
Finding It Now: Networked Classifiers in
Real-Time Stream Mining Systems

Raphael Ducasse, Cem Tekin, and Mihaela van der Schaar

Abstract The aim of this chapter is to describe and optimize the specifications of
signal processing systems, aimed at extracting in real time valuable information out
of large-scale decentralized datasets. A first section will explain the motivations and
stakes and describe key characteristics and challenges of stream mining applica-
tions. We then formalize an analytical framework which will be used to describe
and optimize distributed stream mining knowledge extraction from large scale
streams. In stream mining applications, classifiers are organized into a connected
topology mapped onto a distributed infrastructure. We will study linear chains
and optimise the ordering of the classifiers to increase accuracy of classification
and minimise delay. We then present a decentralized decision framework for joint
topology construction and local classifier configuration. In many cases, accuracy
of classifiers are not known beforehand. In the last section, we look at how to
learn online the classifiers characteristics without increasing computation overhead.
Stream mining is an active field of research, at the crossing of various disciplines,
including multimedia signal processing, distributed systems, machine learning etc.
As such, we will indicate several areas for future research and development.

R. Ducasse (�)
The Boston Consulting Group, Boston, MA, USA
e-mail: ducasse.raphael@bcg.com

C. Tekin
Bilkent University, Ankara, Turkey
e-mail: cemtekin@ee.bilkent.edu.tr

M. van der Schaar
Oxford-Man Institute, Oxford, UK
University of California, Los Angeles, Los Angeles, CA, USA
e-mail: mihaela.vanderschaar@oxford-man.ox.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_3

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_3&domain=pdf
mailto:ducasse.raphael@bcg.com
mailto:cemtekin@ee.bilkent.edu.tr
mailto:mihaela.vanderschaar@oxford-man.ox.ac.uk
https://doi.org/10.1007/978-3-319-91734-4_3

88 R. Ducasse et al.

Fig. 1 Nine examples of high volume streaming applications

1 Defining Stream Mining

1.1 Motivation

The spread of computing, authoring and capturing devices along with high band-
width connectivity has led to a proliferation of heterogeneous multimedia data
including documents, emails, transactional data, digital audio, video and images,
sensor measurements, medical data, etc. As a consequence, there is a large class
of emerging stream mining applications for knowledge extraction, annotation and
online search and retrieval which require operations such as classification, filtering,
aggregation, and correlation over high-volume and heterogeneous data streams.
As illustrated in Fig. 1, stream mining applications are used in multiple areas,
such as financial analysis, spam and fraud detection, photo and video annotation,
surveillance, medical services, search, etc.

Let us deep-dive into three illustrative applications to provide a more pragmatic
approach to stream mining and identify key characteristics and challenges inherent
to stream mining applications.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 89

Fig. 2 Semantic concept detection in applications

1.1.1 Application 1: Semantic Concept Detection in Multimedia;
Processing Heterogeneous and Dynamic Data in a
Resource-Constrained Setting

Figure 2 illustrates how stream mining can be used to tag concepts on images
or videos in order to perform a wide set of tasks, from search to ad-targeting.
Based upon this stream mining framework, designers can construct, instrument,
experiment with, and optimize applications that automatically categorize image and
video data captured by various cameras into a list of semantic concepts (e.g., skating,
tennis, etc.) using various chains of classifiers.

Importantly, such stream mining systems need to be highly adaptive to the
dynamic and time-varying multimedia sequence characteristics, since the input
stream is highly volatile. Furthermore, they must often be able to cope with limited
system resources (e.g. CPU, memory, I/O bandwidth), working on devices such
as smartphones with increasing power restrictions. Therefore, applications need
to cope effectively with system overload due to large data volumes and limited
system resources. Commonly used approaches to dealing with this problem in
resource constrained stream mining are based on load-shedding, where algorithms
determine when, where, what, and how much data to discard given the observed
data characteristics, e.g. burst, desired Quality of Service (QoS) requirements, data
value or delay constraints.

1.1.2 Application 2: Online Healthcare Monitoring; Processing Data in
Real Time

Monitoring individual’s health requires handling a large amount of data, coming
from multiple sources such as biometric sensor data or contextual data sources.
As shown in Fig. 3, processing this raw information, filtering and analyzing it are
key challenges in medical services, as it allows real time census and detection
of irregular condition. For example, monitoring pulse check enables to identify if
patient is in critical condition.

90 R. Ducasse et al.

Fig. 3 Online healthcare monitoring workflow

In such application, being able to process data in real time is essential. Indeed,
the information must be extracted and analyzed early enough to either take human
decision or have an automatic control action. As an example, high concentration of
calcium (happening under pain) could lead to either alerting medical staff or even
automatic delivery of pain-killers, and the amount of calcium in the blood would
determine the amount of medicine delivered. This control loop is only possible if
the delay between health measurements (e.g. concentration of calcium in blood)
and adaptation of treatment (e.g. concentration of pain-killer) is minimized.

1.1.3 Application 3: Analysis of Social Graphs; Coping with
Decentralized Information and Setup

Social networks can be seen as a graph where nodes represent people (e.g. bloggers)
and links represent interactions. Each node includes a temporal sequence of data,
such as blog posts, tweets, etc. Numerous applications require to manage this
huge amount of data: (1) selecting relevant content to answer keyword search,
(2) identifying key influencers with page rank algorithms or SNA measures, and
characterizing viral potential using followers’ statistics, (3) recognizing objective
vs. subjective content through lexical and pattern-based models, (4) automatically
classifying data into topics (and creating new topics when needed) by observing
work co-occurrence and using clustering techniques and classifying documents
according to analysis performed on a small part of the document.

These applications are all the more challenging since the information is often
decentralized across a very large set of computers, which is dynamically evolving
over time. Implementing decentralized algorithms is therefore critical, even with

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 91

only partial information about other nodes. The performance of these algorithms can
be greatly increased by using learning techniques, in order to progressively improve
the pertinence of the analysis performed: at start, analysis is only based on limited
data; over time, parameters of the stream mining application can be better estimated
and the model used to process data is more and more precise.

1.2 From Data Mining to Stream Mining

1.2.1 Data Mining

Data mining can be described as the process of applying a query to a set of data,
in order to select a sub-set of this data on which further action or analysis will
be performed. For example, in Semantic Concept Detection, the query could be:
“Select images of skating”.

A data mining application may be viewed as a processing pipeline that analyzes
data from a set of raw data sources to extract valuable information. The pipeline
successively processes data through a set of filters, referred to as classifiers. These
classifiers can perform simple tests, and the query is the resultant of the answer of
these multiple tests. For example, the query “Select images of skating” could be
decomposed in the following tests: “Is it a team sport?”/“Is a Winter sport?”/“Is it a
Ice sport?”/“Is it skating?”

Figure 4a provides an example of data mining application for sports image
classification. Classifiers may be trained to detect different high-level semantic
features, e.g. sports categories. In this example, the “Team Sports” classifier is used
to filter the incoming data into two sets, thereby shedding a significant volume of
data before passing it to the downstream classifiers (negatively identified team sports

Fig. 4 A hierarchical classifier system that identifies several different sports categories and
subcategories (a) at the same node, (b) across different nodes indicated in the figure as autonomous
processing nodes

92 R. Ducasse et al.

data is forwarded to the “Winter” classifier, while the remaining data is not further
analyzed). Deploying a network of classifiers in this manner enables successive
identification of multiple features in data, and provides significant advantages in
terms of deployment costs. Indeed, decomposing complex jobs into a network of
operators enhances scalability, reliability, and allows cost-performance tradeoffs to
be performed. As a consequence, less computing resources are required because
data is dynamically filtered through the classifier network. For instance, it has been
shown that using classifiers operating in series with the same model (boosting [23])
or classifiers operating in parallel with multiple models (bagging [13]) can result in
improved classification performance.

In this chapter, we will focus on mining applications that are built using a
topology of low-complexity binary classifiers each mapped to a specific concept
of interest. A binary classifier performs feature extraction and classification leading
to a yes/no answer. However, this does not limit the generality of our solutions,
as any M-ary classifiers may be decomposed into a chain of binary classifiers.
Importantly, our focus will not be on the operators’ or classifiers’ design, for which
many solutions already exist; instead, we will focus on configuring1 the networks of
distributed processing nodes, while trading off the processing accuracy against the
available processing resources or the incurred processing delays. See Fig. 4b.

1.2.2 Changing Paradigm

Historically, mining applications were mostly used to find facts with data at rest.
They relied on static databases and data warehouses, which were submitted to
queries in order to extract and pull out valuable information out of raw data.

Recently, there has been a paradigm change in knowledge extraction: data is no
longer considered static but rather as an inflowing stream, on which to dynamically
compute queries and analysis in real time. For example, in Healthcare Monitoring,
data (i.e., biometric measurements) is automatically analyzed through a batch of
queries, such as “Verify that the calcium concentration is in the correct interval”,
“Verify that blood pressure is not too high”, etc. Rather than applying a single
query to data, the continuous stream of medical data is by default pushed through
a predefined set of queries. This enables to detect any abnormal situation and react
accordingly. See Fig. 5.

Interestingly, stream mining could lead to performing automatic action in
response to a specific measurement. For example, a higher dose of pain killers could
be administrated when concentration of calcium becomes too high, thus enabling
real-time control. See Fig. 6.

1As we will discuss later, there are two types of configuration choices we must make: the
topological ordering of classifiers and the local operating points at each classifier.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 93

Fig. 5 A change of paradigm: continuous flow of information requires real-time extraction of
insights

Distributed Large-scale
Performed by
machines and humans

Real-time
Distributed

Data
Gathering

Decision
Making

Stream
Mining

Knowledge
Discovery

Fig. 6 Representation of knowledge extraction process in data mining system

1.3 Problem Formulation

1.3.1 Classifiers

A stream mining system can be seen as a set of binary classifiers. A binary
classifier divides data into two subsets—one containing the object or information of
interest (the “Positive” Set), and one not containing such objects or information (the
“Negative” Set)—by applying a certain classification rule. For instance, the ‘Team
sport’ classifiers separates images into those who represent a team sport and those
who do not represent a team sport. This can be done using various classification
techniques, such as Support Vector Machine (SVM), or K-nearest neighbor.

These algorithms are based on learning techniques, built upon test data and
refined over time: they look for patterns in data, images, etc. and make decisions
based on the resemblance of data to these patterns. As such, they are not fully
accurate. A classifier can introduce two types of errors:

94 R. Ducasse et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7 ROC curves: pF = f (pD). X axis is probability of misdetection error. Y axis is probably
of false alarm error. We call sensitivity the factor that slides the operating point along the ROC
curve

• Misdetection errors: Missing objects or data of interest by tagging it as belonging
to the Negative Set rather than the Positive Set. We will note pD the probability
of detecting a data unit: 1 − pD is the probability of misdetection.

• False alarm errors: Wrongly tagging objects or data which are not of interest as
belonging to the Positive Set. We will note pF this probability of false alarm.

Naturally, there is a trade-off between misdetection and false alarm errors: to avoid
misdetections, the classifier could tag all data as positive, which would generate a
high false alarm rate.

We will call operating point the couple (pD, pF). In Fig. 7, the operating points
of various classifiers are plotted and form what is referred as ROC curves. The
accuracy of the classifier depends on the concavity of the ROC curve, the more
concave, the more precise.

The operating points’ choice has two consequences on the performance of
the stream mining system. First, it affects the precision of each classifier (both
misdetection and false alarms) and of the system as a whole. Secondly, it defines the
amount of data which is going to be transmitted through the classifiers and therefore
the delay required for the system to process the data stream.

