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Inference Attacks against Kin  
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Genomic data poses serious interdependent risks: your data might also leak information about your 
family members’ data. Methods attackers use to infer genomic information, as well as recent proposals 
for enhancing genomic privacy, are discussed.

I ndividuals desiring to control their personal data face 
significant interdependent privacy risks—risks that 

involve the leakage of one’s personal data due to data 
shared by other individuals. With recent advances in 
whole genome sequencing, genomic data in particular 
poses serious interdependent privacy risks.

Genomic data has many unique characteristics: it is 
highly valuable, is an individual’s distinctive fingerprint, 
rarely changes throughout an individual’s lifetime, is nonre-
vocable, and includes sensitive information about an indi-
vidual (such as disease status or physical characteristics).1,2 
But, the main reason genomic data poses interdependent 
privacy risks is that it’s correlated within family members. 
Thus, one person’s genome-related data (for instance, 
raw genome, variant call format file, genomic test results, 
or aggregate statistics) might leak information about the 
genome-related data of his or her family members.

This issue goes all the way back to the DNA dragnets 
that first raised serious concerns among privacy advo-
cates. Here, we present recent developments on the 
information security front, including

■■ how attackers can infer an individual’s genomic 
data from the partial genomes of his or her family 

members, background knowledge about genomics 
(simple statistics, high-order correlations, and so on), 
and the individual’s phenotypic information;

■■ how attackers can determine an individual’s member-
ship in a particular genomic dataset (for example, a 
beacon) from only the results of basic queries to that 
dataset and partial genomic knowledge about the 
individual’s family members;

■■ how attackers can deanonymize the deidentified 
genomes in a public dataset by using the kinship infor-
mation; and

■■ how attackers can efficiently infer kinship from public 
anonymous genomic databases.

Background
Before discussing these developments in further detail, 
we introduce the important genomic elements relevant 
to this article.

Genomic Elements
The vast majority (approximately 99.5 percent) of 
DNA is similar among human beings. Of the remaining 
0.5 percent, the most common variant in the human 
genome is called a single nucleotide polymorphism 
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(SNP). An SNP is a variation of a nucleotide at a 
specific position in the genome that affects at least 
1 percent of individuals in a given population (typi-
cally referred to as a common SNP). As of November 
2016, the Single Nucleotide Polymorphism database 
(dbSNP; www.ncbi.nlm.nih.gov/projects/SNP) lists 
approximately 154 million common SNPs in human 
beings. An SNP, like any other base pair, has two 
nucleotides. Each nucleotide can take either the major 
or minor allele. The major allele is the most commonly 
observed nucleotide in a given population, whereas 
the minor is the rare nucleotide. If we represent the 
major allele as B and the minor allele as b, an SNP can 
take values in {BB; Bb; bb}, where B and b take val-
ues in the alphabet {A; T; G; C}. SNP values are also 
known as an individual’s genotype.

SNPs are especially sensitive from a privacy perspec-
tive because many of these polymorphic positions are 
associated with severe diseases. For example, carrying 
particular values at two SNPs (rs7412 and rs429358) 
on the Apolipoprotein E (ApoE) gene indicates an 
increased risk for Alzheimer’s disease.

Due to genetic inheritance laws, family members 
share more SNPs than unrelated individuals. Thus, 
SNPs can be used to infer kinship between two individu-
als. Moreover, kinship information can infer hidden (or 
unknown) SNP values of relatives. Also commonly used 
for kinship inference are short tandem repeats (STRs). 
STRs consist of two to 13 nucleotides repeated numer-
ous times in a row on the DNA strand. For instance, 
GATAGATAGATA is an STR of period four repeat-
ing three times. STRs have a higher mutation rate than 
other areas of DNA, leading to high genetic diversity.

