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Abstract: In this paper we consider the stabilization problem of unstable periodic orbits of

discrete time chaotic systems. We consider both one dimensional and higher dimensional

cases. We propose a novel generalization of the classical delayed feedback law and

present some stability results. These results show that for period 1 all hyperbolic periodic

orbits can be stabilized with the proposed method. Although for higher order periods the

proposed scheme may possess some limitations, some improvement over the classical

delayed feedback scheme still can be achieved with the proposed scheme. The stability

proofs also give the possible feedback gains which achieve stabilization. We will also

present some simulation results.
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1. INTRODUCTION

Many physical systems may be represented by math-

ematical models which exhibit chaotic behaviour, see

e.g. (Chen and Dong, 1999). Hence in recent years,

various aspects of chaotic systems have received con-

siderable interest. Due to possible applications, the

subject of controlling chaos has also attracted a great

deal of attention, see e.g. (Chen and Dong, 1999), and

the references therein.

Chaotic systems may possess many unstable periodic

orbits and usually these orbits are embedded in some

strange attractors. Although one may define various

control problems for chaotic systems, one of the in-

teresting problems is to find some control schemes

to achieve the stabilization of some of these periodic

orbits. If this is achieved, such control schemes may

force the chaotic systems to exhibit regular behaviour,

see e.g. (Chen and Dong, 1999). A remarkable result

first given in (Ott, Grebogy and Yorke, 1990) shows

that by using small external forces it may be possible

to stabilize some of these orbits. Following the semi-

nal work of (Ott, Grebogy and Yorke, 1990), various

other control methods have been proposed for the cited

problem. Among these, the Delayed Feedback Control

(DFC) scheme first proposed in (Pyragas, 1992) has

received attention due to its various attractive fea-

tures. This scheme has also been used in various ap-

plications, see e.g. (Pyragas, 2001), (Morgül, 2003),

(Morgül, 2006), and the references therein. As it is

shown in (Morgül, 2003), (Ushio, 1996), (Nakajima,

1997), (Morgül, 2005a), the classical DFC has certain

inherent limitations, i.e. it cannot stabilize certain pe-

riodic orbits. We note that a recent result presented in

(Fiedler et al., 2007), showed clearly that under certain

cases, odd number limitation property does not hold

for autonomous continuous time system. Although the

subject is still open and deserves further investigation,

we note that the limitation of DFC stated above holds

for discrete time case, see e.g. (Ushio, 1996), (Morgül,

2003), (Morgül, 2005a).

To overcome the limitations of classical DFC scheme,

various modifications have been proposed, see e.g.

(Pyragas, 2001), (Socolar et. al., 1994), (Pyragas,



1995), (Bleich, and Socolar, 1996), (Vieira, and Licht-

enberg, 1996), and the references therein. One of these

schemes is the so-called periodic, or oscillating feed-

back, and is known that it eliminates the limitations of

classical DFC for period T=1 case. This scheme can

be generalized to the case T > 1 in various ways, and

two such generalizations are given in (Morgül, 2006),

(Morgül, 2005b) ; it has been shown in these refer-

ences that any hyperbolic periodic orbit can be stabi-

lized with these schemes. Another modification is the

so-called extended DFC (EDFC), see (Socolar et. al.,

1994). This scheme is then analyzed and various of its

modifications have been proposed, see e.g. (Pyragas,

2001), (Pyragas, 1995), (Bleich, and Socolar, 1996),

(Vieira, and Lichtenberg, 1996), and the references

therein. It has also been shown that EDFC also has

inherent limitations similar to the DFC. In (Vieira,

and Lichtenberg, 1996), a nonlinear version of EDFC

has been proposed and it was shown that an optimal

version of this scheme becomes quite simple. In this

paper we will propose a scheme which is related to

the optimal control proposed in (Vieira, and Lichten-

berg, 1996) for one dimensional systems for the case

T = 1. We then generalize the proposed scheme for

multi-dimensional case and for T > 1. Our approach is

similar to the one used in (Morgül, 2009), where only

one dimensional discrete time chaotic systems were

considered.

