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On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

A. Sanz-Mora,1,* S. Wüster,1,2,3 and J.-M. Rost1
1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany

2Department of Physics, Bilkent University, 06800 Çankaya, Ankara, Turkey
3Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 023, India

(Received 31 March 2017; revised manuscript received 27 June 2017; published 27 July 2017)

Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces
hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams
of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements,
allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements
using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by
driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the
feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into
account noise and error sources.
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I. INTRODUCTION

Quantum optomechanics was originally developed in the
context of gravitational wave detection [1]. Subsequently, it
took up the challenge to cool nanoscale quantum systems
all the way to their ground state [2], and more generally
to gain the level of control over them that we are used
to having over quantum optical systems [3–5], e.g, through
coupling to nonclassical light [6,7]. Experiments on the
quantum nondemolition (QND) read-out of the phonon state of
a nanomechanical oscillator or its state tomography have only
begun recently [8,9] and most existing proposals interface the
oscillator with a cavity [10–14].

For torsional oscillators [15,16], we develop in the fol-
lowing a scheme without direct cavity interfacing, allowing
for integration of mechanical and measurement elements into
the same nanofabricated substrate using Rydberg atoms. With
their long lifetimes and strong long-range interactions [17],
they mingle naturally with the time and spatial scales of
optomechanics. Furthermore, with accessible atomic transition
frequencies spanning orders of magnitude when varying the
principal quantum number ν, Rydberg atoms can interface
to a wide range of nanomechanical elements with different
oscillation frequencies [3–5].

Recent advances in manipulation and control of Rydberg
atoms through on-chip waveguides [18–20] as well as in
retaining atomic coherence closer to chip surfaces [21–24]
render Rydberg on-chip integration promising and realistic by
matching Rydberg-atom interaction ranges with the spatial μm
scales of the chip geometry.

To achieve a full quantum tomography of the torsional
nano-oscillator, the Rydberg atoms have to fulfill a twofold
role: First, the atomic Rydberg beam in the waveguide
passing by the oscillator acts as probe for the oscillator
state [25,26]: controlled electrostatic interactions between the
oscillator and the atoms cause a phonon-number-dependent
phase shift, to be read out interferometrically [27–31]. Second,
we can coherently displace the nanomechanical oscillator by
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externally driving the Rydberg atom while it is passing by the
oscillator in order to scan the oscillator state in a controlled
fashion. In this step, the Rydberg atom acts as a mediator for
quantum control of the oscillator.

So far, destructive Wigner tomography [32] has been
proposed, as well as the use of classical oscillators for atomic
quantum state control [33], which could also be achieved
through interaction of nanomechanical elements with atoms
or molecules [34–36].

We extend these works by transferring Rydberg-atom-
based QND detection developed in the context of cavity-
QED [27–31] to the realm of quantum nanomechanics, and
integrate all these functional elements into a versatile on-
chip Rydberg-atomic probe technique without the need of a
cavity.

The organization of this paper is as follows. In Sec. II we
describe an interfacing between a Rydberg-atom waveguide
and a torsional oscillator, and propose methods for a QND
read-out of mechanical oscillation states and their tomo-
graphical reconstruction. Next, we provide the Hamiltonian
governing the system dynamics in Sec. III, and numerically
assess the feasibility of the proposed QND detection and state
tomography schemes subject to noise and decoherence ele-
ments in Secs. IV and V, respectively. Finally, we summarize
our findings in Sec. VI.

II. HYBRID SETUP OF NANOTORSIONAL OSCILLATOR
AND RYDBERG WAVEGUIDE

While our scheme is quite general, we nevertheless will
consider a carbon nanotube (CNT) as torsional oscillator to be
specific. Interfacing the Rydberg waveguide, we will explicitly
take into account the expected dominant decoherence sources.
The CNT is clamped to a chip surface and equipped with a
weight at one end, as, e.g., in [37,38], which allows for tuning
the oscillation frequency. The weight will be a ferroelectric
nanoparticle with a permanent electric dipole moment dosc

[39], providing a simple and adjustable interaction between
oscillator and Rydberg atoms, independent of surface and
material properties. The Rydberg atoms, confined to an atomic
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FIG. 1. Schematic of the coupled Rydberg-atomic waveguide
(gray) and torsion mechanical oscillator (green). The beam passes
the oscillator with impact parameter D and velocity v. Oscillations of
the torsion angle ϕ modulate the interaction between the permanent
electric moment dosc of a ferroelectric load (blue) and the transition
dipole moment dba involving atomic Rydberg states |b〉and |a〉. While
a train of atoms interacts one by one with the oscillator, the states
incur a phase shift dependent on the state of the oscillator. This
shift is interferometrically read out using microwave π/2 pulses in
regions R1/2 and state detection in F. Quantum coherent manipulation
of the oscillator for quantum tomography uses additional external
driving of the atoms through a coplanar microwave waveguide in
region C.

waveguide [25,40], pass the oscillator with impact parameter
D as shown in Fig. 1.

