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ABSTRACT 

 

AN APPLICATION OF CAPACITATED LOT-SIZING MODEL IN  

PETROLEUM SECTOR 

 

 

Nuri Barış Nurlu 

M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Osman Oğuz 

February 2006 

 

In this thesis, we study capacitated lot-sizing problem with special 

feature, applicable to the petroleum refinery sector. In our model, the 

end-products should be stored in item-specific and capacitated storage 

tanks during pre-determined lead-time. Our aim is to find the optimum 

production schedule resulting minimum total cost whilst satisfying 

customer demand. To solve this problem in a reasonable amount of time, 

we propose a branch-and-cut algorithm. We perform experiments based 

on the data gathered from Turkish Petroleum Refineries Corporation. In 

order to evaluate our algorithm, we compare the results of our algorithm 

and the solution results of the optimization software.  

 

Keywords: Lot-sizing, branch-and-cut, mixed-integer-programming, 

petroleum sector, refinery 
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ÖZET 

 

KAPASİTELENDİRİLMİŞ ÖBEK BÜYÜKLÜĞÜ MODELİNİN 

PETROL ENDÜSTRİSİ ÜZERİNE UYGULAMASI 

 

Nuri Barış Nurlu 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Osman Oğuz 

Şubat 2006 

 

Bu tezde, petrol rafinerilerinde uygulama bulabilecek özel nitelikteki 

kapasitelendirilmiş öbek-büyüklüğü problemi üzerinde çalıştık. 

Modelimizde bitmiş ürünler, ürün spesifik ve kapasitesi sınırlı saklama 

tanklarında önceden belirlenmiş önsüre zamanınca beklemek 

durumdadırlar. Amacımız, müşteri talebini karşılarken en düşük maliyete 

ulaşabileceğimiz en iyi üretim çizelgesini bulabilmekti. Bu problemi 

kabul edilebilir bir süre içerisinde çözüme ulaştırmak için dal-ve-kesi 

algoritması önerdik. Türkiye Petrol Rafinerileri Anonim Şirketi’nden 

elde ettiğimiz verilerle hesapsal deneylemeler uyguladık. Algoritmamızı 

değerlendirmek amacıyla, algoritma sonuçlarımızla eniyileme 

yazılımımızın sonuçlarını karşılaştırdık.   

 

 

Anahtar sözcükler: Öbek büyüklüğü, dal-ve-kesi, karışık tam sayılı 

programlama, petrol endüstrisi, rafineri 
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C h a p t e r  1 
 
 

Introduction 
 
Since late 90s, Supply Chain Planning (SCP) has been one of the most 

popular planning strategies in global business environment. SCP studies 

primarily focus on production planning, pricing, scheduling, and 

warehouse-planning, and aim to achieve cost minimization, profit 

maximization, process improvement and increase in sales. As Chen and 

Chu (2003) indicate, advanced supply chain planning is the process of 

balancing materials and planning resources to satisfy customer demands 

while achieving the business goal for reducing costs. Thus, fulfilling the 

demand with minimum costs possible should be the core of business to 

create a high quality supply chain flow.  

 

One of the subareas of production planning is the lot sizing problem, 

which can be defined as the objective to satisfy customer demand whilst 

minimizing the total production, setup and inventory holding costs. As 

the output of lot-sizing problem, we obtain the optimum production 
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schedule which gives us the answers of questions of when and how 

much/many we ought to produce, with minimum total cost possible. 

 

In this thesis, the lot sizing problem with a special feature introduced and 

the solution procedure of this problem is discussed. In our model, the end 

products should be kept in a warehouse for a certain pre-determined 

duration for resting purpose. The end-products should be kept in storage 

tanks in order to rest the petroleum, in petroleum companies like Turkish 

Petroleum Refineries Corporation (TÜPRAŞ). Similar strategy –for 

different aim– is also applied in dairy product companies, like Danone. 

After fermentation and packaging operations, the end-products should be 

stored in warehouse for refrigerating and making them durable to the last 

day. Moreover, the total warehouse capacity is divided into subareas 

depending on the number of end-items. This situation occurs especially 

in petroleum industry in which each end-item should be stored in unique 

storage tanks. As a consequence, the problem that we will study 

throughout the thesis involves the production planning problem occurring 

in the petroleum refinery sector. 

 

Aside from certain uncapacitated versions, lot-sizing problem is NP-hard. 

Especially when the size of the problem grows, the model cannot be 

solved optimally within an acceptable time. Thus, it is required to 

generate an alternative solution technique, to solve the problem in a 

relatively short period of time, without significantly deviating from the 

optimum solution. In our thesis, we applied branch-and-cut algorithm to 

our model to reach the optimum solution in reasonable amount of time. 
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In computational experiments of this thesis, test data is generated based 

upon the data gathered from TÜPRAŞ and run under XPRESS-MP 

optimization software in order to interpret how the constructed technique 

behaves in different data sets.  

 

In Chapter 2, a comprehensive survey in literature about the research on 

lot-sizing theory is presented. In Chapter 3, the problem and the 

corresponding constructed model are introduced. The solution technique 

and its steps are discussed in the same chapter. In Chapter 4, the 

computational experiments are reported. Conclusion and remarks for 

future studies are given in Chapter 5. 
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C h a p t e r  2 
 
 

Literature Review 
 
The lot-sizing problem, as a subclass of the production planning problem, 

aims to satisfy customer demand without violating the capacity 

restrictions imposed on production resources — whilst minimizing the 

total production, setup and inventory holding costs (see Salomon and 

Kuik (1993)). Most of the research on lot-sizing problems focuses on 

generating new algorithms and heuristic approaches to find the optimal 

solutions of various kinds of lot-sizing problems. Below we review some 

previous work that is related to the subject of this thesis. 

 

As indicated above, the main purpose of the lot sizing problems is to 

satisfy customer demand. However, in certain cases, the customer 

demand cannot be fulfilled due to the capacity restrictions. In such a 

situation, company should choose one of the three possible solutions as a 

company strategy regarding its long term costs and profits. First approach 

is lost sales, in which the company simply refuses the customer’s 

demand. Backlogging (back ordering) is the second approach where 
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customer is offered to wait for at least one more period to buy the desired 

product. The last approach is called as outsourcing. Here, the company 

supplies the similar product from another company (probably its 

competitor) and sells it to its customer immediately.  

 

The first lot-sizing problem published in the literature is the single 

period, single item, and uncapacitated lot-sizing problem with 

deterministic demand. Harris (1913) named this problem as Economic 

Order Quantity (EOQ). Though the paper was published in 1913, the 

subject still attracts attention of researchers due to its importance in 

production planning theory. Wagner and Whitin (1958) published 

another classical and pioneering paper, which provides a dynamic 

programming and network approach to lot sizing problems. 

 

2.1 Classifications of Lot-Sizing Problems 

 

Before going further into the studies previously made in the lot-sizing 

literature, it is necessary to introduce some lot-sizing terminology and 

mention classifications of the problem. Lot-sizing problems can be 

classified either as capacitated or uncapacitated, depending on the 

restrictions on the resources such as labor, machinery or time. The 

capacity restrictions might be set either as hard constraint or soft 

constraint. In the first case, the restrictions cannot be violated by any 

situation. On the other hand, in soft constraint case, the restriction might 

be violated with some penalty cost depending on the significance of the 

restriction. As we shall see in the following sections, the capacity 
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limitation is one of the most important factors and determines the 

difficulty of the problems.  

 

Secondly, the pattern of customer demand might be deterministic or 

stochastic. Deterministic demand is used by the companies, which start 

production after taking the orders. However in the literature, even if the 

real situation is stochastic, deterministic demand is assumed to simplify 

the problem. 

 

Furthermore, models may or may not include the setup cost depending on 

the problem structure. Similarly, setup time is another factor to be 

considered while model constructing. Moreover, allowing backorder/lost 

sales/outsourcing, and varying the number of machines in production 

facility are some other types appeared in lot-sizing models mentioned in 

Staggemeir et. al. (2001), and Katok et al. (1998). In Federgruen and 

Meissner (2005), multiple items for different demands sharing the same 

resources are also studied.  

 

The cost functions of the lot-sizing problems —the objective functions to 

be minimized— are non-decreasing in the amount produced or stored, 

usually linear, fixed-charge or general concave functions; Hoesel, 

Romeijn, Morales and Wagelmans (2002). 

 

The general capacitated lot-sizing problem is proved to be NP-hard 

according to Aghezzaf and Landeghem (2002).  
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According to Katok, Lewis and Harrison (1998), the difficulty of 

production planning problems arise from (i) cumulative capacity usage, 

(ii) ratio of setup times to processing times and (iii) ratio of setup costs to 

inventory costs.  In the same study it is stated that, there is a trade-off 

between the quality of the solution and computational effort required to 

solve the problem.  

 

Salomon and Kuik (1993) indicate that when setup times are non-zero, 

the problem is NP-Hard, even for the single level single resource 

problems. Likewise, multi-level and capacitated problem is NP-hard, 

since it is a direct generalization of the capacitated lot-sizing problem 

with non-stationary capacities (see Hoesel, Romeijn, Morales and 

Wagelmans (2002)). 

 

In Florian, Lenstra and Kan (1980) and Hoesel et. al. (2002), it is proved 

that a production planning problem is NP-hard, even when it has equal 

demand structure and zero inventory costs, where  

 

(i) no setup costs and no capacity limits exist, but the cost 

function is arbitrary,  

 

(ii) no setup costs and capacity limits are arbitrary and cost 

function is concave, or 

 

(iii) convex cost function and unit setup cost exist, with no 

capacity limits. 
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In Wolsey (1998), it is shown that the single item capacitated lot-sizing 

problem reduces to the knapsack problem, which means that the lot-

sizing is NP-hard. 

 

 

2.2 Solution Approaches 

 

In his study on modern heuristic techniques, Reeves (1993) states that: 

“Developing algorithms, which are computationally successful 

at solving combinatorial optimization problems, is an art.” 

 

Salomon and Kuik (1993) and Katok, Lewis and Harrison (1998) divide 

the solution approaches into two, as optimization (effort to reach the 

optimum within a reasonable time) and heuristic approaches (effort to 

find the “good” solution in a “small” time period).  Katok et. al (1998) 

states that optimization approaches are valuable since they generate good 

lower bounds to be used in heuristic techniques. On the other hand, Chen 

and Chu (2003) state that there are four different classes to solve lot-

sizing problems: (i) Integer Programming Approaches (ii) Decomposition 

Methods, (iii) Local Search Techniques, (iv) Lagrangean Relaxation 

Techniques. 
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2.2.1 Integer Programming Approaches 

 

The Linear Programming (LP) Relaxation of Mixed Integer 

Programming (MIP) of the problem, also known as the LP Based 

solution technique, forms the first class of the solution techniques for lot-

sizing problems. Available methods relax the capacity and/or balance 

constraints to bring an ease to the problem. Nevertheless, this technique 

lowers the quality, in terms of optimality of the solution. We will review 

some papers focusing on Branch-and-Bound, Branch-and-Price and 

Branch-and-Cut for the Integer Programming (IP) Approaches. 

 

In terms of data set, Branch-and-Bound approach, which is one of the 

most popular methods to solve lot-sizing problem, is fast for the small 

problems (see Clark (2003)). Unfortunately, it is concluded that as the 

problem size grows, the combinations, which should be followed by the 

procedure, explode exponentially.  