This paper is organized as follows. In section 2 we will

outline the basic problem. In section 3 we will propose

a new generalization of the DFC scheme and provide

some stability results. In section 4 we will extend these

results for higher dimensional case. In section 5 we

will provide some simulation results and finally we

will give some concluding remarks.

2. PROBLEM STATEMENT

Let us consider the following discrete-time system

x(k + 1) = f (x(k)) , (1)

where k = 1,2 . . . is the discrete time index, x ∈ Rn, f :

Rn → Rn is an appropriate function, which is assumed

to be differentiable wherever required. We assume that

the system given by (1) possesses a period T orbit

characterized by the set

ΣT = {x∗1,x
∗
2, . . . ,x

∗
T} , (2)

where x∗i ∈ Rn, i = 1,2, . . . ,T .

Let x(·) be a solution of (1). To characterize the con-

vergence of x(·) to ΣT , we need a distance measure,

which is defined as follows. For x∗i , we will use circu-

lar notation, i.e. x∗i = x∗j for i = j (mod (T )). Let us

define the following indices ( j = 1, . . . ,T ):

dk( j) =

√

T−1

∑
i=0

‖x(k + i)− x∗i+ j‖
2 , (3)

where ‖ · ‖ is the standard Euclidean norm on Rn.

We then define the following distance measure

d(x(k),ΣT ) = min{dk(1), . . . ,dk(T )} . (4)

Clearly, if x(1) ∈ ΣT , then d(x(k),ΣT ) = 0, ∀k. Con-

versely if d(x(k),ΣT ) = 0 for some k0, then it remains

0 and x(k) ∈ ΣT , for k ≥ k0. We will use d(x(k),ΣT )
as a measure of convergence to the periodic solution

given by ΣT .

Let x(·) be a solution of (1) starting with x(1) = x1. We

say that ΣT is (locally) asymptotically stable if there

exists an ε > 0 such that for any x(1) ∈ Rn for which

d(x(1),ΣT ) < ε holds, we have limk→∞ d(x(k),ΣT ) =
0. Moreover if this decay is exponential, i.e. the fol-

lowing holds for some M ≥ 1 and 0 < ρ < 1, (k > 1)

d(x(k),ΣT ) ≤ Mρkd(x(1),ΣT ) , (5)

then we say that ΣT is (locally) exponentially stable.

To stabilize the periodic orbits of (1), let us apply the

following control law :

x(k + 1) = f (x(k))+ u(k) (6)

where u(·) ∈ Rn is the control input. In classical DFC,

the following feedback law is used (k > T ):

u(k) = K(x(k)− x(k−T)) , (7)

where K ∈ Rn×n is a constant gain to be determined. It

is known that the scheme given above has certain in-

herent limitations, see e.g. (Ushio, 1996). For simplic-

ity, let us assume one dimensional case, i.e. n = 1. For

ΣT , let us set ai = f ′(x∗i ). It can be shown that ΣT can-

not be stabilized with this scheme if a = ∏T
i=1 ai > 1,

see e.g. (Morgül, 2003), (Ushio, 1996), and a similar

condition can be generalized to the case n > 1, (Naka-

jima, 1997), (Morgül, 2005a). A set of necessary and

sufficient conditions to guarantee exponential stabi-

lization can be found in (Morgül, 2003) for n = 1 and

in (Morgül, 2005a) for n > 1. By using these results

one can find a suitable gain K when the stabilization

is possible.

3. A NOVEL GENERALIZATION OF DFC

As mentioned in the introduction, to overcome the

basic limitations of the classical DFC various modi-

fications has been proposed in the literature . Among

these, for one dimensional case (i.e. n = 1), the EDFC

scheme first proposed in (Socolar et. al., 1994) and

its nonlinear version proposed in (Vieira, and Lichten-

berg, 1996) deserve special attention. In the sequel,

first we will consider one dimesional case ( n = 1)

and propose a scheme which is related to the optimal

version of the scheme proposed in (Vieira, and Licht-

enberg, 1996) for the period 1 case. Then we propose



a novel generalization of this scheme for higher order

periods and higher dimensional case. For the details of

our approach for one dimensional case, see (Morgül,

2009). Later we will generalize this approach to higher

dimensional case, which is not considered in (Morgül,

2009).

