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ABSTRACT

DC-ELECTROKINETIC MOTION OF COLLOIDAL
CYLINDER(S) IN THE VICINITY OF A WALL

Atakan Atay
M.S. in Mechanical Engineering
Advisor: Barbaros Cetin
July 2021

DC-electrokinetic behavior of colloidal particles in the vicinity of a conducting/non-
conducting planar boundary is investigated using an inhouse boundary element
method (BEM) based solver in MATLAB® environment. In the model, contribu-
tion of hydrodynamic drag, electrokinetic (electrophoretic and dielectrophoretic),
and colloidal forces (van der Waals and EDL) to over-all particle velocity is com-
puted. The electrokinetic and colloidal forces are calculated using prescribed
relations obtained from the literature. These forces are then included in the
model as external forces acting on the particles. The electrokinetic (EK) forces
are obtained by integrating Maxwell stress tensor (MST) over particles’ surfaces.
Throughout this work, a thin EDL assumption is made. Position and velocities
of the particles along with resulting flow and electric fields are computed. Over-
all, results are compared with experimental observations and a general discussion
regarding colloidal behavior is made.

Keywords: Microfluidics, boundary element method, colloidal cylinder.
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OZET

KOLLOID SILINDIRLERIN DUVAR KENARINDAKI
DC ELEKTROKINETIK HAREKETI

Atakan Atay
Makine Miihendisligi, Yiiksek Lisans
Tez Danigmani: Dog¢ Dr. Barbaros Cetin
Temmuz 2021

Duvar kenarindaki kolloid parcaciklarin dogru elektrik alan altindaki elek-
trokinetik hareketlerinin incelenmesi ic¢in MATLAB® ortaminda smir eleman
(BEM) yontemine dayali bir formiilasyon geligtirilmistir. Hidrodinamik stiriik-
lenme, yer ¢ekimi, elektrokinetik (elektroforetik ve dielektroforetik) ve kolloidal
(van der Waals ve Elektriksel Cift Katman) kuvvetlerin etkileri modele dahil
edilmistir. Elektrokinetik ve kolloidal kuvvetlerin hesabi igin literatiirdeki den-
klemlerden yararlanilmigtir. Bahsi gegen kuvvetler pargacik hareketini etkileyen
digsal kuvvetler olarak formiilasyona eklenmistir. Parcacik iizerine etkiyen elek-
trokinetik kuvvet degeri, pargacik yiizeyi boyunca maxwell stress tensorii (MST)
integralinin hesaplanmasi ile elde edilmigtir. Simiilasyonlarda duvar ve parcacik
yiizeylerinde elektrokinetik kayma hizi ve ince elektriksel ¢ift tabaka (EDL)
varsayimlar: yapilmistir. Simiilasyonlar sonucunda parcaciklarin hiz ve konumlar:
ile elektrik alan ve akig bolgeleri elde edilmig, duvar kenarindaki kolloid pargacik-
larin duvar kenarindaki elektrokinetik davraniglari literatiirdeki deneysel veriler

1s1g1inda incelenmistir.

Anahtar sézciikler: Mikroakigkanlar, sinir eleman metodu, kolloid silindir.
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Chapter 1

Introduction

1.1 Theory

1.1.1 Electrokinetics

EK manipulation of colloidals often come into use in various applications such as
field-induced layering of colloidals [1], guided patterning of particles on substrate
surfaces as a 2-D and 3-D colloidal structures [2], fabrication of nano devices [3],
electrophoretic deposition of colloidal particles [4], local colloidal crystallites [5],
planar superlattices of binary colloidal suspensions [6] as well as miniaturized
biosensors [7]. An interesting behavior pertaining EK colloidals is that particles
possesing charges of same type aggregate under external electrical field despite
presence of repulsive coulombic forces. Although there are experimental obser-
vations regarding this behavior [1,8,9], there is no rigorous model that simulates
EK behavior of colloidals in close proximity to a planar wall with a detailed ex-
amination of particle-particle (p-p) and particle-wall (p-w) interactions together
with the inclusion of colloidal (vdW, EDL) and dielectrophoretic (DEP) forces.

Solid particles posses electrostatic charges on their surface. In general, aqueous

solutions are charge-neutral. That is to say, number of positive charges balance

1
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Figure 1.1: Schematics of Electric Double Layer (EDL)

negative charges in the solution. Concerning flows with small Reynolds number
such as Stokes flow, the inertial effects in the fluid domain becomes negligible. As
a result, once a solid surface comes into contact with an aqueous solution, ions
on the solid surface attract counterions and repel coions in the neutral solutions.
The counterion concentration in the vicinity of the solid particle in the solution
side is larger than that of the bulk. This produces a potential difference on the
interface. The charged solid surface and a layer of ions in the vicinity of the
charged layer is called Electric Double Layer (EDL). As it is seen in Fig. 1.1,
right next to the charged solid surface, there is an immobile layer of ions attracted
to the solid surface. The immobile layer is called the compact layer. Starting from
the compact layer to the electrically neuter bulk liquid, the net charge density
gradually decreases to zero. Compared to those at the compact layer, charges in
this region are affected much less by the electrostatic interactions and are mobile.
This region is called Diffuse layer. Diffuse layer together with compact layer form

the electric double layer.



Thickness of the electric double layer depends on the several properties of the so-
lution: bulk ionic concentration, temperature of the environment, and electrical
properties of the solution. Characteristic EDL length of such structure is repre-
sented by inverse of Debye-Hiickel parameter, (1/k). In general, EDL thickness
may vary from several nanometers to few microns depending on the ionic con-

centration of the solution [10]. For an electrolyte with symmetric ions, x can be

|222e2n2,

where z is the valence of the ions, e is the elementary charge, n., is the bulk

written as:

ionic concentration, kg is Boltzmann’s constant, and T is the absolute tempera-
ture. Considering conventional fluid mechanics applications where inertial terms
are considerably effective on the solution domain, the velocity on shear plane is
considered to be zero, which is known as no-slip boundary condition. In microflu-
idics, if the EDL is thin, in order to avoid the rigorous modeling of nm scale EDL,
thickness of the EDL is neglected and a slip velocity is assigned on the boundary.
Slip velocity is a function of the applied electrical field (E,), permittivity of the
vacuum (€,), relative permittivity of the particle (e,.), the zeta potential of the

particle and the water (,,&,) (measureable potential on the surface).

In microfluidic applications, electrokinetic manipulation of colloidals is a ne-
cessity [11]. Regarding EK manipulations of colloidals, electrophoresis(EP) and
dielectrophoresis (DEP) are two most commonly referred approaches. Once a
charged particle is exposed to an external electric field, the particle is going to
migrate to either anode or cathode depending on the charge of the particle, which
is a well-known phenomenon called electrophoresis (EP) [12]|. The electrophoretic
behavior of a single particle in an unbounded flow is governed by Smoluchowski
formula.
€réo(Cp)

u

On the other hand, due to high counterion concentration on the solution side of

Vparticle = Eoo (].2)

the interface, water molecules will be dragged to the opposite direction of particle
motion. This phenomenon is known as electroosmosis. In a typical microfluidic

setting, electroosmosis and electrophoresis occur simultaneously. DEP, on the
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other hand, is the motion of the dielectric particles due to an inhomogenous
electric field around them [13|. In other words, if electrophoresis is described
as a tool used to transport particles along microchannel, then DEP could be
described as another tool that is often used to create lateral migration of such
particles [14]. DEP forces could be realized under externally applied DC and AC
electric fields. In order to find total DEP force acting on the particle, one must

integrate Maxwell Stress Tensor (MST) over particle’s surface.

FDEP% oMSsT " I dl’ (13)
oD

where Maxwell Stress Tensor is defined to be:
1
omsT = cEQE — ée(E-E) I (1.4)

Detailed information regarding calculation of DEP force could be found in Ap-

pendix A.

In the literature, electrokinetic behavior of colloidals have been widely in-
vestigated. However, in microfluidic applications, p-p and p-w interactions are
inseparable part of the microfluidic processes. Therefore, numerous theoretical
studies in the literature investigated p-p and p-w interactions. Though EK parti-
cle motion behavior in an unbounded flow is well-known thanks to Smoluchowski
formula, the phenomenon becomes complicated due to presence of other parti-
cle/boundaries as external boundaries cause a change in local electric and flow
fields around the particle. In some cases, these disturbances in the local field
might induce highly non-uniform fields, which in turn may yield a strong DEP
force acting on the particle due to presence of the wall [15-20] or due to presence
of other proximate particles. In some cases, this is known to cause a chain for-
mation among the particles [20-24]. Furthermore, the presence of particle results
in a disturbance in the local field near a conducting wall and such disturbance
induces an electro-hydrodynamic (EHD) fluid flow responsible for the lateral mi-
gration, perpendicular to the direction of electrical field, yielding aggregation of

colloidals which is a phenomenon also observed in experiments [1,2,4-6].

Boundary effects owing to altered electric and flow fields aside, if the parti-

cles are sufficiently close to each other, they experience repulsive forces due to
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Coulombic and dipole-dipole interactions also known as EDL forces and vdW
forces. These two forces are called colloidal forces in classical DLVO (Derjaguin-

Landau-Verwey-Overbeek) theory [15].

EP motion of a set of spherical particles ranging from a few um to ten pm in
the vicinity of a non-conducting wall with an electric field parallel to the wall was
investigated by Keh and Chen [25] via an eigenfunction expansion series with an
assumption of thin EDL. Their results reveal that as the gap between the wall
and the particle decreased, the translational and angular velocities of the particle

enhanced.

For the same problem, particle in the vicinity of a non-conducting wall, Yariv
and Brenner [26] employed a matched asymptotic expansion to understand the
dynamics of the EP behavior of the particle for the gap distances smaller than
5% of the particle diameter. They showed that translational and angular ve-
locities of the particle further enhance in near-contact. Ristenpart et al. [27],
theoretically modelled the EK flow around a spherical particle in close proximity
to a conducting wall under a steady electric field including Faradaic current and
surface conduction. These phenomena become prominent as zeta potentials on
the particle surfaces are of same order of magnitude with thermal voltages. They
derived a closed-fomr solution in thind EDL and slow Faradaic reactions and dis-
cussed induced EK flow around the particle by indicating specific contributions of
electro-osmosis and EHD. With an approximation of Faxén’s law, they discussed
aggregation of two particles by solving for the the flow field of induced by other
particle. Ristenpart et al. [28] also developed a model for an oscillatory electric

field. Yariv [29] investigated the same problem in the near-contact.

One of the leading works regarding EK behavior of the particles in 2-D is
carried out by Keh et al. [30] who solved the EP of a cylindrical particle with an
electric field parallel to a non-conducting wall and normal to a conducting wall in
the thin EDL limit. They reported that for the case of cylinder, the EK behavior
is similiar to that of sphere’s. As opposed to non-conducting wall, results for an
electric field normal to a conducting wall yielded zero angular velocity for a single

particle due to symmetricity in electric and flow field around the particle. It was



also found that next to a conducting wall, vortice formation was induced. Once
again, Yariv [18| employed matched asymptotic expansion for the electrophoresis
of a cylinder in near-contact limit. However, in this work, he included DEP
contribution and reported that DEP contribution was a dominant factor on the
equilibrium distance of the particle in a setting in which electric field is parallel
to a non-conducting wall. However, DEP on equilibrium location was found to

be negligible in the vicinity of a conducting wall.

Wang and Keh [31] extended their previous study [30] to incorporate the effect
of thin but polarized EDL and corrected their previous results for a conducting
wall in the thin EDL limit. Yariv [19] analyzed the EP of a spherical particle
near a non-conducting wall with an electric field parallel to the wall incorporating
DEP and surface conduction on the solid boundaries. The results revealed that
surface conduction effectively reduces the significance of the locally disturbed
field, and hence, the DEP contribution. For the same problem, Young and Li
[15] investigated the equilibrium position of a particle normal to a wall in the
presence of DEP and colloidal forces. The DEP contribution was calculated
by determining the local electric field and the integration of the Maxwell stress
tensor around the particle, and the colloidal forces were included by implementing
readily available force expressions available in the literature. The findings showed
that the equilibrium position of a particle was affected by the DEP and colloidal
forces, and the omission of DEP contribution may result in underestimation of
the equilibrium position of the particle. Camarda et al. [17] studied EK motion
of spherical particles and identified a region in the close vicinity of a conducting
wall in which cohesive and repulsive forces (in contrast to what is predicted by
ignoring any particle-wall interaction) are generated on the particle due to the
particle-wall interactions. Later Cetin et. al [20] also demonstrated this effect

within microchannel confinements.