 

In Degraeve and Jans (2003-1), Branch-and-Price algorithm, which is a 

new formulation of Dantzig-Wolfe decomposition technique, is 

introduced for the lot-sizing problems. In this algorithm, initially an 

upper-bound is gathered, then, in order to find a good lower-bound of IP, 

column generation technique is applied. Finally, simplex and subgradient 

optimization is utilized, and column generation and branch-and-bound 

are combined.  
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Branch-and-Cut algorithm, on the other hand, is a branch-and-bound 

algorithm in which cutting planes are generated throughout the Branch-

and-Bound tree. Strong valid inequalities and reformulations often form 

the basis of branch-and-cut algorithms and create good models for 

complicated problems (see Atamtürk and Munoz (2004)).  

 

Degreave and Jans (2003-1) indicates, regular capacitated lot-sizing 

problem with setup times usually has a large integrality gap. Many 

researchers are devoted to finding better formulations with a smaller gap. 

Degreave and Jans (2003-1) extend their model with valid inequalities, 

which are generally known as (l, S) inequalities. Adding these cutting 

planes leads to a formulation which describes the convex hull for the lot-

sizing polytope. On the other hand, whilst focusing on cut-and-branch 

techniques, Miller, Nemhauser and Savelsbergh (2000) also mention the 

(l, S)-type valid inequalities, which generate the convex hull for each 

item. It is also defined that the “path inequalities” which generalize the  

(l, S) inequalities, for more general lot-sizing and other fixed-charge 

network flow problems. It is also indicated that in solving multi-item 

models, the (l, S) inequalities have often been the most effective known 

class.  

 

According to Miller et al (2000), there are two palpable merits of using 

(l, S) inequalities. The first is that the algorithm –if it has time to 

terminate– finds a provably optimal solution. The second is that a 

feasible solution is found if one exists, this characteristic is not shared by 

the many heuristic methods (such as proposed by Trigeiro et al. (1989)). 
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A disadvantage of such an optimization approach is that it can require 

much time and memory, possibly an indefinite amount of both.  

 

2.2.2 Decomposition Methods 

 

The second class is the decomposition method, in which certain parts of 

the problem are decomposed and solved disjointedly. For instance, 

during the application of decomposition technique to the lot-sizing 

problem within a multi-level structure, it ignores the multi-level structure 

and solves the sequence of single-level ones.  

 

Degraeve and Jans (2003-1) have a study on reformulation of the 

decomposition of lot-sizing problems. They separate the setup and 

production decisions, and solve the problem. The solution yields the 

same lower bound as branch-and-price algorithm, which leads us to the 

conclusion that branch-and-price algorithm is computationally obedient 

and competitive, with respect to other approaches. Similarly, Degraeve 

and Jans (2003-2) aim to improve the lower bounds of the capacitated 

lot-sizing problem using Dantzig-Wolfe decomposition and Lagrangean 

Relaxation.  

 

 

2.2.3 Local Search Techniques 

 

The third approach to solve lot-sizing problems is the meta-heuristics, 

which consist of local search techniques such as Simulated Annealing, 
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Tabu Search, Genetic Algorithm and Evolutionary Strategies (see 

Staggemeier and Clark (2001)). These techniques generally aim to find 

near-optimal solutions in relatively small amount of time.  

 

Kuik and Salomon (1990) and Salomon and Kuik (1993) study on the 

disadvantages of Simulated Annealing and Tabu Search. First of all, the 

performance of algorithms turns out to be strongly dependent upon a 

large number of interrelated factors such as the problem structure and 

choice of internal parameters. Furthermore it is unknown how far a 

solution given by this approach differs from optimality due to 

computation of lower bound. Hertz, Taillard and de Werra (1995) 

indicate that these methods generally obtain reasonable solutions to a 

number of complex combinatorial optimization problems when standard 

procedures like decomposition or relaxation techniques fail. 

 

In Gopalakrishnan, Ding, Bourjolly and Mohan (2001), it is concluded 

that the sequencing (the sequence in which the final-products should be 

produced) and lot sizing problems are interrelated decisions. 

Gopalakrishnan et. al (2001) claims using meta-heuristics to be practical 

since they are easily extended to handle simulations like scheduling on 

multiple machines.  

 

Staggemeier et. al. (2002) test their problem by the Genetic Algorithm 

and they indicate that allocation and sequence of products become the 

most important feature of the algorithm in the effort to escape from the 

local optima. Also, in terms of average deviation from the optimum 

value, it gives competitive results. 
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Reeves (1993) mentions one additional local search technique called 

artificial neural networks. The system is represented by networks and 

when it is used to solve IP problems, it copies the biological neuron 

systems in terms of methodology. It is useful to encode many 

optimization problems (like scheduling), but it does not attract 

considerable attention of researchers’ since it needs so much effort to 

setup the system.  

 

 

2.2.4 Lagrangean Relaxation Techniques 

 

Finally, the Lagrangean-based approaches use the Branch-and-Bound 

strategy followed by smoothing procedures to eliminate the 

infeasibilities.  Lagrangean Relaxation is also used to find strong lower 

bounds for heuristic techniques. 

 

In general, the problems are classified as easy in terms of their 

complexity, if some of their constraints such as capacity restrictions are 

excluded. Lagrangean based approaches concentrate on eliminating such 

difficult constraint sets (Reeves (1993)). On the other hand, Lagrangean 

dual problem, which is used to construct the Lagrangean solution, is the 

problem of minimizing the piecewise linear convex non-differentiable 

function (for minimization problems) (Wolsey (1998)).  

 



 

 

 

 

 

Chapter 2 - Literature Review 

 14 

One of the most classical papers in lot-sizing studies belongs to Trigeiro, 

Thomas and McClain (1989). The results of the study have become a 

benchmark for many studies, after it was published. They focus on the 

effects of setup time on general problem structure. Trigeiro et. al 

conclude that problems with setup times are really difficult, and it is a 

grave error to state that setup time is a simple extension of a setup cost. 

 

 

 

 

2.3 Other Studies 

 

Beside the solution techniques reviewed in the previous section, 

Walukiewicz (1991) states that in future, the hybrid algorithms, which 

combine certain algorithms or heuristics, will gain popularity. Hybrid 

algorithms try to solve the trade-off between solution quality and 

computational effort (Clark (2003)). He also mentions two methods to 

obtain a hybrid:  

 

(i) searching for the best proportion by which you can factor 

setup times into unit production times; and  

 

(ii) carrying out a local search on the first stages of binary 

setup variables.   
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Another concern in lot-sizing theory is lead time, which is the period of 

time between the initiation of any process of production and the 

completion of that process. Lead-time issue is rarely integrated into lot-

sizing studies though it is one of the core effects of real supply chain. 

This is explained with fixed lead-times which are generally negligible 

(Stadtler (2003)). On the other hand, Clark and Armentano (1995) 

integrate lead-time into inventory variables to find the echelon stock 

policies in model’s structure. Moreover, in certain cases, lead-time is 

added to the balance constraints, as a function of a specific item (Chen 

and Chu (2003)). 

 

In the lot-sizing literature, similar to other MIP problems, the models are 

commonly solved either by CPLEX, GAMS or XPRESS-MP, which are 

the major optimization softwares available in the marketplace. In our 

study, XPRESS-MP is preferred for its comparatively better Graphical 

User Interface (GUI) and ease of accessibility. 
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C h a p t e r  3 
 
 

Problem and the Solution Approach 
 
In this chapter, initially, the problem statement and corresponding mixed 

integer programming model will be presented including the explanations 

of the objective function and constraints. Subsequently, the proposed 

solution approach and the algorithm will be provided. With the intention 

of providing detailed explanation of the proposed algorithm, a small 

example and illustration will be presented to show the efficiency of the 

solution technique.  

 

3.1 Problem Statement 

 

According to The Investigation Process Research Library 

(http://www.iprr.org), refinery is defined as any process plant in which 

flammable or combustible liquids are produced from crude petroleum, 

including areas on the same site where the resulting products are blended, 

packaged or stored on a commercial scale.  
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A refinery uses styrene, butadiene and aromatic oil beside crude oil in 

order to produce asphalt, LPG (liquid petroleum gas), diesel fuel, fuel oil, 

gasoline, kerosene, lubricating oils, paraffin wax, tar, extract etc. as end-

products.   

 

The main operations in the oil refinery are atmospheric distillation unit 

(distills crude oil into fractions), vacuum distillation unit (further distills 

residual bottoms after atmospheric distillation), naphtha hydrotreater unit 

(desulfurizes naphtha from atmospheric distillation), catalytic reformer 

unit (uses hydrogen to break long chain hydrocarbons into lighter 

elements that are added to the distiller feedstock), distillate hydrotreater 

unit (desulfurizes distillate (diesel) after atmospheric distillation), fluid 

catalytic converter unit, dimerization unit, isomerization unit, gas storage 

units for propane and similar gaseous fuels at pressure sufficient to 

maintain in liquid form, and storage tanks for crude oil and finished 

products, with some sort of vapor enclosure and surrounded by an earth 

berm to contain spills . 

 

In our problem, we will focus on the production planning problem of a 

refinery company, which has number of refinery plants to produce 

aforementioned end-products. Each plant has its own capacity 

restrictions.  

 

The demand is received by the company, so it is indifferent which 

refinery plant makes the production. We assume that if the demand 
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cannot be satisfied due to the capacity restrictions, then lost sales strategy 

will be applied.  

 

Since the end-products are in liquid form, the storage tanks are assigned 

specifically to each product. So the maximum inventory for each item is 

limited. Besides, each end-product should be stored in the warehouse 

during some pre-determined duration, depending on product type, for 

resting. This duration is assumed to be constant in our model, however in 

real case; there exist an upper and lower bounds for resting periods. 

 

Our problem also covers setup and production times. The setups are not 

allowed to be carried over from one period to another. Thus if one end-

item is produced at time t, and it will be still produced at time t+1, we 

still consider extra setup time and cost for this end-item.  

 

Our aim is to satisfy customer demand with minimum inventory holding, 

production, setup, and lost-sales costs. 

 

3.2 Problem Formulation 

 

In the mathematical model of the aforementioned production planning 

problem and throughout the thesis, we will use the following notation:  
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Sets 

η  number of end-products 

τ  number of time periods 

R  number of refineries of the company 

 

Subscripts 

i  subscript for end-products,  i ∈ [1, η] 

r  subscript for refinery plants, r ∈ [1, R] 

t  subscript for time periods, t ∈ [1, τ] 

li required lead-time (resting time) to store item i after 

production 

 

Decision Variables 

xirt   production amount for item i at time t at refinery r 

yirt  




=
otherwise1,

 itemfor   at time refinery at   occurs setup no if,0 itr
 

Iirt  inventory of item i at the and of the period t at refinery r 

Dit  lost-sales amount of item i in period t 
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Parameters 

cit  cost of produce 1 unit of item i in period t 

sit  setup cost of item i, at time t (for all refineries r) 

hit  inventory holding cost for item i in period t 

pit  lost-sales cost of item i in period t 

dit  demand of item i in period t 

Cit  production capacity for item i in period t, for each refinery r 

fir  1 if item i is produced at refinery r, 0 otherwise 

Fr  capacity of refinery r, for each time period t 

Sir  warehouse storage limit for item i at refinery r 

ui  required time to produce 1-unit of item i 

vi total required time to set up item i for all time periods t 

and for all refineries r 

T total available time for production and setup for each time 

period for all end-products 

 

We assume that setup time (vi) is only dependent on i, but not refinery r, 

since one of our main assumptions is utilities (machines) in the refineries 

are similar in all refineries. So there is no need to add refinery index to 

setup time. Moreover, we do not add refinery index r to production 

capacity (Cit), since Cit is generally a big number indicating to combine 

production (xirt) and setup (yirt) variables. The restriction on refinery 

capacity is satisfied by Fr. 
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Mathematical Model 

 
The mathematical formulation of the capacitated lot-sizing problem in 

accordance with the above mentioned notation and under the assumptions 

explained is as following:   

..
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Explanations of the Objective Function and Constraints 

 

Objective function (1) minimizes total production, inventory holding, 

setup and lost sales costs during all time periods for all items and all 

refinery plants of the company.  

