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ABSTRACT

INVESTIGATING THE EFFECTS OF PERCEPTUAL
LEARNING ON THE FUNCTION AND

MICROSTRUCTURE OF THE VISUAL CORTEX

Dilara Erişen

M.S. in Neuroscience

Advisor: Hüseyin Boyacı

December 2020

Perceptual learning is the long-term improvement of the ability to process sensory

stimuli through experience. Although an extensively studied field, the mecha-

nism and locus of plasticity underlying visual perceptual learning is subject of

debate. Here, we investigated the experience-dependent plasticity in the visual

cortex across the time course of perceptual learning of bisection discrimination

task. Population receptive field (pRF) analysis was used to examine functional

architecture of the visual cortex. Microstructural properties of the visual cor-

tex were characterized with neurite orientation dispersion and density imaging

(NODDI). We compared pre-, mid-, and post-training values of pRF size, neu-

rite density, and orientation dispersion in the trained location as well as in two

control locations where no training has been received. The values in the trained

location did not change with time and did not differ from control locations. In

addition, we assessed the microstructural properties in the white matter tract

between the training location and the mirror-symmetric control location and did

not observe any change with training. In conclusion, we found no training-related

changes in the early visual cortex (V1-V3). Our results are limited by the lack

of performance improvement with training and the small sample size. Moreover,

we were not able to identify visual areas beyond V1-V3 leaving high-level visual

areas unexplored. Suggestions for further research include redesigning the be-

havioral training paradigm, optimization of pRF protocol to identify high-level

visual areas, and repeating the study with a larger sample size.

Keywords: visual perceptual learning, bisection discrimination task, population

receptive field analysis, noddi, experience-dependent neuroplasticity.
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ÖZET

ALGISAL ÖĞRENMENİN GÖRSEL KORTEKSİN
İŞLEVİ VE MİKRO YAPISI ÜZERİNDEKİ

ETKİLERİNİN ARAŞTIRILMASI

Dilara Erişen

Nörobilimler, Yüksek Lisans

Tez Danışmanı: Hüseyin Boyacı

Aralık 2020

Algısal öğrenme duyusal uyaran işleme yeteneğinde deneyim ile meydana gelen

uzun vadeli gelişmedir. Kapsamlı olarak çalışılmış bir alan olmasına rağmen,

görsel algısal öğrenmenin altında yatan plastisitenin mekanizması ve yeri halen

tartışma konusudur. Bu çalışmada, iki parça ayırma görevinin algısal öğrenme

süreci boyunca görsel kortekste deneyime bağlı plastisiteyi araştırdık. Görsel

korteksin fonksiyonel yapısını incelemek için popülasyon alıcı alan analizini kul-

landık. Görsel korteksin mikroyapısal özelliklerini, nörit oryantasyon dispersiy-

onu ve yoğunluk görüntüleme (NODDI) ile karakterize ettik. Eğitim lokasy-

onun yanı sıra eğitim alınmayan iki kontrol lokasyonunda popülasyon alıcı alan

boyutu, nörit yoğunluğu ve oryantasyon dağılımının eğitim öncesi, eğitim sırası ve

eğitim sonrası değerlerini karşılaştırdık. Eğitim konumundaki değerler zamanla

değişmedi ve kontrol konumlarındaki değerler ile farklılık göstermedi. Buna ek

olarak, eğitim yeri ile ayna simetrik kontrol konumu arasındaki beyaz cevher yol-

undaki mikroyapısal özellikleri değerlendirdik ve eğitimle herhangi bir değişiklik

gözlemlemedik. Sonuç olarak, erken görsel kortekste (V1-V3) eğitimle ilgili bir

değişiklik bulmadık. Sonuçlarımız eğitimde performans artışı olmayışı ve küçük

örneklem boyutu nedeniyle kısıtlıdır. Ayrıca, V1-V3’ün ötesindeki görsel alan-

ları belirleyemediğimiz için ileri seviye görsel alanlar araştırılamamıştır. Gele-

cek araştırmalar için davranışsal eğitim paradigmasının yeniden tasarlanması,

popülasyon alıcı alan protokolünün ileri seviye görsel alanları belirleyecek şekilde

optimizasyonu ve çalışmanın daha büyük bir örneklem büyüklüğüyle tekrarlan-

ması önerilir.

Anahtar sözcükler : görsel algısal öğrenme, iki parça ayırma görevi, popülasyon

alıcı alan analizi, noddi, deneyime bağlı nöroplastisite.
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learn from her experiences and patiently advising me on my self-fabricated per-

sonal dilemmas. I would like to thank Sertaç Üstün who offered his sympathetic
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Chapter 1

Introduction

Perceptual learning is the long-term performance improvement in a sensory

task through repeated practice. The trained individual develops the ability to

quickly detect and reliably identify the sensory attributes that are indistinguish-

able to the untrained individual. This kind of ability is particularly remarkable

in real-life perceptual experts such as radiologists, wine tasters, and chicken sex-

ers. Perceptual learning is often considered to arise from experience-dependent

neuroplasticity making it a popular research topic in neuroscience. However, the

mechanism and locus of plasticity underlying perceptual learning are still unde-

termined.

The work reported in this thesis aims to investigate the experience-dependent

plasticity in the visual cortex over the course of perceptual learning of a visual

task. For this purpose, magnetic resonance imaging (MRI) data were collected

at different time points during training with bisection discrimination task. Pop-

ulation receptive field analysis was used to assess changes to the functional archi-

tecture of the visual cortex. Structural changes to white and gray matter were

studied with diffusion weighted imaging.
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This introduction provides an overview of the prominent conceptual frame-

works guiding visual perceptual learning (VPL) research and reviews the litera-

ture with a special focus on neuroimaging findings. It then presents the scope

and motivation of the present study.