Concerning settings in which a particle is in the vicinity of an electrode (i.e.
a conducting surface), chemical properties of the surfaces gain prominance. In
addition, the presence of the particle creates a disturbance in the distribution of
electric potential on the electrode and yields an EHD flow [27,28,32-34|. Deter-

mination of potential distribution on the wall is beneficial for the investigation
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of the flow field between particle and the electrode. It is possible to assign a
constant potential value along the electrode surface (i.e. Dirichlet B.C.) for a
high frequency oscillatory fields without any Faradaic reactions [17,18,20,27-29].
However, such boundary condition on electrode results in omission of EK slip on
the conducting wall and prevents EHD flow from occuring. Whereas, a current
density on an electrode (i.e. gradient of electric potential which is equal to the
emitted electric field form wall) results in EK slip due to induced electric field
owing to the presence of the particle , which means the electrochemical properties
of the electrode are related to the current density with applied voltage. However,
Ristenpart et al. [27] used a non-homogenous Neumann condition to capture
EHD flow based aggregation of particles which could be quite appropriate for
relatively weak electric fields (< 0.6 V/cm) [33,34]. Though cornerstone studies
involving DC electric field set constant potential on electrode surface for the sake
of computational simplicity [25,30,31, 35|, application of a current density based
boundary condition (i.e. Neumann boundary condition) on the electrode surface
is a more realistic approach to capture flow dynamics of colloids in the vicinity
of a conducting wall [27-29, 33, 34].

1.1.2 Modeling of Particle Motion

Microfluidic processes inherently involve p-w and p-p interactions, which intro-
duce complexity to the prediction of the EK behavior of colloidals. There is
no analytical solution for multibody interactions in the vicinity of a boundary.
However, with a proper choice of numerical method, this complexity could be
overcome. Methods for particle tracking could be categorized under two different
approaches: point-particle approach, and finite-sized particle approach. In the
first case, it is assumed that (i) particle’s rotation does not affect its trajectory, (ii)
p-p electrostatic interactions could be ignored. In point particle approach, also
known as Lagrangian Particle Tracking methods (LTM), x,, could be predicted
with the following approach:

¢
Xp = Xo —I—/ u, (t')dt’ (1.5)
0

7



where X, is the initial location of the particle and u, is the particle velocity. For
an inertial reference of frame, translational motion of a particle is governed by

the following differential equation:

du
Hlpd—tp = Fext = Fpep + Frk + Feol (1.6)

where my, is the particle mass, Fey is the external forces such as hydrodynamic
force, Fg, DEP force, Fpgp, colloidal forces, Fcor,. In LTM methods, parti-
cles are considered to be point and the effect of presence of particle to the field
variables is ignored. In this case, only effect of field variables on the particle
is taken into account. Having obtained the field variables without the presence
of the particles, particle trajectories can then be evaluated as a result of the
post-processing step using correlations to account for the forces on the particles.
Therefore, it is possible to simulate multiparticle simulation with a statistical
approach using LTM. Due to its ease of implementation and computational effi-
ciency point-particle approach becomes advantageous in cases where relative size
of the particles are small compared to the dimensions of the channel, and where
(p-p) interaction is negligible [20]. Despite its limitations, LTM has been used
extensively for the simulation of particle tracking to avoid the design process in

electrokinetic 36, 37| acoustophoretic [38—40| applications.

Finite sized particle approach also known as stress-tensor approach, on the
other hand, includes finite-size of the particles. In this approach, the field vari-
ables are solved together with the presence of finite-sized particles. The resultant
force on the particles are obtained by integrating the related stress tensor on
the particles’ surface. Boundary Element Method (BEM) is a suitable numerical
method to simulate particle trajectories in microchannels since modelling of elec-
tric, acoustic and/or magnetic field are governed by linear differential equations.
BEM posseses advantages compared to other numerical methods such as finite
volume method, finite element method (FEM) in terms of its improved accuracy
of the solution since BEM is a semi-analytical method (the integral equation is
obtained using exact solution of the corresponding problem and numerical ap-
proach is involved in the evaluation of the integrals), discretization and model-
ing of only the boundary of the solution domain and no successive remeshing is

needed, possible applications in domains that extend to infinity in either one or
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multi dimensions. Regarding manipulation of colloidals, to asses the effect on the
particle presence of the field variables requires a remeshing of the domain for the
finite volume or element methods. Determination of the the forces acting on the
particles requires calculation of the gradient of the field variables. In order to
be able to accurately represent gradient of field variables, a fine mesh is required
on the particle surface. This becomes troublesome as particle nears a boundary.
Thus, it is of utmost importance to employ a numerical model taking into acount
of p-w interaction without having to deal with problems stated above [41]. Owing
to the aforementioned benefits, BEM has been a useful numerical tool to study
hydrodynamics of colloidal suspensions. Briefly, in BEM the particle surface is
discretized into elements and both geometry and field variables are approximated
using discontinous interpolation functions. The mathematical formulations em-
ployed in BEM either lead to Fredholm’s interal equations of first kind (FIE-1)
and Fredholm’s equations of second kind (FIE-2). Quickly summarizing, the for-
mulation of the BEM using FIE-1 is easier as it directly involves physical variables
such as the velocities and tractions on the boundaries. However, this introduces
a complexity; the resulting system of equations yield ill-conditioned matrices,
which requires use of a direct matrix solver. On the other hand, FIE-2 results in
a set of well-conditioned integral equations. Therefore, it enables use of iterative
solvers for this case. However, the major disadvantage is that FIE2 does not
involve phyical variables but rather the density distributions [42]. In this work,
direct boundary element method (FIE-1 kind) is employed. The resulting system
of equations are ill-conditioned. Therefore, these system of equations are solved

using a built-in direct MATLAB® solver called pseudo inverse(pinv) function.

In this thesis, a boundary element formulation is presented to investigate the
p-p and p-w interactions for colloidal cylinder(s) under the action of DC electric
field and gravity in the thin EDL limit. The contribution of colloidal forces and
DEP are also incorporated in the model by introducing the resulting forces as
external forces acting on the particle(s). Colloidal forces are implemented with
the prescribed expressions from the literature derived for cylinders, and the DEP
force is obtained by integrating the corresponding Maxwell stress tensor (MST)

over the particles surfaces. The EK behavior of colloidals in the vicinity of both



conducting and non-conducting wall was investigated. Throughout the simula-
tions, an external electrical field of E, is applied in either x— or y— direction,
depending on the type of the planar boundary (i.e. wall or an electrode). The
particles” EK motion is governed by the interactions between particles and local
electric and flow fields. The electrophoretic motion of particles under externally
applied electric field in an unbounded flow could be calculated thanks to Smolu-
chowski formula. Yet, the presence of wall/other particles introduce complexity
to the electrical and hydrodynamic field in the vicinity of the particles, which
cannot be predicted with an analytical formula for multi-particle cases. To be
able to include these interactions in the model, the flow and electric fields are
calculated together with the presence of the particles in the domain. The veloc-
ities of the particles in the vicinity of the boundaries are in the order of um/s.
As a result, viscous effects dominate the inertial ones such that Re < 1, which
is known to be creeping-flow (i.e. Stokes) and the flow field is governed by the
following PDEs:

V-u=0 (1.7a)

0=—-VP+uVu (1.7b)

where u is the velocity field, P is the pressure field, p is the viscosity of the fluid.
The characteristic time scale for the adjustment of the flow field is neglectible
compared to the rate at which flow domain changes [43|. Thus, in this study, a
quasi-steady approach is taken and steady Stoke’s partial differential equations
are solved in this analysis. The electric potential field can be obtained by solving
the Laplace equation as:

Vi =0 (1.8)

For relatively weak electric fields (< 0.6 V/cm), a Neumann boundary condition
is implemented on the electrode as suggested by [27]| to simulate EK based ag-
gregation of colloidals [33,34]. Due to the presence of EDL in the vicinity of
each particle, boundaries of the particles are modeled to be insulated boundaries.
Since, electric field is weak in magnitude (< 0.6 V/cm) and 1 < x/d where d is
the diameter of the particle and k is the Debye-Hiickel parameter, double-layer

assumption is made and slip-velocity boundary conditions on both channel and
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particle surfaces are implemented:

u} = —u,(I—nn)-Vo (1.9a)
u’ = —p,(I—nn)- Vo (1.9b)

where (i, = —e(w/H) is the electroosmotic mobility and (p, = —e(,/p) is the
electrophoretic mobility of the particle. Having computed the flow and elec-
tric field, the hydrodynamic drag and EK force is calculated by integration of
corresponding hydrodynamic and Maxwell Stress Tensors (neglecting magnetic
effects):

FH = jgp (n-o™)dl, FEE = jép (n-o™71) dl, (1.10a)

H _ X—X n'O'H EK: X—X n'CTMST .
T (e Al T = o) (a0 L (L10b)

MST

where n is unit vector normal to the surface. o™ and o are defined as:

1
o' = —pU+p[Vu+ (Vu)'], oM = ¢ <E QFE — 5E2U> . (L.11)

where U is the unit tensor and symbol ) denotes the dyadic product. When the
distance between the particles and /or wall is in the order of nanometers, the col-
loidal forces (EDL and vdW forces) need to be incorporated. Colloidal forces are
computed based on their corresponding potential values based on approximation
proposed by Derjaguin’s approximation was derived by Ohshima and Hyono [44]

as:

WEPL(g) = — | [87e2k 142
a1 + as

2 2
(552) tiuat-en+ (952) Lm(e—”d)] (112)

where d is the distance along the center of gravities between two cylinder surfaces,
(; are the zeta potentials of the bodies, x is the Debye-Hiickel parameter, and
€ is the permittivity of the medium. Inverse of Debye-Hiickel parameter, (1/k),

represents the characteristic EDL thickness. For an electrolyte with symmetric

|222e2n2

where z is the valence of the ions, e is the elementary charge, n, is the bulk ionic

ions, k can be written as:

concentration, kg is Boltzmann’s constant, and T is the absolute temperature.
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In Eq. 1.12, Li is defined as polylogarithmic function:

Lig(z) = )

The EDL force between two cylinders along the line connecting the centers can

Zk

(1.14)

S

b

be determined by differentiating EDL interaction energy with respect to distance

between particles’ surfaces:

HWEDL
FEPL — 5 (1.15)
The vdW interaction potential between two cylinders is defined as:
\IlvdW(d) _ Ajzo a1Gz 2 (1.16)
12¢/2d3/2 \ a1 + as '

where Aj3, is the Hamaker constant for the materials 1 and 2 in the presence of the
medium 3, a; are the radii of the particles, d is the distance between the surfaces’
of the cylinders. Similarly, the vdW force along the line connecting particles’

centers can be obtained by differentiating corresponding interaction potential as:

fvdW:_a\IIde A1zg ( a1Gz )1/2

od  8v2d52 \a + as

(1.17)

In this work, in order to capture the physics of the problem accurately, the value
for Hamaker constant, Ay3s = (3/47) w39 is selected for polystrene (PS) and gold
(Au) pairs in deionized water in the form of Lifshitz -van der Waals Constant,
fiw3a= 0.72 eV for PS-Au and 0.11 ¢V for PS-PS interactions [45]. Following
Egs. (1.15) and (1.17), the colloidal forces between the particle and a wall could
be determined by taking the limit when the radius of one cylinder goes to infinity.
One has to note that Egs. (1.12) and (1.16) incorporate only pairwise interactions.
At the end, to model a three body interaction (p-p and p-w), a superposition of p-
p and p-w interactions are implemented. In table 1.1, a summary of the literature
is presented. Numerous works are grouped under separate categories based on

boundary condition choices, dimensionality of the problem and included forces.
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1.2 Objectives and Motivation

There is no rigorous model resolving p-p and p-w interactions of colloidals with
the inclusion of DEP and colloidal forces in the vicinity of a planar boundary. In
this work, the results obtained from a set of boundary element simulations re-
garding electrokinetic behavior of colloidal(s) in the vicinity of a planar boundary
are presented. In the literature, there are a number of theoretical and numerical
studies analyzing p-p [20-24, 32| and p-w [15-20, 25-31, 33-35, 53| interactions.
However, to the best of author’s knowledge, this is the first study in which elec-
trokinetic behavior of colloidals in close proximity to a planar wall is simulated
with a detailed examination of particle-particle and particle-wall interactions to-
gether with the inclusion of colloidal and dielectrophoretic (DEP) forces. Initially,
once the particle approached to an external boundary, oscillations on the particle
velocities were observed. In order to overcome numerical oscillations, geometry
and the field variables were approximated using quadratic polynomials. Also,
time scheme for the simulations were upgraded from explicit Euler to second or-
der explicit Adams-Bashforth method. In order to decrease computational cost
of the code, an adaptive mesh algorithm was used. In addition, the code is par-
allelized using a built-in MATLAB® parfor function from parallel toolbox. As
a result of this work, an accurate, adaptive inhouse boundary element method
solver simulating behavior of colloidal interactions in the vicinity of a planar

boundary has been developed.