 

Constraint set (2) is called as balance constraint. Lost-sale amount is 

equal to the difference between the demand and production amounts, 

regarding the on-hand inventory and inventory left to subsequent time 

period. Note that since there is an obligation to rest the end-products in 

storage tanks, required and related lead-time is subtracted from the 

indices of production and inventory variables. However, it may be 
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possible to define a new demand variable dit’ representing the demand of 

item i after li, and eliminate subscript li. 

 

Constraint set (3) combines production variable and setup variable. If 

production occurred, so does setup. Cit gives upper bound for 

production.  

 

Constraint set (4) is refinery-capacity constraint. Each item is produced at 

some refineries. However, maximum amount of items that each refinery 

can produce is limited for each time unit. Constraint (4) satisfies this rule. 

 

Constraint set (5) limits the storage capacity of warehouse for each final 

product. In some industries –as beer-production industry–, the tanks can 

be cleaned and cleared before refueling items, in order to store different 

end-products. In our case, we assume that storage tanks are assigned 

specifically to each end-item. 

 

T is defined as the total available production and setup time within each 

time period. In our experiments, we assume each time period is one 

calendar day. Consequently, T is total available time for setup and 

production. Constraint set (6) mathematically represents that the total 

time spent for production and setup cannot exceed T.  

 

(7) forces production, inventory and lost-sale variables to be nonnegative 

–since petroleum is liquid– and (8) obliges setup variable to be binary. 

Finally, (9) brings initial conditions that before lead-time, there is no 
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inventory for any item. If the system is currently working, then Iirk can 

easily be updated to a constant.  

 

In all cases, the required lead-time li is always less then total number of 

time periods τ (0 < li < τ , ∀i).  

 

 

3.3 Solution Technique 

 

In order to solve the capacitated lot-sizing problem introduced in the 

previous section, we apply branch-and-cut algorithm. The branch-and-cut 

algorithm is a branch-and-bound algorithm in which cutting planes are 

generated throughout the branch-and-bound tree (see Wolsey (1998)).   

 

Many combinatorial optimization problems can be solved by branch-and-

cut methods, which are exact algorithms consisting of a combination of a 

cutting plane method with a branch-and-bound algorithm. In general, 

branch-and-bound algorithms, which use divide and conquer approach, 

are precede cutting plane methods. Cutting plane methods improve the 

solution quality of the relaxed problems.  

 

During the branching operation in the branch-and-bound algorithm, this 

philosophy adds cuts to the nodes. However, a trade-off of the branch-

and-cut technique is the following: if many cuts are added at each node, 

then the re-optimization may be much slower than before. In addition, 

keeping all the information in the tree is significantly more difficult. 
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Thus we prefer to add cuts to the first 30-levels of the search tree. In 

other words, we will add cuts only to the nodes, which are generated at 

most 30 branching operations from the initial node of the search tree. 

 

In branch-and-bound technique, the problem to be solved at each node is 

obtained just by adding bounds. However, in branch-and-cut, a cut pool 

is used, where all the cuts are stored. In addition to keep the bounds and a 

good basis in the node list, it is also necessary to indicate which 

constraints are needed to reconstruct the formulation at the given node. 

So indicators to the appropriate constraints in the cut pool are reserved.  

 

The step-by-step description of the algorithm used in the thesis is as 

follows: 

 

1. Set incumbent solution zinc = + INFINITY. Let L be the set of 

active nodes. If L is empty, then STOP. 

 

2. Preprocess the initial problem (in accordance with the 

preprocessing routine of XPRESS-MP).  

 

3. If L is empty then STOP, zinc is the optimum solution; otherwise 

select and delete node k from L (in accordance with the node 

selection routine of XPRESS-MP). 

 

4. Solve the LP Relaxation of the problem. If all variables are 

integral, then STOP, solution is optimum. Else go to 5. 
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5. Set zinc be the objective value of LP, preprocess the problem. 

 

6. Search for violated cutting planes, configurable to generate cuts 

to execute one or several cut generation iterations per node. If 

found, add them to the relaxation and return 4.   

 

7. If found objective value is less then zinc, then go to 3. Otherwise, 

if solution is integral feasible, update zinc and go to 3. If not 

integral go to 6.  

 

By default, XPRESS-MP does not apply any preprocessing routine to the 

problem introduced. In Step 2, we allow XPRESS-MP to do 

preprocessing. 

 

In Step 6, we perform two operations: Firstly, XPRESS-MP only 

generates Gomory cuts at the top node by default. We use this option to 

generate cuts at the first 30-levels of the search tree. Secondly, we add (l, 

S) cuts. 

 

It is vital to note that, if the problem is feasible, then there exists an 

integral feasible solution. At worse case, none of the demands is satisfied 

and all are lost –in which we reach maximum objective function value 

possible–   .  

 

The (l, S) inequalities, which are valid and proved to be useful cuts (see 

Chapter 2 for detail). These inequalities can be described as following: 

The sum of minimum of the actual production (xirt) and the maximum 
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potential production (Cityirt) in periods 1 to k (k∈[1, τ]) must at least 

equal to the total demand in periods 1 to k in order not to pay penalty cost 

(pit). First of all, we assume that lost-sale is not allowed. Let Qikm be the 

total demand between time periods k and m for end-item i (m∈[1, τ], 

(i∈[1, η]). Then mathematically, 
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is valid.  

 

For each time period k and each subset of periods G of 1 to k, the (l, S) 

inequality –expanded demand constraint– is (in accordance with the 

Pochet and Wolsey (1994)’s proof), 
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However, since our model allows lost-sale, we rewrite (12) as 
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The inequality (12) indicates that actual production (xirt) in periods 

included in G plus maximum potential production Qitkyirt in the 

remaining periods (those not in G) must at least equal to the total 

demand in periods 1 to k in order not to have infeasibilities. Note that in 

period t at most Qitk production is required to meet demand up to period 

k. On the other hand, in inequality (13), lost sale variable is redefined. If 

left-hand-side of the inequality (13) is negative (that is if demand is less 

then the sum of production up to k and production capacity after k), then 

according to (7), total lost-sale between time periods 1 and k will be 0. 

Pochet and Wolsey (1994) prove that when inequality (11) holds, then 

(12) is the most violated inequality for a given value of k.  

 

3.4 Example and Illustration  

 

In order to demonstrate how our algorithm works, we will present an 

instance from a small example. Assume that in our Mixed Integer 

Programming τ= k = 5, η = 2, R = 2. By definition, G will be the each 
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subset of 1 to k. Thus, the expanded demand constraints for this problem 

can be represented as follows: 
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The inequalities (e1) to (e5) are generated for i = 1, r = 1; thus as a 

consequence we should produce 15 more inequalities to complete all 

required cuts. 

 

In (e1), the subset G is {1}. Similarly, the other subsets G for 

inequalities (e2) to (e4) are {1, 2}, {1, 2, 3}, {1, 2, 3, 4} and {1, 2, 3, 4, 

5}. 

 ▄ 
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In order to illustrate the optimization process of our algorithm, we will 

demonstrate two graphics. In Figure 3-1a and 3-1b, we graphically 

present the gaps (percentage of difference between best solution and 

lower bound) occurred between the best solution value found at time t 

and the maximum lower bound found at the same time. In Figure 3-1a, 

which belongs to the experiment without applying our algorithm 

(XPRESS-MP uses its own cuts); we realize that in the first seconds, the 

gap decreases from 700% to 20%. The gap reaches 0 in 14 seconds with 

passing 2527 nodes. On the other hand in Figure 3-1b, the gap 

dramatically reaches 0 within the first second. 

 

 

 

Figure 3-1a Gap (percentage of difference) between lower bound and 

best solution when we solve MIP problem without applying (l, S) cuts 

(with respect to number of nodes). 
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Figure 3-1b Gap (percentage of difference) between lower bound and 

best solution when we solve MIP problem with applying (l, S) cuts (with 

respect to number of nodes). 

 

 

The search tree shown in Figure 3-2a belongs to the problem solved 

without applying branch-and-cut algorithm. Here we have 2527 nodes 

and search is completed within 13,6 seconds. In Figure 3-2b, the search 

tree belongs to the branch-and-cut solution. Here we have 84 nodes and 

the search is completed within 0,9 seconds.  
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Figure 3-2a: Search tree of problem solved without branch-and-cut 

 
 



 

 

 

 

 

Chapter 3 – Problem and the Solution Approach 

 33 

 

 
Figure 3-2b: Search tree of problem solved with branch-and-cut 
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C h a p t e r  4 
 
 

Computational Experiments 
 
In this chapter, we will report the results of the computational experiments 

of the algorithm proposed in Chapter 3. We will first present the 

experimental settings and then the results of the experiments. Following, 

we discuss and analyze the computational results.  

 

 

4.1 Settings 

 

The test data is gathered from the official web site of Turkish Petroleum 

Refineries Corporation (TÜPRAŞ). The demand and capacity data is 

converted into daily bases since TÜPRAŞ publishes annual data. Then we 

generate similar demand and capacity data allowing deviating ±10% from 

the gathered data for our different experiment sets. However, the cost data 

(cost parameters for production, setup, lost sales and inventory holding) is 

generated randomly, since this information is not provided by TÜPRAŞ. 

The ranges for randomly generated data can be accessed in Appendix – 2. 
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The li values are selected randomly between 1 and 3. By generating the 

random data, the penalty cost for lost sales is selected to be much more 

than other costs. Whilst selecting the range for setup cost, we considered 

that –in most cases– setup cost should take values between penalty cost 

(pit), and production costs (cit) for producing 1 lot. 

 

Our algorithm was implemented in XPRESS Mosel and executed on a 

computer equipped with Intel Celeron 1.7 GHz processor, 256 MB RAM 

and Microsoft Windows 2000 SP4.  

 

In our problem, there exist three sets as we defined in Chapter 3: number 

of end-items (η), number of production periods (τ) and number of 

refineries (R). In our experiments we test our algorithm for the cases of 

when η ∈{5, 10, 15, 20, 30}, τ∈{5, 10, 20, 30} and R∈{1, 2, 4}. This 

means, for instance η=10, τ=20, R=4 is one set of experiment which 

means there exists 10 end-products, produced in 4 refineries during 20 

time periods. For each combination, we apply 5 replications. So we have 

total of 5 . 4 . 3 . 5 = 300 instances generated. We give 1-hour (3600 sec) 

to run the original program (without branch-and-cut) and 5-minutes (300 

sec) to run branch-and-cut algorithm. We again remind that in all cases, 

the required lead-time li is always less then total number of time periods τ             

(0 < li < τ ∀i).  
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4.2 Computational Results 

 

The computational results of the experiments are shown in the following 

pages. Each table represents the instances of specific η-τ pair. Under 

refinery column, we indicate the R value. For each case, we replicate 5 

experiments (see exp’t column). The WITHOUT (l, S) CUTS columns 

represent the results of the experiments when we do not apply our 

algorithm. In this situation, our optimization software adds its own cuts 

and performs its branching operations. On the other hand, WITH (l, S) 

CUTS columns represent the results of the experiments when we apply our 

branch-and-cut algorithm. The duration values are CPU-times measured in 

seconds and gap represents the gap between lower bound and best solution 

value in percentage. In this chapter, we will only illustrate four tables. In 

Appendix-1, we will present all 20 tables of the experiment results. 

