C). Since AEF-L model has a similar pattern

to AEF-C with a narrower range, we do not demonstrate the figures of AEF-L.

Figure 5.8: Hobby course benefit distribution across groups in AEF-C solutions

Figure 5.9: Vocational assistance course benefit distribution across groups in AEF-C
solutions

Figures 5.10 and 5.11 show the allocations of two benefits in CW solutions.

As expected, starting from the first solution, which has the highest hobby course
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welfare (resp. the lowest level of vocational course welfare) the level of total hobby

benefit decreases (resp. total vocational course benefit increases) as one moves

toward the other edge of the frontier. There is one exception to this observation:

solution 12. In solution 12, for example, vocational welfare increases as a result of

obtaining a fairer allocation of a benefit rather than a higher total. This is desired

and is a result of using a concave welfare function: fairer allocations with little

sacrifice from the total amount result in higher welfare.

The figures also provide information on the range of the benefit level enjoyed

by each group. For example, we see that the range of hobby benefits for district

group 3 is relatively wider across Pareto solutions of AEF-C compared to solutions

of CW. We show how the benefits are distributed for each group in the solutions

of the CWC model (see Appendix C).

Figure 5.10: Hobby course benefit distribution across groups in CW solutions
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Figure 5.11: Vocational assistance course benefit distribution across groups in CW
solutions

We also investigate the solutions in more detail to observe the district-specific

recommendations of the alternative approaches. For each district-course pair, we

calculated in how many of the Pareto optimal solutions the corresponding course is

offered in that district. We then find the frequency of that decision by dividing it

by the total number of Pareto solutions found. For example, in AEF-C, 29 Pareto

solutions are found and in 19 of these, a vocational course is opened in Etimesgut

(ET), resulting in a percentage value of 65.52. We report these percentage values

in Table 5.4. We highlight the cases for which a district-course pair’s percentage

is considerably high (higher than 40%) and considerably low (lower than 20%)

across all solutions in boldface. Such an analysis may help the decision makers to

determine district-course pairs to prioritize when making decisions. For example,

there is a tendency to open hobby and vocational courses to Elmadağ, Beypazarı,

Polatlı in all models; while no courses are offered in Sincan, Mamak and Altındağ

in any of the solutions.
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Table 5.4: District-specific course recommendations in each model

District
H(%) VA(%)

AEF-C AEF-L CW AEF-C AEF-L CW
YE 34.48 41.18 29.41 44.83 35.29 41.18
ÇA 31.03 11.76 17.65 24.14 0.00 35.29
ET 20.69 58.82 58.82 65.52 76.47 47.06
ÇU 20.69 11.76 35.29 17.24 35.29 47.06
KE 17.24 5.88 35.29 44.83 52.94 29.41

Sİ 0.00 0.00 0.00 0.00 0.00 0.00
EL 96.55 94.12 58.82 93.10 88.24 58.82
BE 75.86 41.18 70.59 72.41 64.71 70.59
PO 55.17 52.94 41.18 51.72 64.71 47.06
KA 34.48 52.94 47.06 0.00 0.00 0.00
ŞE 31.03 52.94 52.94 41.38 35.29 47.06
AK 31.03 17.65 29.41 0.00 0.00 11.76
PU 31.03 5.88 5.88 44.83 29.41 52.94

GÖ 20.69 29.41 52.94 17.24 35.29 17.65
MA 0.00 0.00 0.00 0.00 0.00 0.00
AL 0.00 0.00 0.00 0.00 0.00 0.00

Overall, we observe that one can obtain solutions with various degrees of ef-

ficiency and fairness using the proposed methodology. Among the aggregate

efficiency-fairness variants, AEF-C (which relies on concave functions for aggre-

gating the normalized efficiency and fairness scores) and AEF-L (which relies on

linear and concave functions for aggregating the normalized efficiency and fairness

scores,respectively) find similar solutions and both effectively distribute the total

benefit performances across different benefit types. However, AEF-C finds more

solutions on both efficiency and fairness edges of the Pareto-frontier. When aggre-

gation based methods and the concave welfare method, which relies on defining a

welfare function for each benefit, are compared, we observe that the solution sets

may differ, in line with how the method is structured. Indeed, they all suggest a

set of core solutions, which are (almost) the same.

