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ABSTRACT

Chip multiprocessors (CMPs) require effective cache coher-
ence protocols as well as fast virtual-to-physical address trans-
lation mechanisms for high performance. Directory-based
cache coherence protocols are the state-of-the-art approaches
in many-core CMPs to keep the data blocks coherent at the
last level private caches. However, the area overhead and
high associativity requirement of the directory structures
may not scale well with increasingly higher number of cores.

As shown in some prior studies, a significant percentage
of data blocks are accessed by only one core, therefore, it is
not necessary to keep track of these in the directory struc-
ture. In this study, we have two major contributions. First,
we show that compared to the classification of cache blocks
at page granularity as done in some previous studies, data
block classification at subpage level helps to detect consid-
erably more private data blocks. Consequently, it reduces
the percentage of blocks required to be tracked in the di-
rectory significantly compared to similar page level classifi-
cation approaches. This, in turn, enables smaller directory
caches with lower associativity to be used in CMPs without
hurting performance, thereby helping the directory struc-
ture to scale gracefully with the increasing number of cores.
Memory block classification at subpage level, however, may
increase the frequency of the Operating System’s (OS) in-
volvement in updating the maintenance bits belonging to
subpages stored in page table entries, nullifying some por-
tion of performance benefits of subpage level data classifi-
cation. To overcome this, we propose a distributed on-chip
page table as a our second contribution.
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1. INTRODUCTION

Effective cache coherence protocols as well as fast virtual-
to-physical address translation are both critical to meet the
demand for high-performance systems.

Directory-based cache coherence protocols are the state-
of-the-art approaches in many-core CMPs to keep the data
blocks coherent at the last level private caches. However, the
area overhead, high energy consumption, and high associa-
tivity requirement of the directory structures may not scale
well with increasingly higher number of cores in a chip. Dif-
ferent directory organizations have been suggested to enable
lower overhead and higher scalability in coherence protocols
relying on directories [9, 14].

To enable fast virtual memory translation, recent studies
focused on designing Translation Look-aside Buffers (TLBs).
There are different studies in the literature which try to
propose efficient TLB organization, particularly for CMPs
[5, 17]. We will discuss the drawbacks of those architectures
and then propose our idea to enhance the performance of
virtual to physical address translation in CMPs in the rest
of the paper.

Several prior studies [10, 13] suggested page granularity
data classification mechanisms that help to decrease coher-
ence management overhead in directories by not keeping
track of portion of data blocks which are private to each
core. However, we have observed that performing data clas-
sification in a finer granularity than page granularity can
bring additional benefits. Based on this observation, this
paper makes the following contributions.

e First, we propose a data block classification mechanism
which works at subpage level and helps to detect con-
siderably more private data blocks. Consequently, it
reduces the percentage of blocks required to be tracked
in the directory significantly compared to similar page
level classification approaches. This, in turn, enables
smaller directory caches with lower associativity to be
used in CMPs without hurting performance, thereby
helping the directory structure to scale gracefully with
the increasing number of cores.

e Second, we propose a small distributed table referred
to as the on-chip page table, which stores the page
table entries for recently accessed pages in the sys-
tem. This can be implemented as a portion of the
directory controller. Upon a TLB miss, the operating
system gets involved in address translation only when
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the translation is not found in the on-chip page table.
It also helps to negate performance degradation that
might have occurred due to the increase in the fre-
quency of the operating system’s involvement in our
subpage granularity block classification.

The rest of the paper is organized as follows. Section 2 dis-
cusses the background, related work and motivation for our
proposal. In Section 3, we give the details of our approach
along with examples, while Section 4 discusses the details
of our system configuration, tools, system parameters, and
benchmarks. Section 5 gives our experimental results in de-
tail. Finally, Section 6 concludes the paper.

2. BACKGROUND AND MOTIVATION
2.1 Directory Caches

Directory-based cache-coherence protocols [2, 11] are the
common approaches for managing the coherency in many-
core systems because of their scalability in power consump-
tion and area compared to traditional broadcast-based pro-
tocols. However, the latency and power requirements of
today’s many-core architectures with their large last level
caches (LLCs) brought new challenges. It is common to
cache a subset of directory entries to avoid high latency and
power overheads of directory accesses. All these motivate
architects to cache a subset of directory entries. A direc-
tory cache [11] should provide an efficient way to keep the
copies of data blocks stored in different private caches co-
herent since its structure can have momentous influence on
overall system performance. The first important decision as-
sociated with directory cache design is to decide which data
blocks must be tracked in directory cache. Second will be the
size and associativity requirement for an efficient directory
cache.