 

In Table 4-1, we present the computational results for the case 20-items 

and 20-time periods. Here, we realize that when there exist single or 

double refinery in the system, the problem is trivial. On the other hand, in 

4-refinery cases, our algorithm reaches better solutions in 4 experiments 

out of 5.  
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 dc11 0,5 511.026.807,30 0  0,5 511.026.807,30 0 

  dc12 0,5 1.387.773.695,00 0  0,5 1.387.773.695,00 0 

  dc13 0,7 18.254.573,67 0  0,7 18.254.573,67 0 

  dc14 0,5 1.344.544.573,00 0  0,5 1.344.544.573,00 0 

  dc15 0,6 16.513.638,63 0  0,9 16.513.638,63 0 

2 dc21 5 454.782.260,70 0  5,3 454.782.260,70 0 

  dc22 25,8 1.319.918.880,00 0  11,1 1.319.918.880,00 0 

  dc23 12,6 17.824.463,33 0  19,4 17.824.463,33 0 

  dc24 6,8 1.278.985.173,00 0  3,8 1.278.985.173,00 0 

  dc25 9,6 15.833.894,00 0  5 15.833.894,00 0 

4 dc41 3600 346.990.595,60 0,000259249  300 346.990.508,10 0,00029168 

  dc42 3600 1.260.437.103,00 0,000120487  300 1.260.437.089,00 0,000262819 

  dc43 3600 17.347.564,47 0,000383143  300 17.347.561,27 0,000710574 

  dc44 3600 1.146.826.764,00 0,000112692  300 1.146.826.671,00 0,000238518 

  dc45 3600 15.272.739,53 0,00056659   300 15.272.739,53 0,000975818 

 

Table 4-1 Computational Results for η=20, τ=20,  

 

 

In Table 4-2, 20-items, 30-time periods case is tabulated. Here, again single and 

double refinery models are trivial. In  4-refinery cases, we again reach better 

solution in 4 cases out of 5. 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 dd11 1,1 786.574.606,80 0  6 786.574.606,80 0 

  dd12 1,9 2.108.895.450,00 0  2,3 2.108.895.450,00 0 

  dd13 0,9 27.385.647,13 0  1 27.385.647,13 0 

  dd14 0,7 2.034.179.113,00 0  0,8 2.034.179.113,00 0 

  dd15 1,4 25.105.882,50 0  1,1 25.105.882,50 0 

2 dd21 8,3 683.960.640,70 0  8,5 683.960.640,70 0 

  dd22 19,9 2.017.320.853,00 0  18,3 2.017.320.853,00 0 

  dd23 128,7 26.818.964,37 0  91,5 26.818.964,37 0 

  dd24 3,3 1.957.887.473,00 0  2,4 1.957.887.473,00 0 

  dd25 29,1 24.299.916,77 0  20,7 24.299.916,77 0 

4 dd41 3600 496.011.669,20 0,000378454  300 496.011.669,20 0,000743793 

  dd42 3600 1.840.925.970,00 0,000195676  300 1.840.926.232,00 0,000298976 

  dd43 3600 25.975.682,94 0,000735079  300 25.975.684,58 0,000872279 

  dd44 3600 1.723.671.882,00 0,000249381  300 1.723.671.881,00 0,000278969 

  dd45 3600 23.376.496,59 0,000678403   300 23.376.496,59 0,000885267 

 

Table 4-2 Computational Results for η=20, τ=30 

 

In 30-items, 20-time periods case (see Table 4-3) and 30-items, 30-time periods 

case (see Table 4-4), we observe similar results. In first case, 5 (out of 5) and in 

second case, 4 (out of 5) results are better than the solutions of the experiments 

that we do not apply our algorithm. In all cases, we allow to run experiments 

with our algorithm 300 seconds and without our algorithm 3600 seconds. So 

even if our algorithm reaches worse solutions in 300 seconds, it is significantly 

different the results of non-algorithm in 3600 seconds. 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ec11 1,2 630.023.784,30 0  1 630.023.784,30 0 

  ec12 1 1.642.944.910,00 0  0,7 1.642.944.910,00 0 

  ec13 0,7 1.809.774.300,00 0  0,7 1.809.774.300,00 0 

  ec14 0,7 1.745.108.806,00 0  0,8 1.745.108.806,00 0 

  ec15 2,6 23.548.763,17 0  2,5 23.548.763,17 0 

2 ec21 12,2 584.993.826,10 0  11,1 584.993.826,10 0 

  ec22 14 1.538.390.718,00 0  13 1.538.390.718,00 0 

  ec23 4,6 1.653.599.434,00 0  4 1.653.599.434,00 0 

  ec24 21,6 1.538.860.251,00 0  20 1.538.860.251,00 0 

  ec25 94,6 22.850.158,33 0  44 22.850.158,33 0 

4 ec41 3600 493.438.516,00 0,000516426  300 493.438.420,70 0,000166638 

  ec42 3600 1.390.491.275,00 0,000433422  300 1.390.491.275,00 0,000602792 

  ec43 3600 1.493.401.285,00 0,000365039  300 1.493.401.222,11 0,000236152 

  ec44 3600 1.398.673.198,00 0,00132109  300 1.398.673.161,57 0,000460532 

  ec45 3600 22.157.369,75 0,00078417   300 22.157.369,75 0,000100494 

 

Table 4-3 Computational Results for η=30, τ=20 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ed11 1,1 980.947.801,30 0  1 980.947.801,30 0 

  ed12 1,3 2.626.700.398,00 0  1,1 2.626.700.398,00 0 

  ed13 1,1 2.761.191.015,00 0  1,1 2.761.191.015,00 0 

  ed14 1,2 2.871.287.461,00 0  1,1 2.871.287.461,00 0 

  ed15 3,3 35.956.220,58 0  1,1 35.956.220,58 0 

2 ed21 1,3 883.262.428,40 0  1,1 883.262.428,40 0 

  ed22 13,3 2.502.518.067,00 0  11 2.502.518.067,00 0 

  ed23 197,3 2.668.271.006,00 0  67,3 2.668.271.006,00 0 

  ed24 10,5 2.742.101.775,00 0  5,1 2.742.101.775,00 0 

  ed25 12,8 35.050.735,00 0  11,3 35.050.735,00 0 

4 ed41 3600 732.483.934,80 0,000292533  300 732.483.834,44 0,000905531 

  ed42 3600 2.309.743.795,00 0,000617352  300 2.309.743.689,13 0,000593759 

  ed43 3600 2.315.188.088,00 0,00087874  300 2.315.188.007,01 0,000520516 

  ed44 3600 2.499.453.434,00 0,00179219  300 2.499.453.434,00 0,000202116 

  ed45 3600 33.952.760,00 0,000756007   300 33.952.768,10 0,000693635 

 

Table 4-4 Computational Results for η=30, τ=30 
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In Table 4-5a and Table 4-5b, we present number of constraints, number of 

continuous variables and number of binary variables for each experiment set.  

 

η τ R 
Experiment 

No 

Number of 

Constraints 

Number of 

Continuous 

Variables 

Number of 

Binary 

Variables 

5 5 1 aa11..aa15 55 75 25 

5 5 2 aa21..aa25 90 125 50 

5 5 4 aa41..aa45 160 225 100 

5 10 1 ab11..ab15 115 150 50 

5 10 2 ab21..ab25 185 250 100 

5 10 4 ab41..ab45 325 450 200 

5 20 1 ac11..ac15 235 300 100 

5 20 2 ac21..ac25 375 500 200 

5 20 4 ac41..ac45 655 900 400 

5 30 1 ad11..ad15 355 450 150 

5 30 2 ad21..ad25 565 750 300 

5 30 4 ad41..ad45 985 1350 600 

10 5 1 ba11..ba15 95 140 50 

10 5 2 ba21..ba25 155 230 100 

10 5 4 ba41..ba45 275 410 200 

10 10 1 bb11..bb15 210 300 100 

10 10 2 bb21..bb25 325 500 200 

10 10 4 bb41..bb45 565 900 400 

10 20 1 bc11..bc15 425 600 200 

10 20 2 bc21..bc25 665 1000 400 

10 20 4 bc41..bc45 1145 1800 800 

10 30 1 bd11..bd15 643 900 300 

10 30 2 bd21..bd25 1003 1500 600 

10 30 4 bd41..bd45 1725 2700 1200 

15 5 1 ca11..ca15 141 225 75 

15 5 2 ca21..ca25 226 375 150 

15 5 4 ca41..ca45 396 675 300 

15 10 1 cb11..cb15 301 450 150 

15 10 2 cb21..cb25 471 750 300 

15 10 4 cb41..cb45 811 1350 600 

 

Table 4-5a Statistics of the computational experiments 
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η τ R 
Experiment 

No 

Number of 

Constraints 

Number of 

Continuous 

Variables 

Number of 

Binary 

Variables 

15 20 1 cc11..cc15 621 900 300 

15 20 2 cc21..cc25 961 1500 600 

15 20 4 cc41..cc45 1641 2700 1200 

15 30 1 cd11..cd15 936 1350 450 

15 30 2 cd21..cd25 1446 2250 900 

15 30 4 cd41..cd45 2466 4050 1800 

20 5 1 da11..da15 184 300 100 

20 5 2 da21..da25 294 500 200 

20 5 4 da41..da45 514 900 400 

20 10 1 db11..db15 394 600 200 

20 10 2 db21..db25 614 1000 400 

20 10 4 db41..db45 1054 1800 800 

20 20 1 dc11..dc15 814 1200 400 

20 20 2 dc21..dc25 1254 2000 800 

20 20 4 dc41..dc45 2129 3600 1600 

20 30 1 dd11..dd15 1231 1800 600 

20 30 2 dd21..dd25 1894 3000 1200 

20 30 4 dd41..dd45 3214 5400 2400 

30 5 1 ea11..ea15 272 450 150 

30 5 2 ea21..ea25 432 750 300 

30 5 4 ea41..ea45 752 1350 600 

30 10 1 eb11..eb15 582 900 300 

30 10 2 eb21..eb25 902 1500 600 

30 10 4 eb41..eb45 1542 2700 1200 

30 20 1 ec11..ec15 1202 1800 600 

30 20 2 ec21..ec25 1842 3000 1200 

30 20 4 ec41..ec45 3116 5400 2400 

30 30 1 ed11..ed15 1820 2700 900 

30 30 2 ed21..ed25 2780 4500 1800 

30 30 4 ed41..ed45 4702 8100 3600 

 

Table 4-5b Statistics of the computational experiments 
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4.3 Comments on Computational Results 

 

Total time spent to run original problem (without branch-and-cut) is  79.601 

sec. (265,3 on the average). However, we spend 35.302 sec to run our 

algorithm (117,7 on the average).  In 236 test instances, original problem (OP) 

and our algorithm (BC) provide same results. In 191 of them (80%), BC gives 

faster results. OP reaches 216 optimum results in 3600 sec, whilst BC reaches 

270 (90%) optimum results in 300 sec. 

 

Table 4-6 demonstrates the overall results gathered from 300-experiments. 

When we do append (l, S) cuts, average CPU time decreases by 91%. 

Additionally, our solution reaches 90% optimality in 300sec with respect to 

72% (in case when we do not append (l,S)-cuts) in 3600sec. 

 

  WITHOUT 

(l, S) CUT 

WITH 

(l, S) CUT 

 Average CPU Time   1113 sec   98 sec 

  (91% less) 

 # of optimum 

 results (out of 300) 

  216 

  (72%) 

  270 

  (90%) 

 

Table 4-6 Summary of Computational Experiments 

 

Table 4-7 demonstrates another statistical information on 

computational experiments. Same solution column represents number 
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of experiments in which we get same results when we apply our 

algorithm and we do not apply our algorithm. In case our algorithm 

provides better solutions, we add them under “Better Solution” 

column. Similar operation is performed for “Worse Solution” column. 