First, the atoms in the guide are excited to a Rydberg
state |a〉 (not shown in Fig. 1). In the region R1 of Fig. 1
the waveguide passes a microwave cavity, which generates
a Rabi π/2 pulse tuned to the transition between |a〉 and a
second Rydberg state |b〉. As a consequence, atoms in the state
[|a〉 + |b〉]/√2 are produced [41].

Parameters are chosen such that the interactions with the
oscillator (in the coupling region C) effect only a relative
phase shift between |a〉 and |b〉, to be inferred from detection
of the Rydberg state at F after a second π/2 pulse in region
R2. If the oscillator is in a Fock state, such a Ramsey
interferometric measurement leaves the oscillator state un-
changed, thus furnishing a QND measurement. For more
general oscillator states, a series of these measurements will
gradually collapse the state towards a phonon number (Fock)
state [42]. Repeating such series multiple times eventually
reveals the entire phonon-number distribution.

Full quantum state tomography requires knowledge of the
phases between different number states, which can be obtained
after quantum coherently displacing the oscillator prior to
the phonon-number distribution measurement. To obtain a
well-defined displacement, we propose to externally drive
Rydberg atoms while they pass through the strong interaction
region C as discussed below. For a well-defined coupling,
the driving should target only the Rydberg atoms and not
directly the oscillator by using well-localized evanescent fields
from a coplanar microwave guide [43,44] or a three-photon
off-resonant Raman transition [45].

III. SYSTEM HAMILTONIAN

We formalize our scheme with the Hamiltonian

Ĥ = Ĥosc + Ĥat + Ĥint + Ĥcoup (1)

to demonstrate quantitatively the feasibility of this protocol.
The oscillator with frequency ωosc is described by Ĥosc =
h̄ωoscĉ

†ĉ, with corresponding oscillator states |n〉 and ladder
operators ĉ, ĉ†. The Hamiltonian for the internal state of a
single atom is Ĥat = h̄ωbaσ̂bb, where σ̂μ′μ = |μ′〉〈μ| denotes
the atomic transition operator between levels |μ′〉 and |μ〉,
and ωμ′μ the corresponding Bohr frequency. Motion of the
atoms in the waveguide is treated classically as described
below. The atom-oscillator coupling Ĥint is due to electric
dipole-dipole interactions between the transition dipole of the
atom and the permanent dipole of the nanoparticle attached
to the oscillator. By choosing the atomic transition dipole
dba = 〈b|d̂at|a〉 (d̂at is the atomic dipole operator) along the z

axis and for an atom precisely at the center of the waveguide,
we find (Appendix A 2)

Ĥint = −h̄K(R)[ĉ† + ĉ][σ̂ba + σ̂ab]. (2)

Here, the interaction strength is K(R) = K0f (R), where K0 =
V0/

√
2h̄ωoscI , with V0 = ‖dba‖‖dosc‖/[4πε0D

3], and I the
moment of inertia of the oscillator (CNT and nanoparticle).
The coordinate vector R = (X,Y,Z), with R = ‖R‖, points
from the center of the nanoparticle in equilibrium (origin
of our Cartesian coordinate system) to the atom in the
waveguide, as shown in Fig. 1. Then, the interaction amplitude
becomes f (R) = [D/R]3[1 − 3Z2/R2]. We have assumed
small excursions of the oscillator from an equilibrium torsional
angle ϕ0 = π/2.

Finally, Ĥcoup = h̄�(t)[σ̂ba + σ̂ab]/2 represents the con-
trollable interstate resonant coupling with Rabi frequency �(t)
in dipole and rotating wave approximations. This term is due
to a microwave field in regions R1, R2 and possibly C.

IV. SIMULATED QUANTUM NONDEMOLITION
MEASUREMENTS OF THE PHONON NUMBER

We consider a scenario where the atomic transition fre-
quency ωba is much closer to resonance with the oscillator ωosc

than any other transition frequency. This justifies taking into
account atomic states |a〉 , |b〉 only. There are two advantages
in choosing these as Rydberg states: (i) For a wide range of
mechanical oscillation frequencies 1 MHz < ωosc < 10 GHz,
some near-resonant atomic transitions can be found with
ωba = ωosc + δ and atom-oscillator detuning δ much smaller
than energy gaps to any other atomic states. (ii) The large
Rydberg transition dipoles dba provide strong coupling K0

between atom and oscillator without too close proximity.
Nonetheless, we can achieve a situation regime where the

atom and oscillator are far off resonant with respect to the
coupling strength K(R). Then, creation and destruction of
phonons through (2) is suppressed, during a detection of a
single atom or of many atoms in a series. Thus, while the
compound system of atom plus oscillator adiabatically follows
its interacting eigenstates as the atom passes the oscillator,
the interaction only causes a phase shift 
(n)[δ] between the
superimposed states |a〉 , |b〉 depending on the detuning δ and
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the phonon number n. After the second Rabi π/2 pulse at
R2, this phase shift affects the results of destructive state
measurement in F. Ultimately, after a succession of such
measurements we may infer cos(
(n)[δ]). Further details can
be found in Appendix B and [46].