1.3 Thesis Outline

In this section, a brief summary of each chapter is included. Chapter 1: A brief
introduction to microfluidics theory is made. Exemplary applications to the EK
manipulation of colloidals are given. Definitions to fundamental electrokinetic
concepts such as electroosmosis, electrophoresis, dielectrophoresis are made. In
addition, a detailed literature review on colloidal dynamics is listed. At the end of

the first chapter, the objective, motivation and outline of the thesis is presented.
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Chapter 2: A detailed mathematical background of the boundary element for-
mulation for the flow (governed by Stoke’s equation) and potential field (governed
by Laplace equation) is given. Then, detailed information regarding particle
tracking formulation is shared. Finally, the flowchart regarding the algorithm of
the custom solver is given. Chapter 3: In this chapter, verification of the multi-
physics simulations are presented. As for hydrodynamic benchmarks, drag forces
acting on a particle for the case of next to a single wall and two walls are com-
puted and compared with their respective analytical solutions. In hydrodynamic
simulations, the pressure distribution in a channel with an obstacle in the middle
is compared with the analytical solution for the same problem given by Faxén et
al. [54]. Concerning electrokinetic benchmarks, the EK particle velocities of the
particles under various settings including a conducting and a non-conducting wall
are computed and compared with respective analytical solutions given by Keh et
al. [30,31]. Finally, the electric field computed by BEM is compared with the
analytical solution for a 2-D Laplace problem involving dirichlet boundary con-
ditions. Chapter 4: DC electrokinetic behavior of particle(s) is simulated in the
vicinity of both a conducting and a non-conducting wall. For the particles next
to a conducting wall (ie. anode), the effect of boundary condition to the particle
behavior is analyzed. Throughout the simulations, Dirichlet and Neuman bound-
ary conditions are implemented. As a result of the simulations, it was shown
that Neumann boundary condition introduces electrohydrodynamic flow (EHD)
phenomenon, which gravely affects lateral colloidal aggregation under DC electric
field. In the second part of the thesis, DC electrokinetic behavior of colloidals
next to a non-conducting wall is investigated and particle-particle interactions
are analyzed in detail. Finally, outcomes are reported and a general discussion is
made. Chapter 5: Concluding marks are made and the future directions of the

current research is discussed.
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Chapter 2
Boundary Element Formulation

In this section, detailed information regarding the Boundary Element Method
formulation for fluid flow and electrical field is presented. In addition, custom
formulation regarding particle tracking is elucidated. Lastly, a flowchart describ-

ing the algorithm of the custom solver is presented.

2.1 Fluid Flow Model

For a point lying on the boundary 0D, the boundary integral representation of
2D Stokes equations become [55]:
1 1

§u(x0) = i 8Dt(x)gs(xo,x)dl(x)+41ﬂ /BD u(x) [VQS(XO,X)-n(X)] dl(x) (2.1)

where t = o - n is the traction vector, and gs(xo,x) is the free-space Green’s
function for 2D Stokes equation (i.e. Stokeslet):
1 ror
S
0,X)=—| —Iln|r
G° (X0, X) 47TH[ njr| + e }

where r = x — X, and VG®(x,,X) is the stress tensor of the free-space Green’s

(2.2)

function for the Stoke’s problem (i.e. stresslet), respectively. The integral equa-
tions for the velocity can be discretized and the boundary integrals can be ap-

proximated as the sums of integrals across surface elements E, (n = 1,2---N).
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Employing quadratic functions for the field variables across the elements, dis-

cretized integrals for Laplace and Stokes equations become:

5" (x / <Z¢mu )[Vgs(xo,x)-n(x)]dl(x) (2.32)
3" (x / (Z%tn ) 5 (%o, x)dI(x) (2.3b)

where ¥y, (¢')k = [n-V(¢')(x)2], and (¢')2 are the shape functions of each node,
the values of normal flux, and the potential values of the m*" nodes of n** element
residing on the boundaries at each element, respectively. For a load point on a

single element, the discretized boundary integral equations can be written as:

Julxe) + S B (k) = > (2.4)

The main goal is to determine the unknown field variables on the boundaries.
Among the weighted residual methods, due to its versatility and computational
efficiency, the collocation method is implemented to transform the boundary in-
tegral equations into sets of linear equations leading to two matricess named as
G5, and H® for Stokes problems [56]. If diagonals are augmented with 1/2, the

augmented matricess can be recast into:
H® (%, %) - {u} = G%(x0,%) - {t} (2.5)

where {¢'} is the vector containing the potential values of the nodes on the
boundary elements and {¢'} is the corresponding vector for the normal fluxes.
Since BEM is a mixed formulation, as it is seen in equation 2.5, depending on
the boundary conditions, either the electric potentials or the normal fluxes on the
elements are known [56]. Known boundary conditions are collected at appropriate
side with a column switch. Either the velocity or the traction values are known
on the wall. However, neither velocity nor traction values are known on the
particle surface. Following the appropriate column switching, a linear system of
equations can be obtained for the unknown quantities located on the nodes of
the boundary elements. Once velocity and traction values are determined for all

surface elements, the pressure and velocities in the domain can be calculated at
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a later step as a post-processing.

P(x,) = /Dt(x)p(xo,x)dl(x) — u/pl‘[(xo,x) u(x)dl(x) (2.6)

where p is the pressure Green’s function and IT is stress tensor associated with
stresslet [55]. As for the velocity values in the domain, equation 2.1 could be
used. However, the velocity at a certain point within the domain is obtained by
the evaluation of Eq. (2.1) with the coefficient of unity in front of the u(x,) term
instead of 1/2.

2.2 Electrical Field Model

To utilize the free-space Green’s function in the solution, the electric potential
field is decomposed into two component. These consist of background potential

and disturbance potential:

$(x) = ¢ (%) + P (2.7)

where ¢ is the background electric potential that results in a constant F., in
either x or y—direction, and ¢’ is the disturbed electric potential. Referring to
figure 4.4, background potential is linked to background electric field by ¢, =
—E. -y. Note that such a decomposition makes the non-homogeneous boundary
condition on the electrode a homogeneous one, and vice versa for the boundary
condition on the particle surface. For a point lying on the boundary 0D, the
boundary integral representation of 2D Laplace and Stokes equations are of the

following form [55]:

39 0 == [ (x00 [mi0) ¥/ 0 o
oD (2.8)

—l—/ ¢ (x) [n(x) - VG (%o, X):| dl(x)
oD
where G(x,,x) is the free-space Green’s function for 2D Laplace equation.
GL(x, %) = ———Inlr] (2.9)
’ 27

18



where r = x — %, and VGY(x,,x) is the gradient of the Green’s fundamental
solution for the Laplace problem. The integral equations for the potential and
flux values can be discretized and the boundary integrals can be approximated
as the sums of integrals across surface elements E, (n = 1,2---N). Employing
quadratic functions for the field variables across the elements, discretized integrals

for Laplace equation become:

M

() = [ (Z wmw’);(x)) [n<x>-ng<xo,x>]d1<x> (2.108)

m=1

GM (xo) = / (Z wm<q'>?n<x>> G (%o, X)dl(x) (2.10b)

where ¥y, (¢')2 = [n-V(¢')(x)2], and (¢')2 are the shape functions of each node,
the values of normal flux, and the potential values of the m*® node of n*"element
residing at each element residing on the boundary, respectively. For a load point
on a single element, the discretized boundary integral equations can be written

as.
1 Y e LI,
59 (%) + STH (x0) = > G () (2.11)
n=1 n=1

Similiar to Stoke’s equations, the main goal is to determine the unknown field
variables on the boundaries once again. Among the weighted residual methods,
due to its versatility and computational efficiency, the collocation method is im-
plemented to transform the boundary integral equations into sets of linear equa-
tions leading to two matricess named as G* and H" for Laplace problems [56]. If
diagonals are augmented with 1/2, the augmented matricess can be transformed
into:

H" (%, %) - {¢'} = G"(x0,%) - {d'} (2.12)

where {@'} is the vector containing the potential values of the nodes on the
boundary elements and {q’} is the corresponding vector for the normal fluxes.
Depending on the boundary conditions, either the electric potentials or the normal
fluxes on the elements are known. Following the appropriate column switching,
a linear system of equations can be obtained for the unknown quantities on the
nodes of the boundary elements. Once the electric potential values are determined

for all surface elements, the tangential electric field values on each element can be
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calculated wvia the derivatives of the fundamendal solutions. Having the normal
and tangential electric field values on the boundaries, slip-velocities on the wall
and the particles’ surfaces can be evaluated. Moreover, EK force and torque
values for each particle can also be determined by integrating the MSTs over the
particles’ surfaces. In the post-processing step, the electric field is computed by

the following expression [56].

[ (e
8X0 N oD 1 ox

Potential values in the domain are computed from the equation 2.8. Similiar to

,0 (V@)
ox

—¢

)m@) (2.13)

Xo

the computation of velocity values in the domain, coefficient of potentials should

be unity instead of 1/2.

2.3 Particle Tracking

Particle tracking is implemented using a technique through which a partitioning
process was used to speed up the calculations, detailed in formation regarding
partition procedure could be found in Cetin et al [57]. As stated in their formu-
lation, the constraints associated with rigid body motion can be imposed for the

closure of the problem as:
u, =u® +w’ xr, + uf) (2.14)

where u,, is the velocity at a node on the boundary of the particle, u® is the
velocity of the selected center of the particle, w® is the angular velocity and r,
is the relative position vector of the boundary node to the center of the particle
and ug is the slip-velocity on the particle surface given in Eq. (1.9b). Imposing
Eqn. (2.14), all the boundary points on the particle can be related to the linear
and angular velocities at the centroid of the particles through a kinematic matrix
M as:

_ B S
u, = M-u”+u, (2.15)
B _ B B B B B B
u = { Uy Uyyp Wy Uy Uyg Wy }
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where upg contains the linear and angular velocities at the center of gravity of
each particle. Similarly, the force and moment on each particle can be obtained

in a matrix form as [58]:
2 = F-t, (2.16)
T
f? = { ff,l f}]§,1 Mllg ff,z f}]?g ME }
where fp contains the net force and moments with respect to center of gravity
of each particle. Following the formulation from our previous study [Eq. (22)

in [58]], the relation between the force acting on the particles and the rigid body

velocity of the particles can be written as:
fP=K-u’+L-u)+b="fy (2.17)

where b has the contribution of the slip-velocity on the wall given in Eq. (1.9a) and
f.«¢ is the external force acting on the particle apart from the hydrodynamic drag.
In our study, there are four components for the external force: (i) gravity, (ii)
DEP force (obtained with the integration of MST over the particles’ surfaces), (iii)
the force corresponds to the EDL and (iv) vdW interactions associated with the
pairwise particle-particle and particle-wall interactions. The rigid body velocities
of the particles can be determined using Eq. (2.17), and thanks to the linearity of
the problem, the rigid-body velocity can be decomposed into velocities associated

with the different external force components as:

u? =ud +u® 4 u +u° (2.18)
where
ud =-Kl.b uf¥ = K1.(fDEP_L.u) (2.19)
W= KRS, WO = K ()

uy; is the contribution of the slip-velocity on the wall, u® is the contribution

of the gravity (i.e. sedimentation velocity), u®® is the contribution of the DEP
and slip-velocity on the particle surface and u® is the combined contribution
of EDL and vdW (i.e. colloidal forces). Once the rigid body velocity of the
particle is determined, the trajectory of the particles are obtained by employing

a second-order Adam-Bashford time integration scheme:
X1 = Xy 0’ (tn, X)) At (2.20a)
XE+2 = XEH + [3/2 U-B(th,XEH) —1/2 uB(tn,xE)] At (2.20b)

21



2.4 Algorithm of the Solver

The EK motion of the particles is simulated via a custom solver typed in
MATLAB® environment. In order to obtain an efficient code following features

are implemented in the code:

Adaptive mesh algorithm,

Parallelization of the solver,

Automatic time step computation,

One time computation of the HS ,HY = G,,°, and GL matrices containing

00 00’

information from non-moving mesh (channel).

