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From (13) and property 1)¢;(¢) are boundedl < i < p.
By virtue of Barbalat's lemma [18], [21], [22] it follows that
limy—o ei(t) = 0,1 < ¢ < p, which implies, in particular, that

[14]

limy oo [y(t) — y- ()] = 0. a [13]
Remark Il.1: The adaptation gairy in (14) is a positive real
constant in the proof of Theorem II.1. Note that if we set 0, thatis [16]

the adaptation is switched off, the arguments used to show properties
1) and 2) still apply while the arguments used to show property 3) cHJ?]
not apply. This shows that adaptation may be switched off at any timgy
still guaranteeing bounded signals and disturbance attenuation at the
expense of not achieving asymptotic tracking even when disturbandty
are zero. (I 20]
Remark I.2: The result stated in Theorem Il.1 may also bé

obtained for the class of nonlinear systems introduced in [15, Lemma

2.2], following the proofs of Lemma 1l.1 and Theorem 1.1 with[21]
obvious modifications. | [22]

Il. CONCLUSIONS [23]

We formulate in Definition 11.1 the state feedback adaptive tracking
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problem with transient specifications and disturbance attenuation and
provide a constructive solution to such a problem in Theorem 1.1 for
a class of nonlinear systems. The result obtained improves and gen-
eralizes those presented in [15], [16], and [23]. The proposed robust
adaptive control (14) has the built-in property of still guaranteeing
bounded signals and disturbance attenuation when the adaptation is
switched off. Moreover, it offers the advantage of achieving zero
asymptotic tracking error when disturbances are not present and time-
varying parameters become constant; this is not guaranteed by the
robust (nonadaptive) control presented in [16].

Stabilization and Disturbance Rejection
for the Wave Equation
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Abstract—We consider a system described by the one-dimensional
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behavior are described by PDE’s on the overall system has to be takgr(1)—(4) are not restricted to strings; for example, vibrations of long

into account in designing the controllers. cables, the longitudinal motion, and the torsional vibrations of elastic
In recent years, boundary control of systems represented by PDB&ams can also be represented by these equations (see, e.g., [9]).

has become an important research area. This idea is first applied to theis well known that if we apply the following boundary controller:

systems represented by the wave equation (e.g., elastic strings, cables; )

see, e.g., [1] and [5]) and recently extended to beam equations [2] and F(t) = dy.(1,1), >0 ®)

to the rotating flexible structures (see [10] and [11]). In particular, fh_en the closed-loop system given by (1)—(5) is exponentially stable.

has been shown that for a string which is clamped at one end_ anejs,¢ is, the energyf?(¢) associated with the solutions of (1)~(5),
free at the other end, a singt®ndynamicboundary control applied | hich is given by

