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Abstract. We prove that if a finite group G has a representation with fixity f , then
it acts freely and homologically trivially on a finite CW-complex homotopy equivalent
to a product of f + 1 spheres. This shows, in particular, that every finite group acts
freely and homologically trivially on some finite CW-complex homotopy equivalent to a
product of spheres.

1. Introduction

It is known that every finite group acts freely on a product of spheres Sn1 × · · · × Snk

for some n1, n2, . . . , nk. This follows from a construction given in [15, pg. 547] which is
attributed to J. Tornehave by B. Oliver. The construction is based on a simple idea that
one can permute the spheres in a product to get smaller isotropy. More specifically, for a
finite group G, one defines the G-space X as a product of G-spaces Map〈g〉(G, S(ρg)) over
all elements g ∈ G, where S(ρg) denotes the unit sphere of a nontrivial one-dimensional
complex representation ρg : 〈g〉 → C. Note that because of the way X is constructed, G
acts freely on X , but the induced action of G on the homology of X is not a trivial action
in general. It is interesting to ask if there exists a similar construction so that the induced
action on homology is trivial. The following was stated as a problem by J. Davis in the
Problem Session of Banff 2005 conference on Homotopy Theory and Group Actions:

Question 1.1. Does every finite group act freely on some product of spheres with trivial
action on homology?

To find a free, homologically trivial action of a finite group G on a product of spheres,
one may try to take a family of G-spheres Sni for i = 1, . . . , k and let G act on the product
Sn1 × · · · × Snk by diagonal action. An action which is obtained in this way is called a
product action in general and a linear action if each G-sphere in the product is a unit
sphere of a representation. By construction, product actions are homologically trivial if
the action on each sphere is homologically trivial but not every finite group has a free
product action on a product of spheres. For example, it is known that the alternating
group A4 cannot act freely on a product of spheres by a product action. This follows from
a result of Oliver [15, Theorem 1] which says that A4 does not act freely on any product
of equal dimensional spheres with trivial action on homology. On the other hand, it can
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be shown that A4 acts freely on S2 × S3 with trivial action on homology. So, one cannot
answer the above question affirmatively by considering only the product actions.

The situation with A4 is not an exceptional case. For example, if one searches through
the characters of a finite group G and tries to see when G has a family of characters
χ1, . . . , χk such that G acts freely on S(χ1)× · · ·× S(χk), then one notices that not many
groups have such a family of characters. In fact, Urmie Ray [16] showed that finite groups
which have free linear actions are very rare: If a finite group G has a free linear action
on a product of spheres, then all nonabelian simple sections of G are isomorphic to A5 or
A6.

In this paper we attack the problem stated above using some more recent construction
methods that were developed to study the rank conjecture. In particular, we use some
ideas from our earlier papers [19] and [20] where we constructed free actions on products
of spheres for finite groups which have representations with small fixity and for p-groups
with small rank. Fixity of a representation V of a finite group G over a field F is defined
as the maximum of dimensions dimF V g over all elements g ∈ G− {1}. If ρ : G → U(n)
is a faithful complex representation with fixity f , then G acts freely on the space X =
U(n)/U(n − f − 1). For small values of f , one can modify the space X to obtain a free
action on a product of f + 1 spheres (see [1] and [19]). In this paper we improve this
result to all values of fixity for actions on finite CW-complexes homotopy equivalent to
product of spheres.

Theorem 1.2. Let G be a finite group. If G has a faithful complex representation with

fixity f , then G acts freely on a finite complex X homotopy equivalent to a product of

f + 1 spheres with trivial action on homology.

We prove this theorem using a recursive method for constructing free actions. In fact
in the construction we use symplectic representations instead of complex representations
and obtain free actions on a products of spheres with dimensions ni ≥ 3. The recursive
method involves the construction of a G-equivariant spherical fibration p : E → X over
a given finite G-CW-complex X in each step. We require that the total space E is
also homotopy equivalent to a finite G-CW-complex and that the G-action on E has
smaller isotropy than the G-action on X . Once they are constructed, by taking fiber joins
these fibrations can be replaced by G-fibrations which are non-equivariantly homotopy
equivalent to trivial fibrations. This gives a G-action on a finite CW-complex Y homotopy
equivalent to X × SN for some N > 0. Using this method, after some steps, one gets a
free action on a product of spheres. This method was first developed by Connolly and
Prassidis [4] and later used also in [2] and [18].

Since every finite group has a faithful complex representation, every finite group has a
complex representation with fixity f for some positive integer f . Hence, as a corollary of
Theorem 1.2 we obtain an affirmative answer to Question 1.1 in homotopy category.

Corollary 1.3. Every finite group acts freely and homologically trivially on some finite

CW-complex X homotopy equivalent to a product of spheres

The paper is organized as follows: In Section 2, we introduce G-fibrations and discuss
the effects of taking fiber joins of G-fibrations. In Section 3, we discuss the equivariant
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Federer spectral sequence introduced by Møller [14] and using it, we give another proof
for a theorem by M. Klaus [12] (see Theorem 3.1). In Section 4, we introduce our main
construction method, and finally in Section 5, we prove Theorem 1.2.

2. G-fibrations

In this section, we first give some preliminaries on G-fibrations and then prove some
lemmas on fiber joins of G-fibrations. For more details on this material we refer the reader
to [13] and [22]. Some of this material also appears in [4], [9], [12], and [18].

Definition 2.1. A G-fibration is a G-map p : E → B which satisfies the following
homotopy lifting property for every G-space X : Given a commuting diagram of G-maps

X × {0}

��

h
// E

p

��

X × I
H

// B,

there exists a G-map H̃ : X × I → E such that H̃|X×{0} = h and p ◦ H̃ = H .