1.3.2 Axis for Study

This chapter focuses on developing a new systematic framework for knowledge
extraction from high-volume data streams using a network of classifiers deployed

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 95

over a distributed computing infrastructure. It can be decomposed into four sub-
problems which we will develop in the following sections:

1. Stream Mining System Optimization: In Sect. 2, we develop optimization
techniques for tuning the operating points of individual classifiers in order
to improve the stream mining performance, in terms of accuracy and delay.
We formalize the problem of large-scale knowledge extraction by defining
appropriate local and end-to-end objective functions, along with resource and
delay constraints. They will guide the optimization and adaptation algorithms
used to improve the stream mining performance.

2. Stream Mining System Topology Optimization: As shown in Fig. 4, a stream
mining system is a topology of classifiers mapped onto a distributed infrastruc-
ture. These classifiers can be organized in one single chain, or in multiple parallel
chains, thus forming a tree topology. In Sect. 3, we investigate the impact of the
classifiers’ topology on the performance, scalability and dynamic behavior of the
stream mining system. We will focus on the study of linear chains of classifiers
and determine how to jointly choose the order of classifiers in the chain and the
operating point of each classifier in order to maximize accuracy and minimize
delays.

3. Decentralized Solutions Based on Interactive Multi-Agent Learning: For
large scale stream mining systems, where the classifiers are distributed across
multiple nodes, the choice of operating point and topology of the classifiers
would require heavy computational resources. Furthermore, optimizing the
overall performance requires interactive multi-agent solutions to be deployed at
each node in order to determine the effect of each classifiers’ decisions on the
other classifiers and hence, the end to end performance of the stream mining
applications. In the fourth section of this chapter, we develop a decentralized
decision framework for stream mining configuration and propose distributed
algorithms for joint topology construction and local classifier configuration.
This approach will cope with dynamically changing environments and data
characteristics and adapt to the timing requirements and deadlines imposed by
other nodes or applications.

4. Online Learning for Real-Time Stream Mining: In Sect. 5, we consider
the stream mining problems in which the classifier accuracies are not known
beforehand and needs to be learned online. Such cases frequently appear in real
applications due to the dynamic behavior of heterogeneous data streams. We
explain how the best classifiers (or classifier configurations) can be learned via
repeated interaction, by driving the classifier selection process using meta-data.
We also model the loss due to not knowing the classifier accuracies beforehand
using the notion of regret, and explain how the regret can be minimized while
ensuring that memory and computation overheads are kept at reasonable levels.

96 R. Ducasse et al.

1.4 Challenges

Several key research challenges drive our analysis and need to be tackled: These are
discussed in the following sections.

1.4.1 Coping with Complex Data: Large-Scale, Heterogeneous and
Time-Varying

First, streaming data supposes that have high volume of timeless information flows
in continuously. Stream mining systems thus need be scalable to massive data source
and be able to simultaneously deal with multiple queries.

Both structured and unstructured data may be mined. In practice, data is
wildly heterogeneous in terms of formats (documents, emails, transactions, digital
video and/or audio data, RSS feeds) as well as data rates (manufacturing: 5–
10 Mbps, astronomy: 1–5 Gbps, healthcare: 10–50 Kbps per patient). Furthermore,
data sources and sensors may eventually be distributed on multiple processing
nodes, with little or no communication in between them.

Stream mining systems need to be adaptive in order to cope with data and
configuration dynamics: (1) heterogeneous data stream characteristics, (2) classifier
dependencies, (3) congestion at shared processing nodes and (4) communication
delays between processing nodes. Additionally, several different queries (requiring
different topological combinations of classifiers) may need to be satisfied by the
system, requiring reconfiguration as queries change dynamically.

1.4.2 Immediacy

Stream mining happens now, in real time. The shift from data mining to stream
mining supposes that data cannot be stored and has to be processed on the fly.

For instance, in healthcare monitoring, minimizing delay between health mea-
surements (e.g. concentration of calcium in blood) and adaptation of treatment
(e.g. concentration of pain-killer) is critical. For some applications such as high-
frequency trading, being real time may even be more important than minimizing
misclassification costs. otherwise historic data would become obsolete and lead to
phrased-out investment decisions.

Delay has seldom been analyzed in existing work on stream mining systems and,
when it has been [1], it has always been analyzed in steady-state, at equilibrium,
after all processing nodes are configured. However, the equilibrium can often not
be reached due to the dynamic arrival and departure of query applications. Hence,
this reconfiguration delay out of equilibrium must be considered when designing
solutions for real-time stream mining systems.

Delay constraints are all the more challenging in a distributed environment,
where the synchronization among nodes may not be possible or may lead to sub-
optimal designs, as various nodes may experience different environmental dynamics
and demands.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 97

1.4.3 Distributed Information and Knowledge Extraction

To date, a majority of approaches for constructing and adapting stream mining
applications are based on centralized algorithms, which require information about
each classifier’s analytics to be available at one node, and for that node to manage
the entire classifier network. This limits scalability, creates a single point of failure,
and provide limits in terms of adaptivity to dynamics.

Yet, data sources and classifiers are often distributed over a set of processing
nodes and each node of the network may exchange only limited and/or costly
message with other interconnected nodes to. Thus, it may be impractical to develop
centralized solutions [4, 7, 18, 32, 33].

In order to address this naturally distributed setting, as well as the high
computational complexity of the analytics, it is required to formally define local
objectives and metrics and to associate inter-node message exchanges that enable
the decomposition of the application into a set of autonomously operating nodes,
while ensuring global performance. Such distributed mining systems have recently
been developed [5, 19]. However, they do not encompass the accuracy and delay
objectives described earlier.

Depending on the system considered, classifiers can have strong to very limited
communication. Thus, classifiers may not have sufficient information to jointly
configure their operating points. In such distributed scenarios, optimizing the end-
to-end performance requires interactive, multi-agent solutions in order to determine
the effect of each classifier’s decisions on the other classifiers. Nodes need to learn
online the effect of both their experienced dynamics as well as the coupling between
classifiers.

Besides, for classifiers instantiated on separate nodes (possibly over a network),
the communication time between nodes can greatly increase the total time required
to deal with a data stream. Hence, the nodes will not be able to make decisions
synchronously.

1.4.4 Resource Constraints

A key research challenge [1, 12] in distributed stream mining systems arises from
the need to cope effectively with system overload, due to limited system resources
(e.g. CPU, memory, I/O bandwidth etc.) while providing desired application
performance. Specifically, there is a large computational cost incurred by each
classifier (proportional to the data rate) that limits the rate at which the application
can handle input data. This is all the more topical in a technological environment
where low-power devices such as smartphones are becoming more and more used.

98 R. Ducasse et al.

2 Proposed Systematic Framework for Stream Mining
Systems

2.1 Query Process Modeled as Classifier Chain

Stream data analysis applications pose queries on data that require multiple concepts
to be identified. More specifically, a query q is answered as a conjunction of a set of
N classifiers C(q) = {C1, . . . , CN }, each associated with a concept to be identified
(e.g. Fig. 4 shows a stream mining system where the concepts to be identified are
sports categories).

In this chapter, we focus on binary classifiers: each binary classifier Ci labels
input data into two classes H i (considered without loss of generality as the class of
interest) and H i . The objective is to extract data belonging to

⋂N
i=1 H i .

Partitioning the problem into this ensemble of classifiers and filtering data
successively (i.e. discarding data that is not labelled as belonging to the class of
interest), enables to control the amount of resources consumed by each classifier
in the ensemble. Indeed, only data labelled as belonging to H i is forwarded, while
data labelled as belonging to H i is dropped. Hence, a classifier only has to process
a subset of the data processed by the previous classifier. This justifies using a chain
topology of classifiers, where the output of one classifier Ci−1 feeds the input of
classifier Ci , and so on, as shown in Fig. 8.

2.1.1 A-Priori Selectivity

Let X represent the input data of a classifier C. We call a-priori selectivity φ =
P(X ∈ H) the a-priori probability that the data X belongs to the class of interest.
Correspondingly 1−φ = P(X ∈ H). Practically speaking, the a-priori selectivity φ

is computed on a training and cross-validation data set. For well-trained classifiers,
it is reasonable to expect that the performance on new, unseen test data is similar to
that characterized on training data. In practice, there is potential train-test mismatch
in behavior, but this can be accounted for using periodic reevaluation of the classifier
performance (e.g. feedback on generated results).

t0
g0

p1

C1 Ci CN
D pi

D

p1

f1 fi

F pi
F

fN

pN
F

pN
D

t1
g1

titi–1
gi–1

tN–1
gN–1gi

tN
gN

a1 ai aN

Fig. 8 Representation of analytical framework to evaluate classifier chain performance

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 99

For a chain of classifiers C = {C1, . . . , CN }, the a-priori selectivity of a classifier
corresponds to the conditional probability of data belonging to classifier Ci’s class
of interest, given that it belongs to the class of interest of the previous i − 1
classifiers: φi = P(X ∈ H i |X ∈ ⋂i−1

k=1 Hk). Similarly, we define the negative
a-priori selectivity as φi = P(X ∈ H i |X /∈ ⋂i−1

k=1 Hk). Since a-priori selectivities
depend on classifiers higher in the chain, φi �= 1 − φi .

2.1.2 Classifier Performance

The output X̂ of a classifier C can be modeled as a probabilistic function of its
input X. The proportion of correctly classified samples in Hk is captured by the
probability of correct detection pD

k = P(X̂ ∈ Hk|X ∈ Hk), while the proportion of

falsely classified samples in Hk is pF
k = P(X̂ ∈ Hk|X ∈ Hk).

The performance of the classifier C is characterized by its ROC curve that
represents the tradeoff between the probability of detection pD and probability
of false alarm pF . We represent the ROC curve as a function f : pF �→ pD

that is increasing, concave and lies over the first bisector [11]. As a consequence,
an operating point on this curve is parameterized uniquely by its false alarm rate
x = pF . The operating point is denoted by (x, f (x)) = (pF , pD).

We model the average time needed for classifier C to process a stream tuple as
α (in seconds). The order of magnitude of α depends on the data characteristics,
as well as the classification algorithm, and can vary from microseconds (screening
text) to multiple seconds (complex image or video classification).

2.1.3 Throughput and Goodput of a Chain of Classifiers

The forwarded output of a classifier Ci consists of both correctly labelled data
from class H i as well as false alarms from class H i . We use gi to represent the
goodput (portion of data correctly labelled) and ti to represent the throughput (total
forwarded data, including mistakes). And we will note t0 to represent the input rate
of data.

Using Bayes formula, we can derive ti and gi recursively as

[
ti

gi

]

=
[

ai bi

0 ci

]

︸ ︷︷ ︸
T i−1

i

[
ti−1

gi−1

]

, where

⎧
⎨

⎩

ai = pF
i + (pD

i − pF
i)φi

bi = (pD
i − pF

i)(φi − φi)

ci = pD
i φi

(1)

For a set of independent classifiers, the positive and negative a-priori selectivities
are equal: φi = φi = P(X ∈ H). As a consequence, the transition matrix is

diagonal: T i−1
i =

[
pD

i φi + (1 − φi)p
F
i 0

0 pD
i φi

]

.

100 R. Ducasse et al.

2.2 Optimization Objective

The global utility function of the stream mining system can be expressed as a
function of misclassification and delay cost, under resource constraints.