We now proceed to simulate measurements, taking into ac-
count decoherence sources to explore the practical limitations
arising through the vicinity of a microchip surface and the
Rydberg atom waveguide. We work in a frame rotating with
the oscillator frequency, keeping only resonant terms in (2),
and employ the master equation for the density matrix ρ̂ of
harmonic oscillator plus a single atom (h̄ = 1)

˙̂ρ = −i[Ĥ (t),ρ̂] +
∑

α

LL̂α
[ρ̂]. (3)

The Hamiltonian is time dependent due to the classical
(uniform) atomic motion R = R(t) (see Appendix B). We
include several Lindblad terms LÔ[ρ̂] = Ôρ̂Ô† − (Ô†Ôρ̂ +
ρ̂Ô†Ô)/2 accounting for decoherence processes, which are
fully described in Appendix D: (i) Mechanical oscillator states
decohere because they are coupled to a heat bath at temperature
Tosc with mechanical energy damping rate 
osc/(2π ) = 50 Hz
[47]. Atomic Rydberg states (ii) undergo incoherent relaxation
between |a〉 and |b〉 due to black-body radiation and (iii)
dephase with a rate 
deph/(2π ) = 1.5 kHz due to stray electric
fields from the oscillator-bearing surface. The latter effect,
a major challenge for Rydberg-atom quantum technologies
near solid-state surfaces, has been steadily reduced [22,24].
(iv) Finally, we describe the widths of the interrogating atomic
beam as a random distribution of initial transverse atom
positions with respect to the beam axis as well as a distribution
of their coaxial velocities. Trajectories are then explicitly
modeled using Eq. (3). We set transverse atomic velocities
to zero to account for the confinement of the atoms in the
waveguide.

In our simulations, we consider states |a〉 =
|νS1/2,mJ = 1

2 〉 and |b〉 = |νP1/2,mJ = 1
2 〉 of 87Rb with

principal quantum number ν = 80. Their resonance frequency
is ωba/(2π ) � 6835.81 MHz with transition dipole moment
‖dba‖ � 6711 ea0 (where e is the electron charge and a0 the
Bohr radius). A 148.54-nm-long and 75.79-nm-wide CNT
with a spherical ferroelectric load can yield a moment of inertia
I � 1.12×10−32 kg2 m with torsional oscillation frequency
ωosc/(2π ) � 6848.69 MHz (see Appendix A 1), and thus
a small atom-oscillator detuning δ/(2π ) � 12.88 MHz. A
dipole of strength ‖dosc‖ � 3.04×109 ea0 can be attached.
We choose an impact parameter D = 21.68 μm, and hence
a coupling constant K0/(2π ) = 0.64 MHz. The transverse
atomic wave-guide widths are σX = σY = 0.51 μm. The
standard deviation of the coaxial atomic velocity is
σvZ

= 0.01 m s−1.
To illustrate measurements of phonon numbers down in

the quantum regime (ωosc � kBTosc, with kB the Boltzmann
constant) we focus on the range n = 0, . . . ,5. Then, the
corresponding probabilities Pb for the atom to end up in
state |b〉 should be distinguishable, as in the example of
Fig. 2(a). The beam impact parameter D and atom velocities
can be adjusted to yield phase shifts 
(n)[δ] that fulfill this
requirement. The figure demonstrates that even taking into

FIG. 2. (a) Phonon-state-dependent probability Pb for the probe
atom to arrive in state |b〉. (Blue ×) Ideal result for an atom at
waveguide center, (red box and error bars) average and standard
deviation with finite width atomic beam. Both data sets include
decoherence. The inset shows the inferred phonon distribution for
a coherent oscillator state |α〉 with coherent amplitude α = √

2. (b)
Wigner function of mechanical oscillator state. Before displacement
we take the ground state (contour), after displacement operation
D̂[αN (τ )] we obtain a coherent state (color). We use αN (τ )/|αN (τ )| =
−[1 − i]/

√
2, with |αN (τ )| � 1.35, �/(2π ) = √

2/2 MHz (see text).

account deviations in 
(n)[δ] due to imperfections as discussed
above, a clear inference of |n〉 can be made. For an oscillator
in a Fock state a sequence of QND measurements using atoms
can yield the probability Pb. If the initial oscillator state |�〉 is
not a Fock state, this sequence initially quickly collapses it into
one, say |n〉, with probability pn = | 〈n|�〉 |2. A series of such
collapse sequences, starting from a reinitialized oscillator state
|�〉, then yields the entire phonon distribution pn as shown
exemplarily in the inset of Fig. 2(a).