In first row of the table, the results of all instances are demonstrated. 

In second row, we only demonstrated the experiments which are non-

trivial. (mostly when R = 4)  

 

 Same 

Solution 

Better 

Solution 

Worse  

Solution 

Over  

300-instances 

250 

(83%) 

32 

(11%) 

18 

(6%) 

Over non-trivial 

instances  

(over 50) 

20 

(40%) 

23 

(46%) 

7 

(14%) 

 

Table 4-7 Statistics of Computational Experiments 
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C h a p t e r  5 
 
 

Conclusion 
 

In this study, we have introduced a lot-sizing problem applicable to the 

petroleum sector. Our aim is to find a feasible production schedule 

satisfying customer demand whilst having minimum cost. The capacity 

restrictions of the plants, chemical and physical properties of the 

petroleum bring too many constraints to our problem causing difficulty to 

solve optimally in many cases. 

 

First, we give the description of our problem and present mathematical 

formulation of it. Then, since this is NP-hard, in order to solve the 

problem optimally in a reasonable amount of time, we introduce an 

algorithm, which is based on the branch-and-cut technique. This 

technique is based on appending (l, S) cuts to the nodes in which we 

generate convex hull for each item. After the explanation of the 

algorithm and cuts added, we provide graphical illustration of the 

proposed algorithm –applied on small data set– to figure out how the 
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constructed system works. Subsequently, we test our algorithm and 

present the results.  

 

300 test instances are generated for computational experiments based on 

the TÜPRAŞ data. In 90% of these instances, our algorithm reaches the 

optimum solution. Moreover, in 80% of the test instances, our algorithm 

provides the results fast. Average run time for original problem is 1113 

sec whilst branch-and-cut solves 98 sec on the average. 

  

The lot-sizing problem has not been widely studied on petroleum sector 

in the literature yet. Even if the sector needs to reach feasible production 

schedules, and even if there exists some specialized scheduling software 

on this sector, there exists almost no academic paper. Thus, this thesis 

might be a good starting point in the literature combining lot sizing and 

petroleum refinery sector. 

 

The branch-and-cut system highly depends on data sets. Due to this 

reason, for some instances, our system results worse solutions. Moreover, 

we observe that when the problem size grows, the branch-and-cut 

provides better solutions with respect to without (l, S)-cuts system; but 

strains to reach optimality within predefined run time. 

 

Further research on this subject may include the upstream case of the 

refinery. In other words, the planning the required supplies of refinery 

company is another input of the problem. Since crude oil is not unique 

supply of refinery companies, it would be a good study to cover this issue 

in order to convert our problem into more real-life problem. Secondly, 
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refinery selection might be included into the problem. In our case, we 

assumed that it is indifferent to produce end-items in any of the 

refineries. However, due to the customer’s locations and transportation 

issues, there may not need to make this assumption. 
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Appendix-1  

Tables of Computational Experiments 
 

 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 aa11 0,6 83.537.380 0  0,1 83.537.380 0 

 aa12 0,2 535.248 0  0,1 535.248 0 

  aa13 0,2 903.920 0  0,2 903.920 0 

 aa14 0,1 29.414.855 0  0,1 29.414.855 0 

  aa15 0,1 846.030 0  0,1 846.030 0 

2 aa21 0,3 79.126.658 0  0,2 79.126.658 0 

  aa22 0,3 484.272 0  0,1 484.272 0 

 aa23 0,3 801.316 0  0,2 801.316 0 

  aa24 0,2 23.348.193 0  0,2 23.348.193 0 

  aa25 0,2 826.287 0  0,1 826.287 0 

4 aa41 0,5 76.270.137 0  0,2 76.270.137 0 

 aa42 0,4 423.952 0  0,2 423.952 0 

  aa43 0,5 766.494 0  0,2 766.494 0 

 aa44 0,2 21.890.493 0  0,2 21.890.493 0 

  aa45 0,2 793.861 0  0,2 793.861 0 

 

Table A1-1a. η=5 and τ=5 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ab11 0,4 143.595.796 0  0,3 143.595.796 0 

 ab12 0,4 1.476.408 0  0,2 1.476.408 0 

  ab13 0,3 2.093.672 0  0,2 2.093.672 0 

 ab14 0,4 56.365.854 0  0,2 56.365.854 0 

  ab15 0,4 1.933.511 0  0,2 1.933.511 0 

2 ab21 3,3 132.149.458 0  1,3 132.149.458 0 

  ab22 16,1 1.373.446 0  0,8 1.373.446 0 

 ab23 7,6 2.025.947 0  0,4 2.025.947 0 

  ab24 1,4 49.817.019 0  0,5 49.817.019 0 

  ab25 1,3 1.869.094 0  1 1.869.094 0 

4 ab41 23,7 123.268.092 0  12,4 123.268.092 0 

 ab42 1959,5 1.290.881 0  2,3 1.290.881 0 

  ab43 601,8 1.930.932 0  0,4 1.930.932 0 

 ab44 0,8 46.479.772 0  0,3 46.479.772 0 

  ab45 60,5 1.787.212 0  0,7 1.787.212 0 

 

Table A1-1b η=5, τ=10 

 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ac11 1,4 192.354.372 0  1,4 192.354.372 0 

 ac12 1,7 3.676.080 0  1,6 3.676.080 0 

  ac13 0,8 4.680.168 0  1 4.680.168 0 

 ac14 1 112.082.149 0  1,2 112.082.149 0 

  ac15 0,8 2.784.031 0  0,8 2.784.031 0 

2 ac21 3600 172.950.222 0,00558689  300 172.950.222 0 

  ac22 3600 3.479.876 0,000316104  300 3.479.876 0 

 ac23 61,4 4.459.085 0  5,3 4.459.085 0 

  ac24 3600 99.834.585 0  0,5 99.834.585 0 

  ac25 3600 2.639.419 0,000710389  33,1 2.639.419 0 

4 ac41 3600 158.715.238 0,0300641  300 158.715.064 0,0341899 

 ac42 3600 3.290.637 0,0104854  300 3.290.681 0,0159643 

  ac43 3600 4.204.611 0,00166487  300 4.204.613 0,00350817 

 ac44 3600 93.642.366 0,00561957  300 93.642.638 0,00736257 

  ac45 3600 2.431.685 0,0222632  300 2.431.685 0,026902 

 

Table A1-1c η=5, τ=20 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ad11 1,5 467.579.162 0  1,1 467.579.162 0 

 ad12 1,4 6.662.832 0  1,4 6.662.832 0 

  ad13 1,2 6.709.967 0  1,5 6.709.967 0 

 ad14 1,5 165.326.318 0  1,5 165.326.318 0 

  ad15 5,3 7.942.867 0  4,7 7.942.867 0 

2 ad21 19,2 425.253.344 0  17,8 425.253.344 0 

  ad22 131,8 6.370.902 0  19,8 6.370.902 0 

 ad23 11,5 6.434.373 0  3,9 6.434.373 0 

  ad24 833,5 138.509.959 0  300 138.509.959 0 

  ad25 3600 7.626.567 0,00148168  300 7.626.567 0,00137679 

4 ad41 502,3 398.202.286 0  300 398.202.286 0 

 ad42 3600 6.044.877 0,00118283  300 6.044.873 0,00153852 

  ad43 3600 6.051.997 0,00123928  300 6.051.996 0,00194155 

 ad44 3600 129.012.599 0,00418504  300 129.013.701 0,0067509 

  ad45 3600 7.292.165 0,00499191  300 7.292.165 0,00744 

 

Table A1-1d η=5; τ=30 

 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ba11 0,3 273.407.984 0  0,2 273.407.984 0 

 ba12 0,2 191.559.505 0  0,2 191.559.505 0 

  ba13 0,1 2.833.290 0  0,2 2.833.290 0 

 ba14 0,2 2.758.793 0  0,3 2.758.793 0 

  ba15 0,2 59.833.999 0  0,3 59.833.999 0 

2 ba21 0,2 253.404.237 0  0,5 253.404.237 0 

  ba22 0,2 160.823.165 0  0,2 160.823.165 0 

 ba23 0,2 2.814.399 0  0,2 2.814.399 0 

  ba24 226,2 2.720.073 0  0,4 2.720.073 0 

  ba25 2,2 55.922.188 0  0,3 55.922.188 0 

4 ba41 0,2 241.795.509 0  0,3 241.795.509 0 

 ba42 0,5 156.982.653 0  0,5 156.982.653 0 

  ba43 0,2 2.776.617 0  0,4 2.776.617 0 

 ba44 0,5 2.678.525 0  0,8 2.678.525 0 

  ba45 0,7 54.304.874 0  1 54.304.874 0 

 

Table A1-2a η=10, τ=5 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 bb11 0,3 537.312.257 0  0,3 537.312.165 0 

 bb12 0,4 438.578.311 0  0,4 438.578.311 0 

  bb13 0,3 6.521.217 0  0,3 6.521.217 0 

 bb14 0,4 5.634.927 0  0,6 5.634.927 0 

  bb15 0,4 123.107.261 0  0,3 123.107.261 0 

2 bb21 0,5 466.064.077 0  0,5 466.064.077 0 

  bb22 1 358.639.744 0  0,7 358.639.744 0 

 bb23 0,6 6.196.541 0  0,6 6.196.541 0 

  bb24 1 5.435.039 0  1 5.435.039 0 

  bb25 1,1 91.852.057 0  2,6 91.852.057 0 

4 bb41 18 444.306.358 0  12,4 444.306.358 0 

 bb42 2,2 356.791.753 0  2,1 356.791.753 0 

  bb43 3,4 6.110.412 0  27,2 6.110.412 0 

 bb44 14,6 5.332.057 0  13,1 5.332.057 0 

  bb45 608,4 88.284.539 0  300 88.284.539 0,000528974 

 

Table A1-2b η=10, τ=10 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 bc11 0,5 1.000.837.528 0  0,5 1.000.837.528 0 

 bc12 1,3 794.768.781 0  1 794.768.781 0 

  bc13 1,3 11.862.124 0  2,3 11.862.124 0 

 bc14 1,2 9.880.879 0  1,5 9.880.879 0 

  bc15 0,9 213.621.328 0  1,3 213.621.328 0 

2 bc21 0,7 790.768.649 0  0,6 790.768.649 0 

  bc22 7,4 644.067.271 0  8,6 644.067.271 0 

 bc23 10,1 11.409.366 0  14,4 11.409.366 0 

  bc24 7,3 9.488.113 0  13,3 9.488.113 0 

  bc25 3600 142.652.133 0,00132702  300 142.652.298 0,00184648 

4 bc41 3600 749.043.950 0,000288101  300 749.043.950 0,00121089 

 bc42 3600 635.902.190 0,000138072  300 635.902.190 0,000359491 

  bc43 3600 11.182.479 0,000679639  300 11.182.477 0,00081378 

 bc44 3600 9.249.524 0,000237851  300 9.249.528 0,00147037 

  bc45 3600 134.973.552 0,00174259  300 134.973.647 0,00279099 

 