2.2.1 Misclassification Cost

The misclassification cost, or error cost, may be computed in terms of the two types
of accuracy errors—a penalty cM per unit rate of missed detection, and a penalty
cF per unit rate of false alarm. These are specified by the application requirements.
Noting � = ∏N

h=1 φh, the total misclassification cost is

cerr = cM (�t0 − gN)
︸ ︷︷ ︸

misseddata

+ cF (tN − gN)
︸ ︷︷ ︸

wronglyclassifieddata

. (2)

2.2.2 Processing Delay Cost

Delay may be defined as the time required by the chain of classifiers in order to
process a stream tuple. Let αi denote the expected processing time of classifier Ci .
The average time required by classifier Ci to process a stream tuple is given by
δi = αiPi , where Pi denotes the fraction of data which has not been rejected by the
first i −1 classifiers and still needs to be processed through the remaining classifiers

of the chain. Recursively, Pi =
i−1∏

k=1

tk

tk−1
= ti−1

t0
. After summation across all

classifiers, the average end-to-end processing time required by the chain to process
stream data is

cdelay = t0

N∑

i=1

δi = t0

N∑

i=1

αiPi =
N∑

i=1

αi ti−1. (3)

2.2.3 Resource Constraints

Assume that the N classifiers are instantiated on M processing nodes, each of which
has a given available resource rmax

j . We can define a location matrix M ∈ {0, 1}M×N

where Mji = 1 if Ci is located on node j and 0 otherwise. The resource constraint
at node j can be written as

∑N
i=1 Mjiri ≤ rmax

j .
The resource ri consumed at node j by classifier Ci is proportional to the

throughput ti , i.e. ri ∝ ti .

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 101

2.2.4 Optimization Problem

Stream mining system configuration involves optimizing both accuracy and delay
under resource constraints. The utility function of this optimization problem may
be defined as the negative weighted sum of both the misclassification cost and the
processing delay cost: U = −cerr − λ cdelay , where the parameter λ controls
the tradeoff between misclassification and delay. This utility is a function of the
throughputs and goodputs of the stream within the chain, and therefore implicitly
depends on the operating point xi = pF

i ∈ [0, 1] selected by each classifier.

Let x = [
x1, . . . , xN

]T
, K = cF

cF +cM ∈ [0, 1] and ρ = λ
cF +cM α ∈ R+N . The

optimization problem can be reformulated under a canonic format as follows:
⎧
⎪⎨

⎪⎩

maximize
x∈[0 1]N

U(x) = gN(x) − KtN(x) −
N∑

i=1

ρi ti−1(x)

subject to 0 ≤ x ≤ 1 and Mr ≤ rmax

. (4)

2.3 Operating Point Selection

Given a topology, the resource-constrained optimization problem defined in Eq. (4)
may be formulated as a network optimization problem (NOP) [16, 20]. This problem
has been well studied in [11, 21, 31] and we refer the interested reader to the
corresponding literature.

The solutions proposed involve using iterative optimization techniques based
on Sequential Quadratic Programming (SQP) [3]. SQP is based on gradient-
descent, and models a nonlinear optimization problem as an approximate quadratic
programming subproblem at each iteration, ultimately converging to a locally
optimal solution.

Selecting the operating point can be done by applying the SQP-algorithm to the
Lagrangian function of the optimization problem in (4):

L(x, ν1, ν2) = U(x) − νT
1 (x − 1) + νT

2 x.

Because of the gradient-descent nature of the SQP algorithm, it is not possible
to guarantee convergence to the global maximum and the convergence may only
be locally optimal. However, the SQP algorithm can be initialized with multiple
starting configurations in order to find a better local optimum (or even the global
optimum). Since the number and size of local optima depend on the shape of the
various ROC curves of each classifier, a rigorous bound on the probability to find
the global optimum cannot be proven. However, certain start regions are more likely
to converge to better local optimum.2

2For example, since the operating point pF = 0 corresponds to a saddle point of the utility
function, it would achieve steepest utility slope. Furthermore, the slope of the ROC curve is

102 R. Ducasse et al.

2.4 Further Research Areas

Further research areas are the following:

• Communication delay between classifiers: The model could be further refined
to explicitly consider communication delays, i.e. the time needed to send stream
tuples from one classifier to another. This is all the more true in low-delay settings
where classifiers are instantiated on different nodes.

• Queuing delay between classifiers: Due to resource constraints, some classifiers
may get congested, and the stream will hence incur additional delay. Modeling
these queuing delays would further improve the suitability of the framework for
real-time applications.

• Single versus multiple operating points per classifier: Performance gains can
be achieved by allowing classifiers to have different operating points xi and xi for
their positive and negative classes. If the two thresholds overlap, low-confidence
data will be duplicated across both output edges, thereby increasing the end-to-
end detection probability. If they do not overlap, low-confidence data is shed,
thus reducing congestion at downstream classifiers.

• Multi-query optimization: Finally, a major research area would consist in
studying how the proposed optimization and configuration strategies adapt to
multi-query settings, including mechanisms for admission control of queries.

3 Topology Construction

In the previous section, we have determined how to improve performance of a
stream mining system—both in terms of accuracy and delays—by selecting the right
operating point for each classifier of the chain. This optimization was however per-
formed given a specific topology of classifiers: classifiers were supposed arranged
as a chain and the order of the classifiers in the chain was fixed.

In this section, we study the impact of the topology of classifiers on the
performance of the stream mining system. We start by focusing on a chain topology
and study how the order of classifiers on the chain alters performance.

3.1 Linear Topology Optimization: Problem Formulation

Since classifiers have different a-priori selectivities, operating points, and complex-
ities, different topologies of classifiers will lead to different classification and delay
costs.

maximal at pF = 0 (due to concavity of the ROC curve), such that high detection probabilities can
be obtained under low false alarm probabilities near the origin.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 103

t0
g0

t1
g1

ps (1) s

s
th–1

gh–1

s

s
tN–1

gN–1

s

s
tN
gN

s

s
th
gh

s

s

Cs (1)
D

ps (1)
F

as (1)

ps (N)
D

ps (N)
F

as (N)

Cs (N)Cs (h) = Ci

pi
D

pi
F

ai

Fig. 9 Representation of σ-ordered classifier chain

Consider N classifiers in a chain, defined as in the previous section. An order
σ ∈ Perm(N) is a permutation such that input data flows from Cσ(1) to Cσ(N). We
generically use the index i to identify a classifier and h to refer to its depth in the
chain of classifiers. Hence, Ci = Cσ(h) will mean that the hth classifier in the chain
is Ci . To illustrate the different notations used, a σ-ordered classifier chain is shown
in Fig. 9.

Using the recursive relationship defined in Eq. (1), we can derive the end-to-end
throughput ti and goodput gi of classifier Ci = Cσ(h) recursively as

[
ti

gi

]

=
[

pF
i + φσ

h(p
D
i − pF

i) (φσ
h − φσ

h)(p
D
i − pF

i)

0 φσ
hp

D
i

]

︸ ︷︷ ︸
T i−1

i =T σ
h

[
tσh−1
gσ

h−1

]

. (5)

The optimization problem can be written as:

⎧
⎪⎨

⎪⎩

maximize
σ∈Perm(N),x∈[0 1]N

U(σ, x) = gσ
N(x) − KtσN(x) −

N∑

i=1

ρi t
σ
i−1(x)

subject to 0 ≤ x ≤ 1

. (6)

3.2 Centralized Ordering Algorithms for Fixed Operating
Points

In this section, we consider a set of classifiers with fixed operating points x. Since
transition matrices T σ

i
are lower triangular, the goodput does not depend on the order

of classifiers.3 As a consequence, the expression of the utility defined in Eq. (4) can
be simplified as:

3Furthermore, when classifiers are independent, the transition matrices T σ
i are diagonal and there-

fore commute. As a consequence the end throughput tN (x) and goodput gN(x) are independent
of the order. However, intermediate throughputs do depend on the ordering—leading to varying
expected delays for the overall processing.

104 R. Ducasse et al.

maximize
σ∈Perm([1,N])

Uord = −
(

N∑

h=1

ρσ(h)t
σ
h−1 + KtσN

)

. (7)

3.2.1 Optimal Order Search

The topology construction problem involves optimizing the defined utility by
selecting the appropriate order σ. In general, there exist N ! different topologic
orders, each with a different achieved utility and processing delay. Furthermore,
the relationship between order and utility cannot be captured using monotonic or
convex analytical functions. Hence, any search space for order selection increases
combinatorially with N . This problem is exacerbated in dynamic settings where the
optimal order has to be updated online; in settings with multiple chains, where each
chain has to be matched with a specific optimal order; and, in settings with multiple
data streams corresponding to the queries of multiple users.

3.2.2 Greedy Algorithm

Instead of solving the complex combinatorial problem, we suggest to design simple,
but elegant and powerful, order selection algorithms—or Greedy Algorithms—with
provable bounds on performance [2, 6].

The Greedy Algorithm is based on the notion of ex-post selectivity. For a given
order σ, we define the ex-post selectivity as the conditional probability of classifier
Cσ(h) labelling a data item as positive given that the previous h−1 classifiers labelled

the data as positive,4 i.e. ψσ
h = tσh

tσh−1
. The throughput at each step can be expressed

recursively as a product of ex-post selectivities: tσh = ψσ
ht

σ
h−1 = . . . =

(
h∏

i=1

ψσ
i

)

t0.

The Greedy Algorithm then involves ordering classifiers in increasing order of

ψ
μ

where μσ
i =

{
ρσ(i+1) = λ

cM+cF ασ(i+1) if i ≤ N − 1

K = cF

cF +cM if i = N
. Note that this fraction

depends on the selected order.
Since this ratio depends implicitly on the order of classifiers in the chain, the

algorithm may be implemented iteratively, selecting the first classifier, then selecting
the second classifier given the fixed first classifier, and so on:

4Observe that for a perfect classifier (pD
σ(h) = 1 and pF

σ(h) = 0), the a-priori conditional probability
φσ

h and the ex-post conditional probabilities ψσ
h are equal.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 105

Centralized Algorithm 1 Greedy ordering

• Calculate the ratio ψσ
1/μ

σ
1 for all N classifiers. Select Cσ(1) as the classifier with lowest

weighted non-conditional selectivity ψσ
1/μ

σ
1. Determine

[
tσ1
gσ

1

]

.

• Calculate the ratio ψσ
2/μ

σ
2 for all remaining N − 1 classifiers. Select Cσ(2) as the classifier

with lowest weighted conditional selectivity ψσ
2/μ

σ
2. Determine

[
tσ2
gσ

2

]

.

• Continue until all classifiers have been selected.

In each iteration we have to update O(N) selectivities and there are O(N)

iterations, making the complexity of the algorithm O(N2) (compared to O(N !)
for the optimal algorithm). Yet, it can be shown that the performance of the Greedy
Algorithm can be bound:

1

κ
U

opt
ord ≤ UG

ord ≤ U
opt
ord with κ = 4.

The value UG
ord of the utility obtained with the Greedy Algorithm’s order is at least

1/4th of the value of the optimal order U
opt
ord . Furthermore, the approximation factor

κ = 4 corresponds to a system with infinite number of classifiers [34]. In practice,
this constant factor is smaller. Specifically, we have κ = 2.35, 2.61, 2.8 for 20, 100
or 200 classifiers respectively.

The key of the proof of this result is to show that the Greedy Algorithm is
equivalent to a greedy 4-approximation algorithm for pipelined set-cover. We refer
the interested reader to the demonstration made by Munagala and Ali in [2] and
let him show that our problem setting is equivalent to the one formulated in their
problem.

3.3 Joint Order and Operating Point Selection

Further system performance can be achieved by both optimizing the order of the
chain of classifiers and the operating point configuration.