Reproduction
Mendel’s first law of inheritance—the law of segrega-
tion—states that alleles are passed independently from 
parents to child for different meioses (children). More-
over, at each SNP position, the child inherits one allele 
from the mother and one from the father. Each allele 
from the parents is randomly selected from their two 
alleles with probability 0.50. Hence, if the mother has 
an SNP value of BB and the father has an SNP value of 
Bb, the child will inherit an SNP equal to BB or Bb, both 
with probability 0.50. If both parents carry an SNP equal 
to Bb, then the child’s SNP will take a value of BB or 
bb with probability 0.25, and value Bb with probability 
0.50. Finally, given both parents’ genomes, the child’s 
genome is independent of all other ancestors’ genomes.

One exception to Mendel’s law is the Y chromosome. 
The Y chromosome is inherited (almost) intact along a 
family’s male line. Thus, a father’s Y chromosome is the 
same as his son’s Y chromosome. Due to this property, 
multiple genealogy companies offer services to reunite 

distant patrilineal relatives by genotyping a few dozen 
highly polymorphic STRs across the Y chromosome 
(called Y-STRs).

Another exception to the law of segregation is mito-
chondrial DNA (mtDNA), which is the DNA located 
in mitochondria of cells. mtDNA is inherited only from 
the mother, and hence enables researchers to trace a 
family’s maternal lineage.

Inference Attacks on Kin  
Genomic Privacy
In this section, we discuss the main threats against kin 
genomic privacy.

DNA Dragnets
The privacy risks posed by genomic data’s collection 
and use in forensics have been widely discussed in the 
context of DNA dragnets. DNA dragnets involve col-
lecting tissue or saliva samples from people in a cer-
tain region to hunt criminals. The collected biological 
samples are then used to construct DNA databases. 
Although collecting such data from suspected criminals 
or from those who’ve given their informed consent is 
acceptable, there are still serious privacy implications.

A main concern about DNA dragnets is the condi-
tions under which law enforcement is legally allowed to 
collect individuals’ biological samples. Under the US 
Fourth Amendment, law enforcement must have a rea-
sonable suspicion that a person is involved in a crime 
before requiring a search or seizure. However, the rules 
for DNA collection are still uncertain. For instance, in 
Melbourne, Florida, riding a bike at night without two 
functioning lights could lead to a DNA swab.3

Another concern is the duration such samples are 
kept in DNA databases and whether law enforcement 
can use the samples for other investigations. In 2015, 
Maryland’s Supreme Court ruled that law enforcement 
could use DNA voluntarily provided to police investi-
gating one crime to solve another.3

Also of concern is using research databases that 
collect biological samples in criminal investigations—
without informing the donors about such use.4 Such 
forensic investigations have occurred in Australia, New 
Zealand, Norway, the UK, and Sweden for criminal 
identification, disaster victim identification, and pater-
nity identification. A prominent example was the use of 
Sweden biobank blood samples to investigate the 2003 
murder of a Swedish foreign minister.

One last serious privacy concern about DNA drag-
nets relates to kinship: law enforcement might use an 
individual’s DNA from a DNA database to accuse a 
family member whose biological sample was never 
collected. Some US states already allow such famil-
ial searching of DNA databases. However, there are 
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concerns over whether the right to privacy is violated 
in the process.

DNA technology used by genealogists to iden-
tify unknown relatives and DNA dragnets used by law 
enforcement have been successfully combined to track 
down criminals. For example, police spent nearly 20 
years (starting in the 1970s) chasing the BTK (“bind, 
torture, and kill”) serial killer.5 Use of DNA in foren-
sics and familial DNA connections finally helped them 
identify the killer. Although the police already had the 
suspect’s DNA samples from the crime scenes and 
strong evidence that BTK was a man named Dennis 
Rader, they didn’t have the reasonable doubt neces-
sary to get a DNA swab from Rader. Police learned that 
Rader’s daughter had recently been to the hospital for 
a pap smear. Thus, via a judge’s order (but without the 
daughter’s knowledge), the police received a sample of 
the daughter’s DNA from the hospital, determined the 
familial match between that sample and the crime scene 
DNA samples, and eventually caught Dennis Rader.

On one hand, familial search in forensics DNA data-
bases is a powerful tool for the police. Experts state that 
this technique increases the number of suspects identi-
fied through DNA by 40 percent.3 On the other hand, 
privacy advocates question the legitimacy of obtaining 
information with this technique because it turns family 
members into genetic informants without their knowl-
edge or consent.