Table A1-2c η=10, τ=20 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 bd11 4,6 419.928.302 0  1,4 419.928.302 0 

 bd12 1,7 17.818.599 0  1,9 17.818.599 0 

  bd13 1,4 17.750.097 0  1,7 17.750.097 0 

 bd14 0,8 77.635.488 0  1,4 77.635.488 0 

  bd15 5,3 43.555.570 0  7,1 43.555.570 0 

2 bd21 3600 263.726.267 0,000465257  300 263.726.293 0,000987776 

  bd22 21,9 17.065.615 0  17 17.065.615 0 

 bd23 30,6 16.754.118 0  81,9 16.754.126 0 

  bd24 13,7 71.546.548 0  58,6 71.546.548 0 

  bd25 3600 38.457.094 0  374 38.457.094 0,000491459 

4 bd41 3600 260.777.751 0,0023465  300 260.777.704 0,00348966 

 bd42 3600 16.608.388 0,00107176  300 16.608.388 0,00143303 

  bd43 3600 16.334.731 0,00276106  300 16.334.731 0,00336716 

 bd44 3600 69.547.301 0,000674366  300 69.547.298 0,000911618 

  bd45 3600 37.707.850 0,00135252  300 37.707.991 0,00198105 

 

Table A1-2d η=10, τ= 30 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ca11 0,4 274.377.645 0  0,4 274.377.645 0 

 ca12 0,2 58.123.192 0  0,2 58.123.192 0 

  ca13 0,2 6.755.500 0  0,2 6.755.500 0 

 ca14 0,2 3.952.728 0  0,2 3.952.728 0 

  ca15 0,2 4.210.747 0  0,2 4.210.747 0 

2 ca21 1,7 213.943.799 0  1,1 213.943.799 0 

  ca22 0,6 45.011.204 0  0,8 45.011.204 0 

 ca23 0,3 5.316.793 0  0,3 5.316.793 0 

  ca24 0,2 3.734.047 0  0,4 3.734.047 0 

  ca25 0,4 3.920.181 0  0,5 3.920.181 0 

4 ca41 107,1 210.346.730 0  80,1 210.346.730 0 

 ca42 3600 43.849.860 0,000665913  300 43.849.860 0,00226232 

  ca43 0,4 5.198.123 0  0,5 5.198.123 0 

 ca44 3,1 3.682.149 0  2,6 3.682.149 0 

  ca45 1,8 3.872.031 0  0,9 3.872.031 0 

 

Table A1-3a η=15, τ=5 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 cb11 0,9 566.379.318 0  0,9 566.379.318 0 

 cb12 0,3 110.098.308 0  0,3 110.098.308 0 

  cb13 0,6 16.063.125 0  0,6 16.063.125 0 

 cb14 0,6 7.387.051 0  0,5 7.387.051 0 

  cb15 0,3 9.282.888 0  0,4 9.282.888 0 

2 cb21 15,2 485.248.965 0  35,2 485.248.965 0 

  cb22 1,4 87.570.685 0  1,8 87.570.685 0 

 cb23 3,6 13.932.321 0  2,7 13.932.321 0 

  cb24 2 7.148.944 0  4,7 7.148.944 0 

  cb25 0,8 8.510.578 0  0,8 8.510.578 0 

4 cb41 3600 476.226.562 0,00102851  300 476.226.099 0,00199635 

 cb42 891 84.974.876 0  300 84.974.876 0,000644901 

  cb43 484,2 13.677.487 0  300 13.677.487 0,00100897 

 cb44 3600 7.019.939 0  300 7.019.938 0,00107552 

  cb45 129,6 8.360.301 0  160,7 8.360.303 0 

 

Table A1-3b η=15, τ=10 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 cc11 2 1.265.276.020 0  3,3 1.265.275.598 0 

 cc12 0,8 211.028.854 0  0,8 211.028.854 0 

  cc13 0,9 37.926.571 0  0,8 37.926.571 0 

 cc14 1,1 13.557.464 0  1,2 13.557.464 0 

  cc15 1,1 18.751.959 0  1,1 18.751.959 0 

2 cc21 27,2 1.097.332.626 0  32,2 1.097.332.626 0 

  cc22 2,4 167.431.065 0  4,3 167.431.065 0 

 cc23 3,7 32.386.550 0  4,2 32.386.550 0 

  cc24 3600 12.992.223 0  96,9 12.992.223 0 

  cc25 6,7 17.456.159 0  6,9 17.456.159 0 

4 cc41 3600 1.079.731.754 0,00114196  300 1.079.737.836 0,00201349 

 cc42 154,8 162.630.369 0  300 162.630.274 0 

  cc43 3600 31.623.187 0,00040793  300 31.623.187 0,00110679 

 cc44 3600 12.683.917 0,00162413  300 12.683.912 0,00201046 

  cc45 3600 17.125.722 0,000630634  300 17.125.721 0,014189 

 

Table A1-3c η=15, τ=20 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 cd11 5 25.883.978 0  3,1 25.883.978 0 

 cd12 2,6 554.113.715 0  1,9 554.113.715 0 

  cd13 4,4 24.921.253 0  3 24.921.253 0 

 cd14 2,4 24.710.578 0  1,9 24.710.578 0 

  cd15 6 1.954.207.654 0  3,9 1.954.207.654 0 

2 cd21 3600 24.896.760 0  300 24.896.760 0,000212879 

  cd22 7 373.042.240 0  8,2 373.042.240 0 

 cd23 20,4 23.627.799 0  207 23.627.799 0 

  cd24 55 23.505.452 0  144,7 23.505.452 0 

  cd25 10 1.791.986.882 0  7,7 1.791.986.882 0 

4 cd41 3600 24.617.592 0,00108054  300 24.618.307 0,00438311 

 cd42 3600 363.570.206 0,00414518  300 363.570.206 0,00547702 

  cd43 3600 23.232.691 0,00194988  300 23.232.691 0,00247071 

 cd44 3600 22.969.337 0,00132787  300 22.969.337 0,00227264 

  cd45 3600 1.750.564.314 0,00150411  300 1.750.563.686 0 

 

Table A1-3d η=15, τ=30 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 da11 0,3 104.004.716 0  0,3 104.004.716 0 

 da12 0,4 326.162.176 0  0,4 326.162.176 0 

  da13 0,2 3.586.350 0  0,3 3.586.350 0 

 da14 0,4 278.145.056 0  0,4 278.145.056 0 

  da15 0,2 4.050.886 0  0,2 4.050.886 0 

2 da21 0,3 104.842.158 0  0,3 104.842.158 0 

  da22 1,2 283.395.694 0  2,3 283.395.694 0 

 da23 1,6 3.065.290 0  1,9 3.065.290 0 

  da24 0,6 241.808.102 0  0,8 241.808.102 0 

  da25 0,4 4.012.126 0  0,5 4.012.126 0 

4 da41 116,5 92.883.592 0  79,5 92.883.592 0 

 da42 15,7 267.696.165 0  10,7 267.696.165 0 

  da43 2,5 2.211.958 0  4,5 2.211.958 0 

 da44 1,3 216.477.204 0  1,7 216.477.204 0 

  da45 2,1 3.882.862 0  3,5 3.882.862 0 

 

Table A1-4a η=20, τ=5 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 db11 0,8 233.859.039 0  0,8 233.859.039 0 

 db12 1,4 673.453.758 0  1,5 673.453.758 0 

  db13 0,9 8.414.030 0  1 8.414.030 0 

 db14 1 622.743.229 0  1,2 622.743.229 0 

  db15 0,9 8.217.891 0  0,9 8.217.891 0 

2 db21 7,8 213.177.694 0  12,7 213.177.694 0 

  db22 126,2 637.975.560 0  300 637.975.826 0,000143266 

 db23 25,1 8.121.410 0  20,7 8.121.410 0 

  db24 29,3 594.802.445 0  49 594.802.445 0 

  db25 90,4 7.961.563 0  125,1 7.961.563 0 

4 db31 3600 181.218.926 0,00100542  300 181.218.926 0,00150097 

 db32 3600 567.682.553 0,00129528  300 567.682.289 0,00141789 

  db33 3600 7.859.813 0,00130412  300 7.859.813 0,00155858 

 db34 3600 511.640.228 0,00191466  300 511.643.877 0,00320331 

  db35 3600 7.685.979 0,00301207  300 7.686.005 0,00376022 

 

Table A1-4b η=20, τ=10 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 dc11 0,5 511.026.807,30 0  0,5 511.026.807,30 0 

  dc12 0,5 1.387.773.695,00 0  0,5 1.387.773.695,00 0 

  dc13 0,7 18.254.573,67 0  0,7 18.254.573,67 0 

  dc14 0,5 1.344.544.573,00 0  0,5 1.344.544.573,00 0 

  dc15 0,6 16.513.638,63 0  0,9 16.513.638,63 0 

2 dc21 5 454.782.260,70 0  5,3 454.782.260,70 0 

  dc22 25,8 1.319.918.880,00 0  11,1 1.319.918.880,00 0 

  dc23 12,6 17.824.463,33 0  19,4 17.824.463,33 0 

  dc24 6,8 1.278.985.173,00 0  3,8 1.278.985.173,00 0 

  dc25 9,6 15.833.894,00 0  5 15.833.894,00 0 

4 dc41 3600 346.990.595,60 0,000259249  300 346.990.508,10 0,00029168 

  dc42 3600 1.260.437.103,00 0,000120487  300 1.260.437.089,00 0,000262819 

  dc43 3600 17.347.564,47 0,000383143  300 17.347.561,27 0,000710574 

  dc44 3600 1.146.826.764,00 0,000112692  300 1.146.826.671,00 0,000238518 

  dc45 3600 15.272.739,53 0,00056659   300 15.272.739,53 0,000975818 

 

Table A1-4c η=20, τ=20 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 dd11 1,1 786.574.606,80 0  6 786.574.606,80 0 

  dd12 1,9 2.108.895.450,00 0  2,3 2.108.895.450,00 0 

  dd13 0,9 27.385.647,13 0  1 27.385.647,13 0 

  dd14 0,7 2.034.179.113,00 0  0,8 2.034.179.113,00 0 

  dd15 1,4 25.105.882,50 0  1,1 25.105.882,50 0 

2 dd21 8,3 683.960.640,70 0  8,5 683.960.640,70 0 

  dd22 19,9 2.017.320.853,00 0  18,3 2.017.320.853,00 0 

  dd23 128,7 26.818.964,37 0  91,5 26.818.964,37 0 

  dd24 3,3 1.957.887.473,00 0  2,4 1.957.887.473,00 0 

  dd25 29,1 24.299.916,77 0  20,7 24.299.916,77 0 

4 dd41 3600 496.011.669,20 0,000378454  300 496.011.669,20 0,000743793 

  dd42 3600 1.840.925.970,00 0,000195676  300 1.840.926.232,00 0,000298976 

  dd43 3600 25.975.682,94 0,000735079  300 25.975.684,58 0,000872279 

  dd44 3600 1.723.671.882,00 0,000249381  300 1.723.671.881,00 0,000278969 

  dd45 3600 23.376.496,59 0,000678403   300 23.376.496,59 0,000885267 

 

Table A1-4d η=20, τ=30 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ea11 2,2 148.215.570 0  0,4 148.215.570 0 

 ea12 0,4 400.060.451 0  0,4 400.060.451 0 

  ea13 0,6 3.491.098 0  0,6 3.491.098 0 

 ea14 0,2 391.600.536 0  0,3 391.600.536 0 

  ea15 0,3 5.513.031 0  0,2 5.513.031 0 

2 ea21 0,6 145.963.901 0  0,8 145.963.901 0 

  ea22 0,9 338.357.152 0  1,5 338.357.152 0 

 ea23 8,6 3.765.118 0  10,6 3.765.118 0 

  ea24 2,2 319.070.954 0  0,9 319.070.954 0 

  ea25 0,7 5.487.512 0  1,2 5.487.512 0 

4 ea41 5,3 125.955.936 0  7,1 125.955.936 0 

 ea42 3600 310.211.576 0,000967091  300 310.211.572 0,00184974 

  ea43 3600 2.886.691 0,000121246  300 2.886.690 0 

 ea44 3600 288.238.005 0,000540182  300 288.237.892 0,000700815 

  ea45 3600 5.267.685 0,000645449  300 5.267.685 0,000863764 

 