To build a joint order and operating point selection strategy, we propose to
combine the SQP-based solution for operating point selection with the iterative
Greedy order selection. This iterative approach, or SQP-Greedy algorithm, is
summarized as follows:

106 R. Ducasse et al.

Centralized Algorithm 2 SQP-Greedy algorithm for joint ordering and operating
point selection

• Initialize σ(0).
• Repeat until greedy algorithm does not modify order.

1. Given order σ(j), compute locally optimal x(j) through SQP.
2. Given operating points x(j), update order σ(j+1) using (A-)Greedy algorithm.

Each step of the SQP-Greedy algorithm is guaranteed to improve the global
utility of the problem. Given a maximum bounded utility, the algorithm is then
guaranteed to converge. However, it may be difficult to bound the performance gap
between the SQP-Greedy and the optimal algorithm with a constant factor, since
the SQP only achieves local optima. As a whole, identification and optimization of
algorithms used to compute optimal order and operating points represents a major
roadblock to stream mining optimization.

3.3.1 Limits of Centralized Algorithms for Order Selection

We want to underline that updating the ex-post selectivities requires strong coor-
dination between classifiers. A first solution would be for classifiers to send their
choice of operating point (pF , pD) to a central agent (which would also have
knowledge about the a-priori conditional selectivities φσ, φσ) and would compute
the ex-post conditional selectivities. A second solution would be for each classifier
Ci to send their rates ti and gi to the classifiers Cj which have not yet processed the
stream for them to compute ψi

j . In both cases, heavy message exchange is required,
which can lead to system inefficiency (cf. Sect. 4.1). We will propose in Sect. 4
a decentralized solution with limited message exchanges, as an alternative to this
centralized approach.

3.4 Multi-Chain Topology

3.4.1 Motivations for Using a Multi-Chain Topology: Delay Tradeoff
Between Feature Extraction and Intra-Classifier Communication

In the previous analysis, we did not take into consideration the time αcom required by
classifiers to communicate with each other. If classifiers are all grouped on a single
node, such communication time αcom

inter can be neglected compared to the time αf eat

required by classifiers to extract data features. However for classifiers instantiated
on separate nodes, this communication time αcom

ext can greatly increase the total time
required to deal with a stream tuple.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 107

As such, we would like to limit the communication between nodes, i.e. (1) avoid
sending the stream back and forth from one node to another and (2) limit message
exchanges between classifiers. To do so, a solution would be to process the stream
in parallel on each node and to intersect the output of each node-chain.

3.4.2 Number of Chains and Tree Configuration

Suppose that instead of considering classifiers in a chain, we process the stream
through R chains, where chain r has Nr classifiers with the order σr . The answer
of the query is then obtained by intersecting the output of each chain r (we assume
that this operation incurs zero delay).

We can show that, as a first approximation, the end-to-end processing time can
be written as

cσ
delay =

R∑

r=1

Nr∑

h=1

α
f eat

σr (h)t
σr

h−1

︸ ︷︷ ︸
featureextraction

+
R∑

r=1

Nr−1∑

h=1

αcom
σr (h),σr (h+1)t

σr

h

︸ ︷︷ ︸
intra−classifiercommunication

. (8)

Intuitively, the feature extraction term increases with the number of chains R,
as each chain needs to process the whole stream, while the intra-classifier com-
munication term decreases with R, since using multiple chains enables classifiers
instantiated on the same node to be grouped together in order to avoid time-costly
communication between nodes (cf. Fig. 4b).

Configuring stream mining systems as tree topologies (i.e. determining the
number of chains to use in order to process the stream in parallel, as well as
the composition and order of each chain) represents a major research theme. The
number of chains R and the choice of classifiers per chain illustrate the tradeoff
between feature extraction and intra-classifier communication and will depend on
the values of αf eat and αcom.

4 Decentralized Approach

4.1 Limits of Centralized Approaches and Necessity of a
Decentralized Approach

The centralized approach presented in the previous sections has six main limita-
tions:

1. System and Information Bottlenecks: Centralized approaches require a central
agent that collects all information, generates optimal order and operating points
per classifier, and distributes and enforces results on all classifiers. This creates a

108 R. Ducasse et al.

bottleneck, as well as a single point of failure, and is unlikely to scale well as the
number of classifiers, topologic settings, data rates, and computing infrastructure
grow.

2. Topology Specificity: A centralized approach is designed to construct one
topology for each user application of interest. In practice the system may be
shared by multiple such applications—each of which may require the reuse of
different subsets of classifiers. In this case, the centralized algorithm needs to
design multiple orders and configurations that need to be changed dynamically
as application requirements change, and applications come and go.

3. Resource Constraints: Currently designed approaches minimize a combination
of processing delay and misclassification penalty. However, in general we also
need to satisfy the resource constraints of the underlying infrastructure. These
may in general lead to distributed non-convex constraints in the optimization,
thereby further increasing the sub-optimality of the solution, and increasing the
complexity of the approach.

4. Synchronization Requirements: The processing times vary from one classifier
to the other. As a result, transmission from one classifier to another is not
synchronized. Note that this asynchrony is intrinsic to the stream mining system.
Designing one centralized optimization imposes synchronization requirements
among classifiers and as the number of classifiers and the size of the system
increases may reduce the overall efficiency of the system.

5. Limited Sensitivity to Dynamics: As an online process, stream mining opti-
mization must involve algorithms which take into account the system’s dynamics,
both in terms of the evolving stream characteristics and classifiers’ processing
time variations. This time-dependency is all the more true in a multi-query
context, with heterogeneous data streams for which centralized algorithms are
unable to cope with such dynamics.

6. Requirement for Algorithms to Meet Time Delay Constraints: These dynam-
ics require rapid adaptation of the order and operating points, often even at the
granularity of one tuple. Any optimization algorithm thus needs to provide a
solution with a time granularity finer than the system dynamics. Denote by τ the
amount of time required by an algorithm to perform one iteration, i.e. to provide
a solution to the order and configuration selection problem. The solution given
by an algorithm will not be obsolete if τ ≤ Cτdyn where τdyn represents the
characteristic time of significant change in the input data and characteristics of
the stream mining system and C ≤ 1 represents a buffer parameter in case of
bursts.

To address these limitations, we propose a decentralized approach and design
a decentralized stream mining framework based on reinforcement learning tech-
niques.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 109

Cs (h) = Ci

Cs (1) Cs (2) Cs (h–1) th–1

pi

pi

Ui qi
vj wj Ti(xi) 1

(xi, Ci) = = –argmax
xi [0;1]

Cj Children(Ci)

xi =

= fi(xi)
D

pi
F

s

gh–1

qi = s

gh–1
s

Ci Children(Ci)∈

∈
∈

∼
∼

Fig. 10 Stochastic decision process: at each node, optimisation of local utilisation of select
operating point and child classifier

4.2 Decentralized Decision Framework

The key idea of the decentralized algorithm is to replace centralized order selection
by local decisions consisting in determining to which classifier to forward the
stream. To describe this, we set up a stochastic decision process framework
{C , S , A , U} [15], illustrated in Fig. 10, where

• C = {C1, . . . , CN } represents the set of classifiers
• S = ×

i≤N
S i represents the set of states

• A = ×
i≤N

A i represents the set of actions

• U = {U1, . . . , UN } represents the set of utilities

4.2.1 Users of the Stream Mining System

Consider N classifiers C = {C1, . . . , CN }. The classifiers are autonomous: unless
otherwise mentioned, they do not communicate with each other and take decisions
independently. We recall that the hth classifier will be referred as Ci = Cσ(h). We
will also refer to the stream source as C0 = Cσ(0).

4.2.2 States Observed by Each Classifier

The set of states can be decomposed as S = ×
i≤N

S i . The local state set of

classifier Ci = Cσ(h) at the hth position in the classifier chain is defined as
S i = {(Children(Ci), θi)}:
• Children(Ci) = {

Ck ∈ C |Ck /∈ {Cσ(1), Cσ(2) . . . , Ci}
} ⊂ C represents the

subset of classifiers through which the stream still needs to be processed after

110 R. Ducasse et al.

it passes classifier Ci . This is a required identification information to be included
in the header of each stream tuple such that the local classifier can know which
classifiers still need to process the tuple.

• The throughput-to-goodput ratio θi = tσh−1
gσ
h−1

∈ [1,∞] is a measure of the

accuracy of the ordered set of classifiers {Cσ(1), Cσ(2), . . . , Ci}. Indeed, θi = 1
corresponds to perfect classifiers Cσ(1), Cσ(2), . . . , Ci , (with pD = 1 and pF =
0), while larger θi imply that data has been either missed or wrongly classified.

The state θi can be passed along from one classifier to the next in the stream
tuple header. Since θi ∈ [1,∞], the set of states S i is of infinite cardinality. For
computational reasons, we would require a finite set of actions. We will therefore
approximate the throughput-to-goodput ratio by partitioning [1,∞] into L bins
Sl = [bl−1, bl] and approximate θi ∈ Sl by some fixed value sl ∈ Sl .

4.2.3 Actions of a Classifier

Each classifier Ci has two independent actions: it selects its operating point xi and
it chooses among its children the trusted classifier Ci→ to which it will transmit the
stream. Hence A i = {(xi, Ci→)}, where

• xi ∈ [0, 1] corresponds to the operating point selected by Ci .
• Ci→ ∈ Children(Ci) corresponds to the classifier to which Ci will forward the

stream. We will refer to Ci→ as the trusted child of classifier Ci .

Note that the choice of trusted child Ci→ is the local equivalent of the global
order σ. The order is constructed classifier by classifier, each one selecting the child
to which it will forward the stream: ∀h ∈ [1, N], Cσ(h) = Cσ(h−1)→.

4.2.4 Local Utility of a Classifier

We define the local utility of a chain of classifiers by backward induction:

Uσ(h) = −ρσ(h)t
σ
h−1 + Uσ(h+1) and Uσ(N) = −ρσ(N)t

σ
N−1 + gσ

N − KtσN.

(9)
The end-to-end utility of the chain of classifiers can then be reduced to U = Uσ(1).

The key result of this section consists in the fact that the global optimum can be
achieved locally with limited information. Indeed, each classifier Ci = Cσ(h) will
globally maximize the system’s utility by autonomously maximizing its local utility

Ui = [
vσ
h wσ

h

]

︸ ︷︷ ︸
=[vi wi]

[
tσh−1
gσ

h−1

]

where the local utility parameters
[
vσ
h wσ

h

]
are defined

recursively:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 111

[
vσ
N wσ

N

] = − [
ρσ(N) 0

]+ [−K 1
]
T σ

N[
vσ
h wσ

h

] = − [
ρσ(h) 0

]+
[
vσ
h+1 wσ

h+1

]
T σ

h .

This proposition can easily be proven recursively.
Therefore, the local utility of classifier Ci can now be rewritten as

Ui =
(
− [

ρi 0
]+

[
vσ
h+1 wσ

h+1

]
T σ

i (xi)
)
[

tσh−1
gσ

h−1

]

. (10)

As such, the decision of classifier Ci only depends on its operating point xi ,
on the state θi which it observes5 and on the local utility parameters

[
vj wj

]
of

its children classifiers Cj ∈ Children(Ci). Once it knows the utility parameters
of all its children, classifier Ci can then uniquely determine its best action (i.e. its
operating point xi and its trusted child Ci→) in order to maximize its local utility.

4.3 Decentralized Algorithms

At this stage, we consider classifiers with fixed operating points. The action of a
classifier Ci is therefore limited to selecting the trusted child Ci→ ∈ Children(Ci)

to which it will forward the stream.

4.3.1 Exhaustive Search Ordering Algorithm

We will say that a classifier Ci probes a child classifier Cj when it requests its child
utility parameters

[
vj wj

]
.

