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Abstract: A new formulation for tracking multiple particles in slow viscous
flow for microfluidic applications is presented. The method employs the manip-
ulation of the boundary element matrices so that finally a system of equations is
obtained relating the rigid body velocities of the particle to the forces applied on
the particle. The formulation is specially designed for particle trajectory tracking
and involves successive matrix multiplications for which SMP (Symmetric multi-
processing) parallelisation is applied. It is observed that present formulation offers
an efficient numerical model to be used for particle tracking and can easily be ex-
tended for multiphysics simulations in which several physics involved.
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1 Introduction

Particle tracking problems have many important applications. Especially, with the
recent developments in microfluidics technology, tracking several particles, espe-
cially with external forces acting (such as forces arising from the application of an
electric, acoustic or optic field) gained special importance [Cetin, Ozer, and Sol-
maz (2014)]. For an efficient design of microfluidic systems, the prediction of the
particle tracks is crucial. Particle trajectory is the result of the interaction of the
particle with the external fields present. One approach to model the particle trajec-
tory within the microchannel is the stress tensor approach [Cetin and Li (2011)].
In this approach, the field variables are solved with the presence of the finite-sized
particle. The resultant force on the particle can be obtained by integrating the ap-
propriate stress tensor on the particle surface. In each incremental movement of the
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particle, the field variables need to be resolved. In many studies, this approach has
also been successfully implemented [Ai, Joo, Jiang, Xuan, and Qian (2009); Ai,
Mauroy, Sharma, and Qian (2011)] to explore the nature of the particle flow within
a microchannel. A rigorous simulation of the particle motion utilising tensor ap-
proach requires massive remeshing. For methods involving domain discretisation,
such as finite element method (FEM) or finite volume method (FVM) not only the
remeshing process is computationally expensive, but also at each remeshing step,
some interpolating algorithms relating the field variables in the new mesh in terms
of the variables of the old mesh are required which cause some loss in the accu-
racy. Moreover, the determination of the forces induced on the particles requires
the calculation of gradient of the field variables. Therefore, for an accurate calcu-
lation of gradient of field variables, fine mesh is required on and within the close
neighbourhood of the particle surface. Due to the computationally expensive na-
ture, only 2D models with relatively coarse mesh and the motion of single particle
have been worked on using FEM. To overcome the remeshing problem for the sim-
ulation of particulate flow at macroscale, immersed boundary method [Fogelson
and Peskin (1988)] and fictitious domain method [Glowinski, Pan, Hesla, Joseph,
and Periaux (2001)] have been proposed and implemented. Although these meth-
ods are computationally very efficient, to model the particle-particle interaction,
some contact modelling is required which has a resolution that cannot be accepted
for the simulation at microscale. Moreover, these methods are well established
for flow simulations, but very rare studies exist for the coupling of flow with the
electrical, magnetic and/or acoustic fields [Langthjem and Nakano (2013)].

Boundary element method (or Boundary integral method) is a numerical tool that
is well applied to many problems in engineering. The boundary element method
(BEM) possesses several advantages over other numerical methods (such as the
finite element method, FEM, or the finite volume method, FVM) most important
of which can be listed as: (i) BEM has boundary only discretisation, which results
in less computational effort in meshing and remeshing, (ii) In BEM formulations,
continuity and compatibility conditions for the governing equations are satisfied
exactly (not approximately) within the solution domain (iii) In BEM, the derivative
quantities e.g. the flux or stress/strain within the solution domain is determined
by analytical differentiation; therefore, such quantities can be determined more
accurately in the BEM when compared with the numerical methods that involve
domain discretisation. (iv) When the solution domain extends to infinity in one or
more directions, such as the case in external problems or half-space problems, the
BEM is readily applicable - there is no need for truncation of boundaries.