Given a G-fibration p : E → B over B, the isotropy subgroup Gb ≤ G of a point b ∈ B
acts on the fiber space Fb := p−1(b). So, Fb is a Gb-space. Let us denote the set of isotropy
subgroups of the G-action on B by Iso(B).

Definition 2.2. Let {FH} denote a family of H-spaces over all H ∈ Iso(B). If for every
b ∈ B, the fiber space Fb is Gb-homotopy equivalent to FGb

, then p : E → B is said to
have fiber type {FH}.

Note that in general a G-fibration does not have to have a fiber type, i.e., for b1, b2 ∈ B
with Gb1 = Gb2 = H , it may happen that Fb1 and Fb2 are not H-homotopy equivalent.
But throughout the paper we only consider G-fibrations which have a fiber type. Observe
that if p : E → B is a G-fibration such that BH is path connected for every H ∈ Iso(B),
then p has a fiber type since for every b1, b2 ∈ BH , the fiber spaces Fb1 and Fb2 are H-
homotopy equivalent by a standard argument in homotopy theory. In our applications
the G-fibrations that we construct will often satisfy this connectedness property.

If p : E → B is a G-fibration with fiber type {FH} such that for all H ∈ Iso(B) the
fixed point space BH is connected, then the family {FH} satisfies a certain compatibility
condition. To see this, let H,K ∈ Iso(B) such that g−1Kg ≤ H for some g ∈ G. Then,
we have gBH ⊆ BK , so by the connectedness of BK , we obtain that for every b ∈ BH , the
K-space gFb is K-homotopy equivalent to FK . This means that the K-spaces ResK g∗FH

and FK are K-homotopy equivalent for all H ∈ Iso(B) where ResK g∗FH is the space FH

which is considered as a K-space through the map K → H defined by k → g−1kg.

Definition 2.3. Let H be a family of subgroups of G closed under conjugation. A family
of H-spaces {FH} over all H ∈ H is called a compatible family of H-spaces if for every
H,K ∈ H with g−1Kg ≤ H for some g ∈ G, the K-space ResK g∗FH is K-homotopy
equivalent to FK , where ResK g∗FH is the the space FH considered as a K-space through
the map K → H defined by conjugation k → g−1kg.
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The main aim of this section is to introduce some tools for construction of G-fibrations
with fiber type {FH} for a given compatible family {FH}. We first introduce some more
terminology:

Given two G-fibrations p1 : E1 → B and p2 : E2 → B over the same G-space B, a
G-map f : E1 → E2 is called a fiber preserving map if it satisfies p2 ◦ f = p1. Two fiber
preserving G-maps f, f ′ : E1 → E2 are said to be G-fiber homotopic if there is a G-map
H : E1 × I → E2 which is fiber preserving at each t ∈ I such that H(x, 0) = f(x) and
H(x, 1) = f ′(x) for all x ∈ E1. We say two G-fibrations p1 : E1 → B and p2 : E2 → B
are G-fiber homotopy equivalent if there are fiber preserving G-maps f1 : E1 → E2 and
f2 : E2 → E1 such that f1 ◦ f2 and f2 ◦ f1 are G-fiber homotopic to identity maps.

For an H-space FH , let AutH(FH) denote the topological monoid of self H-homotopy
equivalences of FH . Note that AutH(FH) is not a connected space in general but it is easy
to show that all its components have the same homotopy type. When we need to choose
a component, we often take the connected component which includes the identity map.
We denote this component by AutIH(FH).

Since AutH(FH) is a monoid, the usual construction of classifying spaces for monoids ap-
plies, and we get a universal fibration EAutH(FH) → B AutH(FH) with fiber AutH(FH).
From this one also obtains a fibration

FH → EH → BAutH(FH)

where EH = E AutH(FH) ×AutH (FH ) FH . This is actually an H-fibration with trivial H-
action on the base space. It turns out that this fibration is a universal fibration for all
H-equivariant fibrations with trivial action on the base space.

Theorem 2.4. Let H be a finite group, FH be a finite H-CW-complex, and B be a CW-

complex with trivial H-action. Then, there is a one-to-one correspondence between H-fiber

homotopy classes of H-fibrations over B with fiber FH and the set of homotopy classes

of maps B → B AutH(FH). The correspondence is given by taking the pullback of the

universal H-fibration described above via the map f : B → BAutH(FH).

This theorem is proved in [9] in full detail. The proof is based on the proof of Stasheff’s
theorem on the classification of Hurewicz fibrations [17]. More general versions of this
theorem also appear in [8] and [22].

Also note that, as in the case of orientable vector bundle theory, we can give an ori-
entable version of the classification of H-fibrations over a trivial H-space B. If p : E → B
is an H-fibration with fiber FH over a trivial H-space, then there is a natural group ho-
momorphism χ : π1(B) → π0(AutH(FH)) = EH(FH) where EH(FH) denotes the group
of homotopy classes of self H-homotopy equivalences of FH . If this homomorphism is
trivial, then we call the H-fibration p a homotopy orientable H-fibration. This notion of
orientability is stronger than usual notion of orientable fibration where one only requires
the action on the homology of FH to be trivial (see [6]). Note that an H-fibration is
homotopy orientable if and only if its classifying map f : B → BAutH(FH) lifts to a map

f̃ : B → B AutIH(FH). Also note that homotopy orientable fibrations are classified (as
homotopy orientable fibrations) by the homotopy classes of maps [B,BAutIH(FH)]. We
will be using these facts later in the proof of Lemma 2.8.
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In the rest of this section we focus on the fiber join construction performed on G-
fibrations. We use fiber joins to kill obstructions that occur in the construction of G-
fibrations. The fiber join of two G-fibrations is defined in the following way: Let p1 :
E1 → B and p2 : E2 → B be two fibrations. We define a fibration E1 ×B E2 and maps
E1 ×B E2 → Ei for i = 1, 2 by the following pullback diagram

E1 ×B E2
//

��

E1

p1
��

E2
p2

// B.