V. WIGNER TOMOGRAPHY OF A TORSIONAL
OSCILLATOR STATE

Phonon-state QND measurements yield the probabilities
pn = �nn = tr[|n〉〈n| �̂], where �̂ is the reduced density matrix
for the oscillator, but no coherences between |n〉 , |m〉. The
full quantum state of the oscillator may be inferred from a
tomographical reconstruction of the Wigner function

W (α) = 2

π
tr[D̂†(α)�̂D̂(α)�̂], (4)

where D̂(α) = exp [αĉ† − α∗ĉ] is the displacement operator
for a complex amplitude α and �̂ = e iπĉ† ĉ is the phonon-
number parity operator. Equation (4) is the expectation value
of �̂ in the state �̂(−α) = D̂(−α)�̂D̂†(−α). We can thus
obtain W (α) as W (α) = [2/π ]

∑
n(−1)np̃n from a phonon

distribution p̃n as in Fig. 2(a), after a coherent displacement
by −α.

An established method for the quantum coherent dis-
placement of nanomechanical oscillators does not yet exist.
A major advantage of the on-chip architecture proposed
here is that this coherent displacement can be conveniently
achieved with the same Rydberg-atomic waveguide used for
phonon state measurement. To this end, the atomic dipole
transition has to be strongly driven in region C. Under
appropriate conditions (see Appendix C), this leads to the
effective emergence of a coherent drive for the oscillator.
The evolution operator describing the reduced dynamics of
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FIG. 3. Quantum state tomography of oscillator state using QND-
detection sequences and coherent displacements all with the same
atomic beam. (a) Ideal Wigner function of the oscillator in state |�〉 =
[|1〉+ |3〉]/√2. (b) Reconstruction including practical imperfections
as discussed in the text.

the oscillator for a succession of N atoms reads as ÛN (τ ) =
D̂[αN (τ )] exp [ −iNθ (τ )ĉ†ĉ], a product of a displacement with
complex amplitude αN (τ ) depending on � and δ, as well
as a phase shift with θ (τ ) = ∫ τ

dt K2[R(t)]/δ that can be
compensated (see Appendix C for details). Figure 2(b) shows
an exemplary oscillator Wigner function before, and after, a
sequence of N = 8 displacement atoms, modeled explicitly
as in the previous section. To sample the entire Wigner
function with displacements of this kind, one can vary the
amplitude and complex phase of the effective Rabi frequency
through parameters of the external drive in region C (see
Appendix C).

To assess the impact of the decoherence sources and im-
perfections mentioned earlier, we now simulate the complete
Wigner tomography sequence:

(i) Initialize the oscillator in the state �̂ to be measured.
This initialization must be reproducible.

(ii) Effectuate a coherent displacement �̂ 	→ �̂(−α), using
a flyby sequence of N explicitly modeled displacement atoms.

(iii) Measure the phonon number with a flyby sequence of
K-atomic Ramsey interference measurements. The first few
atoms collapse the oscillator into a Fock state |n′〉, which is
read out by the remaining majority of the K atoms.

(iv) Repeat steps (i)–(iii) Ns times to obtain the phonon
probability distribution pn for the displacement −α.

(v) Repeat step (iv) for an (S×S) array of different values
for α ∈ C to obtain the Wigner function W (α).

Details on how we implement measurements in our sim-
ulation can be found in Appendix E. The Wigner functions
reconstructed with this sequence and the ideal expectation
are shown in Fig. 3 for the superposition of Fock states
|�〉 = [|1〉 + |3〉]/√2. It can be seen that all major qualitative
features of the Wigner function, particularly the nonclassical
negativity, are correctly inferred. Quantitative deviations indi-
cate that the decoherence rates employed here should not be
exceeded.