To motivate our approach, we first consider the one

dimensional case, i.e. n = 1 throughout this section.

For simplicity, let Σ1 = {x∗1} be a period 1 orbit of

(1) (i.e. fixed point of f : R → R), and consider the

controlled system given by (6). Instead of the DFC

scheme given by (7), let us propose the following law

u(k) =
K

K + 1
(x(k)− f (x(k)) , (8)

where K ∈ R is a constant gain to be determined.

Clearly we require K 6= −1. By using (8) in (6), we

obtain :

x(k + 1) =
1

K + 1
f (x(k))+

K

K + 1
x(k) . (9)

Obviously on Σ1, we have u(k) = 0, see (8). Further-

more if x(k) → Σ1 (i.e. when Σ1 is asymptotically sta-

ble) we have u(k) → 0 as well. Therefore, the scheme

proposed in (8) enjoys the similar properties of DFC.

Remark 1 : The scheme given by (8)has an interesting

relation with the classical DFC scheme. To see that,

if we multiply (9) with K + 1, after simplification we

obtain :

x(k + 1) = f (x(k))+ K(x(k)− x(k + 1)) . (10)

If we compare (10) with (6), we see that they become

similar if we use the following equation for u(k) :

u(k) = K(x(k)− x(k + 1)) . (11)

However, this is only a mathematical similarity since

u(k) given by (11) is not implementable as a control

law. Nevertheless, at least from mathematical point of

view, (11) shows an interesting connection between

the classical DFC and the scheme proposed in this

paper. 2

Next, we will consider the stability of Σ1 as defined in

the section 2. For simplicity, set Σ1 = {x∗1}, a = a1 =
f ′(x∗1). By using linearization, (9) and the classical

Lyapunov stability analysis, we can easily show that

Σ1 is exponentially stable for (9) if and only if

|
K + a

K + 1
|< 1 . (12)

It can easily be shown that if a 6= 1, then any Σ1 can

be stabilized by choosing K appropriately to satisfy

(12). In fact, for any ρ satisfying −1 < ρ < 1, we can

choose the stabilizing gain as :

K =
ρ −a

1−ρ
. (13)

Hence the limitations of DFC and EDFC are elim-

inated greatly by the proposed approach. It appears

that the only restriction remains (i.e. a 6= 1) is quite

inherent and appears in (Morgül, 2006) and (Morgül,

2005b) as well. By using the arguments given in these

latter references, we can state that all hyperbolic fixed

points can be stabilized with the proposed scheme.

At this point we can generalize the control law given

by (9) to T = m case. By following the ideas given

above, we propose the following control law :

u(k) =
K

K + 1
(x(k−m+ 1)− f (x(k)) , (14)

where K ∈ R is a constant gain to be determined. If we

use (14) in (6), we obtain :

x(k + 1) =
1

K + 1
( f (x(k))+ Kx(k−m+ 1)).(15)

Remark 2 : As mentioned in Remarks 1 , the scheme

given above has an interesting relation with the classi-

cal DFC scheme. To see that, if we multiply (15) with

K + 1, after simplification we see that (15) is similar

to (6), if we use the following equation for u(k) :

u(k) = K(x(k−m+ 1)− x(k + 1)) . (16)

However, this is only a mathematical similarity since

u(k) given by (16) is not implementable as a control

law. 2

For stability analysis, we will follow the methodology

given in (Morgül, 2003), (Morgül, 2005a). As before,

let us define xi(k) = x(k −m + i), i = 1,2, . . . ,m and

z = (x1 . . .xm)T . Let us define

Yi =
1

K + 1
f (Yi−1)+

K

K + 1
xi

Y0 = xm , i = 1,2, . . . ,m .