at the free end is sufficient to exponentially stabilize the system; see )
[1]I. For_ more references on the s_ubject _the readgr is referred to _[7]. E(t) = %/ (v + v2) da ©)
n this paper, we consider a linear time-invariant system which o
is represented by the one-dimensional wave equation in a bouméﬂe%ays uniformly exponentially as follows:
domain. We assume that the system is fixed at one end and a boundary '
control input is applied at the other end. For this system, we propose E(t) < MS—‘VE(()), t>0 )
a finite-dimensionaldynamic boundary controller. This introduces
extra degrees of freedom in designing controllers which could B@" someM >0 andé > 0. Moreover, ford # 1, the decay rate
exploited in solving a variety of control problems, such as disturbanie given by
rejection, pole assignment, etc., while maintaining stability. The 1
transfer function of the controller is a proper rational function of 6= —5111‘
the complex variable and may contain a single pole at= 0 and
a pair of complex conjugate poles at= +jw;,w; # 0, provided (see, e.g., [7]). Foi = 1, the estimate (8) will not be valid, but in this
that the residues corresponding to these poles are nonnegative;cige all solutions become zero for 2; see, e.g., [8]. This result can
rest of the transfer function is required to be a strictly positivelso be obtained by using the so-called wave propagation method,
real function. The class of strictly positive real transfer functionsee e.g., [3]. The solution of the wave equation can be written as
(e.g., excluding the poles on the imaginary axis) has been propogieel sum of two waves traveling in opposite directions. These waves
before for the stabilization of flexible structures; see [12] for thwill be reflected at the boundaries, and at any particular tiraed
beam equation, [13] for the wave equation, and [14] for disturbanpesition =, the solutiony(z, ) is the sum of these waves. It can
rejection. We then show that if; # m= for some natural number be shown that the reflection coefficientat the boundary: = 1 is
m € N, then the closed-loop system is asymptotically stable. We algo= (1 —d)/(1+4d) (i.e., the incoming wave amplitude is multiplied
consider the case where the output of the controller is corrupted bpwe to find the amplitude of the reflected wave). Sincedor 1 we
disturbance. We show that if the structure of the disturbance is knoWwaves = 0, and since any traveling wave will reach the boundary
(i.e., the frequency spectrum), then it may be possible to choose the= 1 at most 2 s after the initial time= 0, it follows that fort > 2
controller accordingly to attenuate the effect of the disturbance at te havey(x,t) = 0; for details see [3], [7], and [8]. Hence, for the
system output. To support this idea, we also present some numerigzitroller given by (5), the best choice déffor stabilization seems
simulation results. to bed = 1. However, we will show later that when the system is
This paper is organized as follows. In the next section we introdusebjected to a disturbance, due to measurements and actuation, this
the system considered and propose a class of controller for statiioice may not be a good one.
lization. In Section Il we give some stability results. In Section IV The problem we consider in this paper is to choose the controller
we consider the disturbance rejection problem, and in Section V wich generateg(t) appropriately to make the closed-loop system
present some numerical simulation results. Finally, we give soratable in some sense. Later we will analyze the effect of this controller
concluding remarks. on the output of the systefw,(1,¢)) when the controller is corrupted
by a disturbance.
We assume thaf(t) is given by the following equations:

1-4d

T5d ®)

Il. PROBLEM STATEMENT

We consider a string as an example of a system whose behavior 21 = Az 4 bye(1,¢) 9)
is modeled by the wave equation. Without loss of generality, we P = wiae (10)
assume that the string length, mass density, and the string tension .
are given asL = 1,p = 1, andT = 1, respectively. We denote dy = —wiry +yi(1.1) (1)
the displacement of the string by=,t) at = € (0,1) and¢ > 0. F@&) =c" 21+ dye(L 1) + kay(1,1) + koo (12)
Furthermore, we assume that the string is fixed at one end an

stabilized bydynamicboundary control at the other end. Thus, th(%viﬁeregixf R for sotmet ”a‘ffa' ﬁumbg Is the actuator sltate,
system under consideration is represented by € Is a constant matrixp, ¢ € are constant coiumn

vectors,d € R, and the superscrigf’ denotes transpose.

ye(w, t) =Yao (2, 1), x € (0,1) t>0 1) We make the following assumptions concerning the actuator given
y(0,8) =0, t>0 (2) by (9)-(12) throughout this work.
’ ’ - Assumption 1:All eigenvalues ofA € R"*" have negative real
(1) ==f(t),  £>0 @3) P 9 g
parts.
y(x,0) =wolx),  yi(w,0) = wi(x) (4) Assumption 2:( A, b) is controllable and¢, A) is observable.

where a subscript, as i, denotes a partial differential with respect Assumption 3:d 2 0,k >0, k2 > 0, and there exists a constant
to the corresponding variablg(-): R, — R is the boundary control 7> = 7 = 0, such that the following holds:

force applied at the free end of_ the string, and initial _cond_itions d+ Rele (wl — A)~"b} >+, w € R (13)
wo(+) andw; () belong to appropriate function spaces which will be

introduced later [see (18)—(21)]. We note that the systems represerittateover, ford >0, we assumey >0 as well.
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Remark 1: If we take the Laplace transform of (9)—(12) and us&vherez = (yy:z1zi22)” . 5 = (§9:21%122)7. It can be shown that