VI. CONCLUSIONS

By porting technologies from cavity quantum electrody-
namics to nanomechanics, our scheme addresses two outstand-
ing challenges for quantum nanomechanics, namely, phonon
QND detection and quantum state tomography. Thereby, we
have also described a technique for the quantum coherent state

displacement of nanomechanical elements. The ingredients
of the hybrid setup proposed, nanofabricated oscillators and
Rydberg-atomic waveguides, can naturally coexist on the same
chip surface [25], and our numerical simulations demonstrate
that in combination they can be used to monitor the quantum
state of nanoscale oscillators despite realistic noise and
decoherence sources.
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APPENDIX A: SYSTEM HAMILTONIAN

1. Torsional oscillator frequency

The resonance frequency for the harmonic motion of the
torsional mechanical oscillator is assumed to be [37]

ωosc =
√

κ

I
. (A1)

Here, I is the total moment of inertia with respect to the sym-
metry axis. It takes into account the entire assembly of ferro-
electric particle and carbon nanotube that comprises the oscil-
lator. The quantity κ denotes the torsional spring constant of the
nanotube. We consider a value of κ = 2.085×10−11 N m. For
a carbon nanotube of mass mcnt = 8.71×10−19 kg (length � =
148.54 nm) and diameter w = 75.79 nm with a spherical fer-
roelectric load of mass msfl = 6.31×10−18 kg and radius r =
63.3 nm we obtain a total moment of inertia I ≈ mcntw

2/4 +
2msflr

2/5 � 1.126×10−32 kg2 m. This finally corresponds to a
frequency ωosc/(2π ) � 6848.69 MHz as specified in the main
text.

2. Atom-oscillator coupling

The atoms passing by the oscillator experience a dipole-
dipole interaction

Ĥint = 1

4πε0R3
[dba · dosc − 3(dosc · u)(dba · u)][σ̂ba + σ̂ab],

(A2)

with the permanent dipole moment dosc of the nanoparticle
attached to the oscillator. Here, the vector R points from
the oscillator to the atom and u = R/R with R = ‖R‖.
The direction of the atomic transition dipole moment dba in
principle depends on the states in question. For simplicity, we
choose the two atomic states such that their transition dipole
moment is along the z axis [48]. In this case, the interaction
reduces to

Ĥint(R,ϕ) = dbadosc

4πε0R3

[(
1 − 3

Z2

R2

)
cos ϕ

− 3
XZ

R2
sin ϕ

]
[σ̂ba + σ̂ab]

= V0[f (R) cos ϕ − g(R) sin ϕ][σ̂ba + σ̂ab], (A3)
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FIG. 4. Coupling functions f (X,Y,Z) (red) and g(X,Y,Z)
(green) along the axis of the waveguide. Parameters are D �
21.68 μm,X/D � 0.0231, and Y/D = 0.9997.

with dosc=‖dosc‖, dba=‖dba‖,V0= dbadosc
4πε0D3 , R=(X,Y,Z) and

coupling functions f (R) = [D/R]3[1 − 3Z2/R2], g(R) =
3XZD3/R5. These are sketched for an example in Fig. 4. We
now make use of the fact that the coordinate ϕ is harmonically
bound to a stable equilibrium configuration given by the
angle ϕ0 = π/2, and introduce the small angular displacement
|δϕ| 
 ϕ0, such that ϕ = ϕ0 + δϕ.

Then, a Taylor series expansion of the sinusoidal functions
in the potential energy, around the equilibrium value ϕ0 = π/2,
and up to second order in δϕ yields

Ĥint(R,ϕ) ≈ V0[g(R)δϕ2 − f (R)δϕ − g(R)][σ̂ba + σ̂ab].

(A4)

Next, we recast the above in terms of the mechanical phonon
creation and annihilation operators ĉ and ĉ† as

δϕ =ϕzpm[ĉ + ĉ†], δϕ2 =ϕ2
zpm[ĉ2 + (ĉ†)2 + 2ĉ†ĉ + 1̂1osc],

(A5)

where ϕzpm = √
h̄/(2ωoscI ) represents the amplitude of the

zero point motion of the torsion oscillator and 1̂1osc =∑
n |n〉〈n|.
For atoms traveling perfectly at the center of the atomic

waveguide (X = 0, see Fig. 1 in the main text), we then obtain
the interaction Hamiltonian Ĥint given in the main text.

APPENDIX B: RAMSEY MEASUREMENTS
OF PHASE SHIFTS

As discussed in the main text, the train of Rydberg atoms
passing the oscillator is modeled explicitly, with atom k being
given a randomized initial position Rk(0) and velocity vk ,
subsequently following a uniform trajectory Rk(t) = Rk(0) +
vkt . The initial widths of these random distributions σX,Y

in the position plane transverse to the beam and σvZ
in the

velocity along the beam are chosen to mimic the relevant
uncertainties for a beam of atoms traveling within a very
tight waveguide. Uniform motion is justified as long as forces
on the atom are negligible or weak compared to waveguide
trapping:

For a sufficiently large impact parameter D, as is the case
here, the force exerted on the atoms by the electric field of the
ferroelectric nanoparticle becomes negligible. If an experiment
was able to reduce the transverse atomic beam velocity and
position spread also without confinement, a waveguide would
be dispensable and the scheme could also utilize free atomic
motion.