Considering the microchannel networks within the LOC devices, typical flow speed
is low (resulting in very low Reynolds number) and the inertia forces are negligible
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(in magnitude) when compared with the pressure or the viscous forces. The flow is
Stoke’s flow which governs by a set of linear partial differential equations. Linear
equations are suitable for Boundary Element Method (BEM). Since the BEM does
not require meshing within the flow region and the exact calculation of the gradient
of the field variables, it is preferable for particle tracking in a microchannel. Re-
ferring these advantages, recently, Dustin and Luo [House and Luo (2010, 2011)]
implemented the BEM to simulate the particle trajectory within a microchannel un-
der the action of electrophoretic and electro-osmotically driven flow field. With the
BEM, Stoke’s flow over a slowly moving particle [Sellier (2012)] and later over a
fixed or freely suspended particle [Sellier (2013)] is studied with the fast calculation
of the hydrodynamic net force and moment over the arbitrary shaped particle.

In this study, a formulation to track the particles in a microchannel under the action
of pressure driven flow is presented. The method involves the reorganisation of
the BE matrices that are evaluated for the flow problem, and through several ma-
nipulations, reducing the problem to a linear system of equations where the only
unknowns are the motion parameters (e.g. the translational and rotational velocities
of the centers of gravity) of the particles. With such manipulation, the dimension
of the linear system of equations to be solved is reduced drastically, resulting in a
comparably fast solution. Also, this formulation makes it very simple to apply ex-
ternal forces (of any nature) to the particle(s) in motion. Inversely, the computation
of the drag force when the velocity components are known is also obtained easily.
Since the formulation depends on excessive matrix multiplications (instead of solu-
tion of the total system), it provides a promising future in parallelisation, especially
with the new developments in CPU and GPU architectures. In this study, the par-
allelisation of the algorithm is performed using SMP (Symmetric multiprocessing)
[Wilkinson and Allen (2005)] parallelisation techniques applied by using OpenMP
[OpenMP (2014)] preprocessor directives, running on NUMA (Non-uniform Mem-
ory Access) [NUMA (2014)] architecture computer.

In an overall look, the present formulation offers an efficient numerical model to be
used for the simulation of the particle trajectory for microfluidic applications and
can easily be extended for multiphysics simulations.

2 Boundary element formulation for Stoke’s flow and boundary conditions
for moving particle

The governing equations (GE) for the Stoke’s flow is given as [Wrobel (2002)]

−∇P+µ∇
2u = 0 (1)
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along with the continuity condition

ui,i = 0 (2)

where P is the modified pressure defined in terms of the pressure, p, the grav-
itational acceleration, g, the density ρ and the viscosity µ of the fluid, and the
cartesian coordinates x as

P = p−ρg ·x (3)

It should be noted that in all equations presented in this study, unless otherwise is
explicitly stated, summation convention is in place requiring a summation over a
repeated index in the range of that index. The boundary element formulation of the
Stoke’s flow is given in several references [Pozrikidis (1999), Wrobel (2002)]

Ci j(A)u j(A) =
∫
S

Gi j(A,P)t j(P)dS−
∫

Hi j(A,P)u j(P)dS (4)

In this equation, A represents the fixed (evaluation) point and P represents the varied
(integration) point. Note that P is on the boundary of the solution region, whereas
A can be in the solution domain, on the boundary, or outside the domain. Ci j

takes values 1, if A is in the solution domain, 1
2 if it is on a smooth boundary or

0 if it is outside the solution domain. The field variables of Equation (4) are the
velocity components, ui and the traction components ti and Gi j and Hi j are the first
and second fundamental solutions of Stoke’s equation. In the context of this study,
since it can be thought of as a post-processing for the problems in hand, the integral
equation for pressure is not considered.

In this study, the boundary discretisation is performed using constant triangular
elements. After discretisation, a matrix relation as

H ·u = G · t (5)

is obtained, where the elements of the matrices G and H are evaluated through the
integral relations

Glk
i j =

∫
Ck

Gi j(Al,Pk)dS

H lk
i j =

∫
Ck

Hi j(Al,Pk)dS (6)



A Parallel Boundary Element Formulation 231

where l refers to the element that the fixed point A is on, and k refers to the element
being integrated. Note that, for 3D discretisation for a fixed l and k, Glk

i j and H lk
i j

refers to the components of 3× 3 matrices. The matrix relation in Equation (5)
constitutes to a 3N equations of 6N unknowns, 3N of which is to be determined by
given boundary conditions.