Then the G-space E1 ∗B E2 is defined as the homotopy pushout of the following diagram

E1 ×B E2
//

��

E1

��

E2
// E1 ∗B E2.

By the universal property of homotopy pushouts we get a G-fibration

p1 ∗ p2 : E1 ∗B E2 → B

called the fiber join of p1 and p2. To see that p1 ∗ p2 is a fibration, we can use equivariant
lifting functions. Recall that a G-map p : E → B is a G-fibration if and only if there is a
G-map

λ : Ωp = {(e, ω) ∈ E ×BI | p(e) = ω(0)} → EI

such that λ(e, ω)(0) = e and pλ(e, ω) = ω (see [23, pg. 30]). The G-map λ is called a
G-lifting function. Let λ1 and λ2 denote the G-lifting functions for p1 and p2. Then we
can define a lifting function for the join p1 ∗ p2 as follows

λ(te1 + (1− t)e2, ω)(u) = tλ1(e1, ω)(u) + (1− t)λ2(e2, ω)(u)

for all t, u in I. So, p1 ∗ p2 is a G-fibration.
Iterating this construction, we obtain a G-fibration

∗
k
p : E ∗B E ∗B · · · ∗B E︸ ︷︷ ︸

k-many

→ B

which we call the k-fold fiber join of p with itself. Note that if p is a G-fibration with fiber
type {FH}, then the fiber type of the k-fold join ∗kp is {∗kFH}. If B has trivial H-action,
then the k-fold join is classified by a map B → BAutH(∗kFH). We would like to explain
this map in terms of the classifying map of p. For this, observe that there is a monoid
homomorphism

ϕ : AutH(FH)× · · · × AutH(FH) → AutH(∗kFH)

defined by

ϕ(a1, . . . , ak)(x1t1, . . . , xktk) = (a1(x1)t1, . . . , ak(xk)tk)

for every x1, . . . , xk ∈ FH and t1, . . . , tk ∈ [0, 1] with
∑

i ti = 1. We have the following
lemma:
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Lemma 2.5. Let H be a finite group, FH be a finite H-CW-complex, and B be a CW-

complex with trivial H-action. If p : E → B is a H-fibration with fiber type FH whose

classifying map is f : B → B AutH(FH), then the classifying map of the G-fibration ∗k p
is given by the composition

B
f×···×f

// BAutH(FH)× · · · × B AutH(FH)
Bϕ

// B AutH(∗kFH)

where Bϕ is the map induced from the monoid homomorphism ϕ defined above.

Proof. Let A =
∏k

i=1AutH(FH). By standard properties of homotopy pushout diagrams,
we observe that the fibration ∗k p is the pullback fibration of the fibration

q : EA×A (∗kFH) → BA

via the map
∏

i f : B → BA. Note that A acts on ∗kFH via the monoid homomorphism
ϕ, so the classifying map of q is Bϕ. This completes the proof. �

A special case of a G-fibration is a G-fiber bundle over a G-CW-complex. More specif-
ically, if ξ : E → B is a complex G-vector bundle over a G-CW-complex B, then the
sphere bundle p : S(E) → B of this vector bundle is a spherical G-fibration. Note that
for every b ∈ B, the fiber space p−1(b) is a Gb-space which is homeomorphic to S(VGb

)
where VGb

denotes vector space ξ−1(b) with the induced Gb-action.
Note that when BH is path connected for all H ∈ Iso(B), the family of complex rep-

resentations {VH} defined over all H ∈ Iso(B) is a compatible family. The compatibility
of a family of representations is defined in the following way: A family of representations
αH : H → U(n) over H ∈ H is called a compatible family of representations if for every
map cg : H → K induced by conjugation with g ∈ G, there exists a γ ∈ U(n) such that
the following diagram commutes

K

cg

��

αK
// U(n)

cγ

��

H
αH

// U(n).

Note that if FH is anH-space which isH-homotopy equivalent to S(VH) for some compati-
ble family of complex H-representation VH , then {FH} is a compatible family ofH-spaces.
So, the sphere bundle p : S(E) → B of a G-vector bundle is a spherical G-fibration with
fiber type {S(VH)}. Note also that for every k ≥ 1, the fiber join ∗kS(VH) is H-homotopy
equivalent to the H-space S(V ⊕kH ) where V ⊕kH denotes the k-fold direct sum of VH .

In Section 4, we construct G-fibrations with fiber types of the form {S(VH)}. The
following result is used in those constructions.

Lemma 2.6. Let H be a finite group, FH be an H-space which is H-homotopy equivalent

to S(VH) for some complex H-representation VH . Let γ, γ
1 : AutH(FH) → AutH(∗kFH) be

maps defined by γ(a) = ϕ(a, a, . . . , a) and γ1(a) = ϕ(a, id, . . . , id), respectively. Then, the
induced group homomorphisms γ∗ and γ1

∗ on homotopy πq(AutH(FH)) → πq(AutH(∗kFH))
satisfy the relation γ∗ = kγ1

∗.



