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ABSTRACT

AUTOMATED IMAGE RECONSTRUCTION FOR
NON-CARTESIAN MAGNETIC PARTICLE IMAGING

Ali Alper Özaslan

M.S. in Electrical and Electronics Engineering

Advisor: Emine Ülkü Sar�ta³ Çukur

September 2019

Magnetic particle imaging (MPI) is a high-contrast imaging modality that images

the spatial distribution of superparamagnetic iron oxide (SPIO) nanoparticles by

exploiting their nonlinear response. In MPI, image reconstruction is performed

via two di�erent methods: system function reconstruction (SFR) and x-space

reconstruction. For the SFR approach, analysis of various scanning trajectories

provided important insight about their image quality performances. While Carte-

sian trajectories remain the most popular choice for x-space-based reconstruction,

recent work suggests that non-Cartesian trajectories such as the Lissajous trajec-

tory may prove bene�cial for improving image quality. In this thesis, a generalized

reconstruction scheme is proposed for x-space MPI that can be used in conjunc-

tion with any scanning trajectory. The proposed technique automatically tunes

the reconstruction parameters from the scanning trajectory, and does not induce

any additional blurring. To demonstrate the proposed technique, �ve di�erent

trajectories were utilized with varying density levels. Comparison to alternative

reconstruction methods show signi�cant improvement in image quality achieved

by the proposed technique. Among the tested trajectories, the Lissajous and bidi-

rectional Cartesian trajectories prove more favorable for x-space MPI, and the

resolution of the images from these two trajectories can further be improved via

deblurring. The fully automated gridding reconstruction proposed in this thesis

can be utilized with these trajectories to improve the image quality in x-space

MPI.

Keywords: Magnetic particle imaging, image reconstruction, gridding reconstruc-

tion, non-Cartesian trajectories.
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ÖZET

KARTEZYEN OLMAYAN MANYET�K PARÇACIK
GÖRÜNTÜLEME �Ç�N OTOMAT�K GÖRÜNTÜ

GER�ÇATIMI

Ali Alper Özaslan

Elektrik ve Elektronik Mühendisli§i, Yüksek Lisans

Tez Dan�³man�: Emine Ülkü Sar�ta³ Çukur

Eylül 2019

Manyetik Parçac�k Görüntüleme (MPG), süperparamanyetik demir oksit

nanoparçac�klar�n uzaysal da§�l�mlar�n�, parçac�klar�n do§rusal olmayan tepki-

lerini kullanarak yüksek kontrastla görüntüleyen bir görüntüleme yöntemidir.

MPG'de görüntü geriçat�m� için iki farkl� yöntem kullan�lmaktad�r: Sistem

Fonksiyonu Geriçat�m� (SFG) ve x-uzay� geriçat�m�. SFG yakla³�m� için çe³itli

tarama gezingelerinin analizi, bu gezingelerin görüntü kaliteleri hakk�nda önemli

bilgiler vermi³tir. X-uzay� tabanl� geriçat�m tekniklerinde ise en çok Kartezyen

gezingeler tercih edilirken, son çal�³malar görüntü kalitesini art�rmak için Lis-

sajous gibi Kartezyen olmayan gezingelerin kullan�lmas�n�n yararl� olabilece§ini

ortaya koymu³tur. Bu tez çal�³mas�nda, x-uzay� tabanl� MPG'nin herhangi bir

tarama gezingesiyle birlikte kullan�lmas�na olanak sa§layacak genel bir geriçat�m

önerilmektedir. Önerilen teknik, uygulanan tarama gezingesine göre geriçat�m

parametrelerini otomatik olarak ayarlamakta ve herhangi bir ek bulan�kl�§a sebep

olmamaktad�r. Önerilen tekni§in gösterimi amac�yla farkl� yo§unluk seviyelerine

sahip be³ farkl� gezinge kullan�lm�³t�r. Alternatif geriçat�m teknikleri ile yap�lan

kar³�la³t�rma, önerilen tekni§in görüntü kalitesini önemli ölçüde art�rd�§�n� göster-

mi³tir. Test edilen gezingeler aras�nda Lissajous ve iki yönlü Kartezyen gezingeleri

x-uzay� tabanl� MPG için daha uygundur. Bu iki gezingeden elde edilen görüntü-

lerin çözünürlügü, netle³tirme yöntemiyle daha da art�r�labilir. Bu tezde önerilen

tümüyle otomatik gridleme tabanl� geriçat�m yöntemi, bu gezingelerle x-uzay�

tabanl� MPG'de görüntü kalitesini art�rmak için kullan�labilir.

Anahtar sözcükler : Manyetik parçac�k görüntüleme, görüntü geriçat�m�,

Kartezyen olmayan gezingeler.
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Chapter 1

Introduction

Magnetic particle imaging (MPI) is a rapidly developing imaging modality that

images the spatial distribution of superparamagnetic iron oxide (SPIO) nanopar-

ticles [1�5]. Based on its resolution, sensitivity, and contrast capabilities, MPI

promises a wide range of imaging applications such as angiography [6�11], multi-

color imaging [12�17], stem cell tracking [18,19], and functional imaging [20].

There are two main methods for reconstructing an MPI image: system function

reconstruction (SFR) and x-space reconstruction. SFR requires a lengthy cali-

bration measurement that records the response from a point-source SPIO sample

at all pre-determined pixel locations in the �eld-of-view (FOV) for a given MPI

system and imaging parameters [21�24]. The reconstruction procedure implicitly

removes the system and nanoparticle non-idealities to achieve a high-resolution

image of the SPIO distribution. X-space reconstruction, on the other hand, mod-

els MPI as a linear and shift-invariant (LSI) system that yields an MPI image

blurred by a point spread function (PSF) [25�27]. The image is reconstructed by

assigning the speed-compensated signal to the instantaneous position of the �eld

free point (FFP). While a calibration scan can completely be omitted with this

approach, the blurring e�ects of the PSF can optionally be deconvolved using a

PSF obtained via imaging a point-source SPIO sample. With the LSI assumption,

measuring the PSF is a signi�cantly shorter calibration process when compared

1



to the calibration measurement needed for SFR.

For both reconstruction methods, various trajectories can be utilized for scan-

ning the FOV. By far the most popular trajectory used with SFR-based MPI is

the Lissajous trajectory [2,6,23,28�30], whereas linear trajectories that raster the

FOV approximately line-by-line are most commonly utilized in conjunction with

x-space reconstruction [31]. Previously, the performance of di�erent trajectories

were evaluated for SFR-based MPI, and compared with the Lissajous trajectory

in terms of density, speed, and image quality using a simulation framework [29].

In addition, a simulation study proposed utilizing a radial Lissajous trajectory

with SFR, demonstrating improved image quality over the conventional Lissajous

trajectory for scanning with overlapping patches [32]. A recent study experimen-

tally compared the Lissajous trajectory and the bidirectional Cartesian trajectory,

demonstrating similar results in terms of image quality and sensitivity [33]. For

x-space reconstruction, on the other hand, one study suggested that the Lissajous

trajectory might improve the overall image resolution within a similar scan time

as the linear trajectories [34]. For linear trajectories, it was recently shown that

image quality can be improved by scanning the FOV in two orthogonal direc-

tions, which helps eliminate the anisotropic blur caused by the PSF [33, 35]. In

theory, the same principle should be applicable to other trajectories that feature

orthogonal scanning directions, such as the Lissajous trajectory. However, pre-

vious studies did not address reconstruction from non-Cartesian trajectory to a

Cartesian grid for x-space MPI. Furthermore, an in-depth analysis of trajectories

for x-space MPI is currently lacking.