A common scheme for organizing directories in CMPs is
duplicate-tag-based directories [3, 16]. Compared to other
directory structures, this type of directory caches are more
flexible as they do not force any inclusion among the cache
levels. However, directories based on duplicate-tag come
with overheads. Storage cost for duplicate tags, and more
notably, high associativity requirement that grows with num-
ber of cores in the system, are two main overheads. For
instance, in a many-core processor with N cores, each of
which has a K-way-set associative last level private cache,
the directory cache must be N*K-way associative to hold all
private cache tags (to avoid any invalidation). Therefore,
this approach suffers from high power consumption and high
design complexity due to high associativity.

In our proposed framework, we avoid poor performance of
low associative directory caches (as a result of high invalida-
tion counts in directory cache), as will be presented in detail
in Section 3.

2.2 Fast Address Translation

TLBs are the key component for supporting fast transla-
tion from virtual to physical addresses. However, in many
cases, they are in the critical path of memory accesses. This
is the main motivation for many studies [6, 17] which focus
on the techniques for fast and efficient virtual to physical
address translation through TLBs.

A pervasive approach for organizing the TLBs in many-
core architectures is per-core private TLBs. However, it is

shown in [5] that such an organization may lead to poor per-
formance and still keep the TLB in critical path of memory
accesses. To overcome this, different techniques were sug-
gested, which are broadly classified into two categories. The
approaches in the first category suggest a shared last level
TLB [5, 6] to improve sharing capacity among the cores in
the system. In contrast, the approaches in the second cat-
egory try to increase sharing capabilities between the cores
by enabling a cooperation between the private TLBs [17].
In other words, each individual core tries to borrow capac-
ity from private TLBs of other cores in the system before
finding the translation with relatively higher cost in OS.

The approaches using a shared TLB introduce higher ac-
cess latency and require a high bandwidth interconnection
network. Hence, they need higher associativity, leading to
higher power consumption. On the other hand, the ap-
proaches in the second category need to inquire other TLBs
for each missed page translation happened at each core,
which can introduce both design complexity and higher net-
work traffic. For example, a prior study [17] suggests snoop-
ing the other TLBs in the system for finding the page entry
in those TLBs. This approach is not scalable with higher
core counts due to traffic overhead and excessive energy con-
sumption required by snooping.

This motivates us to propose a new method to boost vir-
tual address translation that doesn’t suffer from the short-
comings listed above. We present the details of our approach
in Section 3.

2.3 Key Observation

Some prior studies exploited private data detection to en-
able high performance for many-core architecture by miti-
gating the overhead of managing coherence. The detection
of private data might be done offline with compiler assistance
[15]. Although, this approach does not incur any runtime
overhead or any extra hardware, however, there is a limita-
tion on the amount of the private data which can be stati-
cally detected. Alternatively, detection can be implemented
with a runtime technique to increase the private data detec-
tion rate [10, 13]. While those approaches show impressive
performance gain, the following observation indicates that
there is still more room for improvement via detection of
private accesses.

In this work, we also utilize a runtime mechanism to de-
tect private data and further improve the performance of
cache coherence management in the system. More specifi-
cally, we build our cache coherence management based on
the following observation.

Observation The granularity at which we detect private ac-
cesses can play a vital role in performance benefits we can
obtain.

We observed that by inspecting private data in a finer
granularity than page granularity, chances for finding private
data and further improvements will be considerably higher.
Figure 1 shows the amount of private accesses detected with
a subpage granularity (4 subpages per page) compared to
a page granularity approach for ten different multithreaded
applications in systems with 4, 8, and 16 cores. The reason
for such a difference is that the existence of a single shared
block within a page is enough to change the status of the
whole blocks within that page from private to shared. Thus,
if we divide a page to subpages, it is more unlikely that
shared blocks can adversely affect private blocks’ status in
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Figure 1: Percentage of data detected as private in a page granularity detection versus subpage granularity (4 subpages per

S

page) detection mechanisms.

subpage level detection.

While the page size is selected as 8KB in our example,
we predict the difference would be more dramatic for those
architectures that use larger page sizes for performance rea-
sons. According to Figure 1, the chances of detecting private
accesses in subpage granularity is about two times more than
doing so in page granularity. We will discuss later in this
paper how we can perform the detection at the subpage level
with the assistance of page tables and TLB entries.