(17)

Let us define the map F : Rm → Rm as F(z) =
(x2 x3 . . .xm Y1)

T . Clearly we have Fm = (Y1 Y2 . . .Ym)T .

Now, consider the map

z(k + 1) = Fm(z(k)) . (18)

Now consider the fixed points of (18), i.e. Fm(z∗) = z∗

where z∗ = (x∗1 x∗2 . . .x∗m)T .Clearly we will have x∗i =Yi

where i = 1,2, . . . ,m and Yi are given by (17). Solving

these equations we easily obtain x∗i+1 = f (x∗i ), i =
1,2, . . . ,m−1 and x∗1 = f (x∗m). This shows that a fixed

point z∗ of (18) corresponds to a period m orbit Σm

of (1), and vice versa. Therefore for the stability of

Σm, we can study the stability of the fixed point z∗

of (18). This can be done by standard linearization,

i.e. by finding the Jacobian Jm = ∂Fm

∂ z
| Σm. Clearly

we have Jm(i, j) = ∂Yi

∂x j
| Σm. By using (17), after

straightforward calculations we obtain :



∂Yi

∂xi

=
K

K + 1
, i = 1,2, . . . ,m−1

,
∂Ym

∂xm

=
K

K + 1
+

a

(K + 1)m
,

(19)

∂Yi

∂x j

=
ai−1

K + 1

∂Yi−1

∂x j

, i, j = 1,2, . . . ,m , i 6= j ,

(20)

where by convention we have a0 = am, Y0 = Ym. For

stability analysis, we need the characteristic polyno-

mial of Jm, which is given in the following Theorem.

Theorem 1 : Let Σm given by (2) be a period T = m

orbit of (1) and set ai = f ′(xi), i = 1,2, . . . ,m, a =

∏m
i−1 ai. Consider the Jacobian Jm given by (17)-(20).

Then for m ≥ 1 we have :

pm(λ ) = (λ −
K

K + 1
)m −

a

(K + 1)m
λ m−1 . (21)

Proof : This result can easily be shown either by

using direct calculation of det(λ I − Jm) =, where I

is an identity matrix with appropriate dimensions,

or by using mathematical induction. The calculations

are straightforward but rather lengthy and hence are

omitted here. 2

We say that a polynomial is Schur stable if all of its

roots are inside the unit disc of the complex plane, i.e.

have magnitude less than unity. Hence the asymptotic

stability of the fixed points of (18) hence the asymp-

totic stability of Σm for (6) and (14) could be analyzed

by considering the Schur stability of pm(λ ). More-

over note that the exponential stability is equivalent

to Schur stability, see (Khalil, 2002). By using these,

we can state our next result.

Theorem 2 : Let Σm given by (2) be a period T = m

orbit of (1) and set ai = f ′(xi), i = 1,2, . . . ,m, a =

∏m
i−1 ai. Consider the control scheme given by (6) and

(14). Then :

i : Σm is exponentially stable if and only if pm(λ )
given by (21) is Schur stable. This condition is only

sufficient for asymptotic stability.

ii : If pm(λ ) has at least one unstable root, i.e. outside

the unit disc, then Σm is unstable as well.

iii : If pm(λ ) is marginally stable, i.e. has at least one

root on the unit disc while the rest of the roots are

inside the unit disc, then the proposed method to test

the stability of Σm is inconclusive.

Proof : The proof of this Theorem easily follows

from standard Lyapunov stability arguments, see e.g.

(Khalil, 2002), and (Morgül, 2003), (Morgül, 2005a)

for similar arguments. 2

4. HIGHER DIMENSIONAL CASE

The scheme given above can be easily generalized to

higher dimensional case (i.e. n > 1). However, as will

be shown below, the conclusions may not be as simple

as one dimensional case.

To motivate the analysis, let us consider the case T =
1. More precisely, let Σ1 = {x∗1}, where x∗1 ∈ Rn be

a period 1 orbit of (1) (i.e. fixed point of f : Rn →
Rn), and consider the controlled system given by (6).