To implement a single interferometric measurement we
exert a sequence of two identical microwave pulses (mw) onto
an atom. The two mw pulses are applied in R1 and R2, and thus
they are delayed from each other by a time period τ = L/|v|,
which is the time of flight of the atom in the region C of length
L = 30.872 μm, during which the atom is let to interact with
the mechanical oscillator. We model the atomic evolution in
the two locations R1/2 by applying a unitary transformation
Âπ/2(φ), that in the basis {|a〉 , |b〉} reads as

Aπ/2(φ) = 1√
2

(
1 e iφ

−e−iφ 1

)
. (B1)

Here, φ represents a phase that in practice can be controlled
by tuning the microwave pulse. In an experiment one adjusts
the relative phase between the two pulses to scan the Ramsey
fringes of the signals described by the probabilities Pb and Pa

that the atom is detected in the state |b〉 or |a〉, respectively,
when reaching the detector at F. We use Âπ/2(φ = π ) in region
R1 and choose the phase of Âπ/2(φ) in region R2 such that
Pb equals zero when the mechanical oscillator mode is in its
ground state and the atom has traversed the interferometer with
velocity and transverse position corresponding to the mean
atomic beam values.

Finally, the relative phase shift 
(n)[δ] incurred by each
atom depends on the difference between two adjacent eigenen-
ergies E

(n+1)
− (R) − E

(n)
+ (R) integrated over time and thus can

be found from E
(n)
± (R) = h̄δ/2[ − 1 ±

√
1 + 4nK2(R)/δ2]

following [27]. This helps to choose the right parameters
for mapping the relative phase shift 
(n)[δ] from a selected
range of phonon numbers (e.g., 0–5) onto the interval [0,π ]
(see Appendix F and Table I).

APPENDIX C: EFFECTIVE COHERENT DRIVING
OF MECHANICAL OSCILLATOR

Simultaneous action of the Hamiltonians Ĥint and Ĥcoup

from the main text can effectively create a drive for the
quantum harmonic oscillator. For that we need to have |δ| >

|�(t)|,|K(R)| and start with all the atomic population in |a〉. In
this regime, we can adiabatically eliminate the second Rydberg
state |b〉 to obtain the effective Hamiltonian Ĥdho(t) ⊗ σ̂aa ,
where

Ĥdho(t) = K2(R)

δ
ĉ†ĉ − K(R)�(t)

2δ
ĉ − K(R)�∗(t)

2δ
ĉ†. (C1)

While the atom essentially remains in the Rydberg state |a〉,
the evolution for the mechanical oscillator can be written as

�̂(τ ) = Û(τ )�̂(0)Û †(τ ), (C2)

where �̂ denotes the density matrix describing the os-
cillator. The quantity Û(τ ) equals the time development
operator for a driven quantum harmonic oscillator, which
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TABLE I. Parameters used for our simulations underlying Figs. 2 and 3 of the main text.

Symbol Value

Atomic system (rubidium, 87Rb)
Mass M 1.44×10−25 kg
Initial atom position (with D being the R(t = 0) = (X(0),Y (0) = D,Z(0)) (0.0 μm,21.675 μm,−15.436 μm)
impact parameter)
Spatial atomic beam widths (transverse to z axis) σX = σY 0.509 μm
Initial atom velocity: displacement sequence v(t = 0) = (vX(0),vY (0),vZ(0)) (0 m s−1,0 m s−1,14 m s−1)
measurement sequence (0 m s−1,0 m s−1,8 m s−1)
Velocity atomic beam width (along zaxis) σvZ

0.01 m s−1

Principal quantum number ν 80
Rydberg state basis {|νLJ ,mJ 〉} {|a〉 = |80S1/2,1/2〉 , |b〉 = |80P1/2,1/2〉}
Transition frequency (|b〉 ↔ |a〉) ωba/(2π ) 6835.81 MHz
Electric dipole moment strength dba 5.69×10−26 C m

Torsional mechanical oscillating mode

Torsional spring constant of the nanotube κ 2.085×10−11 N m
Total moment of inertia with respect to the I 1.126×10−32 kg2 m
tube axis
Permanent dipole moment strength of dosc 2.58×10−20 C m
ferroelectric load
Frequency ωosc/(2π ) = (2π )−1

√
κ/I 6848.69 MHz

Number state basis {|n〉} {|0〉 , |1〉 , . . . , |15〉}
Quality factor Q = ωosc/
osc 1.37×108

Heat bath temperature Tosc 0.025 K

Coupling and decoherence rates

Atom-oscillator coupling rate K0/(2π ) = dbadosc

8π 2ε0D3

1√
2h̄ωoscI

0.64 MHz

Effective Rabi frequency �0/(2π ) 0.0 MHz to 1.8 MHz
Mechanical damping rate 
osc/(2π ) 50 Hz
Pure relaxation rate due to black-body 
bbr/(2π ) 988.63 Hz
radiation induced transitions (|b〉 ↔ |a〉)
Pure dephasing rate of |a〉 and |b〉 levels due to noisy 
deph/(2π ) 1.50 kHz
stray electric fields