To best determine its trusted child, a classifier only requires knowledge on the
utility parameters of all its children. We can therefore build a recursive algorithm
as follows: all classifiers are probed by the source classifier C0; to compute their
local utility, each of the probed classifiers then probes its children for their utility
parameters

[
v w

]
. To determine these, each of the probed children needs to probe

its own children for their utility parameter, etc. The local utilities are computed in
backwards order, from leaf classifiers to the root classifier C0. The order yielding
the maximal utility is selected.

Observe that this decentralized ordering algorithm leads to a full exploration
of all N ! possible orders at each iteration. Achieving the optimal order only
requires one iteration, but this iteration requires O(N !) operations and may thus

5ti−1 and gi−1 are not required since: argmax Ui = argmax Ui

gi−1
=

(− [
ρi 0

]+ [
vi+1 wi+1

]
T σ

i

)
[

θi

1

]

.

112 R. Ducasse et al.

Cs (h) = Ci

Transmission of
utility parameter

to parent classifier Feedbacked
utility parameters

from children

Children(Ci)

Cs (h–1) vj wj

vj wj

Fig. 11 Feedback information for decentralized algorithms

Fig. 12 Global Partial Search Algorithm only probes a selected subset of classifier orders

require substantial time, since heavy message exchange is required (Fig. 11). For
quasi-stationary input data, the ordering could be performed offline and such com-
putational time requirement would not affect the system’s performance. However,
in bursty and heterogeneous settings, we have to ensure that the optimal order
calculated by the algorithm would not arrive too late and thus be completely
obsolete. In particular, the time constraint τ ≤ Cτdyn, defined in Sect. 4.1 must
not be violated.

We therefore need algorithms capable of quickly determining a good order,
though convergence may require more than one iteration. In this way, it will be
possible to reassess the order of classifiers on a regular basis to adapt to the
environment.

4.3.2 Partial Search Ordering Algorithm

The key insight we want to leverage is to screen only through a selected subset
of the N ! orders at each iteration. Instead of probing all its children classifiers
systematically, the hth classifier will only request the utility parameters

[
v w

]
of a

subset of its N − h children.
From a global point of view, one iteration can be decomposed in three major

steps, as shown on Fig. 12:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 113

Fig. 13 Time scales for decentralized algorithms

Step 1: Selection of the Children to Probe A partial tree is selected recursively
(light grey on Fig. 12). A subset of the N classifiers are probed as first classifier of
the chain. Then, each of them selects the children it wants to probe, each of these
children select the children which it wants to probe, etc.

Step 2: Determination of the Trusted Children The order to be chosen is
determined backwards: utilities are computed from leaf classifiers to the source
classifier C0 based on feedback utility parameters. At each node of the tree, the
child classifier which provides its parent with the greatest local utility is selected as
the trusted child (dark grey on Fig. 12).

Step 3: Stream Processing The stream is forwarded from one classifier to its
trusted child (black on Fig. 12).

If we want to describe Step 1 more specifically, classifier Ci will probe its child
Cj with probability pi

j . As will be shown in Sect. 4.5, adjusting the values of pi
j

will enable to adapt the number of operations and the time τ required per iteration,
as shown on Fig. 13. Indeed, for low values of pi

j , few of the N ! orders will be
explored, and since each classifier only probes a small fraction of its children, one
iteration will be very rapid. However, if the values of pi

j are close to 1, each iteration
requires a substantial amount of probing and one iteration will be long.

In the Partial Search Ordering Algorithm, one classifier may appear at multiple
depths and positions in the classifiers’ tree. Each time, it will realize a local
algorithm described in the flowchart in Fig. 14.

114 R. Ducasse et al.

Cs (h) = Ci

1

2a

2b

3

4

5

to probed
children

classifiers

from probed
children

classifiers

Compute utility

Select
trusted child

Request
[vj wj]

Acknowledge
[vj wj]

Transmit
[vj wj]

Observe state

to Cs (h–1)

Fig. 14 Flowchart of local algorithm for partial search ordering

Decentralized Algorithm 3 Partial Search Ordering Algorithm—for classifier
Ci = Cσ(h)

1. Observe state (θi , Children(Ci))
2. With probability pi

j , request utility parameters
[
vσ(h+1) wσ(h+1)

] = [
vj wj

]
for any of

the N − h classifiers Cj ∈ Children(Ci)

3. For each child probed, compute corresponding utility

Ui(Cj) = (− [
ρσ(i) 0

]+ [
vj wj

]
T .0

i

)
[

tσh−1
gσ

h−1

]

4. Select the child classifier with the highest Ui as trusted child.
5. Compute the corresponding

[
vi wi

]
and transmit it to a previous classifier who requested

it.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 115

4.3.3 Decentralized Ordering and Operating Point Selection

In case of unfixed operating points, the local utility of classifier Ci = Cσ(h) also
depends on its local operating point xi—but it does not directly depend on the
operating points of other classifiers6:

Ui =
(
− [

ρi 0
]+

[
vσ
h+1 wσ

h+1

]
T σ

i (xi)
)
[

tσh−1
gσ

h−1

]

.

As a consequence, we can easily adapt the Partial Search Ordering Algorithm
into a Partial Search Ordering and Operating Point Selection Algorithm by comput-
ing the maximal utility (in terms of xi) for each child:

Ui(Cj) = max
xi

(− [
ρσ(i) 0

]+ [
vj wj

]
T σ

i (xi)
)
[

tj

gj

]

. (11)

To solve the local optimization problem defined in Eq. (11), each classifier can
either derive the nullity of the gradient if the ROC curve function fi : pF �→ pD

is known, or search for optimal operating point using a dichotomy method (since
Ui(Cj) is concave).

4.3.4 Robustness of the Partial Search Algorithm and Convergence Speed

It can be shown that under stable conditions the Partial Search Algorithm converges
and the equilibrium point of the stochastic decision process. For fixed operating
point the Partial Search Algorithm converges to the optimal order if pi

j > 0 ∀ i, j .
In case of joint ordering and operating point selection, there exist multiple

equilibrium points, each corresponding to a local minimum of the utility function.
The selection of the equilibrium point among the set of possible equilibria depends
on the initial condition (i.e. order and operating points) of the algorithm. To select
the best equilibrium, we can perform the Partial Search Algorithm for multiple
initial conditions and keep only the solution which yielded the maximum utility.

In practice, stable stream conditions will not be verified by the stream mining
system, since the system’s characteristics vary at a time scale of τdyn. Hence, rather
than achieving convergence, we would like the Partial Search Algorithm to reach
near-equilibrium fast enough for the system to deliver solution to the accuracy and
delay joint optimization on a timely basis.

In analogy to [9], we first discuss how model-free Safe Experimentation, a
heuristic case of Partial Search Algorithm can be used for decentralized stream
mining and leads to a low-complexity algorithm, however with slow convergence

6The utility parameters
[
vj wj

]
fed back from classifier Cj to classifier Ci are independent of

any classifiers’ operating points.

116 R. Ducasse et al.

rate. Fortunately, the convergence speed of the Partial Search Algorithm can be
improved by appropriately selecting the screening probabilities pi

j . In Sect. 4.5, we
will construct a model-based algorithm which enables to control the convergence
properties of the Partial Search Algorithm, and lead to faster convergence.

4.4 Multi-Agent Learning in Decentralized Algorithm

We aim to construct an algorithm which would maximize as fast as possible
the global utility of the stream mining system expressed in Eq. (4). We want to
determine whether it is worthwhile for a classifier Ci to probe a child classifier Cj

for its utility parameters and determine search probabilities pi
j of the Partial Search

Algorithm accordingly.

4.4.1 Tradeoff Between Efficiency and Computational Time

Define an experiment Ei→j as classifier Ci’s action of probing a child classifier Cj

by requesting its utility parameter
[
vj wj

]
. Performing an experiment can lead to

a higher utility, but will induce a cost in terms of computational time:

• Denote by Û (Ei→j |sk) the expected additional utility achieved by the stream
mining system if the experiment Ei→j is performed under state sk .

• Let τ ex represent the expected amount of time required to perform an experiment.
This computational time will be assumed independent of the classifiers involved
in the experiment performed and the state observed.

Then, the total expected utility per iteration is given by Û (pi
j) =

∑
pi

j Û(Ei→j |sk) and the time required for one iteration is τ(p
j
i) = n̂(pi

j)τ
ex ,

where n̂(pi
j) represents the expected number of experiments performed in one

iteration of the Partial Search Algorithm and will be defined precisely in the next
paragraph.

The allocation of the screening probabilities pi
j aims to maximize the total

expected utility within a certain time:

⎧
⎨

⎩

maximize
pi

j ∈[0,1]
Û (pi

j)

subject to τ(p
j
i) ≤ Cτdyn

. (12)

4.4.2 Safe Experimentation

We will benchmark our results on Safe Experimentation algorithms as cited in [9].
This low-complexity, model-free learning approach was first proposed for large-

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 117

scale, distributed, multi-agent systems, where each agent is unable to observe the
actions of all other agents (due to informational or complexity constraints) and
hence cannot build a model of other agents [17]. The agent therefore adheres to a
“trusted” action at most times, but occasionally “explores” a different one in search
of a potentially better action.

Safe Experimentation is a reinforcement learning algorithm where each classifier
learns by observing the payoff with which its past actions were rewarded. As such,
it does not consider the interactions between agents, or in our case, the actions of
other autonomous classifiers. In particular, there is no explicit message exchange
among classifiers required (i.e. no

[
v w

]
exchanged), though each classifier needs

to know the reward of its action (and computing this reward might yet require some
form of implicit communication between agents).

The Safe Experimentation algorithm is initialized by selecting an initial order
σ0 of classifier. Cσ0(h+1) will be referred as the “trusted” child of the hth classifier
Cσ0(h). At each time slot, Cσ(h) will either forward the stream to its “trusted” child
Cσ(h+1) with probability (1 − ε) or, with probability ε, will explore a classifier Cj

chosen randomly among its children. In the case where a higher reward is achieved
through exploration, Cj will become the new “trusted” child of Cσ(h). Note that
so long as ε > 0, all possible orders will ultimately be explored, such that Safe
Experimentation converges to the optimal order [9].

Instead of considering a fixed exploration rate ε, we can consider a dimin-
ishing exploration rate εt. In this way, the algorithm will explore largely for
first iterations and focus on exploited orders near convergence. εt → 0 and
∞∏

t=1

(

1 − εt
N−1

(N − 1)!
)

→ 0 are sufficient conditions for convergence, typically

verified for εt = (1/t)1/n.
Two majors limits of Safe Experimentation can be identified:

• Slow convergence: One iteration of Safe Experimentation is very rapid (O(N)),
since only one order is experienced. However, the expected number of iterations
required to converge to optimal order is bounded below by N ! (corresponding to
uniform search: εt = 1). As a consequence, the time required to reach the optimal
solution might be infinitely long, since the optimal order could be experimented
after an infinitely large number of iterations.

• General approach: This slow convergence can be explained by the fact that
Safe Experimentation, as a model-free approach, does not leverage the structure
of the problem studied. In particular, one major constraint fixed by Safe Exper-
imentation is to try only one classifier among all its children, while the stream
mining optimization problem allows to probe multiple children simultaneously
by requesting their utility parameters

[
v w

]
and selecting the trusted child based

on these fed back values. This capacity to try multiple orders per iterations will
enable to build a parameterized algorithm to speed-up the convergence to optimal
order by choosing screening probabilities pi

j appropriately.