3. OUR APPROACH

In this section, we explain the details of our memory man-
agement scheme that employs a runtime subpage granularity
private data detection motivated by the observation in Sec-
tion 2. The two main mechanisms used in our approach
are i) detecting private memory blocks in subpage granular-
ity and ii) exploiting the results of the data classification to
improve the performance of the system.

3.1 Private Block Detection

A common approach to differentiate between private and
shared data blocks is to utilize OS capabilities [10, 12, 13].
The prior work [10] extends TLB and page table entries with
additional fields to distinguish between private and shared
pages. To do so, two new fields are introduced in TLB en-
tries: while the private bit (P) indicates whether the page is
private or shared, the locked bit (L) is employed to prevent
race conditions when a private page becomes shared and, in
turn, the coherence status of cache blocks of this particu-
lar page are restored. To distinguish between private and
shared pages, three new fields are also attached to page ta-
ble entries: (1) the private bit (P) marks whether the page
is private or shared; (2) if P is set, the keeper field indicates
the identity of the unique core storing the page table entry
in its TLB; (3) cached-in-TLB bit (C) shows whether the
keeper field is valid or not.

While we also try to detect private data blocks at runtime,
our intention is to detect private data at a finer granularity.
To accomplish this, we use most significant bits of page offset
for subpage ID and clone V, P, C, L. and keeper fields in
TLB and page table entries so that each subpage has its
own such fields, as depicted in Figure 2a. In this work, we
divide each page into a number of subpages. The size of the
keeper field grows according to the number of cores in the
system. In other words, the size of the keeper is log,(N),
where N is number of cores in the system. Note that extra
storage required in page table entries are part of OS storage
and does not force any additional storage requirement to

TLB entry

’ virtual page number ’ physical page number

o] e ]l

- - -
E] £ |
Page table a E]
entry
virtual page number | V | physical page number | C ’ P ’ keeper eee ’ C ’ P| keeper
Y g

(a) TLB and page table entry formats.

Core 1 Core 2

LB LB

[ vaddr] Paddr [M P L] ... [V P[ L] [ vaddr] Paddr [V [ L] ... [V P[ L]

Qoé_/ S ErT

1

[vaddr [T PAddr | keeper | P e]
ey

0s 01

1- new page

@
&

(b) The subpage granularity private data detection mechanism.

Figure 2: Private block detection scheme.

the underlying hardware except the three bits required to
identify the status of each subpage in TLB entry.

Now, we list the three main operations that should be
performed to properly update the fields discussed earlier and
enable detection of private data at subpage level. To make it
clear, we also show the operations in Figure 2b with different
colors.

e First (red): When a page is loaded into main memory
for the first time, the operating system allocates a new
page table entry with the virtual to physical address
translation. Besides storing the virtual to physical ad-
dress translation in the page table entry, all the sub-
pages within that page are considered to be private
and thereby, the corresponding (P) bits are set. All
subpages’ bits (C) are also cleared, showing that the
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entry has not been cached in any TLB yet.

e Second (blue): Corel faces a miss in its TLB for an
address translation or there is a hit in the TLB but the
(V) bit of the subpage which was tried to be accessed,
is cleared (which means it is not cached in TLB yet).
In either case, corel will inquire the operating system
page table for the translation of the subpage. We as-
sume that it finds the (C) bit of the subpage cleared,
which means that the subpage is not accessed by any
other core yet. Thus, the (C) bit is set and the identity
of the requester core (core 1) is recorded in the keeper
field.

e Third (brown): Core2 experiences a miss in its TLB
for the same subpage like the previous operation. After
looking up the page table for that subpage, it turns out
both (C) and (P) bits of the subpage are set. There-
fore, the keeper field should be compared against the
identity of the requester core. If there is a match, it
means that the keeper core has already experienced a
TLB miss and the page table entry is brought into the
requester core’s TLB, considering the subpage as pri-
vately accessed only by requester core. If the keeper
field does not match the identity of the core request-
ing the page table entry (like this example), it means
that two different cores are attempting to access the
data within the same subpage (corel and core2 in this
example). As a result, the operating system decides to
turn the status of corresponding subpage to shared by
clearing the (P) bit. Moreover, the operating system
triggers the coherence recovery mechanism by inform-
ing the keeper core to restore the coherence status of
cache blocks within that subpage. We will explain the
coherence recovery mechanism with more detail in the
next part.