Protocol of state tomography

Dimensions (number of pixels) of the reconstructed S×S 11×11
Wigner function
Number of atoms per displacement sequence to N 8
reach a given phase space pixel
Number of atoms per measurement sequence to K 43
collapse oscillator into Fock state
Number of repetitions (samples) of a displacement Ns 512
plus measurement
sequence to obtain a set of phonon probabilities
at a given pixel
Atom-oscillator detuning |δ|/(2π ) = |ωosc − ωba|/(2π ) 12.88 MHz
Passage time per atom in a displacement sequence τdisp 2.205 μs
Passage time per atom in a measurement sequence τmeas 3.859 μs

one can see by exploiting the commutation relations of
ĉ, ĉ† [49]:

Û(τ ) = e iλ(τ ) D̂[ξ (τ )e−iθ(τ )] e−iθ(τ )ĉ† ĉ,

λ(τ ) = − 1

2h̄2

∫ τ

dt

∫ t

dt ′[Ĥdho(t),Ĥdho(t ′)],

ξ (τ ) = i
∫ τ

dt
�∗(t)K(t)

2δ
e iθ(t),

θ (τ ) =
∫ τ

dt
K2(t)

δ
. (C3)

Here, we adopted the shortened notation K(t) = K[R(t)] and
D̂ is the displacement operator introduced in the main text.
Since λ(τ ) is a c number, exp [iλ(τ )] is a global phasor that we
will ignore from now on. The N th power of Û(τ ) then accounts
for the state evolution of the mechanical oscillator after a
successive flyby of N atoms, each atom passing through the
oscillator in a time interval τ . To compute ÛN (τ ) ≡ [Û(τ )]N

we use the following properties of the displacement operator:

D̂(α)D̂(β) = exp [(αβ∗ − α∗β)/2]D̂(α + β),

exp [iθ ĉ†ĉ]D̂(α) = D̂(α exp [iθ ]) exp [iθ ĉ†ĉ], (C4)
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such that, ignoring again global phasors, one has

ÛN (τ ) = D̂
[
ξ (τ )

N∑
l=1

e−ilθ(τ )

]
e−iNθ(τ )ĉ† ĉ

= D̂[αN (τ )] e−iNθ(τ )ĉ† ĉ,

αN (τ ) = sin[Nθ (τ )/2]

sin[θ (τ )/2]
ξ (τ )e−i[N+1]θ(τ )/2. (C5)

In the paper, all the numerical calculations involving the
Hamiltonian Ĥcoup were assuming continuous waves with
�(t) = �0. Sampling the dynamical phase space of the
mechanical oscillator is then achieved by adjusting the
amplitude and phase of the complex Rabi frequency �0, while
taking into account the additional phase offset generated by
exp [ −iNθ (τ )ĉ†ĉ].

APPENDIX D: DECOHERENCE SOURCES

As discussed in the main text, we consider a variety of
practically relevant decoherence sources, in order to explore
the limitation of our proposal. The specific Lindblad operators
with which we describe the effects listed in the main text are as
follows: (i) Mechanical oscillator states decohere because they
are coupled to a heat bath equilibrated at a temperature Tosc.
This is described by the two terms L̂− = √

(n̄th + 1)
oscĉ and
L̂+ = √

n̄th
oscĉ
†, with a thermal occupation number n̄th =

{exp [h̄ωosc/(kBTosc)] − 1}−1 and a mechanical energy damp-
ing rate 
osc = ωosc/Qosc for a given quality factor Qosc of the
mechanical oscillator. (ii) Atomic Rydberg states are assumed
to undergo pure relaxation due to black-body radiation induced
transitions, modeled with two terms L̂μ′μ = √


bbrσ̂μ′μ, where
{μ′,μ} = {a,b} or {b,a}. We employ 
bbr/(2π ) = 988.63 Hz,
determined following [50]. (iii) They are also assumed subject
to dephasing with L̂deph,μ = √


dephσ̂μμ using μ ∈ {a,b} due
to stray electric fields from the oscillator-bearing surface
[22]. We employ 
deph/(2π ) = 1.50 kHz, the same order of
magnitude as values reported in [24].

Due to the short distances between Rydberg probes and
mechanical oscillator, a primary challenge for our scheme are
the finite widths of the atomic beam within the waveguide.
The implementation of the interrogating atomic beam in the
waveguide via a random distribution of initial positions Rk(0)
and velocities vk was discussed in Appendix B.