The results exhibit the computational feasibility of the suggested methods. The

case study also demonstrates that considering both fairness and efficiency in the

resulting benefit distributions can have a significant impact on how the resources

are allocated.
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Chapter 6

Conclusion

We consider optimization problems in which the decisions made result in alloca-

tions of multiple benefits to multiple entities in various degrees. Such problems

are highly relevant in many public sector decision making problems and they are

generalizations of equitable optimization problems, in which only a single good is

allocated.

Ensuring equity is important for obtaining implementable solutions that will be

accepted for all stakeholders (these may be population groups) in many real life

resource allocation settings. We solve these problems under the assumption that

entities are indistinguishable, hence no group is prioritized over another.

We suggest two modeling approaches to be used in any such optimization prob-

lem. The first of these approaches tackles the efficiency and fairness concerns

separately, hence provides a tool to observe the trade-off between these. The sec-

ond approach aggregates efficiency and fairness concerns of each benefit using a

concave (hence Schur-concave) function, therefore it defines a welfare function that

demonstrates how good a decision is with respect to the allocation of the corre-

sponding benefit. The trade-off is observed between welfares of different benefit

types.
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We demonstrate the usability of the approaches on a real-life based application

example, in which the decision makers seek to allocate various public education

services as fair and efficient as possible. The results exhibit the computational

feasibility of the suggested methods. The case study also demonstrates that con-

sidering both fairness and efficiency in the resulting benefit distributions can have

a significant impact on how the resources are allocated. Ignoring fairness can lead

to some district groups suffering from lack of educational services. Since the prob-

lem setting is relevant for most real-life public sector decision making settings,

the suggested models would provide useful insights and hence contribute to the

relevant literature.

There can be several future research directions to be considered. One research

challenge is developing exact and or heuristic solution algorithms to be able to

solve the resulting multiobjective optimization models of larger-scale problems.

Moreover, how to ensure balance in the asymmetric case in which the groups are

not anonymous is an interesting, yet challenging question for both research and

application aspects.

Alternative ways of addressing fairness concerns can be explored. One pos-

sibility is using the deprivation cost function in humanitarian logistics models.

Deprivation cost is defined as the economic estimation of human suffering related

to the absence of access to a service or asset [56]. By definition, this cost is a func-

tion of deprivation time (and in some cases also dependent on the socio-economic

characteristics of people). Also, it should be convex, monotonic and non-linear

to the deprivation time [56]. In some settings, it can be used in the objective, to

penalize for the time that supply did not arrive at the demand node.

Let us assume, an extension of the planning problem that we consider in Chapter

5, in which there will be periodical course (service) openings to possible locations.

In this problem the decision makers try to determine the service frequencies in

different locations. A deprivation intensity or similarly, a reward intensity function

can be used in this setting. Note that the form of such a reward intensity function

should be selected so as to encourage frequent course openings and fair service

concurrently. Future research can be performed on the determining the properties
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and forms of such functions and using them in mathematical models, in which

both efficiency and equity concerns are addressed.
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Appendix A

AEF-C and CW models in full

formulation

Concave welfare model in open form (CW)

Max “
∑
k∈K

u1k, ... ,
∑
k∈K

unk” (A.1)

Subject to :

x ∈ X (A.2)

zik = gik(x) ∀i ∈ I, ∀k ∈ K (A.3)

zik =
M−1∑
m=1

Y ikm ∀i ∈ I, ∀k ∈ K (A.4)

uik =
M−1∑
m=1

WmY ikm ∀i ∈ I, ∀k ∈ K (A.5)

0 ≤ Y ikm ≤ ∆Tm ∀i ∈ I, ∀k ∈ K, m = 1, ..., (M − 1) (A.6)
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Aggregate efficiency-fairness model in open form (AEF-C)