Table A1-5a η=30, τ=5 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 eb11 1,8 361.938.346 0  0,9 361.938.346 0 

 eb12 0,9 832.676.359 0  1,5 832.676.359 0 

  eb13 1,2 904.191.234 0  1,5 904.191.234 0 

 eb14 0,8 835.123.698 0  1,5 835.123.698 0 

  eb15 0,8 11.796.296 0  1,1 11.796.296 0 

2 eb21 653,7 316.906.628 0  300 316.906.628 0,000183966 

  eb22 104,1 747.322.128 0  91,4 747.322.128 0 

 eb23 12,3 819.015.158 0  35,9 819.015.158 0 

  eb24 142 716.701.963 0  300 716.701.963 0,000112599 

  eb25 3600 11.518.592 0,000303858  42,2 11.518.592 0 

4 eb41 3600 294.007.701 0,000877876  300 294.007.701 0,0020027 

 eb42 3600 681.387.528 0,000630482  300 681.387.522 0,00106812 

  eb43 3600 773.089.170 0,000474204  300 773.089.170 0,000983595 

 eb44 3600 666.072.934 0,00225416  300 666.072.934 0,00578 

  eb45 3600 11.247.655 0,00218717  300 11.247.655 0,00240944 

 

Table A1-5b η=30, τ=10 

 

 

    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ec11 1,2 630.023.784,30 0  1 630.023.784,30 0 

  ec12 1 1.642.944.910,00 0  0,7 1.642.944.910,00 0 

  ec13 0,7 1.809.774.300,00 0  0,7 1.809.774.300,00 0 

  ec14 0,7 1.745.108.806,00 0  0,8 1.745.108.806,00 0 

  ec15 2,6 23.548.763,17 0  2,5 23.548.763,17 0 

2 ec21 12,2 584.993.826,10 0  11,1 584.993.826,10 0 

  ec22 14 1.538.390.718,00 0  13 1.538.390.718,00 0 

  ec23 4,6 1.653.599.434,00 0  4 1.653.599.434,00 0 

  ec24 21,6 1.538.860.251,00 0  20 1.538.860.251,00 0 

  ec25 94,6 22.850.158,33 0  44 22.850.158,33 0 

4 ec41 3600 493.438.516,00 0,000516426  300 493.438.420,70 0,000166638 

  ec42 3600 1.390.491.275,00 0,000433422  300 1.390.491.275,00 0,000602792 

  ec43 3600 1.493.401.285,00 0,000365039  300 1.493.401.222,11 0,000236152 

  ec44 3600 1.398.673.198,00 0,00132109  300 1.398.673.161,57 0,000460532 

  ec45 3600 22.157.369,75 0,00078417   300 22.157.369,75 0,000100494 

 

Table A1-5c η=30, τ=20 
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    WITHOUT (l, S) CUTS   WITH (l, S) CUTS 

refinery exp't duration best sol'n gap (%)  duration best sol'n gap (%) 

1 ed11 1,1 980.947.801,30 0  1 980.947.801,30 0 

  ed12 1,3 2.626.700.398,00 0  1,1 2.626.700.398,00 0 

  ed13 1,1 2.761.191.015,00 0  1,1 2.761.191.015,00 0 

  ed14 1,2 2.871.287.461,00 0  1,1 2.871.287.461,00 0 

  ed15 3,3 35.956.220,58 0  1,1 35.956.220,58 0 

2 ed21 1,3 883.262.428,40 0  1,1 883.262.428,40 0 

  ed22 13,3 2.502.518.067,00 0  11 2.502.518.067,00 0 

  ed23 197,3 2.668.271.006,00 0  67,3 2.668.271.006,00 0 

  ed24 10,5 2.742.101.775,00 0  5,1 2.742.101.775,00 0 

  ed25 12,8 35.050.735,00 0  11,3 35.050.735,00 0 

4 ed41 3600 732.483.934,80 0,000292533  300 732.483.834,44 0,000905531 

  ed42 3600 2.309.743.795,00 0,000617352  300 2.309.743.689,13 0,000593759 

  ed43 3600 2.315.188.088,00 0,00087874  300 2.315.188.007,01 0,000520516 

  ed44 3600 2.499.453.434,00 0,00179219  300 2.499.453.434,00 0,000202116 

  ed45 3600 33.952.760,00 0,000756007   300 33.952.758,10 0,000193635 

 

Table A1-5d η=30, τ=30 
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Experiment No c h s p 

aa11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

aa12 U(1,3) U(1,6) U(1,4) U(12,22) 

aa13 U(1,3) U(1,6) U(1,9) U(13,25) 

aa14 U(1,4) U(1,8) U(1,5) U(150,900) 

aa15 U(1,3) U(1,6) U(1,22) U(10,25) 

aa21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

aa22 U(1,3) U(1,6) U(1,4) U(12,22) 

aa23 U(1,3) U(1,6) U(1,9) U(13,25) 

aa24 U(1,4) U(1,8) U(1,5) U(150,900) 

aa25 U(1,3) U(1,6) U(1,22) U(10,25) 

aa41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

aa42 U(1,3) U(1,6) U(1,4) U(12,22) 

aa43 U(1,3) U(1,6) U(1,9) U(13,25) 

aa44 U(1,4) U(1,8) U(1,5) U(150,900) 

aa45 U(1,3) U(1,6) U(1,22) U(10,25) 

ab11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ab12 U(1,3) U(1,6) U(1,4) U(12,22) 

ab13 U(1,3) U(1,6) U(1,9) U(13,25) 

ab14 U(1,4) U(1,8) U(1,5) U(150,900) 

ab15 U(1,3) U(1,6) U(1,22) U(10,25) 

ab21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ab22 U(1,3) U(1,6) U(1,4) U(12,22) 

ab23 U(1,3) U(1,6) U(1,9) U(13,25) 

ab24 U(1,4) U(1,8) U(1,5) U(150,900) 

ab25 U(1,3) U(1,6) U(1,22) U(10,25) 

ab41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ab42 U(1,3) U(1,6) U(1,4) U(12,22) 

ab43 U(1,3) U(1,6) U(1,9) U(13,25) 

ab44 U(1,4) U(1,8) U(1,5) U(150,900) 

ab45 U(1,3) U(1,6) U(1,22) U(10,25) 

ac11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ac12 U(1,3) U(1,6) U(1,4) U(12,22) 

ac13 U(1,3) U(1,6) U(1,9) U(13,25) 

ac14 U(1,4) U(1,8) U(1,5) U(150,900) 

ac15 U(1,3) U(1,6) U(1,22) U(10,25) 

ac21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ac22 U(1,3) U(1,6) U(1,4) U(12,22) 

ac23 U(1,3) U(1,6) U(1,9) U(13,25) 

ac24 U(1,4) U(1,8) U(1,5) U(150,900) 

ac25 U(1,3) U(1,6) U(1,22) U(10,25) 

ac41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ac42 U(1,3) U(1,6) U(1,4) U(12,22) 

ac43 U(1,3) U(1,6) U(1,9) U(13,25) 

ac44 U(1,4) U(1,8) U(1,5) U(150,900) 

ac45 U(1,3) U(1,6) U(1,22) U(10,25) 

 
Table A2-1a Distributions of Parameters 
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Experiment No c h s p 

ad11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ad12 U(1,3) U(1,6) U(1,4) U(12,22) 

ad13 U(1,3) U(1,6) U(1,9) U(13,25) 

ad14 U(1,4) U(1,8) U(1,5) U(150,900) 

ad15 U(1,3) U(1,6) U(1,22) U(10,25) 

ad21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ad22 U(1,3) U(1,6) U(1,4) U(12,22) 

ad23 U(1,3) U(1,6) U(1,9) U(13,25) 

ad24 U(1,4) U(1,8) U(1,5) U(150,900) 

ad25 U(1,3) U(1,6) U(1,22) U(10,25) 

ad41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ad42 U(1,3) U(1,6) U(1,4) U(12,22) 

ad43 U(1,3) U(1,6) U(1,9) U(13,25) 

ad44 U(1,4) U(1,8) U(1,5) U(150,900) 

ad45 U(1,3) U(1,6) U(1,22) U(10,25) 

ba11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ba12 U(1,3) U(1,6) U(1,4) U(12,22) 

ba13 U(1,3) U(1,6) U(1,9) U(13,25) 

ba14 U(1,4) U(1,8) U(1,5) U(150,900) 

ba15 U(1,3) U(1,6) U(1,22) U(10,25) 

ba21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ba22 U(1,3) U(1,6) U(1,4) U(12,22) 

ba23 U(1,3) U(1,6) U(1,9) U(13,25) 

ba24 U(1,4) U(1,8) U(1,5) U(150,900) 

ba25 U(1,3) U(1,6) U(1,22) U(10,25) 

ba41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ba42 U(1,3) U(1,6) U(1,4) U(12,22) 

ba43 U(1,3) U(1,6) U(1,9) U(13,25) 

ba44 U(1,4) U(1,8) U(1,5) U(150,900) 

ba45 U(1,3) U(1,6) U(1,22) U(10,25) 

bb11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bb12 U(1,3) U(1,6) U(1,4) U(12,22) 

bb13 U(1,3) U(1,6) U(1,9) U(13,25) 

bb14 U(1,4) U(1,8) U(1,5) U(150,900) 

bb15 U(1,3) U(1,6) U(1,22) U(10,25) 

bb21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bb22 U(1,3) U(1,6) U(1,4) U(12,22) 

bb23 U(1,3) U(1,6) U(1,9) U(13,25) 

bb24 U(1,4) U(1,8) U(1,5) U(150,900) 

bb25 U(1,3) U(1,6) U(1,22) U(10,25) 

bb41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bb42 U(1,3) U(1,6) U(1,4) U(12,22) 

bb43 U(1,3) U(1,6) U(1,9) U(13,25) 

bb44 U(1,4) U(1,8) U(1,5) U(150,900) 

bb45 U(1,3) U(1,6) U(1,22) U(10,25) 
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Experiment No c h s p 

bc11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bc12 U(1,3) U(1,6) U(1,4) U(12,22) 

bc13 U(1,3) U(1,6) U(1,9) U(13,25) 

bc14 U(1,4) U(1,8) U(1,5) U(150,900) 

bc15 U(1,3) U(1,6) U(1,22) U(10,25) 

bc21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bc22 U(1,3) U(1,6) U(1,4) U(12,22) 

bc23 U(1,3) U(1,6) U(1,9) U(13,25) 

bc24 U(1,4) U(1,8) U(1,5) U(150,900) 

bc25 U(1,3) U(1,6) U(1,22) U(10,25) 

bc41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bc42 U(1,3) U(1,6) U(1,4) U(12,22) 

bc43 U(1,3) U(1,6) U(1,9) U(13,25) 

bc44 U(1,4) U(1,8) U(1,5) U(150,900) 

bc45 U(1,3) U(1,6) U(1,22) U(10,25) 

bd11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bd12 U(1,3) U(1,6) U(1,4) U(12,22) 

bd13 U(1,3) U(1,6) U(1,9) U(13,25) 

bd14 U(1,4) U(1,8) U(1,5) U(150,900) 

bd15 U(1,3) U(1,6) U(1,22) U(10,25) 

bd21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bd22 U(1,3) U(1,6) U(1,4) U(12,22) 

bd23 U(1,3) U(1,6) U(1,9) U(13,25) 

bd24 U(1,4) U(1,8) U(1,5) U(150,900) 