Initially, necessary basic information such as dimensions of the channel and col-
loidals, total number of colloidals, material properties, magnitude of the electrical
field and so on are input. Having completed the first step, the code creates a vec-
tor that contains meshing conditions. Algorithm then scans this vector containing
conditions to create a specific mesh at a specific location for the colloidals. With
this condition, it is possible to create a course mesh in the beginning and then
increase the mesh quality as the colloidals approach at each other. Since parti-
cle tracking formulation allows independent matrix factorization, parfor function
from MATLAB® library is used. Parallel computation of multiphysics matrices
shortens the total simulation time. Regarding time step computations, second-
order Adams-Bashforth time scheme was utilized. To obtain a quadratic time
scheme, time step has to be constant in computations. In this case, if the ve-
locity change exceeds a preset value, the algorithm replaces current mesh with
the previous mesh from one time step earlier, halves time step and recomputes
matrices as it is seen in figure 2.1. Throughout the computations, the time step
is halved only once, which resulted in a loss of accuracy for that single time step.
Finally, in order to reduce total simulation time, matrices containing information
from non-moving mesh is computed only once, which is computed only at the

beginning of the computation.
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Halve time step and replace False |
mesh with previous time step

Figure 2.1: Flow chart of the custom algorithm used in present study
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Chapter 3

Validation of the Model

Validation of the computational model is carried out via hydrodynamic and elec-
trokinetic benchmarks. Both hydrodynamic and electrokinetic benchmarks con-

sist of three problems under different settings.

For the hydrodynamic benchmark, drag force acting on a particle is computed
under two different settings: in the vicinity of a single wall and between a double
wall. Numerical results are compared with the analytical ones given by Onishi
et al. [59] and Richou et al. [54] for particle near a single wall and for a par-
ticle between two walls, respectively. In order to verify post-process, pressure
values computed with BEM are compared with pressure values along the channel
obtained by analytical solution proposed by Fazén et al. [54] for the case of an

obstacle moving with constant speed between a double wall.

Electrokinetic benchmarks include electrophoretic velocity of the particle in var-
ious settings at which the direction of the electric field changes. Electrophoretic
velocity of the particle obtained by BEM near a conducting wall (electric field is
perpendicular to the wall) and a non-conducting wall (electric field is parallel to
the wall) is compared with analytical solutions given by Keh et al. [30]. In post
processing, the potential and electric field computed by BEM is compared with

analytical solution for a 2-D Laplace equation.
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3.1 Hydrodynamic Benchmarks

3.1.1 Drag Force on a Particle next to a Single Wall

Concerning flows involving small Re numbers (ie. creeping flow), there exists
an analytical solution describing the behavior of a colloidal moving past a non-
moving wall. he schematical drawing of such problem is given in figure 3.1. For a
circular cylindrical particle moving past a single wall, total torque acting on the
particle is zero. Similiarly, for a rotating particle next to a wall, the total force
acting on it is zero. Such conclusions and the analytical solution to the problem

at hand are given by Onishi et al. [59]:

\ = FDrag,analytical _ —47T
HUs log{r"[yc + (v& — 12) 77}

where d is the distance between center of gravity of the particle and the wall, r is

(3.1)

the radius of the particle and a? = y% —r?. As expected, the closer particle moves
past the boundary, hydrodynamic drag force acting on the particle increases and
as the particle gets away from the wall, the total drag force acting on the particle

decreases.

In BEM formulation, he total drag force acting on the particle is directly

computed from summation of the traction values of corresponding nodes residing

(_Lm/270) (Lx/270)

Figure 3.1: Schematics of hydrodynamic benchmark with a single wall

25



Table 3.1: Comparison of BEM vs analytical solution of drag force acting on a
cylindrical object in the vicinity of a single wall

r/yc BEM Onishi et al. [59] Error [%)]

5 5.4817 5.4817 0.0013
10 4.1981 4.1983 0.0032
20 3.4070 3.4071 0.0031
30 3.0692 3.0694 0.0062
50 2.7284 2.7288 0.0152
100 2.3705 2.3718 0.0528
on the element:
E 3
Foow => ) [ ththdl (3.2)

n=1 m=1 8D
where t¢ is the traction value of m*™ node located at e element on the boundary
and 9, is the shape function associated with the related nodal value. Throughout
the formulation, quadratic elements was utilized for the discretization of field
variables. Thus, firstly nodal traction values were to be multiplied with their
associated shape functions. Then the sum of these nodal values for each element
had to be summed up. As a result, the drag force acting on a particle was

obtained.

In table 3.1, it is apparent that as the particle moves away from the wall the
error increases. This is because as the particle gets away from the wall, the
length of the wall needs to be increased to obtain an accurate result. This is an
outcome of the single wall formulation used throughout the simulations. As the
length of the wall increases, even though number of elements are increased, due
to computational limitations, number of total elements used on wall is limited.
This results in a decrease in accuracy. Throughout the simulations, a mesh of

10pum /element for the wall and 0.5pum/element on particle was implemented.

3.1.2 Drag Force on a Particle Between Two Walls

In conventional fluid mechanics, the presence of the walls introduce viscous forces

acting on the particle. For a particle between two walls, as the gap between
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walls close, the hydrodynamic force exerted on the particle increases. Two-wall

hydrodynamic benchmark is given in figure 3.2.
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Figure 3.2: Schematics of hydrodynamic benchmark with a double wall

In 2-D, Faxén et al. [54] found an analytical expression for the drag force where
a particle with a constant velocity moves between two walls. They reported drag
force as a non-dimensional quantity in the following form :
Fy (k)
1o
- A (3.3)
n AO - ln(k‘) + A2k2 + A4]€4 + Aﬁkﬁ + Agks

Ak) =

where
Ay = —0.9156892732, A, = 1.7243844

Ay = —1.730194, Ag = 2.405644, (3.4)
Ag =—4.59131 and k=r/H

Similiar to the single-wall case, hydrodynamic force acting on a particle is
calculated using equation 3.2. The comparison of linear BEM, quadratic BEM
and the analytical solution could be seen in the table 3.1.2. Throughout the
computations, non-uniform mesh both on the channel walls and on the particle
was used. The length of the channel walls were set to 50 times the diameter of

the particle.
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Table 3.2: Comparison between present study, Richou et al. [54], and analytical
solution given by Faxén et al. [54] for the calculation of hydrodynamic drag force
acting on a particle between a double wall.

Present Results Faxén Error [%] Error [%]
r/H Study From et al. (PS) [54]
(PS) [54] [54]

0.010 3.4079 3.5401 3.4058 0.06 3.90
0.025 4.5322 4.7145 4.5296 0.05 4.10
0.050 6.0310 6.1027 6.0289 0.03 3.20
0.100 8.9401 8.1752 8.9506 0.11 2.80
0.200 16.5045 16.7335 16.5326 0.15 1.20
0.400 52.3033 52.8979 52.5669 0.50 0.60
0.800 1596.3012 1629.8050 - - -

0.950  51,521.6698 64,884.4322 - - -
0.990 2,782,131.2455 3,181,939.5500 - - -

3.1.3 Pressure Validation In Domain

Validation of the pressure is carried out in a domain between a double wall as
shown in figure 3.2. Pressure field in the domain as a result of particle motion
is computed using equation 2.6. Non-dimensional pressure is defined to be p* =
(APH / uuf) where H is the half the height of the channel, and u® is particle’s
rigid body velocity in horizontal direction. Mesh used in this benchmark is same

as that of problem presented in section 3.1.2.
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Figure 3.3: Schematics of the benchmark problem for pressure
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3.2 Electrokinetic Benchmarks

The main objective of this thesis is to develop and formulate a boundary element
based solver to simulate electrokinetic phenomenon for microfluidic applications
regarding multi-particle colloidal aggregation. In order to realize that, verification
of the hydrodynamic part is not sufficient. The verification of the results of
electrical field under different settings is a necessity. For the electric field problem,
two separate cases are considered. Firstly, the particle behavior next to a non-
conducting wall and secondly particle behavior in the vicinity of an anode is

investigated.

3.2.1 Electric Field Parallel to a Wall

As opposed to the pure hydrodynamics, the translational velocity and the rotation
of the particle increases without a bound if particle approaches to the wall in
electrokinetics. This behavior obtained by BEM and the qualitative comparison
between the analytical solution could be seen in figure 3.5. In this setting, the
presence of the particle induces a tangential electric field on the wall, which results
in a slip velocity with a high magnitude compared to far ends of the wall. Due
to magnitudal difference of slip velocities between the top and bottom part of
the particle, total torque on the particle becomes non zero. As a result, particle

rotates in counter-clockwise direction.

n-Vo=0

B

B Uy 1

wl ’

8 |
—» E YT
>
(-Lx/2,0) n-Vop=0 ~—Px ud  (L./2,0)

Figure 3.4: Schematics of the EK benchmark problem near a conducting wall
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Figure 3.5: a: Comparison of non-dimensional horizontal velocity b: comparison
of non dimensional rotational velocity with respect to analytical solution

Dustin et al. [60] also studied the same problem using BEM. They utilized
circular elements to capture the geometry of the particle and constant functions
for field variables over the elements. Throughout the simulations in order to
be able to make a meaningful comparison, similiar mesh structure was utilized.
Thus, 256 uniform elements on a particle with a radius of 2.5 pm and 192 non-
uniform elements on the wall with a length of 30 times particle’s radius was used.
In table 3.3, a numerical comparison between quadratic-quadratic BEM (present
study), circular-constant BEM and analytical solution proposed by Keh et al. [30]

is given. As expected, present study is superior over circular-constant formulation

due to its improved accuracy.

Table 3.3: EK velocity comparison between present study (PS), Dustin et al. [60]
and the analytical solution given by Keh et al. [30].