Quantifying Kin Genomic Privacy
In previous work, we provided a quantification frame-
work for assessing the effect on kin genomic privacy of 
family members revealing their genomes.6 To precisely 
quantify privacy, we mimicked an adversary who has 
access to some genome(s) in a given family and wants 
to infer the genomes of other family members. To do 
so, the adversary relies on the intergenome correlations 
(data between relatives); the observed genomic and 
phenotypic data; and, potentially, intragenome corre-
lations (so-called linkage disequilibrium), typically if a 
genome is only partially observed. Our efficient infer-
ence algorithms were based on belief propagation and 
graphical models. Belief propagation let us reduce the 
complexity of computing marginal distributions of ran-
dom variables from time exponential to linear in the 
number of considered variables.

Once the belief propagation algorithm output the 
posterior marginal probabilities given the observed 
genome(s) and phenotype(s), we quantified the change 
in genomic privacy with respect to the prior probabil-
ity distribution given by general population statistics. 
To do so, we relied on the expected estimation error 
and success rate (which requires us to know the ground 
truth, or actual SNP value) and on entropy-based 

metrics, which measure the adversary’s uncertainty and 
don’t require the ground truth.

We evaluated the proposed inference attacks and 
showed their efficiency and accuracy by using real 
genomic data from CEPH/Utah Pedigree 1463.7 Spe-
cifically, we selected 11 family members: the four 
grandparents (GP1 to GP4), the two parents (P5 and 
P6), and the five children (C7 to C11; see Figure 1). 
We focus here on the results of all common SNPs avail-
able on chromosome 1 (approximately 80,000). Table 1 
shows the evolution of the expected estimation error 
and the success rate (the probability of inferring the 
correct SNP value) given the observation of zero to 
three different relatives. The three main rows represent 
the targeted individual (whose genomic data is hidden), 
and the columns represent the observed genomic data 
used to infer the hidden, targeted data. Looking at the 
P5 row, we see that we can decrease the average error 
by 50 percent by observing only P5’s two parents, and 
by even more if we also observe one of his children. 
Note that the proportion of SNPs inferred with suc-
cess greater than 0.90 increases from 20 to 57 percent 
by observing P5’s parents. This proportion increases to 
87 percent when seven of his relatives are observed (not 
shown in table). This clearly demonstrates that genomic 
privacy can be dramatically damaged by others’ sharing 
behavior.

Effect of High-Order Correlations  
in the Genome
To analyze the use of high-order correlations in the 
genome to improve existing work on inference attacks 
on genomic privacy, we also considered the phenotype–
genotype relationships (such as physical traits or dis-
ease information).8 We used the complex correlations 
in the genome by applying Markov and recombination 
models between the haplotypes—nucleotides on a sin-
gle chromosome that are so closely linked that they’re 

GP1 GP2

P5

GP3 GP4

P6

C7 C8 C9 C10 C11

Figure 1. The CEPH/Utah Pedigree 1463 family tree 
consisting of 11 family members, which includes four 
grandparents (GP1 to GP4), two parents (P5 and P6), and 
five children (C7 to C11).8
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usually inherited as a unit. Then, similar to existing 
work,6 we proposed an efficient graph-based, iterative 
message–passing algorithm to consider all the afore-
mentioned background information for the inference. 
Overall, our results show that an attacker’s inference 
power significantly improves by using complex correla-
tions and phenotype information along with informa-
tion about family bonds.

For evaluation, we focused on 100 neighboring SNPs 
on the CEPH/Utah Pedigree 1463’s DNA sequence 
on the 22nd chromosome. Using data from the 1000 
Genomes Project (www.internationalgenome.org) 
and HapMap (www.ncbi.nlm.nih.gov/genome/probe 
/doc/ProjHapmap.shtml), we modeled the genome’s 
higher-order correlations (Markov and recombination 
models).