CONSTRUCTING HOMOLOGICALLY TRIVIAL ACTIONS ON PRODUCTS OF SPHERES 7

Proof. Let γi : AutH(FH) → AutH(∗kFH) be the map defined by

γi(a) = ϕ(id, . . . , a, . . . , id)

where a is on the i-th coordinate. We have γ = γ1γ2 · · ·γk under the product induced
by the product in the monoid A. Since the group operation on πq(AutH(∗kFH)) coming
from the monoid structure on AutH(∗kFH) coincides with the usual group structure on
homotopy groups, we have γ∗ = γ1

∗ + · · ·+ γk
∗ . So, to complete the proof, it is enough to

show that γi and γj are homotopic for every i, j ∈ {1, . . . , k}. Since FH is H-homotopy
equivalent to S(VH), it is enough to prove this for S(VH). Note that in this case we have
γi = T (i, j)γj where T (i, j) : V ⊕kH → V ⊕kH is a linear transformation which swaps the
j-th summand with the i-th summand. Since U(n) is connected, there is a path between
T (i, j) and the identity. Using this path, we can define a homotopy between γi and γj . �

Remark 2.7. For more general H-spaces FH , there exists a swap map

S(i, j) : ∗kFH → ∗kFH ,

which swaps the i-th and j-th coordinates, similar to the linear transformation T (i, j)
in the proof of Lemma 2.6. If FH is a free H-space homotopy equivalent to an odd
dimensional sphere, then S(i, j) will be homotopy equivalent to the identity map. If
the H-action on FH is not free, then the swap map S(i, j) is not homotopy equivalent
to the identity in general even when FH is homotopy equivalent to an odd dimensional
sphere. On the other hand, if FH is a homotopy representation with the property that
all fixed point spheres are odd dimensional, then under certain conditions on H or on
the dimension function of FH , one can prove that S(i, j) is homotopy equivalent to the
identity (see Proposition 20.12 in [13]).

We end this section with the following observation.

Lemma 2.8. Let H be a finite group and p : E → Sn be an H-fibration over the trivial

H-space Sn where n ≥ 2. Suppose that the fiber type FH of p is H-homotopy equivalent

to S(VH) for some complex H-representation VH . If πn−1(AutH(FH)) is a finite group of

order N , then ∗Np is H-fiber homotopy equivalent to the trivial fibration.

Proof. By Theorem 2.4, the H-fibration p is classified by the homotopy class of a map

f : Sn → BAutH(FH). Since n ≥ 2, this map lifts to map f̃ : Sn → B AutIH(FH), so we
can assume that theH-fibration p is an homotopy orientable fibration . Since B AutIH(FH)
is simply connected, we have

[Sn, BAutIH(FH)] ∼= πn(B AutIH(FH)) ∼= πn−1(AutH(FH)).

So, p is classified by a homotopy class α ∈ πn−1(AutH(FH)). By a slightly modified
version of Lemma 2.5, it is easy to see that the fiber join ∗Np is classified by γ∗(α) where
γ : AutH(FH) → AutH(∗HFH) is the map defined by γ(a) = ϕ(a, . . . , a). By Lemma 2.6,
we have

γ∗(α) = Nγ1
∗(α) = γ1

∗(Nα) = 0.

So, ∗Np is H-fiber homotopy equivalent to the trivial fibration. �
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3. Equivariant Federer spectral sequence

The main purpose of this section is to prove the following theorem which is due to M.
Klaus [12]. We give a different proof here using the equivariant Federer spectral sequence
which was introduced by Møller in [14].

Theorem 3.1 (Klaus [12]). Let G be a finite group and V be a complex representation of

G. Then, for every n > 0, there is an m ≥ 1 such that πn(AutG(S(V
⊕k)) is finite for all

k ≥ m.

Before the proof, we first introduce Møller’s theorem (Theorem 5.3 in [14]) and discuss
how the Bredon cohomology with coefficients in a G-equivariant local coefficients system
can be calculated for the case we are interested in. For more details on Bredon cohomology,
we refer the reader to [3] and [13].

Let (X,A) be a finite G-CW-complex, p : E → B be a G-fibration, and u : X → E be
a G-equivariant map. Assume that for all H ≤ G and for all b ∈ B, the space p−1(b)H

is a path connected simple space, and let πq(F) be the G-equivariant local coefficient
system on X , induced from the local coefficient system on B associated to the G-fibration
p (see Example 2.2 in [14]). Let Fu(X,A;E,B)G denote the space of all equivariant maps
v : X → E such that v|A = u|A and p ◦ v = p ◦ u with compact open topology.

Theorem 3.2 (Møller [14]). There is a spectral sequence with E2-term

E2
pq = H−pG (X,A; πq(F))

for p+q ≥ 0 and E2
pq = 0 otherwise, converging to πp+q(Fu(X,A;E,B)G, u) when p+q > 0.

The spectral sequence above is called the equivariant Federer spectral sequence since
it is the equivariant version of a spectral sequence introduced by Federer [7]. We will
be using this spectral sequence for the following special case: Let X be a finite G-CW-
complex such that XH is a path connected simple space for all H ≤ G. Take A = ∅,
E = X , B = ∗, p : E → B to be the constant map, and u : X → E to be the identity map.
Then Fid(X, ∅;X, ∗) will be homotopy equivalent to the identity component of AutG(X).
Since all the components of AutG(X) have the same homotopy type, we have

πn(AutG(X)) ∼= πn(Fid(A, ∅;X, ∗))

for all n > 0. So, we can use the equivariant Federer spectral sequence to calculate the
homotopy groups of AutG(X).