zero initial conditions for the actuator (i.ez;(0) = 0,2:(0) = H, together with the energy inner-product given by (24), becomes a
72(0) = 0), then we obtain Hilbert space. The “energy” norm induced by (24) is
2 . k
f(s) = g(9)in(1,9) + —y(1,0) (14) , 1 1
s B == (0l3 = 1 / g2 dr+ / i2 do
where a hat denotes the Laplace transform of the corresponding . 0 0
variable and + 1k (L) + L2f Py
‘N k1 kas Tho(2? + 22). 25
9(5)—91(s)+?+—82+w12 + ghe(a1 +a3) (25)
gi(s) =c' (sT — A) "o+ d. (15)  Theorem 1: Consider the system given by (21).

Then, Assumptions 1)-3) imply that (s) is a strictly positive real . I The operato_rL generates Q.o-semlgroup of contractlo_riE(t)
transfer function, and if; >0 and/orks >0, then g(s) is only a in H (for the terminology of semigroup theory, the reader is referred

positive real (but not strictly) transfer function; see, e.g., [17] to [15]).
i If wy # mz for some natural numbem € N, then the

semigroup?’(t) generated byl is asymptotically stable, that is all
. . olutions of (21) asymptotically converge to zero.
Let Assumptions 1)-3) stated above hold. Then, since the trans?er Proof of i We use the Lumer—Phillips theorem (see [15, p. 14])

function ¢1(s) = d + ¢ (sI — A)™'b is strictly positive real, . A . :

it follows from the Meyer—Kalman—Yakubovich lemma that giveﬁo prove the assertianTo prove thatl is dissipative, we differentiate
any symmetric positive definite matrig € R"*", there exists a (25) with respect to time. Then by using (1)—(3), (9)-(12), integrating
symmetric positive definite matrik € R"*", a vectorg € R", and Py parts, and using (16), (17), we obtain

a constant > 0 satisfying

IIl. STABILITY RESULTS

. . . 1 -1 1+
ATP4+ PA=—q¢" —€Q (16) E= / Yeyer da +/ Yoot do + 5:5 (A"P+ PA)z
Q 9]
Pb=e=v2(d =) (A7) + 2L Phya(1,8) + kry(1 (1, 1)
(see [17, p. 133)). + kaye(1,t)as
To analyze the system given by (1)—(4) and (9)-(12), we first define 17, .7
the function spacé? as follows: =-y(LOf) + 52 (A P+ PA)z
H:= {(uvzlxmz)ﬂu eH ., vel’ > €R", + Z%‘Pby‘(l’t) + +kiy(L D)ye(1,1)
zi, 2 € R,u(0) =0} (18) + koye(1, t)xo

T, 2 T
where the spaceE? and H* are defined as follows: =—c ziy(Lt) = dyp (1,8) + 21 Pbya(1, 1)

1 LT - ST Qs
Lzz{f:[O,L]—Jﬂ/ fzd;r<oo} (19) 2 2
0 2 Tog2
, ==y (L.1) = [v/2(d = )ye(1,8) — =
HkZ{fEL2|f,f/7f//7"',f(k) GLQ}. (20) /yf( ) 2[ ( Y)Ut( ) = Q]
€ 7 .
System (1)—(4), (9)-(12) can be written in the following abstract form: — g @ (26)
i=Lz  z0)en @D SinceE < 0, it follows that L is dissipative [see (24)—(26)].
wherez = (yy;z12122)T € H, the operatorL: H — H is a linear Let z = (lhrrir2)” € H be given. To show thax] — L: H — H
unbounded operator defined as is onto forA > 0, one must show that for some = (uvz z129)7 €
" v D(L), we must havé I — L)w = z; hence the following equations
v Uss should hold:
Lz | =] Az +bu(l) |. (22)
1 w1L2 A—v=Il AN—uz=h 27)
T2 Wi + U(l) /\Z] bl ;4;’1 — bl‘(l) =r, )\:l‘q — Wi =1
The domainD(L) of the operatorL is defined as Azs +wrey — v(l) =1 (28)
D(L):= {(Ul’zll'llﬁ)l € Hlu € H>.veH' z €R". w(0) =0,u,(1)+ o+ du(l)
z1,22 € R,u(0) = 0,v(0) = 0; + kru(l) 4 koxy = 0. (29)

us (1) + A+ dv(1) 4+ kiu(l) + koo = 0}, (23)