In this thesis, a generalized reconstruction approach is presented for both

Cartesian and non-Cartesian trajectories for x-space MPI. The proposed tech-

nique is inspired by the gridding algorithms in magnetic resonance imaging (MRI),

but includes fundamental modi�cations to adapt to the reconstruction problems

in MPI. Importantly, the proposed technique automatically tunes the two critical

reconstruction parameters, kernel width and image size, from the given scanning

trajectory. In addition, it does not induce any additional blurring on the MPI

image. Here, the proposed technique is demonstrated with simulation results

2



for various non-Cartesian trajectories, including comparison with alternative re-

construction techniques. In addition, the performance of the proposed practical

reconstruction model is analyzed on �ve di�erent non-Cartesian trajectories to

infer about their suitability for x-space MPI. The e�ects of trajectory density

and sampling density on image resolution are analyzed, and the performances of

additional deblurring techniques are compared to improve the resolution of the

gridded x-space MPI images. The proposed method is a trajectory-independent

and parameter-free reconstruction scheme, and the results of this thesis provide

insight on the suitability of the non-Cartesian trajectories for x-space MPI.
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Chapter 2

Magnetic Particle Imaging

2.1 Principles of MPI

Magnetic Particle Imaging (MPI) exploits the nonlinear magnetization of super-

paramagnetic iron oxide nanoparticles [1]. According to Langevin physics, when

the applied magnetic �eld exceeds a certain threshold, SPIOs are saturated and

their magnetization does not change signi�cantly. In an MPI scanner, this sat-

uration property can be exploited by applying an inhomogeneous selection �eld

that generates a �eld-free point (FFP) and saturates the SPIOs in the remaining

imaging volume. Typically, the selection �eld is generated by permanent magnets

with opposing magnetic �elds. When a sinusoidal drive �eld is superimposed to

the selection �eld, SPIOs inside or in the vicinity of the FFP induce a signal on

a receive coil, as explained in Figure 2.1. However, if the SPIOs are saturated,

they cannot react to the applied drive �eld and hence cannot induce any signal.

To achieve spatial encoding in MPI, one can steer the FFP and assign the

acquired signal to corresponding location of the FFP, which can be calculated

from the total magnetic �eld as follows:

H(x, t) = Hd(t) +Hs(x) (2.1)

Here, Hs(x) [A/m] is the selection �eld and is ideally equal to −Gx, where G
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Figure 2.1: (a) Generic MPI scanner topology. Here, FFP is denoted with a
green circle, while red circle denotes a region where SPIOs are saturated. (b)
When particles are in the vicinity of the FFP, they induce a signal on the receive
coil (green). When particles are saturated by the selection �eld, they can react
to the applied drive �eld and cannot induce any signal on the receive coil (red).

[A/m/m] is the gradient of the selection �eld and x [m] is the spatial position.

Hd(t) [A/m] is the applied sinusoidal drive �eld and H(x, t) [A/m] is the total

magnetic �eld [25]. The location of the FFP can be obtained by setting H(x, t) =

0. Hence,

xs(t) =
Hd(t)

G
(2.2)

Here, xs(t) [m] denotes the instantaneous location of the FFP. The magnetization

of the nanoparticles can be expressed as a function of the external magnetic �eld,

H, as follows [25]:

M = mρL[H/Hsat] (2.3)

Here,m [Am2] is the magnetic moment of the nanoparticles, ρ [particles/m3] is the

nanoparticle density, Hsat [A/m] is the magnetic �eld required for saturation, and

L[·] is the Langevin function. For the 1D case, assuming the particle distribution

is in x-direction only, the magnetization can be re-written as [25]:

M(x, t) = mρ(x)δ(y)δ(z)L [G (xs(t)− x) /Hsat] (2.4)
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MPI signal can be expressed as follows [25,36]:

s(t) =

∫
V

B1
∂M(x, t)

∂t
dV (2.5)

= B1
∂

∂t

∫
V

M(x, t)dV (2.6)

where −B1 [T/A] is the sensitivity for the inductive receive coil. Using Eq. 2.6,

s(t) = B1
∂

∂t

∫∫∫
S

mρ(u)δ(v)δ(ω)L [G (xs(t)− u) /Hsat] dudvdω (2.7)

= B1
∂

∂t
(mρ(x) ∗ L [Gx/Hsat])

∣∣∣∣
x=xs(t)

(2.8)

Finally, the 1D MPI signal can be written as [25]:

s(t) = B1mρ(x) ∗ L̇[Gx/Hsat]
∣∣∣
x=xs(t)

Gẋs(t)/Hsat (2.9)

2.2 Image Reconstruction in MPI

There are two main methods for reconstructing an MPI image: system function

reconstruction (SFR) and x-space reconstruction.

2.2.1 System Function Reconstruction (SFR)

SFR method records the MPI signal received from a point-like object placed

at all voxel locations inside the imaging volume [21�24]. Hence, SFR approach

requires a long calibration process to record the system matrix corresponding to

the impulse response of the overall MPI system in Fourier domain. By solving

the following inverse problem, one can reconstruct an MPI image using the SFR

approach:

Sc = u (2.10)
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Here, S is the system matrix, c is the reconstructed MPI image in vectorized

format, and u is the acquired MPI signal in Fourier domain corresponding to

the image, c. During the calibration procedure, the Fourier transform of the MPI

signal obtained from each voxel in the FOV is placed to the corresponding column

of S. This procedure is visualized for a 2D system matrix in Figure 2.2. The

solution to the inverse problem given in Eq. 2.10 inherently takes into account

system and nanoparticle non-idealities. Thus, the obtained MPI image is not

blurred by the PSF of the MPI system.

Figure 2.2: Calibration measurements for SFR approach. Point-like source is
denoted by red dot, and FFP trajectory is denoted by the blue curve. Once the
signal is acquired for a pixel in the FOV, Fourier transform of the signal is placed
on the corresponding column of the system matrix. The calibration procedure
includes the calibration measurements for all pixels in the FOV.

2.2.2 X-Space Reconstruction

In x-space reconstruction approach, the acquired MPI signal is velocity com-

pensated and gridded to the instantaneous location of the FFP [25�27]. This

approach can be expressed as follows:

IMG (xs(t)) =
s(t)

B1mGẋs(t)/Hsat

= ρ(x) ∗ L̇[Gx/Hsat]
∣∣∣
x=xs(t)

(2.11)
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Based on this result, L̇[·] is the PSF of the imaging system, and IMG (xs(t)) is

the MPI image corresponding to the instantaneous location of the FFP. For this

approach, a calibration measurement is not needed in the reconstruction stage.

However, the reconstructed image is blurred by the PSF of the imaging system.

2.3 Multidimensional X-Space MPI

Derivations given in Sections 2.1 and 2.2.2 can be extended into multidimensional

equations using similar physical concepts [26]. For a multidimensional MPI sys-

tem, the selection �eld gradient matrix, G, can be expressed as follows:

G = Gzz


−1

2
0 0

0 −1
2

0

0 0 1

 (2.12)

Next, a multidimensional drive �eld can be de�ned as [26]:

Hd(t) =


Hx(t)

Hy(t)

Hz(t)

 (2.13)

By using Eqns. 2.12 and 2.13, the total magnetic �eld is derived as follows [26]:

H(x, t) = Hd(t)−Gx (2.14)

=


Hx(t)

Hy(t)

Hz(t)

−Gzz


−1

2
0 0

0 −1
2

0

0 0 1



x

y

z

 (2.15)

The instantaneous location of the FFP, xs(t), can be found by setting H(x, t) to

zero [26]:

xs(t) = G−1Hd(t) (2.16)

A similar formulation for the magnetization of the SPIOs given in Eq. 2.3, can

be preserved while extending it to the multidimensional case [26]:

M(H) = ρmL
[
‖H‖
Hsat

]
Ĥ (2.17)
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where Ĥ = H/‖H‖. From Eqns. 2.16 and 2.17, magnetization density of the

nanoparticles with a distribution of ρ(x) can be written as follows [26]:

M(x, t) = ρ(x)mL
[
‖G (xs(t)− x)‖

Hsat

]
G (xs(t)− x)

‖G (xs(t)− x)‖
(2.18)

For the case for receive coils in x,y, and z axes, sensitivity matrix can be de�ned

as −B1(x) = [B1x(x) B1y(x) B1z(x)]T . Then, multidimensional signal equation

can be obtained as follows [26]:

s(t) =
d

dt

∫∫∫
B1(u)M(u, t)du (2.19)

With some simpli�cations applied on Eq. 2.19 [26] (see Appendix A), the follow-

ing multidimensional signal equation, which is the three-dimensional extension of

Eq. 2.9, can be written [26]:

s(t) = B1(x)mρ(x) ∗ ∗ ∗ ‖ẋs‖
Hsat

h(x)ˆ̇xs

∣∣∣∣
x=xs(t)

(2.20)

Here, ˆ̇xs represents the scanning direction and h(x) is the PSF [26]:

h(x) = L̇
(
‖Gx‖
Hsat

)
Gx

‖Gx‖

[
Gx

‖Gx‖

]T
G +

L
(
‖Gx‖
Hsat

)
‖Gx‖
Hsat

(
I− Gx

‖Gx‖

[
Gx

‖Gx‖

]T)
G

(2.21)

The PSF can be decomposed into two envelopes, the tangential and normal en-

velopes [26]:

ENVT = L̇
(
‖Gx‖
Hsat

)
(2.22)

ENVN =
L
(
‖Gx‖
Hsat

)
‖Gx‖
Hsat

(2.23)