Among the 100 SNPs, we randomly hid 50 of the 
father’s SNPs and tried to infer them by gradually 
increasing the attacker’s background information. We 
also assumed that the attacker knew three of each fam-
ily member’s phenotypes associated with the consid-
ered SNPs. We began revealing 50 random SNPs (out of 
100) of other family members, starting from the most 
distant to the father in terms of number of family tree 

hops. To quantify genomic privacy, we used two met-
rics: estimation error and entropy.

Figure 2 shows our results for the attacker’s error 
(we achieved similar results for the entropy-based  
metric). The case of k 5 1 (Markov chain with order 1 
with no phenotype information) represents our previ-
ous work.6 Our results show that high-order correlations 
and phenotype information contributed significantly to 
the attacker’s inference power. For the Markov chain 
model, the attacker’s inference didn’t improve much for 
orders of Markov chain (k) greater than 3. The recom-
bination model increased the attacker’s inference power 
more than the Markov chain model.

Suppose we’re working on a dataset consisting of 
a trio (father, mother, and child) and trying to infer 
a particular SNP of the father given the mother’s and 
child’s SNPs. Following Mendel’s law, if the child is 
homozygous (carrying two identical nucleotides) in 
that SNP position, we can easily infer the nucleotide 
in one strand of the father. However, if both the child 
and the mother are heterozygous (carrying two differ-
ent nucleotides) in that SNP position, we can’t get any 
information about the nucleotide passed on from the 
father to the child.6

Table 1. Absolute and relative levels of genomic privacy of the grandparent (GP1), parent (P5),  
and child (C7) whose genome is hidden (H), given the observation () of zero to three relatives.

H/O Error*  P5 P5, GP2 C7, GP2 C7, C8, GP2

GP1 Absolute average error 0.446 0.322 0.309 0.404 0.385

Relative average error (%) 100 72 69 91 86

Single nucleotide polymorphisms 
(SNPs) with success rate .0.90 (%)

20 28 29 23 23

 GP1, GP2 C7, C8 C7, P6 GP1, GP2, C7

P5 Absolute average error 0.480 0.242 0.286 0.312 0.203

Relative average error (%) 100 50 60 65 42

SNPs with success rate .0.90 (%) 20 57 38 29 57

 P5 P5, C8 P5, P6 P5, P6, C8

C7 Absolute average error 0.489 0.344 0.301 0.182 0.182

Relative average error (%) 100 70 62 37 37

SNPs with success rate .0.90 (%) 20 28 40 64 64

*We use the absolute error to measure the genomic privacy of GP1, P5, and C7 for each individual, the error relative to the initial error 
(without observing any data) as a percentage, and the proportion of SNPs with a success rate over 0.90. The success rate is the probability 
of inferring the correct SNP value.
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We can ameliorate this limitation by using haplotype 
information. Haplotypes are identical by descent (IBD) 
if they’re identical and inherited from a common ances-
tor. There are several ways to detect IBD.9,10 Previously, 
we used Beagle11 for this and showed IBD’s contribu-
tion to the inference attack.12 Beagle allows SNPs to be 
in linkage disequilibrium (LD) by modeling haplotype 
frequencies.

By employing this haplotype information, we intro-
duced a new inference attack to find one of the parent’s 
SNPs by using the genomes of the other parent and the 
children. We used the regions that are inherited together 
and worked from the idea that if the child’s SNPs in 
a haplotype block aren’t coming from the mother’s 
genome, then they’re coming from the father’s. Then, 
we deduced that the child’s other haplotype is inherited 
from the father. We evaluated our approach on CEPH/
Utah Pedigree 1463 dataset, and showed that accurate 
inference about the father’s SNPs could be accom-
plished using less data (that is, less genomic data from 
fewer family members) than previously.6

Membership Inference in  
Genomic Databases
In 2008, Nils Homer and his colleagues identified an 
attack against genomic privacy that determined a tar-
geted individual’s membership in a genomic database 
based on summary statistics about this database.13 By 
comparing a significant portion of the targeted indi-
vidual’s SNPs with the released statistics, the adversary 
could infer with high precision whether the individual 
was a member of the database.