Also note that in the situation we consider, the local coefficient system is constant
on orbits. In this case Bredon cohomology with local coefficients has an alternative
description which involves modules over the orbit category. We define this category now.

Definition 3.3. Let G be a finite group and OrG denote the orbit category of G whose
objects are orbits G/H where H is a subgroup of G. The morphisms of OrG from G/H
to G/K are G-maps f : G/H → G/K, where we consider the left cosets G/H and G/K
as left G-sets. We denote the morphism from G/H to G/K which sends H to aK by â.

Let Γ denote the orbit category OrG. A functor from OrG to the category of abelian
groups Ab is called an ZΓ-module. Morphisms between ZΓ-modules are given by natural
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transformations. Given a G-CW-complex X , we define a chain complex of ZΓ-modules
by taking Cn(X

?) as the functor OrG → Ab which sends G/H to the n-th cellular chains
Cn(X

H) and sends â : G/H → G/K to the group homomorphism a∗ : Cn(X
K) →

Cn(X
H). The boundary maps at each H are compatible with the maps a∗ for every

â : G/H → G/K, so they combine together to give a ZΓ-module map ∂ : Cn(X
?) →

Cn−1(X
?) for every n.

Given a ZΓ-module M , we define C∗(G,M) as the cochain complex of abelian groups

Cn(X,M) = HomZΓ(Cn(X
?),M)

with coboundary maps coming from the boundary maps of Cn(X
?). Note also that by

the standard properties of free ZΓ-modules (see [13, Sec. 9]), we have

Cn(G,M) ∼=
⊕

[σ]∈In

M(G/Gσ)

where In is the set of G-orbits of n-cells in X .
Let L be a G-equivariant local coefficient system on X (see [14, def. 2.1]). Suppose

that there exists a ZΓ-module M such that L(G/H)(x) = M(G/H) and L(G/H)(γ) =
idM(G/H) for all x ∈ XH and all paths γ in XH . Then we have

Hn
G(X ;L) ∼= Hn(C∗(X,M))

where Hn(G,L) denotes the Bredon cohomology with local coefficients and C∗(G,M)
denotes the cochain complex introduced above (see Definition 2.3 and Example 2.4 in
[14]). In our situation, this gives an isomorphism

Hn
G(X ; πq(F)) ∼= Hn

G(X ; πq(X
?))

where πq(X
?) is the ZΓ-module πq(X

?) : OrG → Ab which sends G/H to πq(X
H) and

sends â : G/H → G/K to a∗ : πq(X
K) → πq(X

H). Also note that on the cochain level,
we have

Cn(X, πq(X
?)) = HomZΓ(Cn(X

?), πq(X
?)) ∼=

⊕

[σ]∈In

πq(X
Gσ).

So, we have an explicit description of the E2
pq-terms of the equivariant Federer spectral

sequence. Now we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. Let G be a finite group and X be a finite G-CW-complex which is
G-homotopy equivalent to S(V ) for some complex representation V of G. In fact, we only
need X to be a G-homotopy representation with odd dimensional fixed point spheres for
our arguments to work (see [13, pg. 392] for a definition of homotopy representation).
Let n be a fixed positive integer. We want to show that there is an m ≥ 1 such that
πn(AutG(∗kX)) is finite for all k ≥ m. Let Xk = ∗kX denote the k-fold join of X . By
Theorem 3.2, there is a spectral sequence with

E2
pq = H−pG (Xk; πq(X

?
k))

for p + q ≥ 0 and E2
pq = 0 otherwise, converging to πp+q(AutG(Xk)) when p + q > 0.

Since Xk is finite dimensional, to show that πn(AutG(Xk)) is finite it is enough to show
that H−pG (Xk; πq(X

?
k)) is finite for every pair (p, q) with p + q = n. Note that for this
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we need to show that there is an m ≥ 1 such that for all k ≥ m, the cohomology group
Hq−n

G (Xk; πq(X
?
k)⊗Q) is zero for all q ≥ n.

Let {n1, n2, . . . , ns} be the set of all distinct dimensions of fixed subspaces V H over all
subgroups H ≤ G. Assume that n1 < n2 < · · · < ns. Note that the fixed point spheres
XH

k have dimensions {kni − 1 | i = 1, . . . , s}. Since homotopy groups πi(S
2j−1) of an odd

dimensional sphere are all finite except when i = 2j − 1, we have πq(X
?
k)⊗Q = 0 for all

q which is not equal to kni − 1 for some i. If q = kni − 1 for some i, then we have

Hq−n
G (Xk; πq(X

?
k)⊗Q) = Hkni−n−1

G (Xk;Mi)

where Mi is the ZΓ-module such that Mi(H) = Q for all subgroups H ≤ G satisfying
dimV H = ni. To complete the proof we need to show that this cohomology group is zero
for all i ∈ {1, . . . , s}.

Note that there is a well-known first quadrant spectral sequence with E2-term

Epq
2 = ExtpZΓ(Hq(X

?
k),Mi)

which converges to Hp+q
G (Xk;Mi) (see [20, Prop. 3.3]). Since the coefficient module Mi

takes only the values Q, we can replace Hp(X
?
k) with Hp(X

?
k ;Q) and take the ext-groups

over QΓ. Note that the QΓ-module Hp(X
?
k ;Q) is zero at all dimensions except when

p = kni − 1 for some i. Let Ni denote the QΓ-module Hkni−1(X
?
k ;Q) for all i = 1, . . . , s.