Present Results Keh et al
Study From [30] ’ Error [%]
(PS) [60]

r/yc U, W U, W U, W U, W
0.20 1.0001 0.0041 1.0000 0.0041 1.0002 0.0041 0.0132 0.7746
0.60 1.0244 0.1351 1.0244 0.1351 1.0250 0.1350 0.0553 0.0605
0.80 1.1328 0.4268 1.1328 0.4267 1.1333 0.4267 0.0508 0.0256
0.90 1.3648 0.8362 1.3648 0.8360 1.3650 0.8362 0.0190 0.0033
0.95 1.7577 1.3726 1.7577 1.3720 1.7574 1.3729 0.0164 0.0212
0.98  2.6137 2.3639 2.6120 2.3620 2.6121 2.3648 0.0608 0.0378
0.99 3.6188 3.4373 3.5963 3.4464 3.6149 3.4391 0.1069 0.0557
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3.2.2 Electric Field Perpendicular to Wall

The change of the type of the wall results in an alteration in the flow dynamics.
Next to a conducting surface (i.e. an electrode), particle approaches to the wall
provided that the particle carries counterion charges. Due to the symmetry of the
configuration, a colloidal particle does not rotate. Therefore, verification for the
rotation of a cylindrical particle is not considered in the vicinity of a conducting
surface. The analytical solution for this problem is given by Keh et al. [31]. In
their solution, they proposed a Dirichlet boundary condition such that (y, is zero
on the planar boundary. As a result, no slip velocity occurs on the surface of
the electrode. The electrophoretic velocity of the particle approaches to zero as
the distance between electrode and the electrode diminishes and particle comes
to a stop. In this benchmark, the same mesh as that of in first electrokinetic
benchmark (non-conducting wall) was used. Throughout the simulations an error

of 0.1% was achieved at the distance of as close as 5 nm to the wall.
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Figure 3.6: a: Schematics of the benchmark problem near a conducting wall,
b: Comparison of non-dimensional velocity between present study and analytical
solution

31



3.2.3 Validation of Electric Field

The potential distribution in a 2-D domain is governed by Laplace’s partial dif-
ferential equation as it is seen in equation 3.5.
2¢ 9?9
—+ — =0 3.5
ox? + oy? (3:5)
An analytical solution to 2-D Laplace equation with four boundary conditions
o(x,0) = 0, ¢(0,y) = 0, ¢(x,h) = ¢y, &(w,y) = 0 exists for a 2-D domain where

the domain dimensions w and h are of unit length such that:

oo %i sin ((% — (a:./w)> sinh <(2k — (y/w))
= (2k — 1) sinh ((Zkz — ) (h/w))

(3.6)

The electric field obtained from such potential distribution is given as:

o _8¢<X, y) o _a¢<X, ) o 2 2
Ex - Ox ) Ey - ay ) |E’ - \/ Ex + Ey (37)

In figure 3.7a, non-dimensional potential distribution in a 2-D domain is pre-
sented. In figure 3.7b, the magnitude of the electric field obtained by BEM is

compared with analytical solution along the line passing through the points (0.5,
0.0) to (0.5, 1.0). It is seen that the BEM results are in accordance with analytical

solution.
A) B)
Non. Dim. Potential Distribution
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z
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Figure 3.7: a: Non-dimensional potential distribution in the domain, b: Non-
dimensional electric field comparison in a square domain
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Chapter 4

EK Motion of Colloidal Cylinder(s)

4.1 Conducting Wall

The simulation parameters can be summarized as follows: p = 1000kg/m3, pu =
103 Pa-s, Ly = 50D, a; = ay = D/2 = 5um, E,, = 0.6V /cm, ¢} = Qg =
—25mV, ¢, = +100 mV, ¢, = 80g,, ¢ = 0.15 mM, Ny = coo X (1000N,),
where Ny is the Avagadro’s number. The velocity of the particle scaled with the
EP velocity in an unbounded flow, u, = —(e(p/H)Es (which is equal to 1.19
um/s in our simulations). In the simulations, non-uniform elements are utilized
to resolve to extremely narrow gaps. For the simulations with 180 and 360 second-
order isoparametric elements are implemented on the particles and on the wall,
respectively. Numerical integrations are performed using Gauss-quadrature with
20 points and singular integrals are evaluated numerically following the algorithm

given in [61], details of the transformation is shared in Appendix B.

Boundary conditions for a conducting wall are modified as appropriate to dis-
turbance based single-wall formulation. The potential is separated into two sub-
components: background potential and disturbance potential due to presence of
the particle as shown in equation 2.7. Due to presence of EDL, electrical boundary

condition on the particle is a homogenous Neuman boundary condition:
n-V¢ =20 (4.1)
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Figure 4.1: Comparison of the present study with the analytical solution given by
Wang and Keh for the case of single particle near a conducting wall with Dirich-
let boundary condition, and the result of the present study with the Neumann
boundary condition.

note that n- V¢ = 0 due to boundary condition shown in equation C.1. provided
that the electric field is in y direction. As for the Stoke’s boundary conditions,
slip boundary conditions on the particle become:
s _ Embp
u =—>(I—-nn) V¢ (4.2)
u
Regarding the slip velocity on the wall, in order to obtain disturbance velocity

the following is made:

ub = u® —u™ (4.3)

Note that in this case, there are no vertical walls. Thus, there is no background
flow in the vertical direction. For the completeness purposes however, u*is in-

cluded in notation. As a result,

uy = — (I —nn) - V¢ (4.4)

The analytical solution to this problem was first given by Wang and Keh

[31]. In this configuration, Dirichlet boundary condition was considered which
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results in zero slip on the surface of the electrode. Therefore, the only mechanism
responsible for particle motion was the EP of the particle under externally applied
electrical field. DEP force was also ignored in that study. As a result of the zero
slip on the electrode surface, the EP velocity of the particle diminishes to zero as
the particle approaches to the boundary. Since there is no pressure contribution
from the wall, the distance between the particle surface and electrode becomes as
small as 1% of the radius of the particle. The same configuration is also simulated
using a Neumann boundary condition on the electrode which is a more realistic
boundary condition for a conducting wall, as discussed in the introduction section.
Simulation results describing particle behavior under Neuman boundary condition
could be seen in figure 4.1. With the implementation of the Neuman boundary
condition, the slip-velocities present themselves on the wall which also affect the
slip-velocities on the particle surface. As a result of this interaction, it can be
clearly observed that the particle velocity reaches to a value that is half of the EP
velocity in an unbounded flow even for very small particle-wall spacing. The slip
velocities on the wall are responsible for hydrodynamic pressure accumulation
below the particle. Thus, particle comes to a stop at a certain location, which
is considerably farther than Dirichlet case. In the case of Dirichlet boundary
condition, there is no pressure contribution from the wall. Thus, particle reaches

as close as bnm to the wall.

In single-particle simulations, a particle is released from a distance of five
diameters away from the wall. Having been subjected to sedimentation under
gravitational acceleration until the distance between the particle and electrode
reached to four diameter, the DC electric field is activated. As the field is acti-
vated, a jump in the total velocity of the particle is observed. The results are
expressed in non-dimensional form where electric potential and time are normal-
ized with ¢, = Eo - D and t, = D/u,, respectively. In Fig. 4.2, the particle
position and y—velocity are shown. Contributions of different external forces (re-
ferring to Eq. (2.18)) are also presented separately in the figure with the exception
of colloidal forces which are negligible in this case. As can be depicted from Fig.
4.2, the EK velocity presents itself once the electric field is activated, and the

contribution of the wall comes into the picture approximately 2 diameters away
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Figure 4.2: The position and velocity of a particle in the y—direction as it moves
towards the wall. The contributions of different physical phenomena on the ve-
locity are shown separately.

from the wall, and acts in the opposite direction of the sedimentation velocity.
Since the contribution of the wall increases as the particle is approaching to the
wall, the particle eventually reaches to an equilibrium height, when the distance
between the particle center and the wall is about 0.6D (This leaves 0.1D distance
between the bottom of the particle and the wall).

Figure 4.3 illustrates the electric field and streamlines with the electric poten-
tial and pressure field contours at three different instances during the particle

motion. The corresponding wall electric potential and the slip-velocity on the

36



Colorbar: Non-dimensional electric potential

1.0 s
t/to =05
. — )ty =10
o I — t/t, =25
-Lo = —— Dirichlet
—20[ £ 05
=30| 4 7\
--------------------------------- —4.0 210 50 00 50 10

——————————————————————————————————— _5.0 x/D
t/t0—05 t/to—lo t/ta—25
.0 .

=}

Electric field

Velocity field

0 500 00 50 10
x/D

Colorbar: Non-dimensional pressure

Figure 4.3: Flow and electrical fields around a particle as it moves towards the
wall. Electric field lines and the streamlines are shown. Background color corre-
sponds to non-dimensional electric potential and non-dimensional pressure distri-
bution, respectively. The right column shows the non-dimensional wall potential
and wall slip-velocity at different times.

wall are also shown in the last column of the figure. The results are given in non-
dimensional form where the pressure is normalized by the viscous forces (pu,/D).
Owing to the implementation of the Neumann boundary condition on the elec-
trode, presence of the particle near the electrode disturbs the electrode potential
and creates slip velocity on the electrode’s surface. Electric field lines near the
particle induces slip velocity on the particle that results in the formation of a
symmetric recirculating flow pattern as shown in the lower figures. Particle wall
interactions increase as the particle gets closer to the electrodes, and the strength
of the circulation increases. Moreover, pressure builds up underneath the particle.
The presence of the circulating cell at both sides of the particle near a conducting
wall is an observed phenomena in the literature [27-29,33,34|. In addition, the
pressure build up is also discussed by Yariv [29|, who performed near contact

analysis for a spherical particle near a conducting wall.

Although the contribution of DEP and EP are included in the EK formulation,
the DEP force has negligible effects for the single-particle case in z—direction due

to symmetry of the problem. On the other hand, although the presence of the
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Figure 4.4: Schematic description of multi-particle problem next to a conducting
wall

wall creates a gradient also in the y—direction, the effect of DEP is again negligible
compared to the other contributions. This finding significantly differs from the
case of electric field parallel to a non-conducting wall studied in [15]|, where the
particle motion and its equilibrium position were shown to be greatly effected by
DEP.

Multiple particles electrophoretically deposited onto a substrate using DC
or low frequency electric fields show particle aggregation. This experimentally
observed behavior is quite unexpected considering the Coulombic and induced-
dipole repulsion effects [62]. Particle aggregation takes place even for particles
separated by five diameters. To demonstrate this physical phenomena, two-
particle simulations are performed. Two particles are released five diameters
above the wall and six diameters away from each other. Similar to the single-
particle simulation, the particles are allowed to sediment under gravity until they
are four diameters above the wall, and then the DC electric field is applied.
Non-dimensional position and velocity of the particles in z— and y—directions are
shown in Fig. 4.5. The particles sediment onto the electrode surface quite fast and
then they quickly reach their equilibrium position in y—direction. However, the
particle motion and the time for reaching the equilibrium position in x—direction
take longer. In the bottom row of the figure, we show the particle velocities as a
function of time in both directions. However, we specifically focus on the initial
process during the sedimentation, where an equilibrium position in y— direction
is determined, and the final moments before an equilibrium in the horizontal di-

rection is established. As seen from the figure (right panel), the particles initially
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Figure 4.5: The position and velocity of multiple particles in the y—direction and
x—direction as they move towards the wall. The contributions of different physical
phenomena on the velocity are shown separately.

start at a separation distance of six diameters and repel each other up to about
seven diameters under gravitational and EP forces. This is followed by particle-
particle attraction due to the induced slip-velocity on the wall, and hence, the
induced vortices. Eventually, the distance between the particles reaches almost a
diameter, which is the touching condition. To be exact, the centers of the parti-
cles reach equilibrium distances of 1.02D and 0.57D in the horizontal and vertical
directions, respectively. Especially, the inter-particle colloidal force component,
which did not play a role in the single particle-case, becomes important in the
multi-particle case. The colloidal force between the particle and the wall also
affects the motion in y— direction; however the effect is not as significant as that
in z— direction. Actually, when the colloidal forces come into the picture, a new
equilibrium both in the horizontal and vertical directions are achieved. Another
important observation is that the contribution from the wall slip pushed the par-
ticles away from the wall and this contribution results in repulsive motion in the

x— direction. The contribution of the gravity has a similar behavior. Gravity
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causes a downward motion which induces an attractive motion in the horizon-
tal direction. A peculiar behavior here is the sudden decrease of the velocities
at about non-dimensional time of 65. To further discuss this point, we need to

observe the wall potential and the wall slip about that point.