Max
∑
i∈I

ei, Max
∑
k∈K

∑
i∈I

fik (A.7)

Subject to :

x ∈ X (A.8)

zik = gik(x) ∀i ∈ I , ∀k ∈ K (A.9)

zNik =

(
zik∑
k∈K zik

)
∀i ∈ I , ∀k ∈ K (A.10)

zNik =
M−1∑
m=1

X
f

ikm ∀i ∈ I , ∀k ∈ K (A.11)

fik =
M−1∑
m=1

W f
mX

f

ikm ∀i ∈ I , ∀k ∈ K (A.12)

ti =

(∑
k∈K zik

Hi − Li

)
∀i ∈ I (A.13)

ti =
M−1∑
m=1

X
e

im ∀i ∈ I (A.14)

ei =
M−1∑
m=1

W e
mX

e

im ∀i ∈ I (A.15)

0 ≤ X
f

ikm ≤ ∆T f
m ∀i ∈ I , ∀k ∈ K, m = 1, ..., (M − 1) (A.16)

0 ≤ X
e

im ≤ ∆T e
m ∀i ∈ I , m = 1, ..., (M − 1) (A.17)
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Appendix B

Data for the case study

The districts of Ankara can be categorized into four groups based on socio-

economic level as follows [57]:

1. Group 1: Sincan, Etimesgut, Gölbaşı, Yenimahalle, Çankaya, Mamak,

Altındağ, Keçiören and Pursaklar.

2. Group 2: Polatlı, Kazan, Beypazarı, Çubuk, Akyurt, Şereflikoçhisar and

Elmadağ.

3. Group 3: Nallıhan, Ayaş, Güdül, Çamlıdere, Kızılcahamam, Kalecik and

Evren.

4. Group 4: Haymana and Bala.

Ankara has 25 districts. These districts are divided into 5 groups according to

socio-economic levels. For this case study, districts in the first and second groups

(consist of 16 districts) are considered as possible course locations which are in the

first and second most socio-economically developed groups of Ankara. Table B.1

presents abbreviation of the district names.
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Table B.1: Abbreviation of the district names

District Abbreviation District Abbreviation
Etimesgut ET Mamak MA
Çankaya ÇA Beypazarı BE

Yenimahalle YE Gölbaşı GÖ

Sincan Sİ Altındağ AL
Çubuk ÇU Şereflikoçhisar ŞE

Keçiören KE Kahramankazan KA
Polatlı PO Elmadağ EL

Pursaklar PU Akyurt AK
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Appendix C

Detailed outcome graphics for

AEF-C and CW models

Figure C.1: Satisfied demand for G1 in both benefit types in AEF-C model
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Figure C.2: Satisfied demand for G2 in both benefit types in AEF-C model

Figure C.3: Satisfied demand for G3 in both benefit types in AEF-C model
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Figure C.4: Satisfied demand for G1 in both benefit types in CW model

Figure C.5: Satisfied demand for G2 in both benefit types in CW model
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Figure C.6: Satisfied demand for G3 in both benefit types in CW model
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Appendix D

Results of the case study

Table D.1: Output values of solution sets of AEF-C method in terms of all objective
functions considered1