To prove that Hkni−n−1
G (Xk;Mi) = 0 for all i, it is enough to show that the ext-group

Ext
k(ni−nj)−n
QΓ (Nj,Mi)

is zero for all j ≤ i − 1. Let lj denote the length of the QΓ-module Nj for every j (see
[13, pg. 325] for a definition). Then, by [13, prop. 17.31], the above ext-group is zero if
k(ni − nj)− n ≥ lj. Let l = maxj{lj}. Then if k ≥ n + l, then the above inequality will
hold for every j ≤ i− 1. This completes the proof. �

4. Construction of spherical G-fibrations

We start with proving a proposition which is an important tool for constructing G-
fibrations. In different forms, this proposition also appears in [4], [12], and [18]. Here we
give a proof of it for completeness since it is the main ingredient in the proof of Theorem
1.2.

Proposition 4.1. Let G be a finite group, B be a G-CW-complex, and let {VH} be a

compatible family of complex representations over all H ∈ Iso(B). Let qn : En → B(n),

n ≥ 2, be a G-fibration with fiber type {S(VH)} where B(n) denotes the n-skeleton of B.

Then there is an integer k ≥ 1 and a G-fibration qn+1 : En+1 → B(n+1) such that the

restriction of qn+1 to B(n) is G-fiber homotopy equivalent to ∗kqn. In particular, the fiber

type of qn+1 is {S(V ⊕kH )}.
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Proof. By the definition of G-CW-complexes, there exists a pushout diagram

(1)

∐

i∈In+1

G/Hi × Sn
∐

fi
//

��

B(n)

��∐

i∈In+1

G/Hi × Dn+1
∐

gi
// B(n+1)

where In+1 is an indexing set of orbits of (n + 1)-cells in B. For each i ∈ In+1, let qn,i
denote the G-fibration obtained by the following pullback diagram

En,i
//

qn,i

��

En

��

qn
��

G/Hi × Sn fi
// B(n) .

Restricting qn,i to the sphere Sn in G/Hi × Sn which is fixed by Hi, we obtain an Hi-
fibration qn,i|Sn : q−1n,i (S

n) → Sn such that the Hi-action on the base space is trivial. By
Theorem 2.4 and by the argument in the proof of Lemma 2.8, such a fibration is classified
by a homotopy class αi ∈ πn−1(AutHi

(S(VHi
))).

By Theorem 3.1, for eachH ∈ Iso(B), there is anmH ≥ 1 such that πn−1(AutH(S(V
⊕k
H )))

is finite for all k ≥ mH . Let m = max{mH |H ∈ Iso(B)}. Then the group

πn−1(AutH(S(V
⊕m
H )))

has finite order, say dH , for all H ∈ Iso(B). Let d =
∏

H dH . By Lemma 2.8, the
Hi-fibration ∗dm(qn,i|Sn) is Hi-fiber homotopy equivalent to the trivial fibration for all
i ∈ In+1. This implies that the G-fibration p obtained by the following pullback diagram

W
f

//

p

��

∗dmEn

∗
dm

qn

��∐

i∈In+1

G/Hi × Sn
∐

fi
// B(n)

is G-homotopy equivalent to the trivial fibration. Let

ϕ :
∐

i∈In+1

G×Hi
S(V ⊕dmHi

)× Sn → W

be a G-fiber homotopy equivalence between the trivial fibration and p. We can use ϕ to
glue the cone of the trivial fibration and obtain a G-quasifibration

q′n+1 :




∐

i∈In+1

G×Hi
S(V ⊕dmHi

)× Dn+1


 ∪f◦ϕ

(
∗
dm
En

)
// B(n+1) .
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A quasifibration p : E → B is a continuous map such that the induced map

p∗ : πi(E, p−1(x), y) → πi(B, x)

is an isomorphism for all x ∈ B, y ∈ p−l(x), and i ≥ 0 (see [5, def. 1.1]). An G-
quasifibration is defined in a analogous way so that the corresponding modules over the
orbit category are isomorphic (see [21, def. 2.1]). The fact that q′n+1 is a G-quasifibration
follows from an equivariant version of Lemma 1.4 in [5] (see also [21, lem. 2.9]). There is
a construction called gammafication that converts a quasifibration to a fibration and this
construction also works forG-quasifibrations (see [21, Not. 2.8]). Applying gammafication
to q′n+1, we obtain a G-equivariant spherical fibration qn+1 : En+1 → B(n+1) whose fiber

type is {S(V ⊕dmH )}. �

Remark 4.2. Another possible way of completing the final step of the above construction
is to attach trivial G-fibrations over (n+1)-cells with the space ∗dmEn using G-tubes (see
[10, Theorem 3.1]). When these G-tubes are used one does not need the gammafication
construction since one directly gets G-fibrations. This method is explained in detail in [9]
and [10].

As a corollary of Proposition 4.1, we obtain the following which is also proved in [12]
as Proposition 2.7.

Proposition 4.3 (Proposition 2.7, [12]). Let G be a finite group and B be a finite di-

mensional G-CW-complex. Let {VH} be a compatible family of complex representations

over all H ∈ Iso(B). Then there exists an integer k ≥ 1 and a G-equivariant spherical

fibration q : E → B such that the fiber type of q is {S(V ⊕kH )}.