118 R. Ducasse et al.

4.5 Parametric Partial Search Order and Operating Point
Selection Algorithm

As expressed in (12), the screening probabilities pi
j can be used to tradeoff the

expected utility and the computational cost. In this final section, we frame a general
methodology aiming to determine the optimal tradeoff. In order to be adaptable
to the setting considered, we construct our learning algorithm in three steps, each
step representing a certain granularity level, and each step being controllable
by one “macroscopic” state variable. Doing so, we put forward three tradeoffs
corresponding to three independent questions: (1) how much to search?, (2) how
deep to search?, (3) where to search?

This enables the construction of a parametric learning algorithm, extensively
detailed in [8]. This article shows that the probability pi

j (p, ξ, β) that the hth
classifier Cσ(h) = Ci probes its children Cj , given that it received data with
throughput-to-goodput ratio θi ∈ Sk can be expressed as:

pi
j (p, ξ, β) = p

︸︷︷︸
howmuch?

× C′

1 + e
− h−[Np]

ξ

︸ ︷︷ ︸
howdeep?

× eβUi(j,k)

∑

Cl∈Children(Ci)

eβUi(l,k)

︸ ︷︷ ︸
where?

.

The reader will find a justification of the formalism of pi
j in [8].

4.5.1 Controlling the Screening Probability

Using this expression of pi
j is meant to be able to control key characteristics of the

screening probability by tuning parameters p,ξ and β.
The first parameter p = Av

i,j
(pi

j) is used to arbitrate between rapid but inflexible

search and slower but system-compliant search. Its value will impact the time τ

required for one iteration and has to be selected small enough in order to ensure that
τ ≤ Cτdyn, thus, coping with environment dynamics.

The second control parameter ξ is used to arbitrate between rapid but less secure
search and slower but exhaustive search. It is a refinement parameter, which dictates
how much more extensive search should be performed in the lower classifiers than
in the upper ones.

• ξ = 0 corresponds to searching only for last classifiers and violates the
exhaustivity of the search (no optimal convergence ensured).

• 0 < ξ < ∞ corresponds to searching more exhaustively for last classifiers than
for first classifiers.

• ξ = ∞ corresponds to searching uniformly at any depth with probability p.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 119

The third parameter β balances the options of probing unexplored children versus
exploiting already-visited orders, by weighting the propensity of classifier Ci =
Cσ(h) to probe one of its children classifier Cj , based on past experiments’ reward.
In most learning scenarios where the tradeoff between exploration and exploitation
arises, both exploitation and exploration cannot be performed at the same time: the
algorithm will either exploit well-known tracks or explore new tracks [14]. This is
due to the absence of immediate feedback. In our setting, each classifier requests
the information (i.e. utility parameters) of a subset of its children and is then able to
base its decision on their feedback information.

In practice, the weight associated to a specific child based on its past reward

could be determined using any increasing function f . Using fβ(U) = eβU

∑
V eβV

is motivated by the analogy of a classifiers utility U to an energy [22]. In this

case,
eβU

∑
V eβV

represents the equilibrium probability of being at an energy level

U . As such, the parameter β can be interpreted as the inverse of a temperature, i.e.
it governs the amount of excitation of the system:

• β = 0 corresponds to a very excited system with highly time-varying character-
istics. In this case, since characteristics change very quickly, random exploration:
pi

j = pi is recommended by the algorithm.
• β = ∞ corresponds to a non-varying system. Then, full-exploitation of past

rewards is recommended (given that all states were explored at least once) and
weight should be concentrated only on the child which provides the maximum
utility.

• 0 < β < ∞ is a tradeoff between exploration (β = 0) and exploitation (β = ∞)
and corresponds to settings where algorithmic search and environment evolution
are performed at the same time scale.

4.5.2 Comparison of Ordering and Operating Point Selection Algorithms

Our preliminary results in Table 1 compare the performance of several joint
ordering and operating point selection algorithms based on important criteria in the
considered stream mining system.

4.5.3 Order Selected by Various Classifiers for Different Ordering
Algorithms

The performance of the different ordering algorithms are shown in Table 2 for seven
classifiers with fixed operating points per classifier. The classifier’s characteristics
(pF , pD) (i.e. the ROC curve), ψ (i.e. the ex-post selectivities), and α (i.e. the
resource requirements) were generated randomly. The misdetection cost cM = 10,

120 R. Ducasse et al.

Table 1 Comparison of ordering and operating point selection algorithms

Ordering and
operating
point selection
algorithm

System
compliance

Utility
achieved

Message
exchange

Speed of
convergence

Adaptability Control

SQP-Greedy Low Bound;
local opt.

Heavy Medium Little ∅

Safe experi-
mentation

High Local opt. ∅ Medium ∅ ∅

Partial search Complete Local opt. Light Rapid Total Yes

Table 2 Utilities and computational time achieved for different ordering algorithms

Algorithm Order obtained Utility Comp. time

Centralized Optimal [C6 C2 C1 C4 C3 C7 C5] 100 >5 min

Greedy [C4 C1 C6 C7 C2 C3 C5] 95 0.002 s

Decentralized Safe experimentation [C6 C2 C1 C4 C3 C7 C5] 100 2.09

Partial search [C6 C2 C1 C4 C3 C7 C5] 100 1.2 s

false alarm cost cF = 1, and λ = 0.1. The input data rate t0 = g0 was selected to
normalize the optimal utility to 100.

As expected, the globally optimal centralized solution requires too much com-
putation time, while the centralized Greedy algorithm does not lead to the optimal
order, but results in very little computational time. The Parametric Partial Search
Algorithm (here with p = 0, 1, T = 1 and β = 0) converges quicker than
Safe Experimentation (here with ε = 0, 1), to the optimal order. Decentralized
algorithms converge to the optimal order, given that they ultimately probe all the
possible orders, but they require longer computational time than the centralized
greedy solutions. However, as shown in [8], convergence to a near-optimal order
requires only a few iterations.

5 Online Learning for Real-Time Stream Mining

Mining dynamic and heterogeneous data streams using optimization tools may not
always be feasible due to the unknown and time-varying distributions of these
streams. Since classification of the streaming data needs to be done immediately, and
invoking a classifier is costly, choosing the right classifier at run time is an important
problem. In this section we review numerous methods that learn which classifiers to
invoke based on the streaming meta-data, which is also called the context. All the
algorithms studied in this section are able to mine big data streams in real-time. To
accomplish this task, they are designed to have the following key properties:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 121

• After a data instance is classified, the result is used to update the parameters of
the learning algorithms. Then, the data instance is discarded. Therefore, it is not
necessary to keep the past data instances in the memory.

• Usually, a single classifier is selected to classify the current data instance. As a
result, only the accuracy estimate for the selected classifier is updated. While all
the algorithms discussed in this section are capable of simultaneously updating
the accuracies of all of the classifiers, this can lead to significant computational
overhead due to the fact that it requires predictions from all of the classifiers
for each data instance. Nevertheless, the performance bounds discussed in this
section also holds for the case above.

5.1 Centralized Online Learning

This subsection is devoted to the study of centralized online learning algorithms for
stream mining. We introduce several challenges related to real-time stream mining,
various performance measures and the algorithms that address each one of the
introduced challenges.

5.1.1 Problem Formulation

Each classifier takes as input a data instance and outputs a prediction. The data
stream also includes a stream of meta-data, which is also referred to as the context
stream. At time t , the data instance s(t) is observed together with the context x(t) ∈
X . The label y(t) ∈ {0, 1} is not observed. The context can be categorical, real-
valued and/or multi-dimensional. For instance, in a medical diagnosis application,
the data instance can be an MRI image of a tissue, while the context can be
resolution, type of the scanner, age of the patient and/or radius of the tumor.
Depending on the particular application, the set of all possible contexts X can be
very large and even infinite. The dimension of the context space is denoted by D.
Each dimension of the context is called a context type. For instance, for the medical
diagnosis example given above “age” is a context type, while the specific value that
this type takes is the context.

No statistical assumptions are made on the context stream. However, the data
and the label is assumed to be drawn from a fixed distribution given the context.
This departs from the majority of the supervised learning literature, which assumes
that the data is i.i.d. over time. Based on this, the accuracy of a classifier C given
context x is defined to be πC(x) ∈ [0, 1]. The classifier accuracies are not known
beforehand and need to be learned online.

It is common to assume that the accuracy of a classifier is similar for similar
contexts [25, 30]. For instance, in a social network users with similar age, income
and geographic location will have a tendency to click on similar ads, which will
result in a similar accuracy for a classifier that tries to predict the ad that the user

122 R. Ducasse et al.

will click to. This assumption, which is also called the similarity assumption, is
mathematically formalized as Hölder continuity of the accuracy of classifier c as a
function of the context:

|πC(x) − πC(x′)| ≤ L × dist(x, x′)α (13)

where L is the Hölder constant, α is the Hölder exponent and dist(·, ·) is a distance
metric for the contexts. For most of the cases α is set to be 1, which makes the
accuracy of classifier f Lipschitz continuous in the context [24].

The standard performance measure for online learning is the regret, which is
defined as

Reg(T) :=
T∑

t=1

π∗(x(t)) − E

[
T∑

t=1

πa(t)(x(t))

]

(14)

where π∗(x(t)) := maxC∈C πC(x(t)) and a(t) denotes the classifier selected at
time t . Hence, minimizing the regret is equivalent to selecting the best classifier
as many times as possible. The time-averaged regret is defined as Reg(T) =
Reg(T)/T . Reg(T) → 0 implies that the average performance is (asymptotically)
as good as the average performance of the best classifier selection policy given
the complete knowledge of classifier accuracies. In order for the time-averaged
regret to converge to zero, the regret must grow at most sublinearly over time, i.e.,
Reg(T) ≤ KT γ for some constants K > 0 and γ ∈ [0, 1) for all T .

5.1.2 Active Stream Mining

Online learning requires knowing the labels, in order to update the accuracy of
the selected classifier. In most of the stream mining applications, such as medical
diagnosis, acquiring the label is costly. Hence, a judicious mechanism that decides
when to acquire the label based on the confidence on the accuracy of the selected
classifier needs to be developed. The performance measure, i.e., the regret, also
needs to be re-defined to capture the cost of label acquisition; hence, it becomes

Reg(T) :=
T∑

t=1

π∗(x(t)) − E

[
T∑

t=1

πa(t)(x(t)) − J r(t)

]

(15)

where r(t) is 1 if label is acquired at time t and 0 otherwise, and J is a constant that
represents the tradeoff between accuracy and label acquisition cost.

Since the number of possible contexts is usually very large, it is very inefficient
to learn the classifier accuracies for each context separately. Therefore, the learning
algorithms developed for stream mining learn the classifier accuracies for groups
of similar contexts, where the groups are formed by partitioning the context space
based on the similarity assumption given in (13). Then, the estimated accuracy of

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 123

Context space X

l1 l2

l3

time t

Fig. 15 Evolution of context space partition over time for D = 2. Red dots represent the most
recent contexts and black dots represent the past contexts for which the label was acquired at
the time of decision. Based on the similarity assumption, the type 2 error is proportional to lαj ,
j = 1, 2, 3, where lj denotes the diameter of the group that the most recent context belongs to.
On the other hand, the type 1 error decreases with the number of dots which belong to the group
(square) that the current context belongs to

classifier C for context x(t) is computed as π̂C(x(t)) := π̂C(p(t)) where p(t) is
the group that contains x(t) in the partition of the context space. Here, π̂C(p(t)) is
the sample mean of the correct predictions averaged over all past context arrivals to
p(t) for which the label was acquired. As shown in Fig. 15, this partition is adapted
based on how the contexts arrive in order to balance the two sources of error in
estimating the classifier accuracies: (1) type 1 error that arises from the number of
past labeled data instances belonging to a group; (2) type 2 error that arises from the
dissimilarity of the contexts that belong to the same group.