Let Assumptions 1)-3) hold, lef) € R"*" be an arbitrary
symmetric positive definite matrix, and I®te R"*",q € R" be the
solutions of (16) and (17) wherE is also a symmetric and positive

It can easily be shown that the solutiar(-) of (27) satisfying
w(0) = 0 is given by

definite matrix. InH, we define the following “energy” inner-product: u(x) =¢; sinh Az — %/ (h(s)
-1 .1 A 0
(z,5)p = %/ yige do + %/ Yo ie da + M(s)) sinh A(z — s5) ds (30)
Q 9]
+ $hiy(Dg(1) + 33 P2y wherec, is a constant andinh(-) is the hyperbolic sine function.

+ %kz(l?li’l + x222) (24) By using (28) and (29), after some straightforward calculations, we
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obtain contains only the zero solution, which is a typical procedure in the
application of LaSalle’s invariance principle. )
A(cosh A + g(A) sinh )¢y To prove thatS contains only the zero solution, we sEt= 0 in
-1 . (26), which results inzy = 0. This implies thatz, = 0; hence by
=/<M@+M@mmﬁkﬂ—ﬂ+ﬂ@mm using (9) and (12) we obtaim(1,t) = 0, f(t) = k1y(1,t) + koaa.
0 I Hence, all solutions of (21) iy satisfy the following equations:
U1

A1 —39))ds+ <g()\) — T)I(l) Vet = Yon (38)

TN =) - 2k2A 2 (1'2 - wln) (31) oL e e (39)

AT A y(0.) =0, y(l,1)=0 (40)

where g(-) is given by (15). Since(-) is a positive real transfer yo(1,1) = —kiy(1,t) = koa. (41)

function, it follows thatg()) >0 for all A>0; see, e.g., [17, pp. The solutionz of (39) can be written as
129-130]. It then follows thatosh A+ g(A) sinh A > 0 for all A >0,

hence the constant; can be uniquely determined from (31). The T2 = 01 Coswif A cosinwyt (42)
remaining unknowns, zi, 1, z2 can be found from (27) and (28). wherec, andc, are arbitrary constants.
Hence it follows thatAI — L: H — H is onto for all A>0. Since the boundary conditions in (40) are separable, the solution
Then, it follows from the Lumer—Phillips theorem thitgenerates a f (38) can be found by using separation of variables; see [9]. That
Co-semigroup of contraction#(¢) on . is, the solution of (38) and (40) assumes the following form:

i To prove assertioni, we use LaSalle’s invariance principle,
extended to infinite-dimensional systems; see [16, p. 78]. According y(a,t) = A(t)B(x)  t>0, x€][0,1] (43)

to this principle, all solutions of (21) asymptotically tend to thgnere the functionsA: R, — R and B: [0,1] — R are
maximal invariant subset of the following set: twice differentiable functions to be determined from the boundary
conditions (40). We distinguish the following cases.

a: A = 0. In this case, the solution of (38) e, t) = c3+can.
From (40) it follows thates = 0, and by using this in (41) we find
thate; = ¢ = ¢4 = 0 as well. Hence, the only possible solution
is y(z,t) = 0.

b: A # 0. In this case, the solution of (38) is in the following
rm:

S={zeHIE=0)} (32)

provided that the solution trajectories for> 0 are precompactin
‘H. Since the operatol. : ‘H — H generates &'s-semigroup of
contractionson H (hence the solution trajectories apeundedon
‘H for ¢ > 0), the precompactness of the solution trajectories a¥8
guaranteed if the operat¢pl — L)' : H — H is compact for

some ) > (; see [16, p. 241]. To prove the last property, we first A(t) = c3 cos Ot + ca sin Ft

show thatL™' exilsts and is a compact operator & To see this., B(x) =cs cos B + cg sin B (44)
let = = (lhrri72)" € ‘H be given. We want to solve the equation _ )