As displayed in Figure 2.3, the tangential envelope is signi�cantly narrower

than the normal envelope. The full-width at half-maximum (FWHM) values

for the envelopes can be approximated as 4.2 and 9.5 for the tangential and

normal envelopes, respectively [26]. In 3-D x-space MPI theory, the images are

produced on an internal reference frame formed by two vectors that are collinear

and transverse to the FFP velocity vector [26]. For example, if ẋs is aligned with

9
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Figure 2.3: (a) Tangential and Normal Envelopes for G = 3 T/m/µ0. (b) X-axis
cross sections of both envelopes. The tangential envelope is signi�cantly narrower
than the normal envelope.

the x-axis, the collinear and transverse components of the PSF can be written as

follows:

h‖(x) = ê1 · h(x)ê1 collinear (2.24)

h⊥,1(x) = ê2 · h(x)ê1 transverse (2.25)

h⊥,2(x) = ê3 · h(x)ê1 transverse (2.26)

Here, ê1, ê2, and ê3 are the unit vectors in x, y, and z axes, respectively. Finally,

the collinear and transverse components of the PSF for this case can be expressed

as follows [26]:

h‖(x, y, z) = L̇
(
H(x, y, z)

Hsat

)
G3

zzz
2

H(x, y, z)2
+
L
(

H(x,y,z)
Hsat

)
H(x,y,z)
Hsat

Gzz

(
1− G2

zzz
2

H(x, y, z)2

)

h⊥(x, y, z) = L̇
(
H(x, y, z)

Hsat

)
GxxG

2
zzxz

H(x, y, z)2
−
L
(

H(x,y,z)
Hsat

)
H(x,y,z)
Hsat

GxxG
2
zzxz

H(x, y, z)2

where H(x, y, z) =
√

(Gxxx)2 + (Gyyy)2 + (Gzzz)2. The collinear PSF,

h‖(x, y, z), is the vector sum of the tangential and normal envelopes and it forms

the desired resolution. However, the transverse PSF, h⊥(x, y, z), is the vector

di�erence of two envelopes and its magnitude is much smaller than that of the

collinear PSF. (see Figure 2.4) [26].
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Figure 2.4: Collinear and transverse components of the PSF for G = 3 T/m/µ0..
These components depend on the scanning direction. The collinear component
has higher peak amplitude than the transverse component.
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Chapter 3

Theory

Among the two components of the PSF shown in Figure 3.1a, the collinear com-

ponent is narrower and better behaved. Hence, this component has the capability

to provide a higher resolution and higher quality MPI image [26], as shown in Fig-

ure 3.1c. One method to capture only the collinear component is to align the axis

of the receive coil with the FFP velocity vector. This method is straightforward

when the drive �eld is in one direction only, e.g., a drive �eld in the z-direction

together with a single-channel receive coil sensitive along that direction. For

multi-dimensional drive �elds, a more practical approach is to use multiple re-

ceive coils and combine their signals to form a virtual receive coil aligned with

the instantaneous FFP velocity vector [37]. In the following sections, extraction

process of the collinear image component is brie�y described and then followed

by a detailed explanation of the proposed gridding algorithm. The derivations

assume ideal magnetic �elds and measurements, and instantaneous alignment of

the nanoparticle magnetization with the applied �eld. The proposed technique

builds on the mathematical basis and fundamental steps of the original x-space

reconstruction (i.e., speed compensation and assigning the data to instantaneous

FFP position) [25,26], while extending it to more complicated multi-dimensional

trajectories.
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Figure 3.1: The collinear and transverse image components for x-space MPI. (a)
The collinear and transverse PSFs for x-space MPI, rotated at an angle θ to align
with the instantaneous velocity vector. Here, the FFP is following a Lissajous
trajectory in x-y plane (displayed in zoomed format). (b) The nanoparticle
distribution in space. (c) The collinear image and (d) the transverse image, i.e.,
the convolutions of the nanoparticle distribution with the collinear and transverse
PSFs at angle θ, respectively. The red dot denotes the instantaneous position of
the FFP.

3.1 Extraction of Collinear Image Components

Assuming a 2D FFP trajectory in x-y plane (e.g., 2D Lissajous) together with

two receive coils aligned in the physical x- and y-directions, the signals induced

on the receive coils can be expressed as [26]:

sx(t) = B1,xm
‖ẋs(t)‖
Hsat

{IMG‖ (xs(t), θ(t)) cos(θ(t))− IMG⊥ (xs(t), θ(t)) sin(θ(t))}

(3.1a)

sy(t) = B1,ym
‖ẋs(t)‖
Hsat

{IMG‖ (xs(t), θ(t)) sin(θ(t)) + IMG⊥ (xs(t), θ(t)) cos(θ(t))}

(3.1b)

where,

IMG‖ (xs(t), θ(t)) = ρ(x) ∗ h‖ (x, θ(t))|x=xs(t) (3.2a)

IMG⊥ (xs(t), θ(t)) = ρ(x) ∗ h⊥ (x, θ(t))|x=xs(t) (3.2b)
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Here, θ(t) is the angle of the FFP velocity vector with respect to the x-axis,

h‖ (x, θ(t))) and h⊥ (x, θ(t))) are the collinear and transverse PSFs, rotated by

angle θ to align with the direction of the FFP velocity vector at time t, as demon-

strated in Figure 3.1a. Next, IMG‖ (xs(t), θ(t)) and IMG⊥ (xs(t), θ(t)) are the

collinear and transverse images as a function of FFP position at time t, as shown

in Figure 3.1c and Figure 3.1d. These images correspond to the nanoparticle dis-

tribution convolved with the collinear and transverse PSFs at time t, respectively.

As seen in this �gure, the collinear image displays signi�cantly better image qual-

ity and resolution than the transverse image. Furthermore, the collinear image

has better resolution along the direction of the FFP velocity vector when com-

pared to the orthogonal direction.

The �rst goal is to extract only the collinear image component from the signals

sx(t) and sy(t). For this purpose, the signal for a virtual receive coil aligned with

the FFP velocity vector can be computed as [37]:

sv(t) =
sx(t)

B1,x

cos(θ(t)) +
sy(t)

B1,y

sin(θ(t)) (3.3a)

= m
‖ẋs(t)‖
Hsat

IMG‖ (xs(t), θ(t)) (3.3b)

As mentioned in Section 2.2.2, a fundamental step in x-space reconstruction is

to compensate the received signal by the FFP speed [25,26]. For the virtual coil,

the resulting image as a function of time can then be expressed as:

IMGv (xs(t)) =
sv(t)

‖ẋs(t)‖
= αIMG‖ (xs(t), θ(t)) (3.4)

Here, α = m/Hsat is a constant. As seen in this expression, the image from

the virtual coil captures only the desired collinear component of the MPI image.

In the proposed reconstruction described below, only this component is gridded

to achieve a higher quality x-space MPI image.
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3.2 Gridding for X-space MPI

In the literature, gridding algorithms were originally proposed for the reconstruc-

tion of MRI images that utilize non-Cartesian k-space trajectories, such as radial

or spiral trajectories [38, 39]. These non-Cartesian trajectories provide several

advantages such as motion robustness [40, 41], and fast data acquisition and ef-

�cient coverage of k-space [42, 43]. In MRI gridding reconstruction, data points

lying on a non-Cartesian k-space trajectory are �rst convolved with a kernel,

and the outcome of the convolution operation is sampled and accumulated onto a

Cartesian k-space grid. After density compensation of the scanning trajectory, an

MRI image is produced using inverse Fourier transform, followed by apodization

correction in image domain [44,45].

As opposed to MRI gridding algorithms that operate in k-space, the recon-

struction in x-space MPI is performed directly in image domain. Here, following

gridding algorithm is proposed for x-space image reconstruction in MPI:

ˆIMG(x) =
ˆIMGinit(x)

d̂s(x)
=

((IMG(x)s(x)) ∗ c(x)) ·X
(

x
∆x

)
(s(x) ∗ c(x)) ·X

(
x

∆x

) (3.5)

where,

s(x) =
Ns∑
i=1

δ (x− xi) (3.6a)

IMG(xi) = IMGv (xs(ti)) , for i = 1, . . . , Ns (3.6b)

Here, s(x) is a non-Cartesian sampling function composed of impulses placed

at sampled FFP locations, xi = xs(ti). IMG(x) denotes the entire image that

is desired to be reconstructed with values only known at sampled FFP locations,

where they are equal to IMGv (xs(t)). In addition, c(x) is the gridding kernel in

x-space, X
(

x
∆x

)
is a 2D Comb function used for re-sampling onto the Cartesian
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Figure 3.2: The proposed gridding algorithm. (a) Each data point on the FFP
trajectory is convolved with the gridding kernel and re-sampled onto a Cartesian
grid. (b) The initial gridded image is over-ampli�ed at locations where the tra-
jectory is dense. (c) The estimated density of the FFP trajectory. (d) The �nal
gridded image is obtained via dividing the initial gridded image by the estimated
density. A Lissajous trajectory was used in this example.

grid, ∆x is the spatial distance between neighboring Cartesian grid points (i.e.,

the resolution of the grid, assumed to be the same for x- and y-directions), and

Ns is the total number of acquired samples.