Proof. Let
A = (ρH) ∈ lim

←−
H∈H

Rep(H,U(n))

whereH = Iso(B) and ρH is a representation for VH for every H ∈ H. Let q : EH(G,A) →
BH(G,A) denote the universal G-equivariant vector bundle with fiber typeA (see [20, def.
2.4]). Since BH(G,A)H = BCU(n)(ρH) is simply connected for all H ∈ H, by standard

obstruction theory there is a G-map B(2) → BH(G,A) (see the proof of Theorem 4.3 in
[20] for details). Pulling back the universal G-equivariant bundle via this map, we obtain
a G-equivariant vector bundle over B(2). The sphere bundle of this bundle is spherical
G-fibration over B(2) with fiber type {S(VH)}. Now the result follows from the repeated
application of Proposition 4.1. �

We often want the total space of a G-fibration to be G-homotopy equivalent to a finite
G-CW-complex. The following theorem gives a very useful criteria for this condition:

Proposition 4.4. Let G be a finite group, B be a finite G-CW-complex, and p : E → B
be a G-fibration with fiber type {FH}. If FH is H-homotopy equivalent to a finite H-

CW-complex for every H ∈ Iso(B), then E is G-homotopy equivalent to a finite G-CW-

complex.

Proof. We will prove this lemma by induction over the skeletons of B. We already know
that p−1(B(0)) is G-homotopy equivalent to a finite G-CW-complex. Now assume that
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p−1(B(n)) is G-homotopy equivalent to a finite G-CW-complex Z for some n ≥ 0. We
want to show that p−1(B(n+1)) is G-homotopy equivalent to a finite G-CW-complex.

The pushout diagram given in (1) induces a diagram of G-spaces

(2)

f ∗(En)
f

//

j
��

En

J
��

g∗(En+1)
g

// En+1

where the spaces in the diagram are the total spaces of the fibrations obtained by taking
pullbacks of the fibration qn+1 : En+1 → B(n+1) via the maps f , g, j, and J . Here
f =

∐
fi, g =

∐
gi,

j :
∐

i∈In+1

G/Hi × Sn →
∐

i∈In+1

G/Hi × Dn+1

is the disjoint union of inclusion maps, and J : B(n) → B(n+1) is the inclusion map. Since
the inclusion map Sn → Dn+1 is a cofibration map, the G-map j is a G-cofibration. So,
by [13, Lemma 1.26], the diagram (2) is a pushout diagram and j is a G-cofibration.

Since Dn+1 is contractible, there is a G-fiber homotopy equivalence
∐

i∈In+1

G×Hi
FHi

× Dn+1 γ
−→ g∗(En+1).

This gives a commutative diagram of the following form

En f ∗(En)
f

oo
j

// g∗(En+1)

En

id

OO

∐

i∈In+1

G×Hi
FHi

× Sn

γ′

OO

id×j
//

f◦γ′

oo

∐

i∈In+1

G×Hi
FHi

× Dn+1

γ

OO

where γ′ is the restriction of γ to the boundary spheres. Such a restriction makes sense
since γ is a fiber homotopy equivalence. Now, since both id× j and j are G-cofibrations,
by [13, Lemma 2.13], the G-space En+1, which is the pushout of the diagram in the first
line, is G-homotopy equivalent to the pushout of the diagram in the second line.

To find a further homotopy equivalence, note that by induction assumption En is G-
homotopy equivalent to a finite G-CW-complex Z. So, using a similar diagram as above,
we can conclude that En+1 is G-homotopy equivalent to the pushout of a diagram of the
following form

Z
∐

i∈In+1

G×Hi
FHi

× Sn id×j
//

ϕ
oo

∐

i∈In+1

G×Hi
FHi

× Dn+1 .

Now, we can replace the map ϕ with a cellular one (up to homotopy) and conclude that
En+1 is G-homotopy equivalent to a finite G-CW-complex since the spaces Z and FHi

for
all i ∈ In+1 are finite G-CW-complexes. This completes the n-th stage of our induction.
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Since B is a finite G-CW-complex, the induction will stop in finite steps. So, the proof is
complete. �

5. Proof of the main theorem

Now, we are ready to prove the main theorem of the paper. First we introduce some
notation and recall some basic facts about Stiefel manifolds. For more details, we refer
the reader to [19].

Let F denote the field of real numbers R, complex numbers C, or quaternions H. For
a real number the conjugation is defined by x = x, for a complex number x = a + ib by
x = a − ib, and for a quaternion x = a + ib + jc + kd by x = a − ib − jc − kd. On the
vector space F n, we can define an inner product (v, w) by taking

(v, w) = v1w1 + v2w2 + · · ·+ vnwn.

The Stiefel manifold Vk(F
n) is defined as the subspace of F nk formed by the k-tuples of

vectors (v1, v2, . . . , vk) such that vi ∈ F n and for every pair (i, j), we have (vi, vj) = 1 if
i = j and zero otherwise.

There is a sequence of fiber bundles

Vn(F
n) → · · · → Vk+1(F

n)
qk−→Vk(F

n) → · · · → V2(F
n)

q1
−→V1(F

n)

where the map qk : Vk+1(F
n) → Vk(F

n) is defined by qk(v1, . . . , vk+1) = (v1, . . . , vk) and
the fiber of qk is V1(F

n−k) = Sc(n−k)−1 where c = dimR F (see Theorem 3.8 and Corollary
3.9 in Chapter 8 of [11]). Note that the sphere bundle qk : Vk+1(F

n) → Vk(F
n) is the

sphere bundle of the vector bundle qk : V k+1(F
n) → Vk(F

n) where V k+1(F
n) is the space

formed by (k + 1)-tuples (v1, . . . , vk+1) satisfying (v1, . . . , vk) ∈ Vk(F
n) and (vi, vk+1) = 0

for all i = 1, . . . , k.
Note that if a finite group G has a representation W over a field F , then the inner

product above can be replaced by a G-invariant one and the Stiefel manifolds have natural
G-actions. Moreover the sphere bundles given above become G-equivariant bundles. If
the representation W has fixity f , then we have dimF W g ≤ f for all g ∈ G− {1}. This
means if W is a faithful representation, i.e., f ≤ dimF W − 1, then the G-action on
Vf+1(W ) is free. We will be using this observation in the proof of the main theorem.