Lw = =z for w, wherew = (uvzz120)T € D(L). The solution of Wherecs, - -+, cs are arbitrary constants. From (40) we obtain= 0
this equation can easily be found as and ¢ sin 3 = 0. (For otherwisey:(1,¢) = 0 would yield only

the trivial solutiony(x,t) = 0.) Hence, for a nontrivial solution?
should satisfysin 3 = 0, hence3 = m= for some natural number
m € N. Now using the arguments i it can easily be shown that

L
u(x) = —/0 /0 (o) do d& + cu, z€(0,1) (33)

v(x) =—1(x), x € (0,1) (34) B# 0 _By using these in (41), it can eas?ly be shown that to have a
= AN — 35 nontrivial solution, we must havé = wy, i.e.,w; = mm for some
! l'l)(—( ') ) (35) natural numberr € N. For otherwise, the only solution i would
T = g (36) vyielde¢i = c2 =--- = ¢s = 0, which yieldsy(x, t) = 0. Therefore,
r‘f‘ if wy # mn for some natural numbern € N, we conclude that the
T2 =— o (37)  only solution of (21) which lies in the sét given by (32) is the zero

solution. Hence, by LaSalle’s invariance principle, we conclude that
where the constartcan be uniquely determined from (12). It followsthe solutions of (21) asymptotically tend to the zero solution. O
that L~ exists and map! into H® x H' x R" x R x R; moreover, Remark 2: It was proven in [13] that folk. = 0, if d >0, then
(uwvzizixe)” € D(L). Sincez = (Ihrrire)” € H, it follows that the closed-loop system (1)-(4), (9), and (12) is exponentially stable,
1(0) = 0 and that € H"; see (18). Hence, ifz|| is bounded i<, it and if 4 = 0, then the same system is asymptotically stable. Since
follows easily that(1) is bounded as well. Thereforé,”' maps the the subsystem (10), (11) is essentially finite-dimensional, one might
bounded sets of into the bounded sets d? x H' x R* x R x R. expect the same conclusions to hold for the ckse-0 as well.

Since the embedding of the latter irtbis compact (see [18, p. 14]), However, this point needs further investigation. |
it follows that L™"' is a compact operator. This also proves that the
spectrum ofL consists entirely of isolated eigenvalues and that for IV. DISTURBANCE REJECTION

any \ in the resolvent set of,, the operatof A\l — L) ': H — H

is a compact operator; see [6, p. 187]. Furthermore, our argum
above shows thath = 0 is not an eigenvalue of.. Since the
operatorL generates &'p-semigroup of contractions oH, by the
argument given above it follows that the solution trajectories of (2 ,
are precompact i for + > 0; hence by LaSalle’s invariance F(t) ="z + dye(Lt) + kry(Lt) + kaws +n(t)  (45)
principle, the solutions asymptotically tend to the maximal invariant . . .
subset ofS [see (32)]. Hence, to prove that all solutions of (21?r equivalently (14) has the following form:

asymptotically tend to the zero solution, it suffices to show that F(s) = g(s)d(1.s) + n(s) (46)

In this section we show the effect of the proposed control law
%Wen by (9)—(12) on the solutions of the system given by (1)—(4)
when the output of the controller is corrupted by a disturbarnce,
{?at is (12) has the following form:
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=-0.2
>
-0.4
0.6 2 4 6 8 10 12 14 16 18 20 06 2 4 6 8 10 12 14 16 18 20
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Fig. 1. Tip displacement for Case i.1. Fig. 3. Tip displacement for Case ii.l.
0.2 0.2 T T T T T T
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=-0.2! =-0.2f
> >
-0.4 -0.4r
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time (sec.) time (sec.)
Fig. 2. Tip displacement for Case i.2. Fig. 4. Tip displacement for Case ii.2.