3.1.1 Coherence Recovery Mechanism

As will be discussed, the performance improvement we ex-
pect to gain by our approach is based on the fact that one
can avotid coherence operations for private data. In fact,
private data does not necessarily need many of the messages
exchanged between the cache controllers. Similarly, the di-
rectory cache does not need to track private blocks.

If at a certain point, we realize that our assumption about
the status of a block is no longer valid, we need to recover
from this situation. Otherwise, the caches might not re-
main coherent. In this work, we use a similar recovery
mechanism proposed in the literature [10]. In this work,
authors propose two strategies, namely, flushing-based re-
covery and updating-based recovery mechanisms. Their re-
sults show that these two strategies are slightly different in
terms of performance. Similarly, our recovery mechanism
uses a flushing-based mechanism and performs following op-
erations in order to ensure safe recovery from status change
of a subpage from private to shared.

e First, on the arrival of recovery request, the keeper first
should prevent accesses to the blocks of that subpage
by setting the subpage’s (L) bit.

e Second, the keeper should invalidate all the blocks cor-
responding to that subpage in its private cache.

e Third, the keeper also should take care of the pending
blocks in its Miss Status Holding Register (MSHR). If
there are any blocks within that subpage in MSHR,
they should be evicted right after the operation com-
pletes.

Once the mentioned operations finish, the keeper sends
back an acknowledgment to announce the completion of the
recovery. At this point, the core which initiated the recovery,
changes the subpage status of that specific subpage to shared
and continues its operation.

3.2 Directory Cache Organization

In this section, we present our approach which tries to ad-
dress the two most important drawbacks of directory-based
cache coherence protocols. The first drawback is the need
for a highly associative cache, which introduces high power
consumption and high complexity in the design. Second, the
high storage cost for keeping track of all the blocks exist in
the last level private caches. Unfortunately, both of these
drawbacks threaten the scalability of the system. Moreover,
the former linearly gets worse with the number of cores in
the system as depicted in Section 2.

The primary solution for solving the discussed scalability
problem inherited in the duplicate-tag directory based cache
coherence protocols is adjusting the associativity value of di-
rectory cache to some low values similar to the ones in the
associativity of private caches. However, with this approach,
the number of evictions in directory caches caused by adding
a new entry to the directory cache, might increase dramat-
ically. Since any eviction in directory cache requires inval-
idation of all the copies of the corresponding cache block
(in all the private caches in the system); performance of the
system will be jeopardized. Thus, the directory cache has
the potential to become a major bottleneck for large-scale
many-core architectures.

In this work, we try to utilize our private data detection
to address the aforementioned scalability problem as follows.
As we discussed earlier, we do not need to keep track of the
private data. Thus, we can avoid polluting the directory
cache with the private data. We simply hold the states for
the shared data and not for the private ones. As we will
show in the evaluation section, we can dramatically decrease
the directory cache eviction rate and mitigate the inevitable
performance degradation due to the high directory eviction
counts. The invalidation of the blocks related to the evicted
directory entries is performed as normal. In the sensitivity
analysis, we show that our idea can work with different asso-
ciativity values and we can still get acceptable performance
results even with the low associativity.

3.3 On-chip Page Table

Memory block classification at subpage level may increase
the frequency of the operating system’s involvement in up-
dating the maintenance bits belonging to subpages stored in
page table entries, nullifying some portion of performance
benefits of subpage level data classification. For this rea-
son, as our second contribution, we show how we can negate
the possible performance degradation by introducing on-chip
page table. Moreover, the proposed method also enables us
to boost the performance of the virtual memory manage-
ment in many-core systems.

Based on the drawbacks of previous studies on TLB orga-
nization (see section 2), we propose our on-chip page table
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as follows.

1- We increase the probability of accessing a page transla-
tion within the chip by introducing excessive capacity rather
than the private TLBs for keeping the page translation on
the chip. In our system, each core’s private TLB includes 64
entries, thereby using the same size on-chip page table per
core. We reserve this space for our on-chip page table by
not keeping the private data status in the directory cache.
In the experimental results, we show how devoting even a
small portion of the directory cache to the page translation
can make the translation faster without adversely affecting
the performance of other components.