The following year, Sriram Sankararaman and 
his colleagues proposed another statistical infer-
ence method, one based on likelihood ratio, to derive 
a theoretical bound on the attack’s true-positive at a 
given false-positive rate.14 They showed that it’s pos-
sible to detect relatives of the target whose SNPs are 
available to the adversary. Notably, they found that 
detecting a target’s first-order relative (sibling, child, 
or parent) requires approximately four times as many 
SNPs as detecting the target with the same bound on 
false-positive and false-negative rates. Moreover, they 
empirically demonstrated that if the adversary has 
access to approximately 33,000 independent common 
SNPs, the true-positive rate decreases from 0.95 (for 
detecting the original individual) to 0.22 for detecting a 
first-order relative, and 0.03 for a second-order relative, 
at a false-positive rate of 10–3.

More recently, Suyash Shringarpure and Carlos  
Bustamante developed an attack against genomic data- 
sharing beacons.15 Beacons are webservers that answer 
allele presence queries such as “Do you have a genome 
that has a specific nucleotide (A) at a specific genomic 

position (position 11,272 on chromosome 1)?” with 
either “yes” or “no.” By relying on a likelihood-ratio test, 
the authors showed that the responses to such queries 
could be used to reidentify individuals in a beacon.

Moreover, Shringarpure and Bustamante showed 
that relatives are also prone to such a reidentification 
attack. Similar to Sankararaman and his colleagues, the 
authors used a single parameter to model the degree of 
relatedness (the probability that two individuals share 
an allele at a single SNP: 1.00 for identical twins, 0.50 
for parent–offspring and sibling pairs, 0.25 for first cous-
ins, and so on) and derive the updated likelihood-ratio 
test as a function of this parameter. Using simulated 
data, they showed that in a beacon with 1,000 individu-
als, target reidentification was possible—at a more than 
0.95 true-positive rate and 0.05 false-positive rate—
with only 5,000 queries; first-order relative reidenti-
fication required approximately 40,000 queries. The 
true-positive rate dropped to 0.50 for second-order rel-
atives, and approximately 0.23 for third-order relatives, 
with 40,000 queries.

Deanonymizing Publicly Available  
Genomic Datasets
As discussed, the Y chromosome is (almost) preserved 
along the male line of a given family. Thus, for commu-
nities in which last name is also preserved along the 
male line, the Y chromosome and last names are corre-
lated. Such correlation can be accessed through public 
genealogy databases.
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Figure 2. Decrease in father’s genomic privacy by attacker’s incorrectness.  
We revealed partial genomes of other family members for different high-order 
correlation models in the genome. MC is Markov chain model (with different 
orders).
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Melissa Gymrek and her colleagues recently showed 
that individuals’ last names could be recovered by 
querying recreational genealogy databases with their 
Y-STRs.16 Furthermore, the combination of last name 
with other auxiliary information such as age and state 
(which can be easily obtained from public resources) 
could be used to triangulate the target’s identity. Even-
tually, such triangulation would lead an attacker to link 
the anonymized genomic data stored on a public reposi-
tory to the donor’s real identity.

The authors used the public genealogy databases 
Ysearch (www.ysearch.org) and SMGF (www.smgf 
.org), both of which are free and have built-in search 
engines. When users input their (or someone else’s) 
Y-STR profile, the database returns the last name of the 
corresponding donor. Gymrek and her colleagues also 
assumed that anonymized genomic data (from which 
they obtained the target’s Y-STR profile) is available 
with the target’s birth year and state of residency. Note 
that the US’s Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) doesn’t protect these two 
pseudoidentifiers.

Finally, the authors determined the target’s real 
identity by entering the target’s last name, birth year, 
and state of residency into online public record search 
engines. They showed that this combination yielded a 
median result set (the set containing potential donors of 
a given anonymized genome) of 12. They also reported 
five successful surname inferences—in which the anon-
ymized genome’s donor could be uniquely identified—
from Illumina datasets of three large families that were 
part of the 1000 Genomes Project, which eventually 
exposed nearly 50 research participants’ identities.

