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In the Wigner domain of a one-dimensional function, a certain chirp term represents a rotated line delta
function. On the other hand, a fractional Fourier transform (FRT) can be associated with a rotation of
the Wigner-distribution function by an angle connected with the FRT order. Thus with the FRT tool a
chirp and a delta function can be transformed one into the other. Taking the chirp as additive noise, the
FRT is used for filtering the line delta function in the appropriate fractional Fourier domain.
Experimental filtering results for a Gaussian input function, which is modulated by an additive chirp
noise, are shown. Excellent agreement between experiments and computer simulations is achieved.
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1. Introduction

The fractional Fourier transform (FRT), which is a
generalization of the Fourier transform, was first
introduced mathematically by Namias and by Mc-
Bride and Kerr.2 Recently, optical interpretations of
the FRT were suggested and found to be equivalent to
the mathematical definitions.3 Two definitions were
suggested: the first is based on a graded-index me-
dium,4 and the other is based on the Wigner-
distribution function5 (vDF). The WDF approach is
better suited for bulk-optics implementation, and
thus we concentrate on it. A short introduction of
the Wigner transform and its relation to the FRT are
presented. Background information about the W'DF
can be found in Ref. 6.

The Wigner transform of a one-dimensional func-
tion u(x) is defined by

WDF to the signal is unique, apart from a constant
phase factor:

f W(x, v)exp(4irixv)dv = u(2x)u*(O). (2)

The Wigner transform describes the space and the
frequency contents of a signal u(x), with W(xo, v)
describing the energy of the signal u at a certain point
(or time) x for a certain frequency v. Well-known
physical properties of the Wigner distribution W(x, v)
include the following:

f W(x, v)dx = I i(v) 2
(3)

(spectrum),

Wo(x, v) = u(x + x'/2)u*(x - x'/2)

X exp(-2rrivx')dx', (1)

where x represents the space (or time) coordinate and
v represents the frequency. The inversion from the

I
(intensity),

f W(x, v)dxdv = Etotal
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(5)

(energy).

Some relevant examples of WDF's are given in Ref.
6:

f(X) = 8(X - X0) W0(x, v) = (x -X)

(pulse)

f(x) = exp(2rrivox) - Wo(x, v) = (v - vo)

(6)

(7)
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W(x, v)dv = I u(x) 12 (4)



(monofrequency)

f(x) = exp[2'rri(b2 x2/2 + blx + bo)] W0(x, v)

= (b2x + b, - v).

[linear increasing frequency (chirp function)],

The above examples can be interpreted as follows:
a delta function corresponds to a vertical line in the
Wigner domain. A single frequency corresponds to a
horizontal line, while a chirp function corresponds to
a rotated line. Thus a r/2 rotation operation in the
Wigner domain transforms a pulse to a monofre-
quency function, passing through chirp functions.
A deeper insight into the underlying theory is given in
Ref. 7.

The Fourier transform Cz(v) of u(x) is given by

&(r) = f u(x)exp(-2rrixv)dx. (9)

By replacing the input u by its Fourier transform Cz,
we can rotate the WDF by 90°.

u(x) -* CZ(v): WO(-v, x). (10)

The definition of the fractional Fourier transform
is related to a rotation of the corresponding WDF by
an angle other than 90°, say, + = Pir/2. Expressed
indirectly,

/[P(u)] = R_,7/"'[u], (11)

where R, denotes a counterclockwise rotation of a
two-dimensional function and 7/7[u] is the Wigner
transform of u (x). This definition satisfies three
basic requirements.3 -5

(1) The FRT is linear in u(x).
(2) The FRT of order P = 1 is the Fourier

transform.
(3) Repeated applications of the FRT are additive

inP: y-P15-P2U(X) = Pl+P2U(X).

Rotation of the WDF can be expressed as three
shearing operations (x, v, and x shearings, or v, x, and
v shearings).5 Thus it is suggested in Ref. 5 that the
system of Fig. 1 be used to implement the fractional
Fourier transform by optical means. The x shearing
is performed by free-space propagation, the lens then
performs v shearing, and x shearing is again per-
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Fig. 1. Optical setup for performing a FRT.