bd25 U(1,3) U(1,6) U(1,22) U(10,25) 

bd41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

bd42 U(1,3) U(1,6) U(1,4) U(12,22) 

bd43 U(1,3) U(1,6) U(1,9) U(13,25) 

bd44 U(1,4) U(1,8) U(1,5) U(150,900) 

bd45 U(1,3) U(1,6) U(1,22) U(10,25) 

ca11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ca12 U(1,3) U(1,6) U(1,4) U(12,22) 

ca13 U(1,3) U(1,6) U(1,9) U(13,25) 

ca14 U(1,4) U(1,8) U(1,5) U(150,900) 

ca15 U(1,3) U(1,6) U(1,22) U(10,25) 

ca21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ca22 U(1,3) U(1,6) U(1,4) U(12,22) 

ca23 U(1,3) U(1,6) U(1,9) U(13,25) 

ca24 U(1,4) U(1,8) U(1,5) U(150,900) 

ca25 U(1,3) U(1,6) U(1,22) U(10,25) 

ca41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ca42 U(1,3) U(1,6) U(1,4) U(12,22) 

ca43 U(1,3) U(1,6) U(1,9) U(13,25) 

ca44 U(1,4) U(1,8) U(1,5) U(150,900) 

ca45 U(1,3) U(1,6) U(1,22) U(10,25) 
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Experiment No c h s p 

cb11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cb12 U(1,3) U(1,6) U(1,4) U(12,22) 

cb13 U(1,3) U(1,6) U(1,9) U(13,25) 

cb14 U(1,4) U(1,8) U(1,5) U(150,900) 

cb15 U(1,3) U(1,6) U(1,22) U(10,25) 

cb21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cb22 U(1,3) U(1,6) U(1,4) U(12,22) 

cb23 U(1,3) U(1,6) U(1,9) U(13,25) 

cb24 U(1,4) U(1,8) U(1,5) U(150,900) 

cb25 U(1,3) U(1,6) U(1,22) U(10,25) 

cb41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cb42 U(1,3) U(1,6) U(1,4) U(12,22) 

cb43 U(1,3) U(1,6) U(1,9) U(13,25) 

cb44 U(1,4) U(1,8) U(1,5) U(150,900) 

cb45 U(1,3) U(1,6) U(1,22) U(10,25) 

cc11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cc12 U(1,3) U(1,6) U(1,4) U(12,22) 

cc13 U(1,3) U(1,6) U(1,9) U(13,25) 

cc14 U(1,4) U(1,8) U(1,5) U(150,900) 

cc15 U(1,3) U(1,6) U(1,22) U(10,25) 

cc21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cc22 U(1,3) U(1,6) U(1,4) U(12,22) 

cc23 U(1,3) U(1,6) U(1,9) U(13,25) 

cc24 U(1,4) U(1,8) U(1,5) U(150,900) 

cc25 U(1,3) U(1,6) U(1,22) U(10,25) 

cc41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cc42 U(1,3) U(1,6) U(1,4) U(12,22) 

cc43 U(1,3) U(1,6) U(1,9) U(13,25) 

cc44 U(1,4) U(1,8) U(1,5) U(150,900) 

cc45 U(1,3) U(1,6) U(1,22) U(10,25) 

cd11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cd12 U(1,3) U(1,6) U(1,4) U(12,22) 

cd13 U(1,3) U(1,6) U(1,9) U(13,25) 

cd14 U(1,4) U(1,8) U(1,5) U(150,900) 

cd15 U(1,3) U(1,6) U(1,22) U(10,25) 

cd21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cd22 U(1,3) U(1,6) U(1,4) U(12,22) 

cd23 U(1,3) U(1,6) U(1,9) U(13,25) 

cd24 U(1,4) U(1,8) U(1,5) U(150,900) 

cd25 U(1,3) U(1,6) U(1,22) U(10,25) 

cd41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

cd42 U(1,3) U(1,6) U(1,4) U(12,22) 

cd43 U(1,3) U(1,6) U(1,9) U(13,25) 

cd44 U(1,4) U(1,8) U(1,5) U(150,900) 

cd45 U(1,3) U(1,6) U(1,22) U(10,25) 
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Experiment No c h s p 

da11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

da12 U(1,3) U(1,6) U(1,4) U(12,22) 

da13 U(1,3) U(1,6) U(1,9) U(13,25) 

da14 U(1,4) U(1,8) U(1,5) U(150,900) 

da15 U(1,3) U(1,6) U(1,22) U(10,25) 

da21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

da22 U(1,3) U(1,6) U(1,4) U(12,22) 

da23 U(1,3) U(1,6) U(1,9) U(13,25) 

da24 U(1,4) U(1,8) U(1,5) U(150,900) 

da25 U(1,3) U(1,6) U(1,22) U(10,25) 

da41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

da42 U(1,3) U(1,6) U(1,4) U(12,22) 

da43 U(1,3) U(1,6) U(1,9) U(13,25) 

da44 U(1,4) U(1,8) U(1,5) U(150,900) 

da45 U(1,3) U(1,6) U(1,22) U(10,25) 

db11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

db12 U(1,3) U(1,6) U(1,4) U(12,22) 

db13 U(1,3) U(1,6) U(1,9) U(13,25) 

db14 U(1,4) U(1,8) U(1,5) U(150,900) 

db15 U(1,3) U(1,6) U(1,22) U(10,25) 

db21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

db22 U(1,3) U(1,6) U(1,4) U(12,22) 

db23 U(1,3) U(1,6) U(1,9) U(13,25) 

db24 U(1,4) U(1,8) U(1,5) U(150,900) 

db25 U(1,3) U(1,6) U(1,22) U(10,25) 

db41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

db42 U(1,3) U(1,6) U(1,4) U(12,22) 

db43 U(1,3) U(1,6) U(1,9) U(13,25) 

db44 U(1,4) U(1,8) U(1,5) U(150,900) 

db45 U(1,3) U(1,6) U(1,22) U(10,25) 

dc11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

dc12 U(1,3) U(1,6) U(1,4) U(12,22) 

dc13 U(1,3) U(1,6) U(1,9) U(13,25) 

dc14 U(1,4) U(1,8) U(1,5) U(150,900) 

dc15 U(1,3) U(1,6) U(1,22) U(10,25) 

dc21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

dc22 U(1,3) U(1,6) U(1,4) U(12,22) 

dc23 U(1,3) U(1,6) U(1,9) U(13,25) 

dc24 U(1,4) U(1,8) U(1,5) U(150,900) 

dc25 U(1,3) U(1,6) U(1,22) U(10,25) 

dc41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

dc42 U(1,3) U(1,6) U(1,4) U(12,22) 

dc43 U(1,3) U(1,6) U(1,9) U(13,25) 

dc44 U(1,4) U(1,8) U(1,5) U(150,900) 

dc45 U(1,3) U(1,6) U(1,22) U(10,25) 

 
 
Table A2-1e Distributions of Parameters 



 
 
 
 
 
 
Appendix-2-Distributions of Parameters 

 

 65 

 
Experiment No c h s p 

dd11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

dd12 U(1,3) U(1,6) U(1,4) U(12,22) 

dd13 U(1,3) U(1,6) U(1,9) U(13,25) 

dd14 U(1,4) U(1,8) U(1,5) U(150,900) 

dd15 U(1,3) U(1,6) U(1,22) U(10,25) 

dd21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

dd22 U(1,3) U(1,6) U(1,4) U(12,22) 

dd23 U(1,3) U(1,6) U(1,9) U(13,25) 

dd24 U(1,4) U(1,8) U(1,5) U(150,900) 

dd25 U(1,3) U(1,6) U(1,22) U(10,25) 

dd41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

dd42 U(1,3) U(1,6) U(1,4) U(12,22) 

dd43 U(1,3) U(1,6) U(1,9) U(13,25) 

dd44 U(1,4) U(1,8) U(1,5) U(150,900) 

dd45 U(1,3) U(1,6) U(1,22) U(10,25) 

ea11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ea12 U(1,3) U(1,6) U(1,4) U(12,22) 

ea13 U(1,3) U(1,6) U(1,9) U(13,25) 

ea14 U(1,4) U(1,8) U(1,5) U(150,900) 

ea15 U(1,3) U(1,6) U(1,22) U(10,25) 

ea21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ea22 U(1,3) U(1,6) U(1,4) U(12,22) 

ea23 U(1,3) U(1,6) U(1,9) U(13,25) 

ea24 U(1,4) U(1,8) U(1,5) U(150,900) 

ea25 U(1,3) U(1,6) U(1,22) U(10,25) 

ea41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ea42 U(1,3) U(1,6) U(1,4) U(12,22) 

ea43 U(1,3) U(1,6) U(1,9) U(13,25) 

ea44 U(1,4) U(1,8) U(1,5) U(150,900) 

ea45 U(1,3) U(1,6) U(1,22) U(10,25) 

eb11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

eb12 U(1,3) U(1,6) U(1,4) U(12,22) 

eb13 U(1,3) U(1,6) U(1,9) U(13,25) 

eb14 U(1,4) U(1,8) U(1,5) U(150,900) 

eb15 U(1,3) U(1,6) U(1,22) U(10,25) 

eb21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

eb22 U(1,3) U(1,6) U(1,4) U(12,22) 

eb23 U(1,3) U(1,6) U(1,9) U(13,25) 

eb24 U(1,4) U(1,8) U(1,5) U(150,900) 

eb25 U(1,3) U(1,6) U(1,22) U(10,25) 

eb41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

eb42 U(1,3) U(1,6) U(1,4) U(12,22) 

eb43 U(1,3) U(1,6) U(1,9) U(13,25) 

eb44 U(1,4) U(1,8) U(1,5) U(150,900) 

eb45 U(1,3) U(1,6) U(1,22) U(10,25) 
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Experiment No c h s p 

ec11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ec12 U(1,3) U(1,6) U(1,4) U(12,22) 

ec13 U(1,3) U(1,6) U(1,9) U(13,25) 

ec14 U(1,4) U(1,8) U(1,5) U(150,900) 

ec15 U(1,3) U(1,6) U(1,22) U(10,25) 

ec21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ec22 U(1,3) U(1,6) U(1,4) U(12,22) 

ec23 U(1,3) U(1,6) U(1,9) U(13,25) 

ec24 U(1,4) U(1,8) U(1,5) U(150,900) 

ec25 U(1,3) U(1,6) U(1,22) U(10,25) 

ec41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ec42 U(1,3) U(1,6) U(1,4) U(12,22) 

ec43 U(1,3) U(1,6) U(1,9) U(13,25) 

ec44 U(1,4) U(1,8) U(1,5) U(150,900) 

ec45 U(1,3) U(1,6) U(1,22) U(10,25) 

ed11 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ed12 U(1,3) U(1,6) U(1,4) U(12,22) 

ed13 U(1,3) U(1,6) U(1,9) U(13,25) 

ed14 U(1,4) U(1,8) U(1,5) U(150,900) 

ed15 U(1,3) U(1,6) U(1,22) U(10,25) 

ed21 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ed22 U(1,3) U(1,6) U(1,4) U(12,22) 

ed23 U(1,3) U(1,6) U(1,9) U(13,25) 

ed24 U(1,4) U(1,8) U(1,5) U(150,900) 

ed25 U(1,3) U(1,6) U(1,22) U(10,25) 

ed41 U(1,3) U(1,6) U(1,4) U(1000,2000) 

ed42 U(1,3) U(1,6) U(1,4) U(12,22) 

ed43 U(1,3) U(1,6) U(1,9) U(13,25) 

ed44 U(1,4) U(1,8) U(1,5) U(150,900) 

ed45 U(1,3) U(1,6) U(1,22) U(10,25) 
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