Countermeasures
Here, we briefly discuss some potential countermea-
sures against these privacy risks.

Cryptography-Based Solutions
Keeping genomic data in encrypted form, instead 
of making it publicly available, and providing query 
results only to specific individuals (such as patients, 
medical centers, or researchers) might mitigate some 
of the aforementioned attacks. Cryptography-based 
techniques can protect both kin and personal genomic 
privacy. To this end, researchers have proposed crypto-
graphic solutions for different query types.

There’s been a significant amount of work on privacy- 
preserving pattern matching and the comparison of 
genomic sequences. Juan Ramon Troncoso-Pastoriza 
and his colleagues proposed an algorithm for private 
string searching on the DNA sequence by using a finite 
state machine.17 Their work was revisited by Marina 
Blanton and Mehrdad Aliasgari, who developed an 

efficient method for sequence comparison using gar-
bled circuits.18 Furthermore, Muhammad Naveed and 
his colleagues proposed a scheme based on functional 
encryption for privacy-preserving similarity tests on 
genomic data.19 Recently, Xiao Shaun Wang and his  
colleagues proposed an efficient privacy-preserving 
protocol to find genetically similar patients in a distrib-
uted environment.20

Other works have focused on private clinical genom-
ics. Emiliano De Cristofaro and his colleagues pro-
posed a secure protocol between two parties that tests 
genomic sequences without leaking private information 
about the genomic sequence or the test’s nature.21 Pierre 
Baldi and his colleagues used private-set intersection to 
present an effective algorithm for privacy-preserving 
clinical tests and direct-to-consumer methods on DNA 
sequences.22 Rui Wang and his colleagues proposed 
computing on genomic data by distributing the task 
between a data provider and consumer through pro-
gram specialization.23 Erman Ayday and his colleagues 
designed a scheme that protects the privacy of users’ 
genomic data while enabling medical units to access the 
data to conduct medical tests or develop personalized 
medicine methods.24 Finally, Zhicong Huang and his 
colleagues developed an information-theoretical tech-
nique to securely store genomic data.25

One last line of investigation has explored the use of 
cryptography-based techniques such as homomorphic 
encryption, secure hardware, and secure multiparty 
computation.26,27

Differential Privacy–Based Solutions
Cryptography-based techniques help individuals query 
genomic databases in a privacy-preserving way. How-
ever, such solutions don’t prevent an attacker from mak-
ing inferences from the results of such queries. As for 
cryptographic mechanisms, the techniques for mitigat-
ing membership inference were developed to protect 
personal genomic privacy in general. However, differ-
ential privacy, a well-known technique for answering 
statistical queries in a privacy-preserving manner,28 can 
be easily adapted to preserve kin genomic privacy at a 
lower cost for utility because membership inference is 
more successful for individuals whose genomic data  
is known than for their kin.

To prevent such attacks, differential privacy has been 
used to compose privacy-preserving query mecha-
nisms for genome-wide association study (GWAS) 
settings.29,30 Caroline Uhler and her colleagues pro-
posed methods for releasing differentially private 
minor allele frequencies (MAFs), chi-square statistics, 
p-values, top-k most relevant SNPs to a specific pheno-
type, and specific correlations between particular SNP 
pairs.29 These methods are notable because traditional 
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differential privacy techniques would be unsuitable: the 
number of correlations studied in GWAS is much larger 
than the number of people in the study. However, dif-
ferential privacy is typically based on a mechanism that 
invokes Laplacian noise and, thus, requires a very large 
number of research participants to guarantee acceptable 
privacy and utility levels.

Aaron Johnson and Vitaly Shmatikov explained that 
computing the number of relevant SNPs and the pairs 
of correlated SNPs is the goal of a typical GWAS.30 
They provided a distance score mechanism to add noise 
to the output. All relevant queries required by a typical 
GWAS are supported, including the number of SNPs 
associated with a disease and the most significant SNPs’ 
locations. Empirical analysis suggests that the new dis-
tance score–based, differentially private queries pro-
duced better, though still far from acceptable, utility for 
a typical GWAS. Differential privacy might also be a 
solution for the beacon attack, with a tradeoff in utility.