As visualized in Figure 3.2a, the steps of the proposed gridding algorithm

can be explained as follows. First, the MPI signal is obtained by scanning the

FOV with an FFP trajectory, followed by the virtual coil alignment step, as

described in Eqns. (3.1)-(3.3). The collinear component of the MPI image,

IMGv (xs(t)), is then captured as a function of FFP position as given in Eq. (3.4),

which forms the sampled data, IMG(x)s(x). Then, each data point on the non-

Cartesian trajectory is convolved with the gridding kernel, c(x), and re-sampled

onto the Cartesian grid using the 2D Comb function,X
(

x
∆x

)
. This initial gridded

image, ˆIMGinit(x), is over-ampli�ed at locations where the trajectory is dense

(see Figure 3.2b). As shown in Figure 3.2c, an estimate of the trajectory density,

d̂s, can be computed by gridding ones (i.e., using IMG(x) = 1). Dividing the

initial gridded image by the density provides the density compensated image,
ˆIMG(x), which is the �nal reconstructed x-space MPI image (see Figure 3.2d).

For the gridding kernel, a Kaiser-Bessel window is used, which is a popular

choice in MRI gridding algorithms [45]. This kernel can be expressed as:
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Figure 3.3: The proposed steps for tuning the kernel width and grid size directly
from the FFP trajectory. (a) An example Lissajous trajectory with a frequency
ratio of 17/16. The subsequent sub�gures zoom in on the region marked with
the black box. (b) A Voronoi diagram is used to calculate the areas associated
with each data point on the FFP trajectory. The grid size, N , is computed using
the e�ective edge sizes from all partitions. (c) N ×N Cartesian grid points are
placed on the FOV. (d) For each grid point, the distance to the nearest data
point, ∆n, is computed. The optimal kernel width is chosen as a multiple of the
maximum ∆n.

c(x) = I0

β
√

1−
(

2 ‖x‖
wk∆x

)2
 (3.7)

where,

∆x =
xFOV

N
(3.8)

Here, I0 is the zero-order modi�ed Bessel function of the �rst kind, xFOV is the

extent of the FOV (assumed to be identical in x- and y-directions to simplify the

notations), N is the reconstructed image size (i.e., corresponding to an N ×N
image for the case of 2D imaging), wk is the full kernel width in grid units, and β

denotes the shape parameter of the Kaiser-Bessel kernel. In MRI, β is chosen as

a function of wk to carefully place the zero crossings of the inverse 2DFT of the

gridding kernel at the edge of the stopband. In MPI, since c(x) operates directly

in image domain, thus it is not a concern. The choice of β for the proposed

algorithm is explained in the following section.
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3.3 Automated Tuning of Gridding Parameters

There are fundamental di�erences between MRI gridding algorithms and the

proposed x-space MPI gridding algorithm. First, while MRI gridding algorithms

can leave certain k-space locations un�lled, the gridding in x-space MPI must

spread the acquired data to all pixels on the Cartesian image grid. Secondly,

the resolution of an MRI image is directly dictated by the extent of the acquired

k-space, which in turn determines the image size. In contrast, there is no strict

information that determines the image size or grid resolution in x-space MPI.

Therefore, the kernel width (wk) and image size (N) parameters require careful

tuning to achieve high-quality x-space MPI images via the proposed technique.

Here, these important parameters are computed automatically from the FFP

trajectory, without manual intervention.

For computing the image size, a plane-partitioning method called Voronoi dia-

gram is utilized. Voronoi diagrams have been utilized extensively for determining

the sampling density of scanning trajectories in MRI and computed tomography

(CT) [46]. In MPI also, Voronoi diagrams were utilized to determine the areas

associated with the node points of the Lissajous trajectory, to be used as weights

in SFR for reconstructing an image at these nodes [47]. In the proposed method,

Voronoi diagram is utilized for a di�erent purpose: for determining an optimal

image size directly from the trajectory data points.

Figure 3.3 illustrates the computation of N and wk for the case of a Lissajous

trajectory. In Figure 3.3b, the Voronoi diagram divides the FOV into sub-regions

by bisecting the connections between each data point and its closest neighbors,

which are determined using Delaunay triangulation [46]. Following bisection,

each data point is associated with a sub-region, called the Voronoi partition. For

each data point on the scanning trajectory, the area associated with its partition

is computed. To prevent in�nitely large partitions for data points near the pe-

riphery of the trajectory, the trajectory is �rst surrounded by external dummy

data points. Depending on the bounded shape of the scanning trajectory, these

dummy data points traverse a rectangle or a circle that surrounds the trajectory.
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After the computation of the areas for all Voronoi partitions, the dummy points

are excluded from consideration.

Using the Voronoi partitions, the image size is determined as follows:

N =

[
1

Ns

Ns∑
i=1

xFOV

dV,i

]
=

[
1

Ns

Ns∑
i=1

xFOV√
AV,i

]
(3.9)

Here, [·] denotes the rounding operation and AV,i is the area of the Voronoi

partition corresponding to the ith data point. Here, it is proposed that the Voronoi

partition for each data point dictates the e�ective pixel size around that point.

Approximating each Voronoi partition as a square region, dV,i =
√
AV,i yields the

e�ective edge size for the ith Voronoi partition. This edge size is considered to be

the local pixel size associated with the ith data point. Next, a corresponding image

size is computed via dividing FOV by this edge size. Finally, the mean over all

data points is computed to reach the �nal image size, N . The corresponding pixel

size for the Cartesian grid, ∆x, can then be computed using Eq. (3.8). Following

the aforementioned steps, N×N Cartesian grid points can be positioned in space,

as shown in Figure 3.3.

To tune the kernel width, wk, it should be assured that the kernel should be

su�ciently wide to ensure that no grid points are left un�lled after gridding, but

not overly wide to induce unnecessary image blurring. First, for each grid point

in the image, the distance to the nearest data point is calculated as follows:

∆n = min
i∈1:Ns

‖xn − xi‖
∆x

(3.10)

Here, xi is the location of the ith data point, xn is the location of the nth grid

point, and ∆n is the distance in grid units between the nth grid point and the

nearest data point. This operation is performed for each grid point, as shown in

Figure 3.3d. Next, the kernel width is chosen as a multiple of the maximum ∆n,

i.e.
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wk = γ ·max
n∈Ω2

∆n (3.11)

Here, Ω2 denotes the image grid and γ is a constant to ensure that wk is su�-

ciently large to spread not just one but multiple data points to each grid point.

This constant was determined based on two factors: quantitative image quality

assessment via the PSNR metric (see Methods section for the de�nition) and vi-

sual inspection. The results of the PSNR assessment are given in Figure 3.4a for

the Lissajous trajectory at Np = 98 with a sampling factor of 1. The phantom

used in this assessment is displayed in Figure 3.4b together with the results of

the gridding algorithm at various γ values. The PSNR assessment implies that

higher γ values result in reduced image quality, with γ = 3 yielding the high-

est PSNR. However, the corresponding image visibly su�ers from vertical stripe

artifacts (shown by red arrows), which are remnants of the scanning trajectory.

As γ increases, the intensity of this artifact weakens and �nally disappears for

γ greater than 5-6. On the other hand, a higher γ value directly corresponds

to a higher FWHMk, causing an increased blurring in the reconstructed image.

The PSNR metric successfully captures this reduction in resolution for higher γ

values, but fails to detect the artifacts seen at lower γ values. To prevent such

artifacts while preserving the resolution of the reconstructed images, γ = 6 is

chosen, which is the smallest integer-valued γ that yields artifact-free images.

Finally, the shape parameter, β, for the Kaiser-Bessel window given in Eq.