where(s) is the Laplace transform of the disturbaneé’). Note ~frequency components in an interval of frequendis, (22]), then
that in deriving (46), we neglected the effect @f1.0), cf., (14). We can choosg(s) to minimize
Sincey(1,0) is a constant, we may include it as an additional term sinh jw
i i C(w) = . . 0 . 5 w € [917&22]
in the_dlsturbance. _ cosh jw + g(jw)sinh jw|’
To find the transfer function from(¢) to y:(1,t), we take the N
Laplace transform of (1)—(3), and set initial conditions to zero. Thelote that to ensure the stability of the closed-loop systents)

the solution of (1), (2) becomes sho_uld be a strictly positive real function as well [see (15)]. As
] a simple example, assume thatt) = « coswo(f). Then we may
y(x,s) = csinhas (47)  chooseg(s) in the form (15) withw, = wo. Provided that As-

sumptions 1)-3) are satisfied and that # m= for some natural
numberm € N, the closed-loop system is asymptotically stable (see
Theorem 1). Moreover, ik2 > 0, theng(s) given by (15) has a pair

wherec is a constant andinh is the hyperbolic sine function. By
using (3) and (46), we obtain

—_ 1 i i(s) (48) of complex conjugate poles at= +wo, hencec(w) given above
s(cosh s + g(s)sinh s) satisfiesc(wo) = 0. From (49) we may conclude that this eliminates
Gl 5) = — sinh s . a(s). (49) the effect of the disturbance at the outputl,?).
cosh s + g(s)sinh s
Now, consider the controller given by (5). It was stated in V. SIMULATION RESULTS

Section Il that, without disturbance, this system is exponentially |n this section, we show the effect of the proposed control law
stable and that by choosinbappropriately, one can achieve arbitrangiven by (46), wheregy(s) is given by (15) on the solutions of the
decay rates [see (7)]. Moreovets) = d = 1 is the best choice system (1)-(3), by means of some numerical simulation results.
since in this case all solutions become zerotfor2. However, from  For simulations, we first obtain a state-space representation [i.e.,
(49) one can easily see that this is not a good choice for disturbangg and (12)] for the compensator given by (15). For this purpose
rejection. To see this, first note that in this case the controller trans{gs choose the well-known controllable canonical representation of
function g(s) is given byg(s) = d = 1 [see (5), (14), and (46)]. 4(s). Then we use the finite difference technique witpoint spatial

Hence, (49) becomes discretization, approximating the spatial derivatives by using a central
di(1,s) = %(6725 — Dals) (50) ?r:féeitgrnrge formula; see [4]. The resulting equations can be written in

which yields, in time domain

— 1

vi(L,t) = 5(n(t = 2) = n(t). 51} here the vector; contains the displacements and the velocities
In casen(t) is sinusoidal, from (51) it follows thaw.(1,¢) is at N points andn compensator states. Hende ¢ R™*™ and
sinusoidal and its magnitude is not small (i.e., half of the magnitudec R™,m = 2N + n. This equation is then simulated by using a
of the disturbance). Hence the cages) = d = 1 is not a good trapezoidal type algorithm. In the simulations we chodSe- 50. As
choice for disturbance rejection. It can be shown that 1,4 € R for the initial conditions we choose the initial displacement along the
yields similar results. first mode of the uncontrolled system (i.e., (1)—(3) wjttt) = 0),

Another choice for disturbance rejection is the use of dynaménd we set

controllers [e.g., of the type (15) or (9)—(12)]. From (49) we can also ) _ .o . . . N
derive a procedure to desigits) if we know the structure ofi(#). y(@,0) = ~05sin(0.5m2),  yi(@,0)=0, O<e<l
For example ifn(¢) has a band-limited frequency spectrum (i.e., haitial conditions for the controller states are set to zero.

i=Fz+0bd(t)
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Fig. 5. Tip displacement for Case ii.3.
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Fig. 6. Tip displacement for Case ii.4.