Optimization-Based Solutions
Differential privacy techniques perturb the data before 
releasing it, and cryptographic techniques are gener-
ally too inefficient for research settings. To avoid these 
issues, some individuals might decide to publicly share 
their data in clear (without encryption), for example, 
to help medical research progress. In a previous work, 
we proposed an optimization-based mechanism for 
reaching a suitable tradeoff between shared SNPs’ 
usefulness and family members’ genomic privacy.31 
Optimization-based solutions could potentially mitigate 
all the attacks we’ve discussed. The optimization-based 
solution we discuss subsequently is particularly tailored 
to inference attacks.

Consider individuals who want to share their 
genome, yet are concerned about the subsequent pri-
vacy risks for themselves and their family. We designed 
a system that maximizes disclosure utility without 
exceeding a certain level of privacy loss within a family, 
considering kin genomic privacy, the family members’ 
personal privacy preferences, the SNPs’ privacy sensi-
tivities, the correlations between SNPs, and the SNPs’ 
research utility. Our solution automatically evaluates the 
privacy risks for all family members and decides which 
SNPs to disclose. It relies on the quantification frame-
work discussed earlier and combinatorial optimization.

First, we defined a linear optimization problem that 
aims to maximize the utility of disclosed SNPs. Util-
ity increases linearly with the number of shared SNPs, 
while satisfying all family members’ genomic and health 
privacy constraints. This problem is very similar to the 
optimization literature’s multidimensional knapsack 
problem; we relied on the branch-and-bound algorithm 
to find the optimal SNP subset to be disclosed. Second, 

we applied a fine-tuning algorithm to account for the 
impact of intragenome correlations (linkage disequilib-
rium) on privacy. Our results indicated that, given the 
current data model, we can protect an entire family’s 
genomic privacy while still making available an appro-
priate subset of genomic data. The approach’s main dis-
advantage is that the considered optimization problem 
is nondeterministic polynomial time–complete and 
doesn’t admit any fully polynomial-time approximation 
scheme. Therefore, we can’t consider a significant num-
ber of SNPs using this problem.

Future Research Directions
Individuals are increasingly using direct-to-consumer 
services such as 23andMe, AncestryDNA, and Family-
TreeDNA to obtain their genomic information. Some 
share this information on public genome-sharing web-
sites such as openSNP.org, mainly to contribute to 
genomic research. Although most share their genomic 
data on such platforms in an anonymized way, others 
either directly reveal their real identities or share suf-
ficient information to cause deanonymization.16,32 By 
analyzing the genomic data of such websites’ users, 
attackers might be able to infer family bonds; if at least 
one family member is identifiable or deanonymized, 
attackers might be able to reconstruct the actual family 
tree along with their genomic data.

Although this poses a serious privacy risk for con-
tributors to anonymized genomic datasets, these datas-
ets are crucial to genomic research. To find the balance 
between privacy and utility, an optimization-based 
solution, similar to the one we discussed, could be used. 
By selectively hiding dataset participants’ SNPs, such an 
optimization-based technique would also hide familial 
relationships between the donated genomes and maxi-
mize the utility of the data shared by the donors.

Other types of biomedical data are becoming 
increasingly available, such as epigenomic or transcrip-
tomic data. In particular, DNA methylation, one of the 
most important epigenomic elements, was recently 
shown to be reidentifiable through genotype infer-
ence,33 because parts of the DNA methylation are influ-
enced by the genome. These correlations between DNA 
methylation and the genome imply the existence of 
interdependent privacy risks for relatives’ DNA meth-
ylation data. Therefore, it’s crucial to precisely quantify 
these interdependent risks and analyze whether they 
appear beyond the parts of the DNA methylation that 
are correlated with the genome.

T he kinship-related privacy implications of genomic 
data will only continue to grow as genomics gain 

importance and more people get their DNA sequenced. 
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Thus, it’s crucial that we consider and implement appro-
priate protective mechanisms when using individuals’ 
genomic data in various applications. 
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