Instead of the DFC scheme given by (7), let us propose

the following law :

u(k) = (K + I)−1K(x(k)− f (x(k)) , (22)

where K ∈ Rn×n is a constant gain matrix to be de-

termined, and I is n× n identity matrix. Clearly, we

require that K does not have an eigenvalue −1. By

using (22) in (6), we obtain :

x(k + 1) = (K + I)−1( f (x(k))+ Kx(k)) . (23)

Obviously on Σ1, we have u(k) = 0, see (22). Further-

more if x(k) → Σ1 (i.e. when Σ1 is asymptotically sta-

ble) we have u(k) → 0 as well. Therefore, the scheme

proposed in (8) enjoys the similar properties of DFC.

Remark 3 : The scheme given by (22)has an inter-

esting relation with the classical DFC scheme. To see

that, if we multiply (23) with K+I, after simplification

we obtain :

x(k + 1) = f (x(k))+ K(x(k)− x(k + 1)) . (24)

If we compare (24) with (6), we see that they become

similar if we use the following equation for u(k) :

u(k) = K(x(k)− x(k + 1)) . (25)

However, this is only a mathematical similarity since

u(k) given by (25) is not implementable as a control

law. Nevertheless, at least from mathematical point of

view, (25) shows an interesting connection between

the classical DFC and the scheme proposed in this

paper. See also remarks 1 and 2. 2

Next, we will consider the stability of Σ1 as defined

in the section 2. For simplicity, set Σ1 = {x∗1}, J =

J1 = ∂ f

∂x
|x=x∗1

. By using linearization, (23) and the

classical Lyapunov stability analysis, we can easily

show that Σ1 is exponentially stable for (23) if and

only if (K + I)−1(J + K) is a Schur stable matrix. To

see the limitation of our approach, similar to the one

dimensional case, assume that J has an eigenvalue 1.

Let ξ be the corresponding eigenvector, i.e. Jξ = ξ .

Then we have (K + I)−1(J + K)ξ = (K + I)−1(I +
K)ξ = ξ . Hence, if J has an eigenvalue 1, so is the

matrix (K + I)−1(J + K) for any K. Therefore, if J

has an eigenvalue 1, exponential stabilization is not

possible. Otherwise, by choosing an appropriate K,

one can always stabilize Σ1. More precisely, let Λ be

any Schur stable matrix. Then K = (I −Λ)−1(Λ− J)
will stabilize Σ1, see (13). This result shows that the

limitations of DFC and EDFC are eliminated greatly



by the proposed approach. Hence, as in the one di-

mensional case, we can state that all hyperbolic fixed

points can be stabilized with the proposed scheme.

To proceed, let us consider the case T = 2, in which

case we propose the following control law :

u(k) = (K + I)−1K(x(k−1)− f (x(k)) . (26)

If we use (26) in (6), we obtain :

x(k + 1) = (K + I)−1( f (x(k))+ Kx(k−1)). (27)

Remark 4 : The scheme given by (26)has an inter-

esting relation with the classical DFC scheme. To see

that, if we multiply (27) with K+I, after simplification

we obtain :

x(k + 1) = f (x(k))+ K(x(k−1)− x(k + 1)).(28)

If we compare (28) with (6), we see that they become

similar if we use the following equation for u(k) :

u(k) = K(x(k−1)− x(k + 1)) . (29)

However, this is only a mathematical similarity since

u(k) given by (29) is not implementable as a control

law. Nevertheless, at least from mathematical point of

view, (29) shows an interesting connection between

the classical DFC and the scheme proposed in this

paper. See also remarks 1, 2 and 3. 2

Let Σ2 = {x∗1 , x∗2} be a period 2 orbit of (1) and let us

set

J1 =
∂ f

∂x
|x=x∗1

, J2 = ∂ f

∂x
|x=x∗2

, J=J1J2 . (30)