The imposition of boundary conditions requires the definition of one and only one
of the couples (un

i , t
n
i ) or a combination of these two at all points of the defined

boundary, where n represents the node number and i represents the direction. In
the context of this study, we will consider the motion of undeformable particles,
therefore we employ the rigid-body motion conditions. Thus, for any point on the
particle, the velocity vector can be obtained through

u = uB +ω × r (7)

where u is the velocity of the point on the particle, uB is the velocity of the selected
center of the particle, ω is the rotational velocity vector and r is the relative position
vector of the particle point to the selected center of the particle. The imposition of
Equation (7) relates all velocity components to six new parameters (per particle):
three components of the translational velocity of the center of the particle and three
components of the rotational velocity vector. Therefore, this condition increases
the size of the matrix system by six-per-particle. Therefore, six new equations per
particle are needed to make the system of equations solvable. These six equations
come from the force equilibrium on the particle

f B
i =

M

∑
n=1

fn =
M

∑
n=1

∫
Cn

ti(Pn)dS =
M

∑
n=1

tn
i An (8)

and the moment equilibrium

mB =
M

∑
n=1

r× fn (9)

where M is the number of elements on the particle.

2.1 Impedance formulation

The major drawback of the conventional formulation (which is presented above) is
the repeated solution of a considerably large linear system of equations. Although a
very large part of the coefficient matrices which corresponds to non-moving bound-
ary does not need to be re-evaluated, as the particle moves. Parts of the coefficient
matrices that are related with particle has to be updated and the system is to be re-
solved. In majority of the applications regarding particle tracking, the main focus
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is on obtaining the trajectory of the particle(s). The determination of field variables
on the boundary or in the solution domain does not have a significant importance.
With this note in place, we present a new formulation for tracking multiple parti-
cles, the impedance formulation, which is based on a similar formulation derived
by Mengi and co-workers in several studies [Mengi and Argeso (2006); Argeso
and Mengi (2013); Yalcin and Mengi (2013)]. For this, we express the rigid body
motion of a particle in matrix form as:

uP = M ·uB (10)

where uP is a column vector containing the velocity values at the nodes of the
particle which is organised as

uP =
{ {

u1 u2 u3
}1 {

u1 u2 u3
}2 · · ·

{
u1 u2 u3

}N
}T

(11)

and uB is the vector containing the center velocity of the particle:

uB =
{

uB
1 uB

2 uB
3 ωB

1 ωB
2 ωB

3
}T (12)

and the coefficient matrix M is of size (3N × 6) whose elements are obtained
through the Equation (7). Similarly, defining a combined resultant force-moment
vector for the particle as:

fB =
{

f B
1 f B

2 f B
3 m1 m2 m3

}T (13)

and the traction vector defined as:

tP =
{ {

t1 t2 t3
}1 {

t1 t2 t3
}2 · · ·

{
t1 t2 t3

}N
}T

(14)

a matrix relation as:

fB = F · tP (15)

can be obtained. Here, the (6× 3N) matrix F is obtained through the relations
given in Equation (8) and Equation (9). At this point, we make a partitioning in the
system of equations such as:[

H00 H0P

HP0 HPP

]{
u0

uP

}
=

[
G00 G0P

GP0 GPP

]{
t0

tP

}
(16)

where the index 0 refers to the non-moving boundary and P refers to moving bound-
ary - thus 0P refers to components that are evaluated when the fixed point is on
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non-moving boundary and the integration is done over the moving boundary, etc.
We will assume that all components u0 are known and t0 are unknown, easily ob-
tainable when necessary column changes are performed with given boundary con-
ditions. The first line of Equation (16) requires:

H00u0 +H0PuP = G00t0 +G0PtP (17)

which leads to

t0 = G−1
00

(
H00u0 +H0PuP −G0PtP) (18)

Inserting this to the second row equation of Equation (16), we get

B · tP = A ·uP +C ·u0 (19)

where

A =
[
HPP −GP0G−1

00 H0P
]

B =
[
GPP −GP0G−1

00 G0P
]

(20)

C =
[
HP0 −GP0G−1

00 H00
]

Inserting equations (10) and (15) to Equation (19) and defining

K = FB−1AM
b = FB−1Cu0 (21)

we obtain

KuB = fB −b (22)

It is important to note here:

• Equation (22) is a system of linear equations where K is a square matrix of
size (6P× 6P), and uP, fB and b are column vectors of size 6P where P is
the number of particles in the system.