APPENDIX E: QUANTUM STATE
TOMOGRAPHY SIMULATIONS

The physical sequence for a full oscillator quantum state
tomography has been discussed in the main text. Here, we
supply further technical details about the simulations. In the
following, let ρ̂ denote the full density matrix of the compound
atom-oscillator system. We then use �̂ = trat[ρ̂] for the reduced
density operator of the oscillator after tracing over the atomic
degrees of freedom.

Each atom, whether for a Ramsey measurement or a
phase space displacement of the oscillator state, is initialized
in |a〉 and made to move on a trajectory as discussed in
Appendix B. Then, its flyby past the oscillator is modeled
with the master equation (3) of the main text. The mw

pulses required for Ramsey measurements are emulated via the
instantaneous application of the operator Âπ/2(φ) in Eq. (B1).
The Lindblad terms listed in Appendix D take into account
decoherence processes. Of crucial importance for modeling
the experimental sequence is the final atom state detection at
F. We assume detection can only yield the two states |a〉 or
|b〉. To numerically represent this measurement, we compare
a pseudorandom number η, drawn from a standard uniform
distribution, with the probability Pb = tr[σ̂bbρ̂] that the atom
is found in b. The output of the measurement is σ̂aaρ̂σ̂aa/[1 −
Pb] if Pb < η and σ̂bbρ̂σ̂bb/Pb otherwise, thus collapsing the
state onto |a〉 or |b〉 in the subspace of the atom [51]. After a
series of K = 43 atoms, typically all but one of the phonon
probabilities are depopulated, such that �nn � δnm, with δnm

being the Kronecker delta and m a positive integer, the final
phonon number. The mechanical oscillator is then assumed to
have collapsed into the a priori unknown Fock state |m〉. In the
theory, we can directly extract m from the simulation, repeat
the process multiple times, and thus extract the entire phonon
distribution. We call this approach “Method A”.

However, an experiment would not have access to m

directly, instead it would extract the probabilities Pa/b from
the measurement results of the K = 43 probing atoms. Using
Fig. 2(a) of the main text, these can then be translated into
values of m, but this translation may be subject to different
error sources. We also extract a second value of m from the
simulation in this manner, called “Method B”.

We finally sample the entire phase space of the oscillator on
a square grid of S×S points, by explicitly modeling different
displacements α ∈ C. The density matrix is propagated in time
using Eq. (3) of the main text, while the passing atoms are
driven, such that it effectively evolves as described by the
operator ÛN . This is described in Appendix C and visualized
in Fig. 2(b) of the main text. For each point of the square grid a
phonon count distribution is sampled and the Wigner function
is finally computed as discussed in the main text.

Figure 3(b) of the main text illustrates the Wigner density
of the mechanical oscillator superposition state |�〉 = [|1〉 +
|3〉]/√2 as obtained through Method A. Here, we show it
again in Fig. 5(a) together with Fig. 5(b), which depicts
also the Wigner density of |�〉 = [|1〉 + |3〉]/√2 derived in
this case from Method B. The Wigner density computed via

FIG. 5. Tomographical reconstruction of the Wigner density
W (α) of the mechanical oscillator superposition state |�〉 = [|1〉 +
|3〉]/√2. (a) Evaluation of W (α) using the reconstruction protocol
of Method A. (b) The outcome of the same W (α) applying instead
the protocol of Method B. Both Methods A and B are defined in
Appendix E.
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Method A resembles the exact outcome displayed in Fig. 3(a)
of the main text more than the counterpart result determined
through Method B. Considering that occasionally a series of
K = 43 Ramsey measurements may not suffice to project the
mechanical oscillator state into a Fock state, we expect a higher
inaccuracy of Method B compared to Method A. Indeed, if a
complete Fock state collapse is not realized, applying Method
B may lead to a wrong Fock state record or to the loss of
a statistical sample. Contrarily, if we apply Method B in a
similar situation, a statistical loss never occurs and the error
for a Fock state miscount is lower.

APPENDIX F: SYSTEM DESIGN
AND PARAMETER CHOICES

The following central requirements dictate the choice of
parameters for the setup:

(i) The distance L between regions R1,2 and the parameters
D and v have to be adjusted such that (a) the average flyby time
τ of an atom across the interferometer is much shorter than
the Rydberg lifetime, and (b) each atomic record can serve as
a nondestructive measurement of discrete (phonon-) number
states in the range between n = 0 and 5, as can be seen from
the atomic excited-state probability Pb shown in Fig. 2(a) of
the main text.

(ii) For each detection event there is no energy exchange
between the atom and the mechanical oscillator. In other
words, the instantaneous atom-oscillator coupling is designed
to remain sufficiently weak (off resonant) until the atom inter-
ferometric measurement is completed. In this way, transitions
between atomic states |b〉and |a〉via the absorption or emission
of a phonon are negligible, such that the mechanical oscillator
contains n phonons before and after the atom traverses the
interferometer.
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