For stability analysis, we will follow the methodology

given in (Morgül, 2003), (Morgül, 2005a). Let us

define x1(k) = x(k−1) , x2(k) = x(k) and z = (x1 x2)
T

where the superscript T denotes the transpose. Let us

define a map F : R2n → R2n as F(z) = (x2 Y1)
T where

Y1 = (K + I)−1 f (x2)+(K + I)−1Kx1. Clearly we have

F2(z) = (Y1 Y2)
T where Y2 = (K + I)−1 f (Y1)+ (K +

I)−1Kx2. Let us consider the system :

z(k + 1) = F2(z(k)) . (31)

Consider the fixed points of (31), i.e F2(z∗) = z∗

where z∗ = (x∗1 x∗2)
T . Solving the fixed point equation,

after simple calculations we obtain x∗2 = f (x∗1) and

x∗1 = f (x∗2). Hence the fixed point z∗ of (31) corre-

sponds to a period 2 orbit Σ2 of (1), and vice versa.

Therefore for the stability of Σ2, we study the stability

of the corresponding fixed point z∗ for the map F2.

This can be done by standard linearization. The Jaco-

bian JF = ∂F2

∂ z
| Σ2 can easily be obtained as :

JF =

[

J11 J12

J21 J22

]

. (32)

where J11 = (K + I)−1K, J12 = (K + I)−1J2, J21 =
(K + I)−1J1(K + I)−1K, J22 = (K + I)−1K + (K +

I)−1J1(K + I)−1J2. We can clearly state that Σ2 is

exponentially stable if and only if JF given above

is a Schur stable matrix. For stability analysis, we

may calculate the characteristic polynomial p2(λ ) =
det(λ I − JF) where I is an identity matrix with ap-

propriate dimensions. Unfortunately, unless we make

further assumptions on K, we were not able to de-

termine the characteristic polynomial easily. But with

special assumptions, one could obtain a form similar

to the one given in (21). Furthermore, the approach

presented here could be extended to higher order pe-

riods. Moreover, instead of finding the characteristic

polynomial, one may try to find a gain matrix K which

yields JF given above Schur stable. This may require

some computational procedure. Our preliminary re-

search reveals that some periodic orbits which cannot

be stabilized by classical DFC can be stabilized with

the proposed approach. These points are still under

investigation.

5. SIMULATION RESULTS

As a simulation example, we considered the coupled

map lattices, which exhibit various interesting dynam-

ical behaviours. We will use the following one dimen-

sional unidirectionally coupled lattice system :

x(k + 1) = f (x(k))+ ε( f (y(k))− f (x(k))), (33)

y(k + 1) = f (y(k))+ ε( f (x(k))− f (y(k))), (34)

where f (·) is the logistic map given by f (z) = rz(1−
z), ε > 0 is the coupling constant. This system, with

r = 4 and ε = 0.8 has a period 2 orbit Σ2 = {w∗
1,w

∗
2},

where wi∗ = ( x∗i y∗i )T , i = 1,2 and x∗1 = y∗1 =
0.90450849718747, x∗2 = y∗2 = 0.34549150281253.

By using the results given in (Morgül, 2003), (Morgül,

2005a), it can be shown that this period 2 orbit cannot

be stabilized by classical DFC. By utilizing (32), it can

be shown that Σ2 can be stabilized with the proposed

scheme with the gain K = α I for α > 1.56. Some sim-

ulation results are given in Figures 1-3 for α = 1.57.

In these simulations, initial conditions are chosen as

x(0) = 0.5, y(0) = 0.7, r = 4, ε = 0.8. In Figure 1,

we show d(x(k),Σ2) versus k, and as can be seen the

decay is exponential. Figure 2 shows x(k) versus y(k)
plot for k ≥ 400. As can be seen, solutions converge to

Σ2. Finally Figure 3 shows u1(k) and u2(k) vs. k.