• Inverting a considerably large matrix, G00 to obtain G−1
00 , just once (at the

beginning of the analysis), the rest of the formulation contains matrix multi-
plications and an inversion of the considerably very small matrix B which is
of size (3M×3M) (where M is the total number of nodes in all particles) to
get B−1.
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• The formulation readily involves the external forces to the system. This al-
lows direct imposition of external forces found from different analyses in-
volving different type of problems (electromagnetic, acoustic, etc.).

• The final form is obtained with matrix multiplications, for which parallelisa-
tion is not only simple, but also effective.

• A special case of Equation (22) is when there is no non-moving boundary,
the case that arises in infinite medium. In such case, b= 0 and A=HPP =H,
B = GPP = G. The solution can be evaluated through

KuB = fB

K = FG−1HM (23)

• Another comment can be placed concerning the deformable particles. The
determination of the deformation mainly would require accurate evaluation
of the surface tractions on the boundary of the particle(s). The formulation
in hand, however, presents only the body displacements, but is is possible
to obtain the boundary tractions with small modifications on the formula-
tion. Recall that, it was assumed that all u0 are known (if not, necessary
column changes between the system matrices G and H are performed to ob-
tain this). The following steps would be recommended for a fast evaluation
of the boundary tractions on the particles(s) after the evaluation of the rigid
body velocities, uB:

– Find uP using Equation (10)

– With the previously calculated B−1, A and C, re-write Equation (19) to
obtain the boundary tractions on particle(s) as

tP = B−1 · (A ·uP +C ·u0) (24)

In the present study, time integration is performed in an explicit sense, using for-
ward Euler difference, for simplicity. For more rigorous analysis, other time inte-
gration schemes, both explicit and implicit can be adopted.

3 Verification of the formulation

The developed formulation has been tested for some 2D benchmark problems, and
good agreement has been achieved by analytical and FEM solutions. The details
of 2D verification can be found elsewhere [Baranoglu and Cetin (2014)]. For the
verification of the 3D formulation, the flow in a square channel with width of W
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Table 1: BEM results compared with analytical solution for channel flow.

x Analytical
BEM

4400 elem. %Error
BEM

11264 elem. %Error
0 0.0 0.0 0.0
10 82.6 84.1 1.76 83.5 1.09
20 141.4 143.8 1.70 142.9 1.06
30 180.3 183.4 1.71 182.2 1.07
40 202.5 205.9 1.66 204.6 1.03
50 209.6 213.2 1.70 211.8 1.06
60 202.5 205.9 1.66 204.6 1.03
70 180.3 183.4 1.71 182.2 1.07
80 141.4 143.8 1.70 142.9 1.06
90 82.6 84.1 1.76 83.5 1.09
100 0.0 0.0 0.0

and length of L is analysed as a first benchmark. The analytical solution can be
obtained by using integral transform techniques as:

u(x,y) =
16
W 2

∆P
µL

∞

∑
m=1

∞

∑
n=1

sin(βmx/W )sin(λny/W )

(β 2
m +λ 2

n )βmλn
(25)

where βm and λn’s are the eigenvalues defined as:

βm = (2m−1)π/W, λn = (2n−1)π/W (26)

In the analysis, the square channel is taken to be 100µm × 100µm with length
being L = 500µm. The viscosity of the fluid is taken to be µ = 0.001Pa · s. The
inlet velocity is taken to be constant at 100µm/s.

Table 1 presents the BEM results along with the analytical solution for the given
benchmark problem. It can be seen that BEM gives sufficiently accurate results for
this benchmark.