Also observe that if G has a complex representation with fixity f , then by tensoring it
with H over C, we obtain a symplectic representation with the same fixity. So to prove
Theorem 1.2, it is enough to prove the same statement for symplectic representations. On
the other hand with symplectic representations unit spheres of fixed point subspaces are
simply connected, so it makes the proof easier. So, we prove the following:

Theorem 5.1. Let ρ : G → Sp(n) be a faithful symplectic representation with fixity f .
Then there exists a finite G-CW-complex X homotopy equivalent to a product of f + 1
spheres such that the G action the homology of X is trivial.

Proof. Let W denote the H-space corresponding to the representation ρ. Define X1 =
V1(W ). We will construct finite G-CW-complexes X2, X3, . . . , Xf+1 recursively. For all
i, the G-CW-complex Xi will be homotopy equivalent to a product of i spheres and will
satisfy the following property: If H ∈ Iso(Xi), then Vi(W )H 6= ∅ where Iso(Xi) denotes
the set of isotropy subgroups of Xi.
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Assume that Xi is constructed for some i ≥ 1. Note that for every H ≤ G, the fixed
point set Vi(W )H is either empty or simply connected. Since for every H ∈ Iso(Xi)
we have V (Wi)

H 6= ∅, by standard equivariant obstruction theory there exists a G-map

f : X
(2)
i → Vi(W ). By pulling back the G-bundle qi : Vi+1(W ) → Vi(W ) via f , we obtain

a G-equivariant vector bundle over X
(2)
i with fiber type {S(VH)}. Note that this is a

compatible family defined over all H ∈ Iso(Xi) where VH is the H-space (qi)
−1(b) for

some b ∈ Vi(W )H .
Now, applying Proposition 4.1 repeatedly to this G-fibration, we obtain a spherical

G-fibration Ei → Xi with fiber type {S(V ⊕kH )} for some k ≥ 1. By taking further fiber
joins, we can assume that En is a trivial fibration non-equivariantly and the action on
the homology of the total space is trivial. This is shown below in Lemma 5.2. Now, by
Proposition 4.4, Ei is G-homotopy equivalent to a finite G-CW-complex Y . Hence we
can take Xi+1 as Y and continue the induction until we reach Xf+1. At this stage, we
have (Vf+1(W ))H 6= ∅ implies H = {1}, so we can conclude that the G-action on Xf+1 is
free. �

Lemma 5.2. Let p : E → B be a G-fibration over a finite G-CW-complex B and n be a

positive integer. Suppose that p has fiber type {FH} such that FH is homotopy equivalent to

the sphere Sn for all H ∈ Iso(B). Then, there is an integer k ≥ 1 such that ∗kp : ∗kE → B
is non-equivariantly homotopy equivalent to the trivial fibration. Moreover, if the G-action

on the cohomology of B is trivial, then there is an integer m > 0 such that for every even

number k > m, the G-action on the cohomology of ∗kE is also trivial.

Proof. The first part of the lemma is well-known and it follows from the fact that the
homotopy groups of Aut(Sn) is finite. For the second part, observe that since the resulting
fibration is homotopy equivalent to the trivial fibration, it is in particular an orientable
fibration, i.e., π1(B) action on the homology of F is trivial. So, there exists a consistent
choice of generators for Hn(Fb) ∼= Z for all b ∈ B. Note that this gives a G-action on the
cohomology of the fibers Hn(Fb) which is defined by

g∗ : Hn(Fb) → Hn(Fgb) ∼= Hn(Fb)

where the isomorphism on the right comes from identifications of generators that we have
chosen. Observe that this action in general can be nontrivial since a generator u can go
to −u but if we take the fiber join of p with itself, then we can assume that this action is
trivial for all b ∈ B. So for every even number k, the fibration ∗kp will have this property.

For an orientable spherical fibration there is a Serre spectral sequence

Ep,q
2 = Hp(B,Hq(F )) =⇒ Hp+q(E).

Note that for a G-fibration, all the terms in this spectral sequence will be ZG-modules
and the differentials will be ZG-module homomorphisms since every g ∈ G induces a
fiber preserving continuous map g : E → E. In our case, we have a two line spectral
sequence and it is easy to see that by choosing k large enough, we can assume that
N = dim(∗kS

n) ≥ dimB, and hence we can conclude that H i(E) ∼= H i(B) for i < N and
H i(E) ∼= H i−N(B,HN(F )) for i ≥ N . Since G acts trivially on H∗(B), we have trivial
action on H∗(E) if the G-action on H i−N(B,HN(F )) is trivial for all i ≥ N . Note that
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the Serre spectral sequence has a product structure, so the action on H∗(B,HN(F )) is
trivial if the G-action on H0(B,HN(F )) is trivial. Note that H0(B,Hn(F )) is the kernel
of the map

d1 : HomZ(C0(B), HN(F )) → HomZ(C1(B), HN(F ))

and as a ZG-module

HomZ(Ci(B), HN(F )) ∼=
⊕

σ∈Ii

HomZ(Ind
G
Gσ

Zσ, H
N(Fσ))

for i = 0, 1 where theG-action onHN(Fσ) is the one described above. So if k is a large even
number, then this action is trivial, and we can conclude that H0(B,HN(F )) ∼= H0(B) as
ZG-modules, and hence H0(B,HN(F )) is a trivial ZG-module. This completes the proof
of the lemma.

�
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