Figure 4.6 shows the electric field lines and the streamlines with the electric
potential and pressure field contours. The corresponding wall electric potential
and the slip-velocity on the wall are also shown in the right column of the figure.
Once the particles come closer to the wall, the slip-velocity on the wall generates
vortices which move the particles towards each other. As the particles come closer,
the vortices occurring between the particles lose their strength and disappear
when the particles are very close to each other. As seen from the pressure field,
although pressure build up is observed underneath each particle when they are
away from each other, a negative pressure is realized between the two neighboring
particles at close proximity with a circulation region between them. Actually, the
disturbance of the electric potential and slip-velocity on the electrode’s surface
are amplified compared to that of single-particle. Therefore, the presence of the
second particle has great impact both on the electrical field and the flow field.
At this point, the origin of the interesting behavior at about non-dimensional
time of 65 can be understood. As seen in the last column, the disturbance of
the electric potential and slip-velocity on the electrode’s surface increases as the
particles comes closer, and actually when non-dimensional time is 65.5, the wall
potential has a single maxima instead of two-humps, which also manifest itself
as single maxima and minima for the wall slip-velocity. As the wall slip-velocity
increases, the contribution of the wall slip on the particle velocity enhances and
so does the EK contribution due to the amplified local electric field around the
particle (please see Fig. 4.5). Then, when the particles come to a certain distance
the EDL contribution takes over and cause a sudden stop of the particles. One
may think that sudden stop of the particles is nonphysical. However, the EDL
force is highly nonlinear and has hyperbolic behavior due to the polylogarithmic
function. The colloidal interaction force increases exponentially after a certain
threshold distance. At this point, the wall slip-velocity still exists and causes

two small vortices underneath the particle. Vortex between the two particles die
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Figure 4.6: Electric field lines and streamlines at three different instances during
the two-particle motion. Non-dimensional electric potential and pressure field
contours are also shown in the background. The right column shows the non-
dimensional potential and slip-velocity on the electrode’s surface at three distinct
times.
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out after certain proximity, and this leads to a negative pressure field in that
region. We would like to also mention that although the contributions of DEP
and EP are given in EK, and the contributions of EDL and vdW are given in the
colloidal component, the DEP (the ratio of DEP/EP is about 5%) and vdW (the
ratio of EDL/vdW is about 10%) have negligible effects for the multi-particle
case. At the equilibrium point, results yield that vdW contribution constitutes
one tenth of EDL contribution, while DEP constitutes one percent of the total
EK contribution. The comparison of the single-particle and two-particle cases
also reveal stronger disturbance and wall slip-velocity that results in stronger
circulation for the two-particle case. This means that a two-particle pair would
attract other neighboring single particles that are farther away form the couple,
and the particles will rapidly aggregate, as shown in previous experimental results
8]

Although it is not presented here, the equilibrium positions for smaller particles
with a diameter less than 5 um become very small which invalidates our thin
EDL and pairwise interaction approach for the three-body problem, and for some
cases, we reached touching condition which was also observed in the previous
experiments with DC fields [1].
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4.2 Non-Conducting Wall

In the vicinity of a non-conducting wall, behavior of colloidals significantly change
in comparison to that of colloidal particles’ near a conducting wall due to different
settings. Since there is no risk of a Faradaic Reaction in the vicinity of a wall,
the electric field applied is greatly higher in magnitude. Figure 3.4 depicts the
schematics of the problem. In this part of the thesis, the effect of diameter
to the equilibrium position is investigated for single particles. For this reason,
three different diameters are proposed. Simulation parameters for EK behavior
of particles in the vicinity of a non-conducting wall are summarized as follows:
p = 1000kg/m?, w = 1073 Pa-s, Ly = 150D, a; = 2.5um, ag = Sbum, az = 7.5um,
Ew =20V/cm, (b = 2 = —25mV, {, = =31 mV, &, = 80g,, Coo = 1 mM, N =
Coo X (1000N 4), where N4 is the Avagadro’s number. The velocity of the particle is
scaled with the EP velocity in an unbounded flow, u, = € ({, — (u) Eoo/H.(which
is equal to 9.15 pwm/s in our simulations). Boundary conditions for a conducting
wall are modified as appropriate to disturbance based single-wall formulation.
Note that potential is separated into two sub-components: background potential
and disturbance potential due to presence of the particle as shown in equation
2.7. Due to presence of EDL, electrical boundary condition on the particle and

on the wall is a homogenous Neuman boundary condition:
n-V¢ =20 (4.5)

As for the Stoke’s boundary conditions, slip boundary conditions on the particle
become:
Em
u = Embp (I—nn)-Vo (4.6)
u
Regarding the slip velocity on the wall, in order to obtain disturbance velocity

following subtraction is done:

upy = u® —u™ (4.7)

As a result slip velocity on the wall due to presence of the particle became,

up = £ G (I —nn) - Vo (4.8)

u
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Detailed information regarding boundary conditions on the particle and planar
boundary surface’s is explained in Appendix C. In single particle simulations, a
particle is released from a distance of one diameter away from the wall. The
results are again expressed in non-dimensional form where EP velocity of the

particle in a free space and dimensional time is expressed in the form of: u, =

€ (Cp - Cw) Eoo/ua to - D/uo'

As opposed to the conducting wall case, the background flow exists and is in
the direction of the external electric field. The EK velocity of the particle is also
in x— direction. Therefore, there is neither EK velocity contribution nor wall
contribution in y— direction to the particle velocity. In the beginning, particle
moves in horizontal direction due to applied external electric field and descends
due to gravitational acceleration. Since the applied external electric field is high
in magnitude, the DEP force acts to stop the particle from reaching the wall. Si-
miliar to the foundings of Li et al., [15], as the diameter of the particle increases,
the non-dimensional equilibrium position of the particle decreases. Since the EK
behavior of such a colloidal is of similiar characteristics with that of colloidals
having different diameters, only a single figure for a single particle with a diam-

eter of 15um is shown, as in figure 4.7.

In figure 4.7 on the first column the vertical location for the center of gravity
and the velocities are given. On the second column, the horizontal location of
center of gravity and the velocity components are shown. Particle velocity is
composed of two independent factors: the summation of the background flow
with EK-slip velocities on particle (EK Velocity) and EK slip velocity on the wall
(Wall slip). Background flow and wall-slip are in the direction of the applied
electric field. Due to the £, value of the colloidal, the electrokinetic slip veloci-
ties direct particle in opposite the direction of the applied electric field. As the
particle approaches to the wall, due to particle presence, wall-slip contribution is

increased.

In table 4.1, gravity, colloidal and DEP induced non-dimensional velocities

are shown for colloidals having various diameters ranging from 5pum to 15um.
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Figure 4.7: Non-dimensional velocities of a single particle in the vicinity of a
non-conducting wall for a particle whose diameter is 15um.

Overall, as the diameter of the particle is increased, the non-dimensional equi-
librium position of the particle is decreased. Due to an increased volume of the
particle, the non-dimensional velocity contribution due to the gravitational accel-
eration is increased as well. Particle diameter also affects the DEP contribution
as well. As the particle size increases, total DEP force acting on the particle
increases, which yields a higher DEP induced velocity contributing to over-all
particle velocity. As the particle becomes larger, velocity component due to DEP
contribution becomes comparable with velocity component due to gravity and

colloidal interactions become negligible for an electric field of 2kV /m.

Table 4.1: Velocity components for colloidals with different diameters
D [um] yc[pm] Vertical Velocity [um/s] Horizontal Velocity [um/s]

uB,GRA uB,COL UB,DEP uB,EK uB,Wall
y y y X X
5 3.0730 —0.0686 0.0165 0.0833 —3.4102 6.7911
10 57251 —0.1491 0.0068 0.1418 —1.2316 13.6152

15 8.1990 —0.1821 0.0068 0.1711 —7.6320 21.2079
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Figure 4.8: Schematics of two particle problem near a non-conducting wall

In multi-particle configuration for colloidals next to a non-conducting wall, two
particles (particle number one is placed below particle two) are placed vertically
as it is seen in figure 4.8. Particles are initially released from 1D away from the
wall, since the wall has no effect on the colloidal behaviour before ~ 0.7D, as it is
seen in figure 4.7. Two particles are then subjected to gravitational acceleration.
Unlike single particle case, gravity-induced velocities of particles in -y direction
are different due to different initial positions. Thus, the vertical gap between two
particles diminishes briefly. In this configuration, it is known that as the particle
approaches to the boundary, slip velocities occuring on the wall is going to create
a torque on the particle, which results in a higher translational and rotational
velocities on the particle boundaries compared to those farther away from the
wall. In figure 4.9, the vertical and horizontal locations and velocities for the first
particle are given. As it is seen on the left column, as the particles come closer
in the vertical direction, particle-particle interactions come into play at around a
non-dimensional time of 2. Before particle-particle interaction occurs, DEP acts
to stop particle from approaching wall similiar to case for single particle. With
the arrival of the second particle, variation of electric field in the domain yields

an interesting phenomenon.
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Figure 4.9: Vertical and horizontal velocities of the first particle with a diameter
of 15um

DEP forces in both x— and y— direction decrease between time 1.5 to 2.5 due to
non-uniform electric field around the particles. DEP forces acting on the particles
as a function of time is shown in figure 4.10. For the first particle, vertical velocity
values based on DEP contribution decrease in magnitude, due to a decrease in
DEP force in y— direction. In the mean time, EK slip velocities act to attract
particles. This could be seen at around non-dimensional time of 2.1 at which total
particle velocity becomes positive. In the horizontal direction, wall slip reaches

to its maximum value at non-dimensional time of 2. After that time, even though
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Figure 4.10: DEP forces in x— and y— directions throughout the simulations for
the particles with a diameter of 15um
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for a short duration, particle moves away from the wall. Thus, wall-slip and EK
velocity contribution decrease. The sign of surface potential of the particle (&),
yields such an EK slip velocity on the particle that it directs particle towards the
source of the external electric field. On the other hand, the background flow acts
on the particle in the direction of the external electric field. Since EK velocity
in figure 4.9, consists of both slip velocities on the particle and the effect of
background flow, initially EK velocity is positive, which means, background flow
is dominant over slip velocities on the particle. However, as particle approaches
to the wall, EK slip on the particle becomes higher in magnitude and wins over
background flow. This is why there is a sign change in the values for EK velocity
contribution. Then particles reach an equilibrium and continue their movement.
All in all, due to particle-particle interactions, first particle approaches to wall

much faster compared to single particle case.

Concerning the behavior of the second particle, as it is seen in figure 4.11,
similiar to the first particle, the second particle is also subjected to a positive
DEP force during its decline (before non-dimensional time of 2). However, the
absence of the first particle beneath the second particle forms a non-uniform

electric field and yields an attractive DEP force acting on the second particle.
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Figure 4.11: Vertical and horizontal velocities of the second particle with a di-
ameter of 15um
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Figure 4.12: Maxwell Stress Tensor (MST) comparison for the particles in the
vicinity of a wall

Such an attractive force also produces a rotation in the opposite direction
of the first particle. Due to negative DEP, the vertical distance between two
particles is covered quickly, which results in a jump in EK velocity both in x—
and y— directions. However, because the first particle is closer to wall than the
second wall, it moves faster and as the distance between two particles increase,
they reach an equilibrium. One could shed a light on the origin of negative DEP
force on the second particle by inspecting MST values over the arclength of the
colloidals. Integration of MST, over the surface of the second particle yields a

negative force,

Particle#1 == «Single Particle
Particle#2

o 5 10 15 20
t/t,

Figure 4.13: Maxwell Stress Tensor (MST) comparison for the particles in the
vicinity of a wall

see equation 1.3. On the other hand, such an integration over the surface of

the first particle yields a positive value. Non-dimensional rotational velocties of
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the particles are depicted in figure 4.13. Due to p-p interaction, initially second
particle rotates in clock-wise direction. Then, with the effect of the wall, direction
of the rotation changes and as a result converges to single-particle case. First
particle, on the other hand is closer to wall and is subjected to extra torque due

to presence of the second particle. Thus, has a higher non-dimensional rotation

overall.

The non-dimensional potential and electric field around the particles are de-
picted in figure 4.14. At time t/t, = 0 and t/t, = 3.4 electric field is higher in
magnitude than electric field above the particle. However, at time 2.1, electric
field below the particle is smaller in magnitude than it is above the particle.
Consequently, simulation results revealed that multi-colloidal interactions near a

planar wall under various boundary conditions yield intriguing phenomena.
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Chapter 5

Conclusion and Future Work

Facilitation of the present custom BEM based solver allowed detailed inspection
of EK behavior of colloidals as well as interparticle interactions under various
boundary conditions and revealed insight regarding colloidal dynamics. In the
present study, a series of simulations concerning multi-particle interactions next
to a wall were carried out. The investigation of multi-particle interactions in the
vicinity of an electrode revealed that external electric field yields an attractive
EK colloidal behavior. In addition, the wall contribution plays a prominent role
in the aggregation of the colloidals. Considering BEM simulations, it was shown
that horizontal velocity of the colloidals is inversely related to surface to surface
colloidal distance. Once the colloidals attract each other two vortice between
colloidals form, which results in a lower pressure field between colloidals. The
shorter the distance between colloidals become, the more rotational and transla-
tional velocities increase. As the gap between colloidals diminishes, these vortice
wade towards the end of their motion. Finally, colloidal forces halt the motion of
particles in horizontal direction. Concerning simulations, it could be concluded
that an implementation of Neuman boundary condition throughout the simula-
tions is crucial as it is responsible for the formation of electrohydrodynamic flow,

which is one of the main mechanisms for the colloidal aggregation.
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The investigation of multi-particle interaction in the vicinity of a non-
conducting wall revealed that relative positions of colloidals with respect to each
other are of considerable importance. As their relative position alters local elec-
trical field such that intriguing DEP related behavior occurs. In this case, alter-
ations in local electric field result in sign changes in DEP forces, which causes
formation of both attractive and repulsive forces. Similiar to the conducting
wall case, external electric field results in an attractive EK colloidal behavior.
However, in this case, the background flow exists and it is responsible for the
motion of colloidals in x— direction. In addition, due to high electric field values
throughout the simulations (E., = 20V /cm), particle-particle distances are far
enough to prevent colloidal effects from influencing the motion of the colloidals.
Consquently, after the interparticle interactions occur, they reach an equilibrium

position and continue their movement in x— direction.