As a second benchmark, the motion of a spherical particle over a stationary particle
in an infinite medium is analysed. The schematic drawing of this problem is given
in Figure (1). This problem has an analytical solution for ξ � 1 (far-field solution)
and for ξ � 1 (near-field solution) [Risbud and Drazer (2013)]. The comparison of
the far-field is given in Figure (2). For this example, the flow speed, U∞ is selected
to be 100µm/s in the stated direction of the figure, the dimensions are, a = b =
10µm, bmin = 60µm and horizontal distance between the particles is 100µm. In
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U∞ 

bmin 
x 

y r 

ξ =  
2(r-a-b) 

a+b 

a 

b 

Figure 1: Schematic drawing of the second benchmark problem.
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Figure 2: Comparison of BEM and analytical solution for far-field two sphere prob-
lem.

the simulations, 6144 elements per particle are used on the particles. As seen from
the figure, BE formulation recovers the analytical solution pretty well.

As a third benchmark problem, a three sphere (with identical radius) problem is
considered (schematic drawing of the problem can be seen in Figure 3). The fluid
medium where the spheres are placed is steady. To the center of gravity of the
middle sphere a predefined force with magnitude of 6πµa is exerted in horizontal
direction (to the right), which moves this and the other two particles to the right.
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In the analysis, selected parameters can be nondimensionalised with a (where in
the numerical analysis, nondimensional value for a is taken to be 1) and µ (where
in the numerical studies nondimensional value for µ is taken as 1). The nondi-
mensional force, therefore, is obtained to be 6π in numerical value. Recently, a
numerical technique has been proposed and compared against the Stokian Dynam-
ics solution, and found that this technique is accurate up to particle separation of
0.1 radius [Wilson (2013)]. The result of the study is compared with the present
BEM formulation and the results are tabulated in Table 2 (the results from [Wilson
(2013)] was digitised for the comparison) . As seen from the results, a very good
agreement has been achieved.

x 

y 

separation(s) 

a 

s 
Figure 3: Schematic drawing of the benchmark problem.

Table 2: Comparison of the drag forces on the spheres for three sphere problem.

s/a
Middle Sphere Side Sphere

BEM Wilson (2013) % Error BEM Wilson (2013) % Error
2.01 0.666 0.659 1.08 0.644 0.645 0.21
2.05 0.703 0.694 1.28 0.629 0.630 0.10
2.10 0.733 0.727 0.89 0.615 0.614 0.10
2.20 0.780 0.775 0.69 0.589 0.589 0.01
2.40 0.847 0.838 1.02 0.548 0.547 0.13
2.60 0.886 0.878 0.89 0.513 0.512 0.25
2.80 0.913 0.906 0.80 0.483 0.483 0.06
3.00 0.933 0.925 0.90 0.457 0.456 0.15
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4 Parallellization

The BE problem to be solved involves a large asymmetric dense and highly ill-
conditioned coefficient matrix. Therefore, instead of an iterative solver, a direct
solver more specifically LU-Factorisation is preferred [Engeln-Müllges and Uhlig
(2014); Chan, van de Geijn, and Chapman (2010)]. To show the comparison of the
conventional formulation and impedance formulation, both formulation is imple-
mented using both sequential and parallel algorithms. The activity diagram of both
formulations are given in Figures (4) and (5).

Figure 4: General activity diagram of conventional formulation.
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Figure 5: General activity diagram of impedance formulation.

Before introducing the parallelisation into the codes, some performance optimisa-
tion within the sequential and parallel solutions using reordering loop variables to
make more cache hits [Kowarschik and Weiß (2003)] are applied. As another trivial
optimisation, the repeated calculations of the unchanged part of matrices, such as
the computation of G00 and H00 given in Equation (16) are avoided after the initial
step. The activity diagram of creating G and H matrices are given in Figure (6).

For the high-performance basic linear algebra operations, many library frameworks
such as BLAS (Basic Linear Algebra Subprograms)[Lawson, Hanson, Kincaid,
and Krogh (1979); Dongarra, Croz, Hammarling, and Hanson (1998); Dongarra,
Croz, Hammarling, and Duf (1990)], ATLAS [Whaley and Dongarra (1998)], In-
tel’s MKL [Intel (2014)], AMD’s ACML [AMD (2014)], and IBM’s ESSL [IBM
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Figure 6: Computation of G and H matrices.