The label acquisition decision is also made to balance this tradeoff. Specifically,
each label acquisition decreases the type 1 error of the selected classifier for the
group that the current context belongs to. If accuracy of the selected classifier is
known with a high confidence, then label acquisition is not necessary. In order
to achieve this, the learning algorithm indefinitely alternates between two phases:
exploration phase and exploitation phase, which are described below.

• Exploration phase: Select a classifier that the algorithm has a low confidence
on its accuracy. After performing classification by the selected classifier, acquire
the label of the data instance and update the accuracy estimate of the selected
classifier.

• Exploitation phase: Select the classifier with the highest estimated accuracy, i.e.,
a(t) = arg maxC∈C π̂C(x(t)).

After an exploration phase, the confidence on the accuracy of the selected
classifier increases. Thus, classifier accuracies are learned in exploration phases.
On the other hand, in an exploitation phase the prediction accuracy is maximized
by classifying the data instance based on the empirically best classifier. In [25],
it is shown that sublinear in time regret can be achieved by acquiring labels only
sublinearly many times. While this regret bound holds uniformly over time, its
dependence on T can be captured by using the asymptotic notation, which implies
that Reg(T) = Õ(T (κ+D)/(κ′+D)), for some constants κ′ > κ > 0. The specific

124 R. Ducasse et al.

implementation keeps a control function D(t), and explores only when the number
of times the label is acquired by time t is less than or equal to D(t). D(t) increases
both with t and the inverse of the diameter of the group that x(t) belongs to. For
this algorithm, the number of groups in the partition of the context space is also
a sublinear function of time, which implies that the memory complexity of the
algorithm is also sublinear in time. Moreover, identifying both the group that the
current context belongs to and the empirically best classifier are computationally
simple operations, which makes this algorithm suitable for real-time stream mining.

5.1.3 Learning Under Accuracy Drift

Since the data stream is dynamic, its distribution conditioned on the context can
also change over time. This is called the concept drift [35]. It is straightforward
to observe that the concept drift will also cause a change in the accuracy of the
classifiers. For this setting, the time-varying accuracy of a classifier C for context x

is denoted by πC(t, x). It is assumed that the accuracy gradually drifts over time,
which can be written as

|πC(t, x) − πC(t ′, x′)| ≤ L × dist(x, x′)α + |t − t ′|
Ts

where Ts denotes the stability of the concept. If Ts is large the drift is slow, while if
Ts is small the drift is fast. Note that this assumption does not introduce any explicit
restrictions on the data stream distribution. Hence, the accuracy drift is more general
than the concept drift and can also model scenarios in which there is a change in
the classifiers. For instance, in an application with SVM classifiers, some of the
classifiers might be re-trained on-the-fly as more data instances arrive, which will
result in a change in their decision boundaries, and hence their accuracies, even
though the stream distribution remains the same.

An algorithm that learns and tracks the best classifier when there is accuracy
drift is proposed in [26]. This algorithm estimates the classifier accuracies by using
a recent time window of observations from similar contexts as opposed to using
the entire past history of observations. In this work, the optimal window size is
computed to be a sublinear function of Ts .

In general, it is not possible to achieve sublinear in time regret when there is
accuracy drift due to the fact that the classifier accuracies are continuously changing.
A constant rate of exploration is required in order to track the best classifier. A
suitable performance measure for this setting is the time-averaged regret Reg(T).
The algorithm proposed in [26] achieves a time-averaged regret of Õ(T

−γ
s), where

γ ∈ (0, 1) is a parameter that depends on α and the dimension of the context
space. This implies that the time-averaged regret decreases as Ts increases, which is
expected since it is easier to learn the classifier accuracies when the drift is slow.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 125

Age

Weight

Sugar

Weight

x(t) x(t)

l
l

Fig. 16 A medical diagnosis example with three dimensional context space. Shaded areas
represent the set of past observations that are used to estimate the classifier accuracies for the
current context x(t). On the left figure all context types are relevant, while on the right figure only
the context type “weight” is relevant. The shaded areas on the left and right figures have the same
type 2 error. However, the type 1 error for the shaded area on the right figure is much less than the
one on the left figure since it includes many more past observations

5.1.4 Learning the Relevant Contexts

When the dimension D of the context space is large, the methods proposed in
the previous sections which rely on partitioning the context space suffer from the
curse of dimensionality as shown in Fig. 16. As a result, the regret bound given in
Sect. 5.1.2 becomes almost linear in time.

It is possible to avoid the curse of dimensionality when the classifier accuracies
depend only on a small subset of the set of all possible context types. In stream
mining, this implies that there are many irrelevant context types which do not affect
the outcome of the classification.7 If the relevant context types were known, online
learning could be easily performed by partitioning the context space restricted to
the relevant context types. However, identifying these relevant context types on-
the-fly without making any statistical assumptions on how the contexts arrive is a
challenging task. Nevertheless, it is possible to identify the relevant context types
through a sophisticated relevance test. This test identifies relevance assumptions that
are consistent with the classifier accuracies estimated so far. The only requirements
for this test are (13) and an upper bound on the number of relevant context types.

Here, we explain the relevance test that identifies one relevant context type for
every classifier. The extension to more than one relevant context type can be found in
[28]. It is important to note that the relevance test is only performed in exploitation
phases as it requires confident accuracy estimates. First, for each context type i, the
variation of the estimated accuracy of classifier C over all pairs of context types
that include context type i is calculated. The resulting vector is called the pairwise
variation vector of context type i. Then, a bound on the variation of the estimated
accuracy of classifier C due to type 2 errors, which is called natural variation, is

7The definition of irrelevant context types can be relaxed to include all context types which have
an effect that is less than ε > 0 on the classifier accuracies.

126 R. Ducasse et al.

calculated. The set of candidate relevant context types are identified as the ones for
which the pairwise variation is less than a linear function of the natural variation.
Finally, a context type i∗ is selected from the set of candidate relevant types to
be the estimated relevant context type, and the accuracies of the classifiers are re-
calculated by averaging over all past observations whose type i∗ contexts are similar
to the current type i∗ context. In [29] it is shown that online learning with relevance
test achieves regret whose time order does not depend on D (but depends on the
number of relevant context types). Hence, learning is fast and efficient, given that
the number of relevant context types is much smaller than D.

5.2 Decentralized Online Learning

In this subsection, we consider how online learning can be performed in distributed
classifier networks. We review two methods: cooperative contextual bandits in
which local learners (LLs) cooperate to learn the best classifier to select within the
network; hedged bandits in which an ensemble learner (EL) fuses the predictions of
the LLs to maximize the chance of correct classification.

5.2.1 Problem Formulation

Most of the definitions and notations are the same as in Sect. 5.1.1. There are M

data streams, each of which is processed locally by its LL. Each LL has a set of
classifiers C i that it can use to classify its incoming data stream. The set of all
classifiers is denoted by C = ∪M

i=1C i . The context that is related to the ith data
stream is denoted by xi(t), where t ∈ {1, 2, . . .}.

5.2.2 Cooperative Contextual Bandits

In this part we describe a cooperative online learning framework that enables an
LL to use other LLs’ classifiers to classify its own data stream. For cooperative
contextual bandits, the assumption on the context arrival process is the same as the
assumption in Sect. 5.1.1.

In order to understand the benefit of cooperation, first we consider the case in
which each LL acts individually. In this case, the highest accuracy that LL i can get
for context x is π∗

i (x) := maxC∈C i
πC(x). On the other hand, if all LLs cooperate

and share their classifiers with each other, the highest accuracy LL i can get for
context x is π∗

G(x) := maxC∈C πC(x). Clearly, π∗
G(x) ≥ π∗

i (x). However, it is not
straightforward for LLs to achieve a classification accuracy that is equal to π∗

G(x)

for all x ∈ X due to the following reasons:

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 127

1 2 3 4 5 6 7 8

Train Explore Exploit

time

Fig. 17 Interleaving of the training, exploration and exploitation phases over time for a particular
LL and context arrival process in cooperative contextual bandits

• LL i does not known the accuracies of its classifiers πC(x), C ∈ C i , x ∈ X a
priori, and needs to learn these accuracies on-the-fly.

• LL i does not know the classifiers available to the other LLs. Moreover, other
LLs may be reluctant to share such an information due to privacy constraints.

• LL i cannot observe the data streams arriving to other LLs due to both privacy and
communication constraints. However, LL i is able to send selected data instances
to other LLs (possibly by incurring some communication cost) and is able to
receive selected data instances from the other LLs.

The challenging decentralized learning problem stated above is solved by
designing a decentralized learning algorithm that promotes cooperation among the
learners [27]. In this algorithm, each learner alternates between three different
phases over time as given in Fig. 17. The sequencing of these phases is adapted
online based on the context arrival process. In each phase the learning algorithm
takes an action for a different purpose:

• Training phase: LL i selects another LL and sends its context and data instance
to the selected LL. Then, the selected LL is asked to classify the data instance.
After the classification is performed and the true label is received by LL i, this
true label is also send to the selected LL in order for it to update the accuracy
of the classifier that it had selected on behalf of LL i. Hence, the purpose of the
training phase is to train other LLs such that they learn the accuracies of their
own classifiers with a high confidence for contexts that arrive to LL i.

• Exploration phase: LL i selects one of its own classifiers or another LL for the
purpose of learning the accuracy.

• Exploitation phase: LL i selects one of its own classifiers or another LL for the
purpose of maximizing the probability of correct classification.

Due to the heterogeneity of the data streams, usually it is not possible for a single
LL to learn its classifier accuracies well for all possible contexts by just observing
its own data stream. This can happen because a context that is rare for one LL can
be frequent for another LL. While this results in asymmetric learning, it is solved
by the training phase.

Note from Fig. 17 that exploration is performed only when there is no need for
training. This is to ensure that if another LL is selected to make a classification, it
performs classification based on its best classifiers. Otherwise, LL i might learn the

128 R. Ducasse et al.

accuracy of the other LLs incorrectly, which might results in failure to identify an
LL, whose accuracy is higher than the accuracies of the classifiers in C i . Similarly,
exploitation is performed only when there is no need to train any other LL or to
explore any other LL or classifier.

One important question is how much training and exploration is needed. This
can be analytically solved by defining confidence intervals for the sample mean
(empirical) estimates of the classifier accuracies, and adjusting these confidence
intervals over time to achieve a certain performance goal. In cooperative contextual
bandits, the regret of LL i is defined as

Regi (T) :=
T∑

t=1

π∗
G(xi(t)) − E

[
T∑

t=1

πai (t)(xi(t))

]

(16)

where πai (t)(xi(t)) denotes the accuracy of the classifier selected by LL ai(t) on
behalf of LL i for ai(t) /∈ C i . Again, we seek to achieve sublinear in time regret,
which implies that the learning algorithm’s average number of correct predictions
converges to that of the π∗

G(x).
Specifically, it is proven in [27] that sublinear regret can be achieved by an

algorithm that uses sublinear number of training and exploration phases. In order
to achieve sublinear regret, the classifier accuracies must also be learned together
for similar contexts by a context space partitioning method such as the one given in
Fig. 15.

5.2.3 Hedged Bandits

Hedged Bandits model decentralized stream mining applications in which all data
streams are related to the same event. Hence, it is assumed that the contexts,
data instances and labels are drawn according to an i.i.d. process. LLs produce
predictions by choosing classifiers according to their own learning algorithms,
classifiers and data streams, and then, send these predictions to an EL, which fuses
the predictions together to produce a final prediction. The learning algorithm used
by the LLs is similar to the learning algorithms discussed in Sect. 5.1. On the other
hand, the EL uses a variant of the Hedge algorithm [10] that does not require the
time horizon to be known in advance. This guarantees that the ELs prediction is as
good as the predictions of the best LL given the context [30].