2- In contrast to the discussed approaches, we avoid snoop-
ing by distributing the pages based on their tags into the
on-chip page tables located in the directory controller. Dis-
tribution is done by interleaving the page entries according
to the least significant bits of virtual page numbers (for ex-
ample, with 16 cores, we use 4 least significant bits). This
way, for each miss in the private TLBs, the core sends the
request for the page address translation only to one of the
cores’ on-chip page table. This makes our method more scal-
able compared to other proposed cooperative TLBs based on
snooping.

Figure 3 depicts the structure of our on-chip page table
and how a miss in one of the private TLBs can be resolved
by one of the on-chip page tables. After a TLB miss occurs
in core 0 for an address translation of page ’a’, the request
for finding the page information for page 'a’ is sent directly
to the core which may have the entries for that page (in
this example core N-1). Then, the translation is forwarded
back to the requested core in case it is found in the on-chip
page table (red line). In the second example, the search
for finding the translation for page ’b’ was not successfully
found in the corresponding on-chip page table. Therefore,
with OS involvement, the entries will be written to one of
the on-chip page tables after interleaving (corel) and also
the TLB of the requested core (core0).

The proposed approach does not force major hardware
costs nor operation overheads. For each TLB miss, there
is an address interleaving (which can easily be done by a
shift and AND operation) to find the location of the on-
chip page table that might have the corresponding physical
address for a virtual address. As on-chip page tables reside
in the directory caches, each access to an on-chip page table
is equivalent to an access to a directory cache. This implies
that we can replace a very costly page table walk with a very
low cost cache access, each time the access to the on-chip
page table is a hit.

In our experiments, we show how much we can avoid re-
ferring to OS, thanks to exploiting the on-chip page table.
To show increasing the capacity of the TLB can not solely
decrease TLB miss ratio, we also compare our method with
the system with different TLB sizes.

4. EXPERIMENTAL SETUP
4.1 System Setup

We evaluate our proposal with gem5 full-system simula-
tor [8] running linux version 2.6. gemb uses RUBY, which
implements a detailed model for the memory subsystem and
specifically cache coherence protocol. For modeling the in-
terconnection network, we use GARNET [1], a detailed in-
terconnection simulator also included in gemb5. We apply

Core 0 Corel CoreN-1
/ D-TLB D-TLB D-TLB
, Tl1a s
! K [} . .
Dir Ctrl Dir Ctrl Dir Ctrl
— 2\
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Figure 3: The structure of on-chip page table in a CMP with
private per-core TLBs.

our idea to MOESI-CMP-Directory which is a directory-
based cache coherence protocol implemented in gemb5. We
present results with a system consisting of 16 cores with
level one private data and instruction caches, and a shared
level two cache. Table 1a provides details of our simulation
environment. In the rest of the paper, this configuration is
considered as the base setup, where our private/shared data
classification approach is not applied.

4.2 Benchmarks

We evaluate our proposal with ten different parallel work-
loads from two commonly used suites (SPLASH-2 [18] and
PARSEC 2.1 [7]). As we execute a large set of simulations
to provide a comprehensive sensitivity analysis, where each
simulation takes a considerable amount of time to run in
our full-system simulator, thus, we simulated the applica-
tions mostly for small size data-sets, as indicated in Table
1b.

For our experimental results, we only consider the parallel
phase of benchmarks or Region of Interest (ROI); and the
number of threads used by each application is set based on
the number of cores in the system, which is 16 by default.

4.3 Evaluation Metrics

We compare our approach with a state-of-the-art directory-
based cache coherence protocol. The specific metrics we
tested are the number of evictions in the directory cache,
miss ratio, the network traffic, and the execution time.

In a directory cache based on duplicate-tag, the associativ-
ity of directory cache and its size are the limiting factors for
scalability. We test the scalability of our approach against
a state-of-the-art directory cache coherence protocol. Thus,
we measured the performance of our approach with direc-
tory cache associativity equal to 4; while in the base setup,
the associativity is set to 64.

S. EVALUATION

In this section, we show how our proposal is able to im-
prove the performance of directory-based cache coherence
protocol through reduction in cache miss ratio, network traf-
fic, and latency of resolving cache misses. Therefore, we first
show the reduction in the number of evictions from the di-
rectory cache. Then, we show the effects in cache misses
as well as number of messages interchanged in the network
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Processor 16 Alpha cores, 2GHz, 64 entries
TLB
Private LID || 32 KB (=512 entries), 4-way asso-
ciative, 64B cache-block size
Private L1I 32 KB, 2-way associative
Shared L2 32MB (2MB per core) , 8-way asso-
ciative
Directory 512 entries, 64 way associative
cache
Network Torus , Fixed Garnet interconnec-
tion model
Cache MOESI CMP Directory
coherence
protocol
Page size 8KB

(a) Default simulation parameters used in our experiments.