For the disturbance(¢), we choose two different types of wave-in g(s) to eliminate the higher harmonics as well. For this, we choose

forms which are given below. the following controller:
ii n(t) = cos10t. s kss
For this disturbance, we choose the following controller: g(s) =d+ R >3- (53)
5% 4+ W $° + wsy
]{28

g(s)=d+ ——. (52) For this controller, we choose the following sets of parameters.
57w Caseii3: d=1,ky = 0,w1 = 10, ks = 100,ws = 20.
Note that in (15), for simplicity we choosg (s) = 0, and it can ~ Caseii4: d =1,k = 10,w1 = 10,k3 = 50,w2 = 20.
easily be shown that the conclusions of Theorem 1 are still valid The resulting endpoint positiong1,¢) for Cases ii.3 and ii.4 are

in this case as well. For the controller we use the following sets 8hown in the Figs. 5 and 6, respectively. As can be seen in these
figures, the additional terms attenuate the effect of higher harmonics

parameters.
Caseilid = 1,k; = 0,w; = 10. as well. ) ) )
Casei2 d = 1,ks = 10,w; = 10. These simulations suggest that by using dynamic compensators

The resulting endpoint positiong1,#) for Cases i.1 and i.2 are ON€ May improve the system response in case the system is subject
shown in Figs. 1 and 2, respectively. Obviously, with = 0, the 10 @ disturbance. Moreover, once the compensator transfer function

controller given by (52) reduces to the controller given by (5), witfs Parameterized [see (52)], optimum values for these parameters to
g(s) = d = 1. As explained in Section II, the best choice for stabilitShaPe the system response may be obtained (e.g., to decrease the
is g(s) = d = 1; see (8). However, as explained in Section IV thigvershoot, to decrease the rise time, etc.). However, this point needs

is not a good choice for disturbance rejection, and Fig. 1 confirrﬁls"rther Investigation.

this point. Also, Fig. 2 shows that the effect of disturbance can be

attenuated by use of an appropriate dynamic controller. VI. CONCLUSION
ii: n(t) = Zi_; (cos10kt/k). In this paper, we considered a linear time-invariant system which
The purpose of this choice of disturbance is to investigate the represented by the one-dimensional wave equation in a bounded

effect of the controller given by (52) on the system response wh@Bmain. We assumed that the system is fixed at one end and a

n(t) contains harmonics of a fundamental frequency as well. For th@undary control input is applied at the other end. For this system,

controller given by (52), we choose the following sets of parameteige proposed a finite-dimensiondynamicboundary controller. This
Caseii.l: d = 1,k2 = 0,w; = 10. introduces extra degrees of freedom in designing controllers which
Caseii.2: d = 1,k = 10,w; = 10. could be exploited in solving a variety of control problems, such
The resulting endpoint positiong1,t) for Cases ii.1 and ii.2 are as disturbance rejection, pole assignment, etc., while maintaining

shown in Figs. 3 and 4, respectively. As can be seen from thestability. The transfer function of the controller is a proper rational

figures, the disturbance rejection is better for> 0. function of the complex variable and may contain a single pole
Note that in Case ii.2, the controller is “tuned” to eliminate th@t s = 0 and another pair of complex conjugate polessat

fundamental harmonic of the disturbance. We can put additional terthgw,, w1 # 0, provided that the residues corresponding to these
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poles are nonnegative; the rest of the transfer function is required to Mixed H,/H..-Control of Discrete-Time
be a strictly positive real function. We then proved that the closed- Markovian Jump Linear Systems

loop system is asymptotically stable provided that# m=« for some

natural numbern € N. We also studied the case where the output Oswaldo L. V. Costa and Ricardo P. Marques

of the controller is corrupted by a disturbance. We showed that if the

frequency spectrum of the disturbance is known, then by choosing the

controller appropriately we can obtain better disturbance rejection. TaAbstract—n this paper we consider the mixedH2/H o -control problem
support this idea, we presented some numerical simulation resu”ﬁ_:ﬁthe class of discrete-time linear systems with parameters subject to

. . arkovian jump linear systems (MJLS’s). It is assumed that both the
We note that the ideas presented here can also be applied to o variable and the jump variable are available to the controller. The

flexible structures (e.g., flexible beams). The work on this subjectijgnsition probability matrix may not be exactly known, but belongs to an
still in progress and the results will be presented elsewhere. appropriate convex set. For this controlled discrete-time Markovian jump
linear system, the problem of interest can be stated in the following way.

Find a robust (with respect to the uncertainty on the transition Markov
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