Fig. 2. Computer simulation of the input pattern.

formed by free-space propagation. The effect of
propagation of a signal uo(x) through this system is
described mathematically by

SP[uo(x)] = UP(X) = 1 uo(xo)exp iLr( )]

x exp( - i2rr -)dxo, (12)

with

T = Xf1 tan(+), S = Xf1 sin(), (13)

where X is the wavelength of light andf = f 1/tan(+/2).
The free-space propagation distance z is given by

z = f 1sin(ib). (14)

Section 2 describes an interesting application of the
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Fig. 3. Computer simulation of the input pattern, shown by a
cross section through the center [the chirp is added to the Gaussian

plus a constant, according to Eq. (16)].
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Fig. 4. Optical setup for performing the chirp filtering.
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Fig. 5. Experimental intensity distribution of the P = + 0.5 plane.

FRT. We address the question how to filter such a
chirp function when regarded as additive noise.

2. Filtering Additive Chirp Noise
Equation (8) and relation (11) imply that, by perform-
ing an FRT of a certain order P, we can transform a
chirp term into a delta function. The fractional
order P is determined by7

+ = tan-' b2,
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Fig. 6. Computer simulation of Fig. 5 (cross section), showing the
chirp turned into a delta peak by means of an FRT.

(15)

while P = +/(Tr/2).
To demonstrate the application of the FRT to chirp

filtering, we choose the following real function as the
input function:

UO(x) = exp(-7rx 2 ) + cos[21r( - 4) + . (16)

The signal consists of a Gaussian term, a constant
term C, and an unwanted noise term (in brackets).
The cosine function can be broken into two complex
exponential chirps:

cos[2ir(2 - 4x)] = expi2r( - 4x)]

+ -expl - i2Tr- - 4x .
2 1

(17)

The first chirp corresponds to a delta function in

Fig. 7. Experimental intensity distribution of the P = -0.5 plane.

the P = + 0.5 domain, and the other corresponds to a
delta function in the P = -0.5 domain. Therefore
the filtering of the chirp is done by application of a
band-stop mask in each of these fractional domains.
The processing algorithm consists of the following
steps:

(1) Perform an FRT of order P = 0.5.
(2) Multiply by the band-stop filter.
(3) Inverse Fourier transform to the P = -0.5

domain.
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Fig. 8. Experimental intensity distribution of the output plane.

(4) Multiply by the band-stop filter.
(5) Perform an FRT of order 0.5 to the P = 0

domain.

In our experiment we generated a line delta func-
tion and performed an FRT of degree P = 0.5. The
resulting chirp is added to a Gaussian function with a
dc. The resulting pattern was used as input for our
filtering experiment and is shown in Fig. 2. A cross
section is displayed in Fig. 3.
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Fig. 9. Computer simulation of Fig. 8 (cross section), showing the

filtered Gaussian function at the output plane.

The optical setup to perform the total filtering is
shown in Fig. 4. The first step is a 0.5 FRT accord-
ing to Fig. 1. The experimental intensity distribu-
tion in this plane is shown in Fig. 5. A cross section
of the corresponding computer simulation is dis-
played in Fig. 6. The band-stop mask placed in the
+0.5 plane is a simple binary off-center cross. The
experimental intensity distribution of the -0.5 plane
is shown in Fig. 7. Here the second mask is used.
An additional fractional Fourier transform of degree
P = 0.5 leads to an overall transform of P = 2 or,
equivalently, by P = 0. The experimental intensity
distribution of the final output plane is shown in Fig.
8. The chirp is filtered out perfectly. The desired
chirp-free Gaussian distribution remains. Our com-
puter simulation of the final output, displayed as a
cross section in Fig. 9, indicates a very good agree-
ment with the experimental results.

3. Conclusion

In this paper we have presented an application of the
fractional Fourier transform (FRT) in optical one-
dimensional signal processing. The FRT is used to
perform a transform from a chirp function to a line
delta function. A spatial filter process is applyed to
eliminate the chirp when treated as noise. Experi-
mental realization for a specific function was demon-
strated.
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