Considering all the aspects, the proposed computational model is versatile
and robust to investigate the complex colloidal interactions. As for the future
research direction, it is aimed to extend the capabillity of BEM code to include
AC electric field driven transport of biological cells in 2-D, which includes multi-
domain computations. Moreover, the aggregation dynamics of colloidal particles
is a richer phenomenon in the case of an oscillating electric field through which
the frequency of the field affects the charge dynamics within the EDL. The imple-
mentation of the current computational model for the oscillating current will also
be one of the future research directions which will be followed by the assessment
for non-circular particles. Although qualitative behavior can be predicted by this
2D model, upon the implementation, it is possible to obtain quantitative behavior
for 3D colloidal interactions. With this improvement, it will be possible to model
electrokinetic behavior of both isotropic colloidals and those having anisotropic
surface characteristics such as Janus particles. Therefore, the extension of the
current model to 3D problems will be one of the bases for future research direc-
tion. Another main objective is to render code suitable for running it in parrallel.
Especially for multi particle computations, the parallelization of the code with

domain decomposition techniques would shorten overall simulation time.
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Appendix A

Calculation of DEP Force

In order to find the resulting DEP force on the particle, Maxwell Stress Tensor

(MST), omst, has to be integrated over the particle boundary as follows:

F:% O'MST~1’1dF (Al)
oD
Maxwell Stress Tensor is defined to be,
1
OMST :€E®E— §€<EE) I (A2)

where the symbol ® represents the dyadic product. Let a and b be two vectors

in the following form:
(A.3)

then dyadic product is defined as follows:

axbx axby axb,
a®b def ayby ayby ayb,| . (A.4)

a,bx a,by a,b,
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Provided that a and b are two vectors in the following form. a = [a;, aq, ...

and b = [by, by, ..., by] their dot product, a - b, is defined as

a-b=> ab;=ab; +aby+ - +ayb,

i=1

For a 2-D electric field, MST becomes:

E}+E 0

E2  E.E, 1
2| 0 EI+E

EE, E

OMST = € [
Therefore x and y components of the forces become:

R
F, = % € (—X — —y) n, + ExEyny | AT’
oD 2 2

E2 E2\ |
F, = % e | ExEyny, + A ny | dI'
op | 2 2 ]

E=¢g¢- &

where

and the value of the gy = 8.8542¢7!2 [C*N"'m~2] and ,=80
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Appendix B

Evaluation of Singular Integrals

A singular integral is one that reaches to an infinite value within its domain of
integration. Once applied to singular integrals, regular Gauss quadrature yields
inaccurate results. There are various integration techniques that overcome these
problems such as weighted gaussian integration, singularity subtraction technique,
element subdivision technique [55]. In this work, due to its computational effi-
ciency and ease of implementation, a self-adaptive co-ordinate transformation for
efficient numerical evaluation for boundary element integrals by Telles [61] is
employed.

Let us assume that there exists an integral:

1= stin (B.1)

where f(7) is singular at a point 7. In this method, there exists a non-linear trans-
formation which is always true without any partition for any type of singularity.

If one chooses a third order relation for 7 such that:

n=ay+by’+cy+d (B.2)
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coefficients of such transformation become:

a=1/Q (B.3)
b=-37/Q (B.4)
c=37"/Q (B.5)
d=—b (B.6)
Q=1+3% (B.7)

where 7 is the value of v which satisfies n(5) = 7. Such a parameter is given by:

v =/t + |p]) + (o — In*]) + 7 (B.8)

where n* = 77 — 1. Thus, equation B.1 becomes:

/ HIOy =32+ +3)]/(1+37)°33(y = 9)%/(1 + 35*)dy (B.9)

This transformation aims to introduce a Jacobian such that rate of change of
Jacobian of transformation cancels out rate of change of Green’s function ap-
proaching to infinity. In Fig. B.1, the non-uniform order of the gauss points due

to transformation shown in equation B.8 is seen.

10.037F oElement Boundaries
xElement Middle Points|
~ |-Gauss Points

Load Points

£10.0365| B B
£ S
=

10.3F ‘ ——| 10.036| B BN
99.9995 100 100.0005 100.001

1022 el

g

=

=10.1

10}

99.8 999 100 100.1 100.2

Figure B.1: Non-uniform transformation of Gauss points on the particle boundary
for a singular integral
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Appendix C

Boundary Conditions

C.1 Conducting Wall

Due to presence of EDL, electrical boundary condition on the particle is a ho-

mogenous Neuman boundary condition:

n-V¢=0 (C.1)
Vo = VP + V™ (C.2)
n-V¢® =n-Vé—n- Vo™ (C.3)

note that n - V¢ = 0 due to boundary condition shown in equation C.1. Thus,
n-V¢P = —n-V¢>® =n,E® (C.4)

provided that the electric field is in y direction. As for the Stoke’s boundary

conditions, slip boundary conditions on the particle become:

uIS) = % (I—-nn)-V¢ (C.5)
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P ]

oS — EmCp ( (1 0 B nZ  nen, Ox
P 0 1 —n,n, 0 0P
- Y By | (C.6)

+€me 1 0 n? N,y 0 |
o8 _0 1 —Dy Ny ng —E°°_

Final expression for the boundary condition on the particle becomes:

B 8¢D 6¢D
_ _n2) 00
s Emlo (1 an) o + 5 ]r)1xny n,n, E
P 0¢ 0¢
88 2 2 00
Oxlly =5~ (1- y) Dy +(1- ny) E (C.7)

B Emlp [ Eity — nyn B
BBty + (1—-n}) E®

Regarding the slip velocity on the wall, in order to obtain disturbance velocity

the following is made:

uP =u® —u™ (C.8)
As a result,
u” = % (I —nn)- V¢ (C.9)
E
b = _Em o t] (C.10)
Lo

where E; is the tangential electrical field on the boundaries of the domain.

C.2 Non-Conducting Wall

Due to presence of EDL, electrical boundary condition on the particle is a ho-

mogenous Neuman boundary condition:

n-V¢ =0 (C.11)
Vo = VP + Vo™ (C.12)
n-V¢® =n-Vé—n- Vo™ (C.13)
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note that n - V¢ = 0 due to boundary condition shown in equation C.11. Thus,
n-VeP = —n-Ve® = n,E (C.14)

provided that the electric field is in x— direction. As for the Stoke’s boundary

conditions, slip boundary conditions on the particle become:

ug = % (I—nn)-Vo (C.15)
0]
w = emGp (|1 0] nZ oy ox
P 0 1 —Dyny ng OpP
By (C.16)
LG (1O} 2 may B
¢ 0 1 —n.ny  nl 0 |

Final expression for the boundary condition on the particle becomes:

[ 0P 0P
. VAN e o .2 00
s en (1 —n%) e + Dy Ny Ny, (1 nX) E
up B o8 8¢D 2 a P o0
Dally 5= — (1 —ny) By + oy B (C.17)

EmCp | Eitx — (1 —n2) E>
oo Bty + nyn, B>

Regarding the slip velocity on the wall, in order to obtain disturbance velocity

the following is made:

uP =u® —u™ (C.18)
As a result,
u® = % (I —nn) - V¢ (C.19)
E
P = _Em G B (C.20)
Bo10

where E; is the tangential electrical field on the boundaries of the domain.
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Appendix D

Convergence of the Solver

Throughout the simulations, quadratic elements are utilized to approximate both
field variables on elements and approximate geometric entities throughout the

computations. As a result, log-log error graph as a function of number of elements

used the problem presented in section 3.2.1 is drawn.

10? ————

Error [%]

10*2-" ' R . A S S
10! 102 103
Total Number of Elements

Figure D.1: Convergence of the quadratic solver
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10

11

12

13

14

15

16

17

19

Appendix E

Code

clear ; clc ; clos
%% Current Parameters
tic
% Starting Location
StartAt = 15e—06—7.5e —06;
RatWall = | 1/250;

1/1];

Nch ve Ninc = | 360;
36%3];

% % Remeshing Parameters
Distances

Lambda = [501] % 1e09;

% Last Two Are Horizontal
NoOfHor = 0;

VerNo = length (Lambda) —
LambdaCounter = 1;

e all;

% Nx

at Horizontal and Vertical

Distance

NoOfHor ;
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20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

% Check whether This is a First Run or Not
[IkFlag = true;

% Save Every How many Data?

SaveEvery = 2;

% k3K skosk sk oskosk skoskoskoskoskosk sk sk sk skeosk sk sk skoskoskoskosk sk sk skeosk skoskoskosk sk skosk sk sk skoskoskosk sk sk ok sk sk ok
% Time Related Variables

% k3K 3k sk ok sk ook sk ok sk sk ks sk sk ok skosk sk sk sk sk ok sk sk sk ok skosk sk sk ok kR skosk sk ok sk sk ok sk ok sk ok ok ok k
Time. dt = 8e—02;

Time.time f = 50000;

Time.Ntime = Time.time f{/Time.dt;

beautify ;

D0 sk sk sk s sk sk sk sk sk ok sk ok sk ok sk sk sk ok ok sk sk sk sk ok sk sk sk ok ok ok ok sk ok sk ok ok ok ok ok ok

% MESH GENERATION

D0 sk sk ok ok sk ok ok ok ok ok ok ok Kok ok ok Kk ok ok Kk ok ok Kk ok ok ok sk ok ok sk ok Kk ok ok ok ok ok Ok

CG.pos = zeros(2,3,1); CG.Pos_update(1:2,1:3,1) = 0; CG.
time = 1;

[ Geom, Mat , Mesh ,CG| = Input Channel Inclusions v00 Circular
(StartAt , LambdaCounter ,Nch ve Ninc,CG, IlkFlag ,RatWall);

CG.pos(:,3,1) = 0;
% Data Save Counter AND various Flags
Counter = 0 ; Counter2 = 0; YouShallContinue = 1; AreWeln

= 0; Flaag = 1; ShalllSave = true; PostProcVar.Creation

= true;

PostProcVar.Zeta inc = Mat.ZP inc;
PostProcVar.Zeta w = Mat.ZP w;

%**************************************************
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49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

% GO0 & HO00 MATRICES FOR STOKES and Laplace
Tl s sk sk sk 3 sk ok ok ok sk sk sk sk sk sk ok ok sk 3 ok ok sk sk sk sk sk sk sk sk ok sk sk sk ok ok ok sk sk ok sk ok ok sk ok ok R

LambdaCounter = 1; t = 1; close all;

while YouShallContinue == true

Time.dtAll(t) = Time.dt;

DistBetw = CG.pos(2,1,t) — CG.pos(1,1,t);

DistBetwy = (CG.pos(2,2,t) — CG.pos(1,2,t));

fprintf(’Distance Between Particles in x %.3f\n’ ,(
DistBetw ) *1E9) ;

fprintf(’Distance Between Particles in y %.3f\n’ ,(
DistBetwy )*1E9) ;

VerticalDistance = ( CG.pos(1,2,t) — 5e—06);

fprintf(’Starting point of Center of Lowest point \n (
vy dir): %.5f nm'n’ ,;min(Mesh . XM(Mesh.NchNodes+1:end
,2) ) xle9);

NewLambd =  min(Mesh .XM(Mesh.NchNodes+1:end,2) )*1e9;

PostProcVar.L Ninc(LambdaCounter ,:) = [max(Mesh.
ELength (Geom.Nch+1:end 1)) min(Mesh. ELength (Geom.
Nch+1:end 1)) |x1e9;