[ Benchmarks || Input |
Parsec 2.1
Blackscholes
Bodytrack
Canneal simsmall
Fluidaniate
Swaptions
Splash 2
Cholesky tk15.0
Raytrace Teapot environment
Waternsq 512 molecules, 3 time steps
Radix 1048576 keys
Ocean 258%258 ocean

(b) Benchmarks and respective input files.

Table 1: Experimental setup.

as a result of better directory cache eviction rate. We also
study the performance of our proposal in reducing the la-
tency of resolving a cache miss. Moreover, we evaluate our
on-chip page table by showing the amount of misses in pri-
vate TLBs that can be resolved by introducing our on-chip
page table. Then, we have a discussion on how the number
of subpages should be set for the best performance results.
Finally, we discuss the effects of using lower associativity
directory caches.

5.1 Directory Cache Eviction

As we showed earlier, a considerable amount of accessed
memory blocks are private; and in our proposal, we do not
keep track of those blocks in directory caches. By not pollut-
ing the directory cache with status of private blocks that do
not need coherence maintenance, we would have less eviction
in directory cache even for caches with lower associativity.
Figure 4a shows directory cache eviction rate of our pro-
posal normalized to the base configuration. As can be seen,
on average, we have 58% less evictions in the directory cache
compared to base setup without any data classification.

There are two main factors for our approach to improve
the eviction rate of the directory cache. First one is the abil-
ity to detect private data blocks, whereas, the second one
is the shared block access pattern. Arguably, if we can de-
tect more private data, we can avoid more evictions in the
directory caches. For instance, number of directory evic-
tions has been reduced for Waternsq more than Cholesky,
since we were able to detect higher number of private data
blocks for Waternsq compared to Cholesky (70% for Wa-

ternsq and 17% for Cholesky). However, it is not the only
factor which affects reduction in the directory eviction. The
sharing pattern of an application can also play an important
role in the number of evictions that happen in the directory.
For instance, for Canneal, we were able to detect a high per-
centage of private data blocks (86%) compared to Bodytrack
(34%). But, because of the difference in sharing pattern for
these two applications, we observe rather same normalized
eviction rate. The reason is due to the temporal communi-
cation behavior of these two applications. In Canneal, the
communication between the cores take place throughout the
execution of the application, whereas, in Bodytrack, for the
majority of the parallel phase, there is limited communica-
tion between cores [4]. Therefore, in Canneal, the chance
for a possible conflict will be higher than Bodytrack.

Another observation in Figure 4a is the dramatic improve-
ment in directory eviction ratio for Waternsq application.
Based on the results reported in [4], in Waternsq and Wa-
terspa (is not used in this work!) all cores are actively in-
volved in a producer-consumer pattern. Furthermore, based
on this observation, they conclude that a broadcast-based
technique is likely to benefit from this in Waternsq and Wa-
terspa. We also observe that, Waternsq benefits the most,
considering the eviction rate aggregation for all the directory
caches in the system.

5.2 Private Cache Misses

One of the primary advantages of reducing directory cache
eviction is the reduced invalidations at the last level private
caches (in our system, the L1 cache). This is due to the
fact that any eviction of a block in directory cache implies
invalidation of all the blocks in any of the L1 caches that
correspond to that block. Figure 4b shows the L1 cache miss
ratio for 10 different multi-threaded applications normalized
with respect to the base case. Through our approach, we
have about 15% reduction in private L1 cache miss ratio.

We have better normalized the cache miss values, for those
applications with fewer misclassified blocks. In other words,
the higher the number of private blocks detected out of all
actual private data blocks exist, the higher the reduction is
in the number of cache misses.

5.3 Network Traffic

The number of messages exchanged in the system is also
reduced by our proposal. This is because evictions in direc-
tory caches and processor cache misses impact the network
message counts. For instance, for resolving a miss in the first
level private cache, different controllers in the system need to
exchange request, forward, and response control/data mes-
sages with one another. In Figure 4c, we compare the mes-
sage counts of our proposal normalized with respect to the
base system. Our approach reduces the message traffic be-
tween 9% and 21% with an average of 12%.