(2014)] are available in the literature. The Open Source implementation Open-
BLAS [OpenBLAS (2014)] is an optimised version of the BLAS library. The
libFLAME [libFLAME (2014)], High Performance Dense Linear Algebra Library
underlined with OpenBLAS, is preferred in this study because of its easy nota-
tion and high performance implementation of Dense Linear Algebra operations on
Shared Memory Architecture (SMA). At this point, it should be emphasised that
the major objective of this study is not to implement the most efficient application,
but to develop a parallel application which illustrates the efficiency of the proposed
algorithm. SMP parallelisation techniques are used for making efficient use of
computation power in solving the problem. In order to accomplish this, OpenMP
preprocessor directives are being utilised in parallel code generation. OpenMP is
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an API which supports shared memory multiprocessing programming. OpenMP’s
SMA (Shared Memory Architecture) is based on threading, and gives programmer
an API to use threading easily and safely. In the present problem, there is a huge
amount of data to be processed and all the data is used in the subsequent steps of
the computation. An advantage of SMA is that, there is no data transfer between
threads, since all threads are executed on the same computer, but on different CPU
cores, sharing the same memory. When developing parallel version of program,
concentration is given on the parts where sequential code consumes much of the
computing time.

As can be seen from general activity diagram given in Figure (4), after the system is
created, all other operations are repeated in every iteration. Generating the system
and triangulation of the mesh is performed in sequential codes. Figure (6) shows
how the generation of G and H matrices in sequential codes is optimised, and
where domain decomposition method is applied and the parallel computation is
performed. As can be seen in Equation (16) G and H matrices are decomposed
into four sub-matrices. Since the channel does not change its shape, G00 and H00
are needed to be computed only once. In the first iteration, they are computed and
stored once in the memory and retrieved many times in the subsequent iterations.
Also the loop reorganisation is applied to use more cache hits in order to increase
the performance. In the analysis, DELL R720 computer with 32 Core CPU, having
NUMA Architecture with 384 GB of RAM is used to measure and compare the
efficiency of both applications.

5 Case studies

As stated above, the verification of the code is made for several problems, compar-
ing the results with the analytical formulations or results from the previous studies.
In this section, the case studies measuring the performance of conventional method
and presented algorithm are given. For this, a very simple microchannel flow prob-
lem is defined: a channel with dimensions 100x100x500 µm with one or more
particles located near to the centroid of the channel. Each particle is assumed to
be spheres of 10 µm radius. A representative sketch with one particle is given in
Figure (7).

The boundary conditions can be stated as follows: at the inlet, constant velocity
profile with 100 µm/s along the longer channel axis and zero velocity along the
other two directions; at the exit no viscous forces; and on the channel walls zero ve-
locity in all directions. From the analysis the particle velocity for single particle is
found to be approximately 250 µm/s, which means, with a time step size of 0.001s,
the particle will move 250 µm in 1000 time steps, for which the performance cal-
culations are based on. Note that, for different problems which have different di-
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Figure 7: Example problem for performance analyses.

mensions and boundary conditions, the number of steps to consider would differ,
which would affect the following discussions. It is clear that the performance of
both method would depend on the problem size. The main difference between the
conventional and impedance is that in the former method, the computation of LU
decomposition is performed on G and H matrices as a whole, but in latter method,
the inverse of G00 is computed once and used in the subsequent operations.
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Figure 8: Performance ratio depending on the number of elements on channel.
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We begin case studies with a fixed number of elements on the particle, which is
selected to be 384, and investigate the effect of changing number of elements on the
channel. It can be easily seen in Figure (8) that, for a fixed particle element count,
the increasing number of elements on the channel increases the performance ratio
of the impedance formulation. We use the following speed-up and performance
ratio formulas:

ts : total time spent in sequential algorithm
tp : total time spent in parallel algorithm
s : speed-up

ct : total time spent in conventional method
pt : total time spent in proposed method
pr : performance ratio

s = ts
tp

pr = ct
pt

A second analysis is performed comparing the different numbers of particles in flow
with the number of elements on the channel unchanged (Figure (9)). Each parti-
cle is of the same size and discretised with the same number of elements. Three
different channel discretisations are performed: (i) 3168, (ii) 5652, and (iii) 8800
elements on the channel. Results are displayed in Figure(9) where it can be ob-
served that, the performance of the impedance formulation depends on the ratio of
number of elements on the channel to the total number of elements on the particles.
Close inspection reveals that, when this ratio is increased, the performance of the
presented method increases. At this point, a short note is in place: in most par-
ticle tracking problems in microfluidic applications, the total number of elements
on the channel is comparably much more than the total number of elements on the
particles - this introduces a very important advantage for the presented formulation.