(3.7) is chosen. This parameter is chosen to ensure that: (1) the full kernel

width, wk, tightly covers the full shape of the Kaiser-Bessel window, and (2) the

full width at half maximum (FWHM) of the kernel, FWHMk, is equal to half

the kernel width, i.e.,:

FWHMk ≈
wk

2
∆x (3.12)

Both of these criteria are satis�ed for β = 6, which provides an e�cient repre-

sentation of the gridding kernel as shown in Figure 3.5.
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Figure 3.4: The e�ect of γ on image quality. (a) PSNR analysis indicates that
highest image quality is achieved at γ = 3, with higher γ values causing a reduc-
tion in image quality. (b) The phantom and the results of the gridding algorithm
for various γ values. Vertical stripe artifacts not captured by the PSNR metric are
clearly visible in the reconstructed image for γ = 3 (red arrow). These artifacts
diminish at higher γ values, however, the image resolution also worsens simulta-
neously. Here, the choice of γ = 6 corresponds to the smallest integer-valued γ
that yields artifact-free images.

3.4 Deblurring of Reconstructed Images

The resulting images from the gridding algorithm are blurred by the collinear and

transverse PSFs. Here, to improve the resolution of the reconstructed images, an

optional post-processing step can be performed following the gridding reconstruc-

tion. Two candidate methods for deblurring the images are the equalization �lter

[48,49] and Wiener deconvolution.

The equalization �lter is a k-space �lter inspired by the ramp �lter in com-

puted tomography (CT), which is used to eliminate the background haze due to

overemphasis of the low-frequency data resulting from projections. In x-space

MPI, a similar overemphasis of low spatial frequencies occurs due to the wide

�normal envelope" component of the PSFs. The equalization �lter was originally

proposed for multichannel acquisitions where two separate images are acquired
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Figure 3.5: The shape of the Kaiser-Bessel window depends on the shape param-
eter β. When β = 6 (purple line), the Kaiser-Bessel window tightly covers the
full kernel width and its FWHM is approximately equal to wk/2 in grid units.

using a single-channel drive �eld that is 90◦ rotated during the second acquisi-

tion. These two images are then averaged, resulting in an isotropic blur with the

following e�ective PSF:

hiso(x) = h‖(x, 0
◦) + h‖ (x, 90◦) (3.13)

It was previously shown that this PSF can also be expressed as ET (x) + 2EN(x)

[35, 50], where ET (x) and EN(x) are the tangential and the normal envelopes of

the PSFs as de�ned in [26]. The equalization �lter aims to eliminate image haze

by decomposing the e�ective PSF into its tangential and normal components,

and extracting the narrower tangential component only. This �lter is applied to

the reconstructed MPI images in k-space (i.e., multiplied with the Fourier trans-

form of the image, followed by inverse Fourier transformation). For multichannel

acquisition, this �lter is formulated as [49]:

Φeq(k) =
F (ET (x))

F (ET (x) + 2EN(x))
(3.14)

where F is the Fourier transform operator. It should be noted that equalization

does not aim to fully deconvolve the e�ects of the imaging PSF. Instead, as seen

in Eq. (3.14), the goal is to improve the e�ective PSF from ET (x) + 2EN(x) to

ET (x). In contrast to standard deconvolution �lters, this �lter does not cause
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division by zero problems at high spatial frequencies where the SNR is typically

low.

The equalization �lter can potentially be suitable for the Lissajous and bidirec-

tional Cartesian trajectories, as they are composed of two approximately orthog-

onal scanning directions. For these trajectories, the overall PSF of the imaging

system can be heuristically approximated as hiso(x) [51]. Following a similar

idea, this PSF can also be utilized for Wiener deconvolution. The corresponding

Wiener deconvolution �lter in k-space can then be formulated as follows:

Gw(k) =
Hiso

∗(k)

| Hiso(k) |2 +NSR
(3.15)

Here, Hiso(k) is the Fourier transform of hiso(x), ∗ denotes the conjugation opera-

tion, andNSR is the noise-power-to-signal-power ratio, added to the denominator

to avoid excessive noise ampli�cation.
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Chapter 4

Materials and Methods

4.1 Trajectories

In this thesis, the proposed gridding algorithm is applied to �ve non-Cartesian

trajectories, as illustrated in Figure 4.1: Lissajous, bidirectional Cartesian, radial

Lissajous, spiral, and radial trajectories. The mathematical expressions for the

trajectories are given in 4.1. The choice of trajectories was guided by an earlier

trajectory analysis work on SFR-based MPI [29, 32], with the addition of the

radial Lissajous trajectory. Considering hardware feasibility of the bidirectional

Cartesian trajectory, a modi�cation was performed over the theoretical version

presented in 4.1: the abrupt switch that occurs at multiples of half-period time

points were smoothed to reach a more realistic trajectory in terms of hardware

constraints, as shown in Figure 4.1. Among the tested trajectories, only the

Lissajous trajectory have been utilized in existing MPI hardware. The bidirec-

tional Cartesian trajectory was only utilized as two orthogonal linear acquisitions

[33,35], and not as shown in Figure 4.1.

The important parameters in Table 4.1 are the fundamental drive �eld fre-

quency, f0, and the trajectory density parameter, NP . The parameter NP deter-

mines the frequency ratio between the two orthogonal drive channels. For all �ve
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Table 4.1: The mathematical expressions for the non-Cartesian FFP trajectories
used in this thesis. The 2D drive �elds and frequency ratios to generate the cor-
responding trajectories are given. f0 is the fundamental drive �eld frequency, NP

is the trajectory density parameter, and TR = NP/f0 is one period of the trajec-
tory. A and B correspond to the drive �eld amplitudes in x- and y-directions,
respectively.

Trajectories Mathematical Expression Frequency Ratio

Lissajous
Hx(t) = A sin (2πf0t) f0 = NP

NP−1
f1Hy(t) = B sin (2πf1t+ φ)

Bidirectional Cartesian
Hx(t) =

{
A sin (2πf0t) , t < TR

2

B sin (2πf1t+ φ) , t ≥ TR

2
f0 = NP

2
f1

Hy(t) =

{
A sin (2πf1t+ φ) , t < TR

2

B sin (2πf0t) , t ≥ TR

2

Spiral
Hx(t) = A sin (2πf1t) · cos (2πf0t) f0 = NPf1Hy(t) = B sin (2πf1t) · sin (2πf0t)

Radial Lissajous
Hx(t) = A sin (2πf0t) · sin (2πf1t) f0 = NP

NP−1
f1Hy(t) = B sin (2πf1t) · cos (2πf0t)

Radial
Hx(t) = A sin (2πf0t) · sin (2πf1t) f0 = NPf1Hy(t) = B sin (2πf1t) · cos (2πf0t)

trajectories listed, larger NP values result in a denser FFP trajectory.

4.2 Simulations

The simulations were performed on a custom MPI toolbox developed in MATLAB

(Mathworks, Natick, MA). The performance of the proposed gridding algorithm

Lissajous
Bidirectional 

Cartesian Spiral Radial Lissajous Radial

Figure 4.1: The non-Cartesian FFP Trajectories used in this thesis, all shown
here for NP = 16 and identical TR.
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was tested on three separate imaging phantoms: a vasculature phantom, a res-

olution phantom, and a Derenzo phantom. An FFP scanner with selection �eld

gradients of (3, 3,−6) T/m/µ0 in the (x, y, z) directions and a drive �eld am-

plitude of 30 mT in both x- and y-directions were assumed, corresponding to a

FOV of 2 × 2 cm2 in the x-y plane. A realistic nanoparticle diameter of 25 nm

was assumed [52, 53]. The MPI signal for a single cycle of each trajectory was

generated for a fundamental drive �eld frequency of f0 = 25 kHz with 2.5 MS/s

sampling rate. For the Lissajous and bidirectional Cartesian trajectories, φ = 0

was used (see Table 4.1). Before the reconstruction, the signal was �ltered using

a high pass �lter with a cut-o� frequency of 1.8 × f0 to completely remove the

fundamental harmonic.

4.3 Alternative Reconstructions

The proposed technique was compared with two di�erent x-space-based recon-

struction methods to interpolate the given non-Cartesian data onto the Cartesian

grid: scattered interpolation and scattered interpolation with trajectory parti-

tioning [54]. In general, scattered interpolation �rst triangulates the given data

using Delaunay triangulation. The vertices of the triangle enclosing each query

point (i.e., the grid points) are lifted to obtain the weights corresponding to the

data points. Using natural-neighbor interpolation, lifted triangles are then inter-

polated to obtain the optimal image intensity for the grid point enclosed by the

triangle [55].

Using the aforementioned scattered interpolation, two alternative reconstruc-

tion techniques were implemented:

1. Scattered Interpolation: The data points and the FFP trajectory are

directly fed to the interpolation algorithm.