5.4 Cache Miss Latency

With our proposal, we are also able to reduce the aver-
age latency for resolving cache misses. More specifically, we
avoid referring to the directory cache for those requests as-
sociated to the private blocks. Therefore, some portion of
the requests experience less latency with a cache miss low-
ering the overall average latency of a cache miss. Figure
4d depicts the average cache miss latency normalized to the
base case for our applications. As can be seen, on average,
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Figure 4: Normalized directory cache eviction rate (a), L1 cache miss rate (b), coherence traffic rate (¢) and cache miss latency

(d).

we resolve the cache misses 8% faster than the base system.

5.5 Performance of Exclusive TLB

In this part we show the improvements of virtual memory
management by introducing the on-chip page table. Figure
5 shows the percentage of TLB misses that also experience
a miss in on-chip page tables. In other words, it shows how
much we can avoid accessing the costly OS page table by
finding the required page translation in the distributed page
table. As an example, for Canneal benchmark, only 8 %
of page translations which causes a miss in private TLBs,
can not be found in the on-chip page table. Therefore, the
remaining 92% of accesses find the right translation in the
on-chip page table after they experienced a miss in private
TLBs. On average, our approach prevents 84% of accesses
to operating system by introducing the on-chip page table.
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Figure 5: Normalized miss rate of finding page translation
in the core.

We also compared our on-chip page table with a modified
version of the base system, where the TLB is double the orig-
inal size. As can be seen in Figure 5, by doubling the TLB
size, we can only eliminate the 39% of the accesses to OS
page table. So, we can conclude that increasing the caching
capacity for page translation can not solely improve the per-
formance. Moreover, exploiting an effective technique which
enables sharing page translation between the cores is also

very crucial for providing a fast virtual page translation. As
it can be seen, in most of the benchmarks, there is a big
difference between the miss rate for on-chip page table and
double-size TLB which proves the former statement.

5.6 Subpage Size

In this section, we explore how much we can increase gran-
ularity of private data detection in our approach to improve
performance. For doing so, we run a set of simulations for
different subpage sizes. Figure 6a shows relative execution
times for three different number of subpages per page (4,
8, and 16). As can be seen, in all the benchmarks except
Bodytrack and Canneal, a system with subpage size 8, shows
better performance compared to a system with subpage size
4. Canneal and Bodytrack, however, benefits from a system
with 4 subpages per page. The other observation is that
a system with subpage size 16 shows the best performance
for all the benchmarks. Moreover, subpage sizes 8 and 16
show almost similar performance in most of the applications
tested.

The most important conclusion on subpages is that in-
creasing the granularity does translate into performance im-
provement up to a certain point. In another words, the
performance improvement achieved by detecting more pri-
vate data is offset by the overheads of detecting private data
at a finer granularity.

5.7 Execution Time and Sensitivity Analysis

The reduction in the number of cache misses, the reduced
latency in resolving them, and a decline in the number of
messages exchanged in the network; all result in a reduction
in the latency of executing the application as it is shown
in Figure 6b. This figure also illustrates the sensitivity of
our approach to the associativity of directory cache. The
three bars labeled as DS-Assoc-4, DS-Assoc-8, DS-Assoc-16
represent three configurations with directory cache associa-
tivities equal to 4, 8, and 16, respectively. On average, we
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generate 4%, 6%, and 7% improvement in execution time
for directory caches with associativities equal to 4, 8, and
16, respectively. One key observation based on the results in
Figure 6b is that our approach enables quite similar results
even for directory caches with lower associativity.
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(a) Relative execution time for different subpage sizes. Blue,
red and green bars shows the relative execution time for 4, 8
and 16 subpage sizes respectively.
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Figure 6: Sensitivity results.

6. CONCLUSION

In this paper, we propose a subpage granularity data man-
agement scheme which improves the performance of directory-
based cache coherence protocols by decreasing the number
of evictions taking place in directory caches. This is done
by applying a subpage granularity data classification which
helps us not to keep track of significant percentage of data
blocks in directory caches. We observed that performance
improvement stops after a certain granularity level. More-
over, we also accelerate virtual to physical address trans-
lation by introducing on-chip page table. Specifically, we
avoid 84% of accesses to the OS page table. Overall, we
observe up to 7% improvement in execution time even for
directory caches with lower associativities, which ensures the
scalability of our approach.
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