PostProcVar.L Nch(LambdaCounter ,:) = [max(Mesh.
ELength (1:Geom.Nch,1)) min (Mesh . ELength (1:Geom.
Nch,1))|*1e9;

%% Remeshing Check Vertical Distance
if LambdaCounter <= VerNo && LambdaCounter <=
length (Lambda) && NewLambd <= Lambda(
LambdaCounter)*1e9
fprintf (’——s*—*—*—xEntered Remeshing Vertical
——k—k—*—x\n ")
IlkFlag = false;

% >k 3k >k 3k ok ok ok Sk sk sk ok ok ok sk Sk ok Sk sk sk sk skok sk ok ok ok sk Sk sk ok ok sk sk skook ok ok sk ok ok okok
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71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

% MESH GENERATION
T sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk K sk sk sk sk sk K sk sk sk koK sk K ok ok koK K K
[ Geom, Mat , Mesh ,CG| =
Input Channel Inclusions v00 _ Circular(
NewLambd, LambdaCounter ,Nch ve Ninc,CG,

[1kFlag ,RatWall) ;

TO sk sk sk sk ok sk skok ok ok ok ok ok K koK K koK R oK Kk oK K KK K KK K KK R oK K kK Rk
% GO0 & HOO Matrice FOR Stokes and Laplace

%***>I<>I<>I<>l<>|<>|<>I<>I<>I<>l<>|<>|<>l<>|<>I<>I<>I<>I<>I<>I<>I<>I<>l<>|<>|<>|<>|<>|<>l<>|<>|<>|<>|<>|<>l<>|<>|<>|<>|<>I<

funcsl = {@BEMStokes Assembly Circular,
@Q@BEMLaplace Assembly Circular };

argumentsl = {’C’ 'C’ Geom,Mat, Mesh ,CG;
Geom, Mat , Mesh ,CG, 'C* | "C" };

solutions3 = cell(1,2); solutionsd = cell
(1,2);

parfor ii = 1:2
[solutions3{ii},solutions4{ii}] = funcsl{
ii}(argumentsl{ii ,:});

end

HH. Stokes .00 = solutions3 {1,1}; HH11 =
solutions3{1,2} ;

GG. Stokes .00 = solutions4 {1,1}; GG11 =

solutions4 {1,2} ;

disp ('Done S 00 and L 00")
GG. Stokes .invOO = pinv (GG. Stokes .00) ;

s (7 sostorotorokok ok ok ok ok ok ok ok ok kKRR Rk kR sk sk sk sk sk sk sk sk ok ok )
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96

97

98

99

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

fprintf('Nx = %.2f, Ninc = %.2f'n’ ,Nch_ve Ninc
(1,LambdaCounter) ,Nch ve Ninc(2,
LambdaCounter) ) ;

s (7 sostotototokokokok ok ok ok ok ok sk kK ko kR sksk sk sk sk sk sk sk sk ok ok ok )

LambdaCounter = LambdaCounter + 1 ;

%% Remeshing Check Horizontal Distance
elseif LambdaCounter > VerNo && LambdaCounter <=

length (Lambda) && DistBetw <= Lambda(LambdaCounter
)
fprintf (’——s—*—*—xEntered Remeshing— Horizontal
——k—k—%—x\n ")
[IkFlag = false;
D0 ok ok ok ok ok ok ok oKk ok oKk oKk ok ok ok ok ok o ok o ok ook ok ok ok ok Kok Kok Kok Kok K
% MESH GENERATION
T ok ok ok ok ko ok ok oKk oKk oKk KK oK K ok K ok ok ok ok Kk Kk Kk Kk KOk KOk KOk KOk %
[ Geom, Mat , Mesh ,CG| =
Input Channel Inclusions v00 Circular (NewLambd,
LambdaCounter ,Nch ve Ninc,CG, I1kFlag ,RatWall) ;

T sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk K sk sk sk ok sk sk K sk sk sk sk sk s Kk sk K sk sk 3k ok ok ok Kok
% G00 & H00 MATRICES FOR STOKES
and Laplace

%***********************************************

funcsl = {@BEMStokes Assembly Circular,
@Q@BEMLaplace Assembly Circular };

argumentsl = {’C’ 'C’ Geom, Mat, Mesh ,CG;
Geom, Mat , Mesh ,CG, 'C* | "C’ };

solutions3 = cell(1,2); solutionsd = cell (1,2);
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120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

138

139

140

141

142

143

parfor ii = 1:2
[solutions3{ii},solutions4{ii}] = funcsl{ii }(
argumentsl{ii ,:});

end

HH. Stokes .00 = solutions3{1,1}; HHI1 = solutions3

{1.2}
GG. Stokes .00 = solutions4 {1,1}; GGIl = solutions4

{1,2} ;

disp ('Done S 00 and L 007")

GG. Stokes.invOO = pinv (GG. Stokes .00) ;

QIS (7 5k stk sk o ko ok ok o ok ok ok ok ok KK KK SR kK KKK KRR KRRk )

fprintf ('Nx — %.2f, Ninc — %.2f{'n’ ,Nch ve Ninc(1,
LambdaCounter) ,Nch ve Ninc(2,LambdaCounter) ) ;

ISP (7 5k stk sk o koo ok ok Kok ok ok ok KKK SRR KKK KRR KRRk )

LambdaCounter = LambdaCounter + 1 ;

end
%% Continue After Remesh Solve for H and G Matrices
for Stokes and Laplace
% Start Parralel Process
funcsl = {@BEMLaplace Assembly Circular,
@QBEMLaplace Assembly Circular,
@BEMLaplace Assembly Circular , ...
@BEMStokes Assembly Circular,
@BEMStokes Assembly Circular,
@QBEMStokes Assembly Circular };

argumentsl = {Geom,Mat,Mesh ,CG, 'C" P’
Geom, Mat , Mesh ,CG, P’ 'C";
Geom , Mat , Mesh ,CG, 'P", P’
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144

145

146

147

148

149

151

152

153

154

155

156

157

158

160

161

162

163

164

165

166

C7 P77 Geom, Mat , Mesh ,CG;
P, 7C7  Geom, Mat , Mesh ,CG;
‘P’ 'P7  Geom, Mat , Mesh ,CG};

solutionsl = cell(1,2); solutions2 = cell (1,2);
parfor ii = 1:6

[solutions1{ii}, solutions2{ii}| = funcsl{ii }(

arguments1{ii ,:});

end
solutionsl = solutionsl ’;
solutions2 = solutions2 ’;

HH. Stokes.OP = solutionsl {4,1}; GG.Stokes.OP =
solutions2 {4,1};

HH. Stokes.PO = solutionsl {5,1}; GG.Stokes.PO =
solutions2 {5,1};

HH. Stokes.PP = solutionsl {6,1}; GG.Stokes.PP =
solutions2 {6,1};

GG. Laplace = [solutions4{1,2} solutions2{1,1};
solutions2{2,1} solutions2{3,1}];

HH. Laplace = [solutions3{1,2} solutionsl{1,1};
solutions1 {2,1} solutionsl {3 ,1}];

clear solutionsl; clear solutions2;

%% Continue the Process Consecutively

|GG. Laplace ,HH. Laplace| = BEMLaplace BCImplementation (
Geom, Mesh ,GG,HH) ;

disp (’Stokes & Laplace H and G Done. ") ;

%‘; >k 3k >k 3k ok ok ok sk ok skok ok ok sk Sk ok Sk sk sk sk skok sk kR ok sk Sk sk Sk sk sk ok sk ok ok ok ok ok ok skok
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170

171

172

173

174

176

177

178

179

180

181

182

183

184

187

188

189

190

191

192

193

194

195

% SOLUTION OF LAPLACE & MST CALCULATION

% K3k >k 3k ok 3k sk sk sk sk sk koK ok Sk ok Sk sk sk sk sk ok kR Sk ok kR Sk sk sk sk ok ok sk ok Skok skok

x_ L = BEM_Solver(Mesh.BC. Laplace (:,2) ,GG. Laplace ,HH.
Laplace);

[ Solution . Laplace.Phi, Solution . Laplace.En, Solution.
Laplace .Et] =
BEM GetUQQt(Geom, Mat , Mesh ,x_1.,CG) ;

[GG,HH,Mesh| = ...
BEMStokes BCImplementation With Slip NewBCFormulation
(Geom, Mat , Mesh , Solution ,GG,HH) ;
it t > 1
if ShalllSave = true

u_ BPrev = u B;
MeshPrev = Mesh;

end

else
u_ BPrev = 0;

end

f EK = EK Force and Torque Calculation(Geom,Mat, Mesh,
CG, Solution);

%% Enter Impedance Formulation Check Error Conditions

and Reiterate if Necessary
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196

197

199

200

201

202

203

204

205

206

210

211

212

213

214

215

216

[u B,u_ BPrev, Counter , Counter2 ,PostProcVar ,t , Time,Geom,
Mesh ,CG, Flaag , LambdaCounter , Lambda,Nch ve Ninc,
ShalllSave ,SaveEvery |...

= Impedance FormulationSedimentation(t,u BPrev,
Time , Geom, Mesh ,GG,HH,f EK,CG,Mat, SaveEvery ,
Counter , Counter2 , PostProcVar , Flaag ,
LambdaCounter ,Lambda,Nch ve Ninc, ShalllSave);

%% Move Forward in Time if Everyting is Good
if ShalllSave = true

for 1 = 1:Geom. Ni

Time.dtAll(t) = Time.dt;
dummy = sprintf(’'u B (%1d) — %3.8f[um/s| %3.8f
[um/s| %1.1f[degree/s| \n’ ,...
[i w B(i,1)*1e6 u B(i,2)=*1le6 u B(i,3)*180/
pil);
disp (dummy) ;
angle = CG.pos(i,3,t+1)%x180/pi;
dummy = sprintf( 'Pos (%1d) = %3.3f|um| %3.3f]
um| %3.1f%c\n’ ...
[i CG.pos(i,l,t+1)xle6 CG.pos(i,2,t+1)*le6
mod (angle ,360) char(176)]) ;

disp (dummy)
end
disp ('

V)
disp(’ )
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217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

238

239

240

241

242

dummy = sprintf( Time — %2.3f'n’, sum(Time.dtAll

(1:t)));

disp (dummy) ;

if mod(t,10) = 0 && ShalllSave

save ( 'Kurtarma.mat’, ' —v7.3 ") ;

elseif DistBetw <= 200e—09 && Flaag — 1 &

ShalllSave
save ('KurtarmaOzel 100.mat’,’—v7.3"7);
Flaag = 0 ;

end

t =1t + 1;

CG.time = t;
else
CG. KaydetsinMi = ShalllSave;
[Mesh ,CG|] = Moving Inclusion Mesh UpdateV2(t ,Geom,
Mesh ,CG) ;

for i = 1:Geom.Ni
dummy = sprintf(’'u B (%1d) — %3.8f[um/s| %3.8f
[um/s] %1.1f[degree/s] \n’,...

[i wB(i,1)*le6 u B(i,2)+le6 u B(i,3)*180/

pil);
end
disp (’
)
fprintf(’Restarting Process!!!!!\n")
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243 end

244

245 save PostProcVar PostProcVar;

246 save Time Time;

247

248

249

250

251 end

252 S0

553 lambda = Geom.R inc(1,1) /(CG.pos(1,2,t—-1));
550 Psi Zero = asech (lambda);

2555 Mu_inc = Mat.em * Mat.ZP inc(1)/ Mat.mu ;

556 Mu w = Mat.em x Mat.ZP w/Mat.mu;

57 Uxx = coth(2«Psi_Zero);

258 YouShallContinue = false;

259 U_hat = u_B(1)/((=Mu_w+Mu_inc(1))*Mesh. Einf) ;

260 Omega hat = u B(3)*Mat.mu(1)*Geom.R inc(1)/Mat.em/(Mat.
ZP _inc(1)—Mat.ZP_w) /Mesh. Einf;

261 OmegaRot = sech (Psi_Zero)/sinh (2« Psi_Zero);

22 ErrorBen = (U_hat—Uxx) /(Uxx)x1e2

23 ErRotBen = (Omega hat—OmegaRot) /(OmegaRot ) x1e2

77