6. CONCLUSION

In this paper we considered the problem of stabi-

lization of unstable periodic orbits for discrete-time

chaotic systems. Our approach is related to that of

(Vieira, and Lichtenberg, 1996) for T = 1, however

the form of our proposed control law is different and

relation with the DFC is more obvious. Moreover, the

extension to T > 1 and to higher dimensional cases are



novel. We show that for T = 1, the proposed scheme

does not have the inherent limitations of DFC and

EDFC. Following a technique used in (Morgül, 2003),

(Morgül, 2005a), (Morgül, 2009), we first constructed

a map whose fixed points correspond to the periodic

orbits of the uncontrolled system. Then we studied

the stability of the proposed scheme by using the con-

structed map by using linearization. Then the stability

problem is reduced to studying the Schur stability of

the Jacobian of this map evaluated at the fixed point

corresponding to the periodic orbit. We also presented

some simulation results supporting our results.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

d
(x

(k
),

 Σ
2

Figure 1

Fig. 1. d(x(k),Σ2) vs. k

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

x(k), k ≥ 400

y
(k

),
 k

 ≥
 4

0
0

Figure 2

Fig. 2. x(k) vs. y(k) for k ≥ 400

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

k

u
1
(k

),
 u

2
(k

)

Figure 3

u
1
(k)

u
2
(k)

Fig. 3. u1(k) and u1(k) vs. k

7. REFERENCES

Bleich, M.E. , and Socolar, J.E.S. (1996), “Stability

of periodic orbits controlled bt time delay feedback,"

Phys. Lett. A, 210, pp 87-94.

Chen, G., and X. Dong, From Chaos to Order :

Methodologies, Perspectives and Applications (1999),

World Scientific, Singapore.

Fiedler, B., Flunkert, V., Georgi, M., Hövel, P. and

Schöll, E. (2007) “Refuting the odd-number limitation

of time-delayed feedback control," Phys. Rev. Lett, 98,

PRL No : 114110.

Khalil, H. K. (2002) Nonlinear Systems, 3rd ed.

Prentice-Hall, Upper Saddle River.

Morgül, Ö. (2003) “On the stability of delayed feed-

back controllers," Phys. Lett. A314, 278-285.

Morgül, Ö. (2005a) “On the stability of delayed feed-

back controllers for discrete time systems," Phys. Lett.

A335, 31-42.

Morgül, Ö. (2005b) “On the stabilization of periodic

orbits for discrete time chaotic systems," Phys. Lett.

A335, 127-138.

Morgül, Ö. (2006) “Stabilization of unstable periodic

orbits for discrete time chaotic systems by using peri-

odic feedback," Int. J. Bifurcation Chaos 16, 311-323.

Morgül, Ö. (2009) “A New Generalization of Delayed

Feedback Control," Int. J. Bifurcation Chaos, 16, 365-

377.

Nakajima, H. (1997) “On analytical properties of de-

layed feedback control of chaos," Phys. Lett. A232,

207-210.

Ott, E., C. Grebogi, and J. A. Yorke (1990) “Control-

ling Chaos," Phys. Rev. Lett., 64, pp. 1196-1199.

Pyragas, K. (1992) “Continuous control of chaos by

self-controlling feedback," Phys. Lett. A., 170, pp.

421-428.

Pyragas, K., (1995), “Control of chaos via extended

delay feedback," Phys. Lett. A, 206, pp. 323-330.

Pyragas, K. (2001) “Control of chaos via an unstable

delayed feedback controller," Phys. Rev. Lett., 86 pp.

2265-2268.

Socolar, J. E., Sukow, D. W., and Gauthier, D. J.,

(1994), “Stabilizing unstable periodic orbits in fast

dynamical systems," Phys. Rev. E., vol. 50, pp. 3245-

3248.

Ushio, T. (1996) “Limitation of delayed feedback con-

trol in nonlinear discrete time systems," IEEE Trans.

on Circ. Syst.- I 43, 815-816.

Vieira, d.S.M, & Lichtenberg, A.J. (1996) “Control-

ling chaos using nonlinear feedback with delay," Phys.

Rev. E54, 1200-1207.