2. Scattered Interpolation with Partitioning: The trajectory is parti-

tioned into two non-overlapping segments with nearly orthogonal directions.
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Next, an image for each partition is reconstructed using scattered interpo-

lation, and the resulting images are averaged to obtain the �nal MPI image

[54]. The two segments are at approximately 45◦ and 135◦ scanning angles

for the Lissajous trajectory, and 0◦ and 90◦ scanning angles for the bidirec-

tional Cartesian trajectory. Note that this method cannot be applied to the

other tested trajectories, as they cannot be partitioned into a few di�erent

angles.

These comparison techniques used a �xed grid size of 512× 512, independent

of the trajectory type and density level.

4.4 Image Quality Analysis

The proposed technique was further analyzed for the Lissajous and the bidirec-

tional Cartesian trajectories at twenty di�erent trajectory density levels between

10 and 200. Note that the density of the data points for an already acquired data

can also be arti�cially altered by upsampling/downsampling the time-domain

signal. To test the potential e�ects of such alterations, the sampled signal for a

Lissajous trajectory was spline interpolated/decimated using 9 di�erent sampling

factors ranging between 0.25 and 4. This step was performed after the �ltering

of the fundamental harmonic.

To quantify the e�ects on image resolution, the FWHM resolution metric was

utilized. As dictated by imaging theory [56], the e�ective FWHM resolution of

the reconstructed MPI image, FWHMm, can be approximated as:

FWHMm =
√
FWHM2

s + FWHM2
k (4.1)

Here, FWHMs is the native resolution of the MPI system, mainly governed by the

selection �eld gradients and nanoparticle properties, and FWHMk is the FWHM

of the gridding kernel as given in Eq. (3.12). The above equation suggests that

the e�ective resolution of the MPI image worsens with increasing kernel width,

and the level of resolution loss depends on the relative magnitude of the kernel
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width with respect to the native resolution. As explained in Section 3.4, the PSF

for the Lissajous and bidirectional Cartesian trajectories can be approximated as

the isotropic PSF, hiso(x). As there is no closed form expression for the FWHM

of hiso(x), it can be computed numerically from a central cross-section of hiso(x).

Accordingly, for the parameters used in this thesis, FWHMs is approximately

equal to 2.06 mm.

Next, to quantify the e�ects of trajectory density and sampling factor on overall

image quality, the peak signal-to-noise ratio (PSNR) metric was utilized:

PSNR = 10 log10

(
max2(ρ)

MSE

)
(4.2)

Here, ρ(x) is the numeric phantom (i.e., the nanoparticle distribution) used in

the simulations and MSE is the mean square error between the phantom and

the reconstructed image. Here, higher values of PSNR indicate improved image

quality.

4.5 Deblurring and Noise Robustness

To show potential improvements in the gridded images, both the equalization

�lter [48] and Wiener deconvolution methods were implemented for the Lissajous

and the bidirectional Cartesian trajectories. As explained in Section 3.4, the

equalization �lter aims to improve the e�ective PSF from hiso(x) to ET (x). For

the parameters used in this thesis, this corresponds to an improvement of the

e�ective FWHM from 2.06 mm to 1.47 mm, where the latter is the approximate

FWHM of ET (x) as given in [26]. For Wiener deconvolution, NSR = 1 × 10−5

was utilized.

Prior to performing deblurring via equalization or deconvolution, the recon-

structed MPI image was �rst extended in all four directions by replicating the

edges, and the resulting image was gradually faded to zero in the extended regions

[57]. After deblurring, the central part of the image was extracted to capture the
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original FOV. These edge-tapering steps were necessary for avoiding deblurring-

induced artifacts at the edges of the FOV.

Noise robustness of the proposed gridding technique and the subsequent de-

blurring methods were tested at four di�erent signal-to-noise ratio (SNR) levels

(50, 20, 10, and 5) using the Lissajous trajectory. White Gaussian noise was

added to the simulated signal after the �ltering of the fundamental harmonic.

Here, SNR was de�ned as the ratio of the peak signal (after �ltering) and the

standard deviation of the additive white Gaussian noise.

29



Chapter 5

Results

5.1 Reconstruction Results and Trajectory Eval-

uation

Reconstruction results for the proposed algorithm and the comparison techniques

can be seen in Figures 5.1 and 5.2 for NP = 50. Figure 5.1 shows the Lissajous

and bidirectional Cartesian trajectories, together with the resulting MPI images.

The isotropically blurred image, IMGiso, obtained via convolving the phantom

with hiso(x) in Eq. (3.14), is also displayed for visual comparison. Note that

IMGiso is the MPI image that would be obtained with the standard x-space re-

construction using two orthogonal linear trajectories [35]. As seen in Figure 5.1,

directly performing scattered interpolation yields images with abruptly changing

pixel intensities. These severe artifacts stem from the fact that the nearby data

points on a trajectory can be inconsistent when their scanning directions are dif-

ferent, as the x-space images corresponding to those data points are blurred by

distinct PSFs. When data are �rst partitioned into two non-overlapping segments,

the severe artifacts seen in direct scattered interpolation are avoided. However,

a closer inspection of these images reveals horizontal and vertical stripe artifacts,

which are caused by inconsistencies between the images reconstructed from the
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Figure 5.1: Reconstruction results for the Lissajous and bidirectional Cartesian
trajectories. (a) The phantom and the isotropically blurred image, obtained via
convolution with hiso(x) in Eq. (3.14). (b) Scattered interpolation causes severe
artifacts due to the di�erent scanning directions of nearby data points. While
partitioning the data before applying scattered interpolation removes these arti-
facts, horizontal and vertical stripe artifacts can still be observed. The proposed
method does not su�er from any of the aforementioned artifacts, and reconstructs
the image by automatically tuning the reconstruction parameters from the scan-
ning trajectory. The results closely match IMGiso for both trajectories. For
these simulations, the FOV was 2× 2 cm2 and NP = 50. For each trajectory, the
images from all three methods were displayed with identical windowing.
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Figure 5.2: Reconstruction results for the trajectories that cannot be partitioned.
Images from scattered interpolation have artifacts in the central regions of the
images where the trajectories are very dense. Ring-shaped artifacts are observed
for the spiral and radial Lissajous trajectories, and streak artifacts are seen for
the radial trajectory. The proposed gridding algorithm successfully removes all
of these artifacts. However, trajectory-induced smearing results in noticeably
blurred MPI images. For these simulations, the FOV was 2 × 2 cm2 and NP =
50. For each trajectory, the images from both methods were displayed with
identical windowing.

two separate partitions. The proposed gridding algorithm, on the other hand,

does not su�er from any of the aforementioned artifacts and reconstructs the

x-space MPI image by automatically determining the reconstruction parameters

from the MPI data. The resulting images closely match IMGiso for both trajec-

tories. As a trade-o�, when compared to the results of scattered interpolation

with partitioning, the proposed method induced a slight blurring on the recon-

structed images. While this blurring is caused by the interpolation kernel used

in gridding, it can be circumvented by appropriate choice of trajectory density

and/or sampling factor, as shown in later analyses.
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Figure 5.2 shows the reconstructed MPI images for the trajectories that can-

not be partitioned, i.e., the spiral, radial Lissajous, and radial trajectories. These

trajectories scan the FOV in varying directions, and unlike the Lissajous or bidi-

rectional Cartesian trajectories, they do not feature any main scanning directions.

Therefore, the only comparison technique considered here was the direct scattered

interpolation method. For the scattered interpolation, the image artifacts occur

mostly in the central regions of the images where the trajectories are very dense.

Ring-shaped artifacts can be observed for the spiral and radial Lissajous trajecto-

ries, whereas the radial trajectory su�ers from streak artifacts extending radially

from the center of the image. Again, these artifacts stem from inconsistencies

among nearby data points. The proposed gridding algorithm successfully removes

all of these artifacts. However, the resulting images display noticeable blurring

when compared to the results from the Lissajous or bidirectional Cartesian tra-

jectories for the same NP . Note that the exact same blurring is also present in

scattered interpolation results, indicating that it is not caused by the gridding

interpolation. It rather re�ects a trajectory-induced smearing of the MPI image.

Considering their superior performance, only the Lissajous and bidirectional

Cartesian trajectories were considered for subsequent analyses.

5.2 E�ects of Trajectory Density

To observe the e�ects of the trajectory density, NP , on the quality of the recon-

structed images, the signal acquisition process was simulated for four di�erent

NP values: 18, 30, 50, and 98. The resulting images are shown in Figure 5.3a.