6 Conclusion

Adapting in real time the topology of classifiers and their configuration (operating
point) enables to significantly improve the performance of stream mining systems,
by optimally trading up accuracy and delay, under limited resources.

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 129

However, the emergence of new stream mining applications, with specific
requirements and characteristics, widens the spectrum of possibilities and leaves
room for further improvements. Today, more and more data is available to be
processed, and more and more classification, filtering, analysis or sorting can be
performed on this data. As such, a major challenge lies in identifying, prioritizing
and planning mining tasks. Until now, the mapping between queries and a set of
corresponding classifiers was considered as given. Yet, this mapping should be
decided jointly with the topology construction and the system configuration for an
optimal stream mining design.

An upstream consideration would be to decide whether streams should be
systematically classified or only identified upon request. Indeed, a stream mining
system must not only be seen as a query-centric processing system aiming to
identify which subset of data answers a given set of queries. Instead of defining
the set of classifiers on the basis of the set of queries (C = ⋃

q∈Q C(q)), we
could determine what are all the queries which can be answered given a set of
classifiers (Q = {q | C(q) ⊂ C}). Since such classifier-centric approach leads to
an explosion of the number of queries which can be processed (N binary classifiers
can potentially process

∑N
k=1

N !
k!(N−k)!2

k different queries) it is critical to be able to
identify or to learn online which classification to perform.

Indeed, classifier design is an expensive process and determining which feature
to extract represents a major topic in the data mining community. Hence, given a
data stream and a query, deciding which classifiers should match which queries has
not yet been analytically studied. Underlying this issue resonates the exploration
versus exploitation tradeoff, where we need to train the stream mining system to
detect the classifiers which are critical to stream identification.

Acknowledgements This work is based upon work supported by the National Science Foundation
under Grant No. 1016081. We would like to thank Dr. Deepak Turaga (IBM Research) for
introducing us to the topic of stream mining and for many productive conversation associated
with the material of this chapter as well as providing us with Figs. 1 and 3 of this chapter. We also
would like to thank Dr. Fangwen Fu and Dr. Brian Foo, who have been PhD students in Prof. van
der Schaar group and have made contributions to the area of stream mining from which this chapter
benefited. Finally, we thank Mr. Siming Song for kindly helping us with formatting and polishing
the final version of the chapter.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain: Operator scheduling for memory
minimization in data stream systems. In: Proc. ACM International Conference on Management
of Data (SIGMOD), pp. 253–264 (2003)

2. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive ordering of pipelined
stream filters. In: ACM SIGMOD International Conference on Management of Data (2004)

3. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (1994)
4. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y., Zdonik,

S.: Scalable distributed stream processing. In: Proc. of Conference on Innovative Data Systems
Research, Asilomar (2003)

130 R. Ducasse et al.

5. Cherniack, M., Balakrishnan, H., Carney, D., Cetintemel, U., Xing, Y., Zdonik, S.: Scalable
distributed stream processing. In: Proc. CIDR (2003)

6. Condon, A., Deshpande, A., Hellerstein, L., Wu, N.: Flow algorithm for two pipelined filter
ordering problems. In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (2006)

7. Douglis, F., Branson, M., Hildrum, K., Rong, B., Ye, F.: Multi-site cooperative data stream
analysis. ACM SIGOPS 40(3) (2006)

8. Ducasse, R., Turaga, D.S., van der Schaar, M.: Adaptive topologic optimization for large-scale
stream mining. IEEE Journal on Selected Topics in Signal Processing 4(3), 620–636 (2010)

9. Foo, B., van der Schaar, M.: Distributed classifier chain optimization for real-time multimedia
stream-mining systems. In: Proc. IS&T / SPIE Multimedia Content Access, Algorithms and
Systems II (2008)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. In: Proc. European Conference on Computational Learning Theory,
pp. 23–37 (1995)

11. Fu, F., Turaga, D.S., Verscheure, O., van der Schaar, M., Amini, L.: Configuring competing
classifier chains in distributed stream mining systems. IEEE Journal on Selected Topics in
Signal Processing (2007)

12. Gaber, M., Zaslavsky, A., Krishnaswamy, S.: Resource-aware knowledge discovery in data
streams. In: Proc. First Intl. Workshop on Knowledge Discovery in Data Streams (2004)

13. Garg, A., Pavlovic, V.: Bayesian networks as ensemble of classifiers. In: Proc. 16th
International Conference on Pattern Recognition (ICPR), pp. 779–784 (2002)

14. Gupta, A., Smith, K., Shalley, C.: The interplay between exploration and exploitation.
Academy of Management Journal (2006)

15. Hu, J., Wellman, M.: Multiagent reinforcement learning: Theoretical framework and an
algorithm. In: Proceedings of the Fifteenth International Conference on Machine Learning
(1998)

16. Low, S., Lapsley, D.E.: Optimization flow control I: Basic algorithm and convergence.
IEEE/ACM Trans. Networking 7(6), 861–874 (1999)

17. Marden, J., Young, H., Arslan, G., Shamma, J.: Payoff based dynamics for multi-player weakly
acyclic games. SIAM Journal on Control and Optimization, special issue on Control and
Optimization in Cooperative Networks (2007)

18. Merugu, S., Ghosh, J.: Privacy-preserving distributed clustering using generative models. In:
Proc. of 3rd International Conference on Management of Data, pp. 211–218 (2003)

19. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data
streams. In: Proc. ACM SIGMOD Intl. Conf. Management of Data, pp. 563–574 (2003)

20. Palomar, D., Chiang, M.: On alternative decompositions and distributed algorithms for network
utility problems. In: Proc. IEEE Globecom (2005)

21. Park, H., Turaga, D.S., Verscheure, O., van der Schaar, M.: Foresighted tree configuring games
in resource constrained distributed stream mining systems. In: Proc. IEEE Int. Conf. Acoustics
Speech and Signal Process. (2009)

22. Saul, L., Jordan, M.I.: Learning in Boltzmann trees. Neural Computation (1994)
23. Schapire, Y.: A brief introduction to boosting. In: Proc. International Conference on

Algorithmic Learning Theory (1999)
24. Slivkins, A.: Contextual bandits with similarity information. Journal of Machine Learning

Research 15(1), 2533–2568 (2014)
25. Tekin, C., van der Schaar, M.: Active learning in context-driven stream mining with an

application to image mining. IEEE Transactions on Image Processing 24(11), 3666–3679
(2015)

26. Tekin, C., van der Schaar, M.: Contextual online learning for multimedia content aggregation.
IEEE Transactions on Multimedia 17(4), 549–561 (2015)

27. Tekin, C., van der Schaar, M.: Distributed online learning via cooperative contextual bandits.
IEEE Transactions Signal Processing 63(14), 3700–3714 (2015)

Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems 131

28. Tekin, C., van der Schaar, M.: RELEAF: An algorithm for learning and exploiting relevance.
IEEE Journal of Selected Topics in Signal Processing 9(4), 716–727 (2015)

29. Tekin, C., Van Der Schaar, M.: Discovering, learning and exploiting relevance. In: Advances
in Neural Information Processing Systems, pp. 1233–1241 (2014)

30. Tekin, C., Yoon, J., van der Schaar, M.: Adaptive ensemble learning with confidence bounds.
IEEE Transactions on Signal Processing 65(4), 888–903 (2017)

31. Turaga, D., Verscheure, O., Chaudhari, U., Amini, L.: Resource management for networked
classifiers in distributed stream mining systems. In: Proc. IEEE ICDM (2006)

32. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data.
In: Proc. of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 206–215 (2003)

33. Varshney, P.: Distributed Detection and Data Fusion. Springer (1997). ISBN: 978-0-387-
94712-9

34. Vazirani, V.: Approximation Algorithms. Springer Verlag, Inc., New York, NY, USA (2001)
35. Žliobaitė, I.: Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784 (2010)

	Finding It Now: Networked Classifiers in Real-Time Stream Mining Systems
	1 Defining Stream Mining
	1.1 Motivation
	1.1.1 Application 1: Semantic Concept Detection in Multimedia; Processing Heterogeneous and Dynamic Data in a Resource-Constrained Setting
	1.1.2 Application 2: Online Healthcare Monitoring; Processing Data in Real Time
	1.1.3 Application 3: Analysis of Social Graphs; Coping with Decentralized Information and Setup

	1.2 From Data Mining to Stream Mining
	1.2.1 Data Mining
	1.2.2 Changing Paradigm

	1.3 Problem Formulation
	1.3.1 Classifiers
	1.3.2 Axis for Study

	1.4 Challenges
	1.4.1 Coping with Complex Data: Large-Scale, Heterogeneous and Time-Varying
	1.4.2 Immediacy
	1.4.3 Distributed Information and Knowledge Extraction
	1.4.4 Resource Constraints

	2 Proposed Systematic Framework for Stream Mining Systems
	2.1 Query Process Modeled as Classifier Chain
	2.1.1 A-Priori Selectivity
	2.1.2 Classifier Performance
	2.1.3 Throughput and Goodput of a Chain of Classifiers

	2.2 Optimization Objective
	2.2.1 Misclassification Cost
	2.2.2 Processing Delay Cost
	2.2.3 Resource Constraints
	2.2.4 Optimization Problem

	2.3 Operating Point Selection
	2.4 Further Research Areas

	3 Topology Construction
	3.1 Linear Topology Optimization: Problem Formulation
	3.2 Centralized Ordering Algorithms for Fixed Operating Points
	3.2.1 Optimal Order Search
	3.2.2 Greedy Algorithm

	3.3 Joint Order and Operating Point Selection
	3.3.1 Limits of Centralized Algorithms for Order Selection

	3.4 Multi-Chain Topology
	3.4.1 Motivations for Using a Multi-Chain Topology: Delay Tradeoff Between Feature Extraction and Intra-Classifier Communication
	3.4.2 Number of Chains and Tree Configuration

	4 Decentralized Approach
	4.1 Limits of Centralized Approaches and Necessity of a Decentralized Approach
	4.2 Decentralized Decision Framework
	4.2.1 Users of the Stream Mining System
	4.2.2 States Observed by Each Classifier
	4.2.3 Actions of a Classifier
	4.2.4 Local Utility of a Classifier

	4.3 Decentralized Algorithms
	4.3.1 Exhaustive Search Ordering Algorithm
	4.3.2 Partial Search Ordering Algorithm
	4.3.3 Decentralized Ordering and Operating Point Selection
	4.3.4 Robustness of the Partial Search Algorithm and Convergence Speed

	4.4 Multi-Agent Learning in Decentralized Algorithm
	4.4.1 Tradeoff Between Efficiency and Computational Time
	4.4.2 Safe Experimentation

	4.5 Parametric Partial Search Order and Operating Point Selection Algorithm
	4.5.1 Controlling the Screening Probability
	4.5.2 Comparison of Ordering and Operating Point Selection Algorithms
	4.5.3 Order Selected by Various Classifiers for Different Ordering Algorithms

	5 Online Learning for Real-Time Stream Mining
	5.1 Centralized Online Learning
	5.1.1 Problem Formulation
	5.1.2 Active Stream Mining
	5.1.3 Learning Under Accuracy Drift
	5.1.4 Learning the Relevant Contexts

	5.2 Decentralized Online Learning
	5.2.1 Problem Formulation
	5.2.2 Cooperative Contextual Bandits
	5.2.3 Hedged Bandits

	6 Conclusion
	References