A third analysis is on the parallelisation of the procedure. For a fixed number of
elements on the channel and particle (5632 elements on channel and 768 elements
on particle), the applications run on 1 to 32 threads (Figure (10)). It can be seen
that the parallel speed-up of the impedance formulation is better than that of the
conventional formulation.

To assess the proposed method further, a practical microfluidics application, namely
the hydrodynamic separation process is considered. This process is widely used
when particles of different sizes are needed to be separated. A major need for such
a case would be the separation of the red blood cells from the bacteria in a blood
sample, where the former is larger than the latter. In this example flow of two
spherical particles are analysed. The radius of the particles are 10µm and 4µm.
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Figure 9: Performance ratio depending on the number of particle.
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Figure 10: Speed-up depending on the number of processor.
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The channel geometry is given in Figure (11). The boundary conditions are: con-
stant velocity profile in the direction of the channel with magnitude of 100µm/s,
sticking condition at channel walls and free of tractions at the exit. Two particles
are released at the same distance (10µm) from the channel side-walls.

Figure 11: The channel geometry for separation problem.

Figure 12: 3D visualisation of the particle trajectories.

38μm%

35μm%
25μm%
21μm%

Figure 13: Top view of the channel presenting the trajectory of the particles.

The results of the analysis is presented, in 3D view, in Figure (12). The flow of
the particles with the fluid can be visualised in this figure. Also, a top-view of
the trajectories are presented in Figure (13). Here, the separation of the particles
(distance from the center) can be seen.
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6 Conclusions and Discussions

A new method for particle trajectory tracking is presented for Stokes’ flow prob-
lems, especially applicable to the field of microfluidics. The method depends on
matrix multiplications using the system matrices of the boundary element method,
resulting into a system of equations relating the particle velocities (linear and an-
gular) to the external forces and moments applied on the particle (in case of freely
moving particle(s), these forces and moments are zero). The presented formulation
would prove its use in multi-physics applications where the external force is due to
another physical problem, such as electrical, magnetic and/or acoustic field etc. LU
factorisation with partial pivoting, although being one of the most effective method
for solving linear system of equations, is very difficult to parallelise, due to the
pivoting step [Chan, van de Geijn, and Chapman (2010)]. Incremental pivoting is
proposed [Chan, van de Geijn, and Chapman (2010)] for speeding up the LU fac-
torisation. However, it was mentioned in the same article that, this approach may
cause numerical instability.

Matrix multiplication operations, on the other hand, has been proven to have high
parallel performance, especially on the new infrastructures (such as GPUs) are in-
troduced. Also, with these new infrastructures, new algorithms that give higher
speed-ups in parallel processing are being introduced [Alqadi, Aqel, and Emary
(2008); Smith, Geijn, Smelyanskiy, Hammond, and Zee (2014)]. Accordingly, the
formulation presented in this study is expected to be much more useful in the near
future. Note that, the speed-up of the presented algorithm compared with the con-
ventional solution is increasing when the number of CPU cores increase (recall
Figure (10) for a demonstration up to 32 cores) - which is an indication of high-
scalability of the proposed method.

In the presented algorithm, the matrices G00 and H00 are computed only once, and
the inverse of the matrix G00 is obtained at the beginning of the process. A possible
application to utilise this property of the present procedure would be as: comput-
ing the G00, H00 and G−1

00 in a powerful computer that has sufficient memory and
storing it for use in a common computer where only the matrix multiplications are
performed. Also, with the above matrices evaluated once, different problems (e.g.
with different number of particles at different locations) can be solved simultane-
ously in different machines.

In the case study presented, it can be seen that, as the ratio of G00 over GPP in-
creases, the presented method gets better. When general applications of particle
flow in microchannels is considered, this ratio is very high. This makes the pre-
sented algorithm a powerful tool for particle tracking problems in microfluidic ap-
plications.
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