For the Lissajous trajectory, the vasculature structure can be distinguished even

at low density values. For the bidirectional Cartesian trajectory, however, the

resolution at very low densities is visibly degraded. Note that the bidirectional

Cartesian trajectory is inherently much sparser than the Lissajous trajectory, be-

cause the e�ective trajectory density is reduced by a factor of two to keep the

repetition times identical among all trajectories (see the 1/2 factor in Table 4.1

for the frequency ratio of the bidirectional Cartesian trajectory) [29]. For both
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Figure 5.3: The e�ects of trajectory density, NP , on the reconstructed MPI im-
ages. (a) The results of the gridding algorithm for the Lissajous and bidirectional
Cartesian trajectories for NP = 18, 30, 50, and 98. As NP is increased, the reso-
lution of the gridded MPI image improves for both trajectories. (b) The image
size (N) that is automatically tuned using the MPI trajectory monotonically in-
creases with increasing NP . (c) The FWHM of the gridding kernel decreases and
then converges to a constant value as NP increases. The overall image resolution
(FWHMm) also improves and converges to the native resolution of the MPI sys-
tem (FWHMs) with increasing NP . (d) The overall image quality improves and
rapidly converges to a constant PSNR value for both trajectories as NP increases.
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trajectories, as the density of the trajectory is increased, the resolution of the

gridded MPI image improves. This e�ect is quanti�ed in Figures 5.3b and 5.3c,

where the automatically computed values for the image size (N) and the e�ective

gridding kernel width (i.e., FWHMk in Eq. (3.12)) are plotted as functions of

NP , for both the Lissajous and the bidirectional Cartesian trajectories. As ex-

pected, N increases with increasing NP , as the local pixel size dictated by the

Voronoi partitions of the data points gets smaller. Furthermore, with increasing

NP , the minimum distance between each grid point and the nearest data point is

reduced. This in turn lowers FWHMk to ensure adequate spread of data points

onto nearby grids.

The values for FWHMm computed using Eq. (4.1) are also plotted in Figure

5.3c. For both trajectories, FWHMm converges to 2.27 mm for increasing NP

values. Hence, it is deduced that when FWHMk is su�ciently smaller than

FWHMs, the gridding algorithm does not induce any signi�cant blur on the

reconstructed images. This criterion is satis�ed for NP > 50 for the Lissajous

trajectory and for NP > 90 for the bidirectional Cartesian trajectory.

Image quality was also quanti�ed using the PSNR metric, as shown in Figure

5.3d. For both trajectories, image quality sharply increases until NP reaches 40.

Then, PSNR gradually converges to 12.9 dB for the Lissajous trajectory. For the

bidirectional Cartesian trajectory, PSNR displays a slowly increasing trend and

reaches to 13.4 dB at NP = 200. The bidirectional Cartesian trajectory performs

slightly better than the Lissajous trajectory because of its blurring pattern that

yields lower image haze in the background. Note that the PSNR value for IMGiso

in Figure 5.1a is 12.4 dB. Hence, the quality of the images from the proposed

gridded algorithm can exceed those obtained with linear trajectories via standard

x-space reconstruction.
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Figure 5.4: E�ects of upsampling/downsampling the MPI signal. (a) The FWHM
of the gridding kernel quickly decreases and (b) the overall image resolution
converges to the native system resolution for increasing trajectory density and
sampling factor. (c) The overall image quality also improves with increasing
trajectory density and sampling factor, where PSNR converges to 13.0 dB. (d)
The gridded MPI images at NP = 98 for di�erent sampling factors. A sampling
factor of 2 su�ces to avoid gridding-induced blurring. For these simulations, the
initial sampling rate was 2.5 MS/s.
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5.3 E�ects of Sampling Factor

In MPI, the density of the data points not only depend on the path of the

trajectory, but also on the sampling rate of the signal. Even for a �xed sam-

pling rate, one can arti�cially alter the density of the data points by upsam-

pling/downsampling the signal. Figure 5.4a shows the FWHM of the gridding

kernel as a function of both the trajectory density and the sampling factor, for

an initial sampling rate of 2.5 MS/s. Accordingly, for a �xed trajectory density,

one can reduce the e�ective kernel width by upsampling the MPI signal. Figure

5.4b shows the e�ects of this procedure on the overall resolution of the gridded

MPI image. For NP values greater than approximately 40, upsampling can be

utilized to achieve an overall resolution of 2.11 mm, which closely matches the

native resolution. In most cases, a sampling factor of 2 is su�cient to avoid any

blurring of the MPI image. A similar trend is seen in the PSNR values shown

in Figure 5.4c, where PSNR converges to 13.0 dB with a sampling factor of 2

and NP > 50. These results are visually demonstrated in Figure 5.4d, where

gridded MPI images at four di�erent sampling factors are displayed for NP = 98.

Here, a sampling factor of 2 provides noticeable improvements in image resolu-

tion, and su�ces to avoid gridding-induced blurring. A sampling factor of 4 does

not provide any additional bene�ts on the image quality.

5.4 Deblurring and Noise Robustness

The resolution of the x-space reconstructed images can be improved via a post-

processing step, following gridding. Figure 5.5 illustrates the resolution improve-

ment achieved by applying either an equalization �lter or Wiener deconvolution

on the gridded images. A 2× 2 cm2 phantom, shown in Figure 5.5a, was utilized

to highlight the changes in resolution. Both Lissajous and bidirectional Cartesian

trajectories utilized NP = 98. The signal was generated with an initial sampling

rate of 2.5 MS/s and upsampled with a sampling factor of 2. As seen in Figure

5.5b, the equalization �lter signi�cantly improves the resolution of the image.
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Figure 5.5: Postprocessing results for the proposed gridding algorithm. (a) The
phantom and (b) the results of the gridding algorithm followed by either an
equalization �lter or Wiener deconvolution. The gridded images can be signi�-
cantly improved in terms of resolution using either of these two postprocessing
techniques. Equalization does not aim to fully deconvolve the e�ects of the imag-
ing PSF. For these simulations, FOV = 2× 2 cm2 and NP = 98, with 2.5 MS/s
sampling rate and a sampling factor of 2.

Using Eq. (3.14), for the parameters used in this thesis, this �lter aims to im-

prove the e�ective FWHM from 2.06 mm to 1.47 mm. The deconvolved images in

Figure 5.5b show greater improvement in resolution, at the expense of potential

noise ampli�cation, as analyzed in detail below. In comparing trajectories, both

the equalization and deconvolution techniques gave slightly improved results for

the Lissajous trajectories, which is to be expected given the lower e�ective density

of the bidirectional Cartesian trajectory.

Figure 5.6 gives the results for the noise robustness analyses for both the

gridding reconstruction and the deblurring techniques. Again, the Lissajous tra-

jectory with NP = 98 was used, and data acquisition was performed at 2.5 MS/s

with a sampling factor of 2. For these analyses, a Derenzo phantom was utilized,

shown in Figure 5.6a with �ve resolution levels: 3.9 mm, 3.2 mm, 2.5 mm, 2.0

mm, and 1.4 mm. In the noise free case in Figure 5.6b, the disks that are at

2.5 mm or higher separation are visually resolved in the gridded image. After

the equalization �lter, the resolution improves visibly and the disks at 2.0 mm
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Figure 5.6: Noise robustness results for the proposed gridding algorithm and the
postprocessing techniques. (a) A Derenzo phantom with �ve resolution levels:
3.9 mm, 3.2 mm, 2.5 mm, 2.0 mm, and 1.4 mm. (b) The gridding algorithm
preserves image quality down to SNR levels of 10. Wiener deconvolution yields
higher image resolution at high SNR levels, whereas the equalization �lter displays
improved robustness against artifacts and noise ampli�cation at lower SNR levels.
For these simulations, FOV = 2× 2 cm2 and NP = 98, with 2.5 MS/s sampling
rate and a sampling factor of 2.
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separation can also be resolved visually. While Wiener deconvolution further im-

proves the resolution, the disks at 1.4 mm remain unresolved. As seen in Figure

5.6b, the gridding reconstruction shows robustness against noise down to SNR

levels of 10. At high SNR levels, Wiener deconvolution yields improved image

quality and higher resolution when compared to the equalization �lter. At SNR

levels around 20 and lower, however, the equalization �lter displays improved

robustness against artifacts and noise ampli�cation when compared to Wiener

deconvolution. The noise ampli�cation in the deconvolved image is clearly visible

at SNR = 5, where the background noise competes with image intensity. Note

that these results are displayed for a single cycle of the Lissajous trajectory, with

a scan time of merely 3.92 ms. Signi�cant improvements in image quality can

easily be achieved by increasing the SNR via averaging over multiple cycles.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

The proposed gridding algorithm successfully reconstructs MPI images for non-

Cartesian trajectories, while automatically computing the reconstruction param-

eters from the FFP trajectory. Among the tested trajectories, the Lissajous

and bidirectional Cartesian trajectories resulted in higher image quality, whereas

spiral, radial, and radial Lissajous trajectories yielded excessive blurring. The ad-

vantage of the Lissajous and bidirectional Cartesian trajectories is that they are

composed of two nearly orthogonal scanning directions. In contrast, spiral, ra-

dial, and radial Lissajous trajectories incorporate scanning directions that result

in smearing of the MPI image. Note that this result is consistent with earlier work

that looked at trajectory analysis for SFR, where the Lissajous and Cartesian tra-

jectories resulted in improved resolution when compared to other trajectories [29].