Sol of AEF-C AE-C AF-C AE-L AF-L CW1 CW2

1 61.451 92.986 104.837 92.986 36.729 49.892
2 61.409 95.491 104.697 95.491 39.073 49.172
3 61.316 96.600 104.387 96.600 38.517 50.440
4 61.311 97.199 104.370 97.199 38.422 48.581
5 61.308 99.827 104.359 99.827 43.364 47.751
6 61.242 100.885 104.141 100.885 42.630 48.755
7 61.193 101.883 104.081 101.883 43.628 48.346
8 61.185 115.710 103.949 115.710 59.402 49.172
9 61.090 117.389 103.632 117.389 59.304 50.327
10 60.782 117.950 102.821 117.950 60.628 48.148
11 60.754 118.450 102.679 118.450 61.229 49.172
12 60.654 120.342 102.430 120.342 62.821 49.172
13 60.645 121.035 102.150 121.035 65.205 47.751
14 60.631 122.778 102.103 122.778 65.205 48.581
15 60.535 123.882 101.784 123.882 66.074 48.642
16 60.458 124.636 101.527 124.636 68.353 47.864
17 60.415 125.969 101.383 125.969 67.012 49.306
18 60.342 126.563 101.243 126.563 68.769 48.346
19 60.035 127.122 101.036 127.122 71.306 46.892
20 59.302 127.773 100.538 127.773 76.400 42.644
21 57.961 128.303 94.904 128.303 56.016 53.499
22 57.919 129.335 94.798 129.335 57.786 52.412
23 57.863 130.570 94.658 130.570 60.129 50.972
24 57.696 131.829 94.240 131.829 59.415 52.412
25 57.693 133.232 94.233 133.232 59.302 53.499
26 57.637 134.040 94.093 134.040 61.353 52.059
27 57.392 134.719 93.480 134.719 63.914 49.829
28 36.750 176.238 100.000 176.238 96.260 0.000
29 36.700 177.863 97.988 177.863 100.500 0.000

1CW = Concave Welfare, AE-L = Linear Aggregate Efficiency, AE-C = Concave Aggregate
Efficiency, AF-C = Concave Aggregate Fairness
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Table D.2: Output values of solution sets of AEF-L and CW methods in terms of
all objective functions considered 2

Sol of AEF-L AE-C AF-C AE-L AF-L CW1 CW2

1 61.451 92.986 104.837 92.986 36.729 49.892
2 60.431 114.519 104.732 114.519 53.628 49.484
3 59.694 115.717 104.510 115.717 50.759 49.487
4 60.382 116.536 104.486 116.536 53.628 48.555
5 61.090 117.389 103.632 117.389 59.304 44.743
6 60.782 117.950 102.821 117.950 60.628 42.564
7 60.754 118.450 102.679 118.450 61.229 46.161
8 60.548 119.025 102.569 119.025 60.562 46.881
9 60.654 120.342 102.430 120.342 62.821 46.161
10 60.645 121.035 102.150 121.035 65.205 44.740
11 60.485 122.155 102.111 122.155 67.395 43.780
12 60.631 122.778 102.103 122.778 65.205 42.997
13 59.911 126.788 102.060 126.788 76.400 40.333
14 58.014 127.477 100.974 127.477 80.981 30.010
15 58.871 127.984 100.166 127.984 77.652 30.013
16 36.750 176.238 100.000 176.238 96.260 0.000
17 36.700 177.863 97.988 177.863 100.500 0.000

Sol of CW
1 36.700 177.863 97.988 177.863 110.036 0.000
2 40.091 104.480 98.173 104.480 107.901 5.186
3 43.481 104.598 98.635 104.598 105.509 10.244
4 46.537 119.928 98.553 119.928 102.485 15.359
5 50.009 115.986 98.910 115.986 98.384 20.876
6 52.662 122.672 99.832 122.672 95.428 26.242
7 55.357 124.326 100.055 124.326 91.367 31.578
8 57.108 127.611 100.725 127.611 87.708 36.614
9 59.354 127.159 101.809 127.159 82.428 42.635
10 59.765 127.295 100.545 127.295 74.953 47.649
11 60.134 125.076 101.139 125.076 66.711 52.734
12 58.362 127.870 96.691 127.870 57.271 57.880
13 57.666 126.381 97.072 126.381 51.221 62.986
14 55.973 126.125 97.268 126.125 44.716 68.001
15 53.001 119.307 97.951 119.307 34.896 73.019
16 47.508 118.041 93.893 118.041 22.835 78.129
17 42.196 125.456 94.397 125.456 11.576 83.433

2CW = Concave Welfare, AE-L = Linear Aggregate Efficiency, AE-C = Concave Aggregate
Efficiency, AF-C = Concave Aggregate Fairness
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