Hence, it is deduced that the Lissajous and Cartesian trajectories are generally

favorable for MPI.

The results demonstrate that the gridded images can be improved via a simple

upsampling of the already acquired MPI signal. This simple operation increases
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the e�ective trajectory density and helps the proposed method to achieve the na-

tive resolution of the MPI system. It should also be noted that directly sampling

the signal at 5 MS/s yields visually identical results to sampling at 2.5 MS/s fol-

lowed by upsampling by a factor of 2 (results not shown). Therefore, considering

the fact that the MPI signal quickly fades at higher harmonics, the signal can be

sampled at a relatively low rate followed by upsampling, without compromising

image quality. In addition, deblurring techniques also help improve the resolu-

tion of the reconstructed images. The equalization �lter removes the background

haze, without noise ampli�cation. Deconvolution, on the other hand, improves

the resolution at the expense of signi�cant degradation in SNR. Therefore, es-

pecially at realistic SNR levels one may expect to see for in vivo imaging, the

equalization �lter shows a better promise.

The proposed method provides a reconstruction with reduced memory and

computational requirements for the trajectories normally utilized with SFR. In

SFR, the system matrix contains the calibration data and is of size (Nf×Nc×2)×
(N ×N), where (N ×N) denotes the imaging FOV matrix, Nf is the number of

frequency components, Nc is the number of receive coils, and real and imaginary

components of the spectrum are stored in separate rows. For a typical scenario

with N = 40, Nf= 10000, Nc = 2, approximately 512 MB of memory is needed

for the system matrix alone. Meanwhile, the actual imaging data in both the

SFR and x-space approaches (including the proposed method) form a vector of

length (Ns ×Nc × 2), where Ns is the number of samples collected in one period

of the trajectory (assuming that repeated periods are �rst averaged). For Ns =

10000, approximately 32 MB of memory is needed for the imaging data. Thus, the

memory requirement of the x-space approach is substantially smaller than that of

the SFR approach (∼32 MB vs. ∼544 MB for the given parameters). In terms of

computational e�ciency, previous studies suggest that algebraic reconstruction

technique (ART), which is currently the most popular reconstruction method

in SFR, is expected to be of complexity O(Nf × Nc × Niter × N2), where Niter

is the number of iterations [23, 58]. While there have been several e�orts to

reduce the computational complexity of the SFR approach, the N2 dependence

still remains [59�61]. For the proposed gridding algorithm, on the other hand,
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the two main steps are the Voronoi partitioning and the gridding operations.

Common algorithms for Voronoi partitioning are of complexity O(Ns log(Ns))

[62, 63]. In the gridding stage, the samples on the trajectory are distributed to

their nearest grid points. Assuming that Ng � Ns samples will be distributed on

average to each grid point, this bears a complexity of O(Ng × N2) [38]. Hence,

the proposed gridding method is advantageous in terms of memory storage, with

comparable computational e�ciency.

With the abovementioned advantages, the proposed gridding technique is es-

pecially promising for real-time imaging applications that require the usage of a

rapid scanning trajectory with a rapid image reconstruction method. Trajectories

such as the Lissajous trajectory can achieve higher frame rates when compared to

line-by-line scanning. In contrast to SFR approaches, the proposed gridding al-

gorithm does not require any calibration scans, and hence can potentially handle

arbitrary changes in FOV, trajectory density, nanoparticle type, or nanoparticle

environment. These features may especially be valuable for real-time imaging

applications where one may need to change the size and/or the position of the

FOV on the �y (e.g., during interventional imaging), or where the nanoparticle

response may change over time (e.g., due to internalization into a cell environ-

ment [19, 64]. For optional deblurring of the reconstructed image, one may need

to perform a calibration scan to determine the PSF from a point source phan-

tom. Nevertheless, this procedure takes signi�cantly less time when compared

to the calibration of the system matrix. In addition, this technique can enable

x-space reconstruction of Lissajous data obtained from existing commercial MPI

scanners, which may then facilitate the usage of other x-space-based techniques

on those systems (e.g., relaxation-based color MPI [16]).

The results in this thesis assumed that nanoparticle magnetization instanta-

neously aligns with the applied magnetic �eld. Nanoparticle relaxation can smear

the MPI signal, and hence the image, along the scanning direction. For exam-

ple, the two dominant directions for the Lissajous trajectory may yield images

that are smeared di�erently. For those cases, one solution can be to perform a

low-level correction for relaxation by compensating for relaxation induced signal
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delays [65]. Alternatively, the e�ective time constant for relaxation can be es-

timated from the MPI signal [15, 16], and the underlying adiabatic MPI signal

can be recovered via deconvolution [37]. A potential problem that may remain is

the position-dependent response of the nanoparticles, which may especially a�ict

the Lissajous trajectory with its fast �eld rotation. For such cases, it may be fa-

vorable to utilize isotropic nanoparticles with small hydrodynamic diameters, as

suggested in [66]. Alternatively, a class of nanoparticles with reduced relaxation

e�ects despite their larger sizes may also be utilized, such as UW33 in [67].

The non-ideality of the magnetic �elds may also a�ect the quality of the recon-

structed images. For standard x-space reconstruction, it was previously shown

that selection �elds with non-homogeneous gradients result in geometric warping

of the reconstructed images [68]. These e�ects are relatively benign and can be

successfully corrected using image unwarping techniques, following a measure-

ment and/or computation of the displacement map. Similarly, proposed gridding

algorithm is expected to yield images with easily reversible warping in the pres-

ence of selection �eld non-ideality, making it extendable to 3D imaging. Exper-

imental validation of the proposed technique and its extension to 3D remain as

important future work.

6.2 Conclusion

In this thesis, a generalized, trajectory-independent, and parameter-free recon-

struction algorithm was proposed for x-space MPI. The proposed gridding al-

gorithm automatically tunes gridding kernel width and image size parameters

based on the scanning trajectory, without causing any additional blurring of the

MPI image. The results demonstrate that the Lissajous and bidirectional Carte-

sian trajectories are favorable for x-space MPI, as they feature two orthogonal

scanning directions that result in an approximately isotropic PSF. The proposed

method is especially promising for real-time imaging applications that require

rapid scanning trajectories together with a rapid image reconstruction method.
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Appendix A

Decomposition of MPI PSF into

Tangential and Normal Envelopes

To simplify the derivation of Equation 2.19, the following de�nitions are presented

[26]:

r ,
G (xs(t)− x)

Hsat

(A.1)

ṙ =
Gẋs(t)

Hsat

(A.2)

r̂ ,
r

‖r‖
(A.3)

r̂ =
ṙ

‖r‖
+

ṙT r

‖r‖3
(A.4)

where ṙ can be decomposed into :

ṙ = ṙ‖ + ṙ⊥ (A.5)
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where ṙ‖ denotes the tangential component and ṙ⊥ denotes the normal compo-

nent.

ṙ‖ = (ṙ · r̂)r̂ =

(
ṙ · r

‖r‖

)
r̂ (A.6)

ṙ⊥ =

[
ṙ−

(
ṙ · r

‖r‖

)
r̂

]
(A.7)

Using these decompositions, the derivative of the Langevin function can be

de�ned as follows [26]:

d

dt
L(‖r‖)r̂ = L̇(‖r‖)ṙ‖ +

L(‖r‖)
‖r‖

r⊥ (A.8)

Using the derivation in A.8, the following multidimensional signal equation can

be obtained [26]:

s(t) =
d

dt

∫∫∫
B1(u)mρ(u)L(‖r‖)r̂du (A.9)

=

∫∫∫
B1(u)mρ(u)

[
L(‖r‖)ṙ‖ +

L(‖r‖)
‖r‖

ṙ⊥

]
du (A.10)
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