1.1 Visual Perceptual Learning

Early psychophysical research of VPL showed that performance improvement

is specific to some visual features such as the trained eye, retinal location, ori-

entation, and spatial frequency. The specificity of improvement was interpreted

as implicating the primary visual cortex (V1) as the locus of learning. V1 con-

tains monocular cells that respond to stimulation of only one eye. Consistent

with high location specificity of learning, receptive fields in primary visual cortex

are smaller compared to other visual areas. In addition to stimulus position, V1

neurons show selectivity to stimulus attributes including orientation and spatial

frequency. Based on the compatibility between observed learning specificities and

known characteristics of V1, VPL was regarded as a manifestation of adult V1

plasticity [1]. A new insight into the visual cortex was thus provided, according

to which experience-dependent plasticity is retained to some degree in adulthood

in contrast to the prevalent notion of a critical period for neuroplasticity [2]. The

specificity of learning and the inferred role of V1 plasticity have since been a

major focus of VPL research.

Later research created a discrepancy regarding the specificity of VPL as some

transfer of learning to untrained stimulus locations and features were reported.

This gave rise to new theories of the neural basis of VPL favoring more general-

ized mechanisms. For example, the reverse hierarchy theory asserts that learning

starts at high-level visual areas where the neurons have larger receptive fields and

respond to broader range of stimulus attributes [3, 4]. Thus, practice-induced

plasticity at high-level visual areas underpins the generalized performance im-

provement in the earlier stages of VPL. However, fine-grained spatial discrimina-

tion provided by lower-level visual areas is required as the training proceeds and
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the task difficultly increases. At these later stages, plasticity reaches to lower-

levels by top-down cascades and performance improvement becomes spatially

specific.

Another alternative view is the selective reweighting model of perceptual learn-

ing. In this model, learning occurs in the connections from early visual repre-

sentations to the decision system [5, 6]. This decision system can be understood

as the higher-level visual areas that receive input from early ones. In contrast

to the primary visual cortical plasticity theory and the reverse hierarchy the-

ory, sensory representations remain stable in the selective reweighting model.

The performance improvement arises from improved readout or decoding of sen-

sory information from task-relevant sensory representations. This model predicts

failed transfer of learning to an untrained condition when the sensory represen-

tation, the decision system or both are distinct between trained and untrained

conditions.

A major finding in the psychophysical research of VPL has been the complete

transfer of performance improvement to another location where additional train-

ing with an irrelevant task was received [7]. For example, when participants were

trained with contrast discrimination task at one location and orientation discrim-

ination tasks at a second location, the increased ability to discriminate contrast

was transferred to the second location. The elimination of location specificity

with the double-training paradigm further challenges the primary visual cortical

plasticity theory and supports the involvement of higher-level visual areas. Nev-

ertheless, it is difficult to identify neural mechanisms that underlie VPL solely by

means of psychophysics.

Neurophysiological investigation of VPL studies the changes in receptive field

properties of neurons such as location, size, and stimulus feature selectivity. The

stimulus feature is encoded with the response profile of the neuron. The spik-

ing activity of a neuron forms a bell-shaped curve when plotted as a function

of the stimulus feature. The stimulus configuration the neuron is most sensitive

to elicits the highest response and constitutes the peak of the curve. This so-

called neuronal tuning curve is a standard method in neurophysiological research

3



to characterize the response profile of a neuron. The slopes of the orientation

tuning curves of V1 neurons responding preferentially to trained stimulus orien-

tation were shown to increase in monkeys trained with orientation discrimination

task [8]. The sharpening of neuronal tuning was interpreted as the increased dis-

criminatory ability of the trained neurons. Another group reported no changes

in the tuning characteristics of trained neurons in monkey V1 and V2 using sim-

ilar training [9] whereas sharper orientation tuning curves were observed in V4

[10]. When cats were trained on an orientation discrimination task using near-

threshold low contrast gratings, contrast sensitivity in V1 neurons most sensitive

to the trained spatial frequency was found to increase[11].

There are also neurophysiological findings indicating the involvement of ar-

eas beyond visual cortex in VPL. Receptive field properties in monkey V1 were

not changed following training with bisection discrimination task [12]. However,

response profile of V1 neurons were modulated by stimuli placed outside the

receptive field. The modulation was stronger during task performance. This

contextual influence was suggested to result from modulation of horizontal con-

nections between neurons via feedback from higher cortical areas. The top-down

modulation in V1 was further investigated in another study with monkeys trained

to perform two different tasks (Vernier and bisection discrimination) using the

same five-line stimulus presented at the same visual location[13]. It was shown

that the neuronal responses in V1 were selectively modulated by behaviorally

relevant attributes of the stimulus. Performance improvement in motion discrim-

ination task was found to correlate with changes in the response properties of

neurons in the lateral intraparietal area (LIP) but not in the middle temporal

area (MT) [14]. The change in LIP responses was interpreted as more selective

readout of the sensory representation in motion-sensitive visual area MT.

Neural correlates of VPL in humans were explored predominantly using func-

tional MRI (fMRI). Following one day of monocular training in texture discrim-

ination task, increased activity in V1 was observed when the stimulus was pre-

sented to the trained eye as compared to the untrained eye. Furthermore, func-

tional connectivity analysis revealed greater coupling between V1 and several

areas beyond visual cortex during the untrained condition suggesting that the
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initial task performance is mediated by higher cognitive processes [15]. Increase

in V1 activity was also reported after one month of training with orientation

discrimination task [16]. Two possible neural mechanisms were suggested: in-

creased spiking rates in neurons most sensitive to the the stimulus orientation or

an increase in the number of neurons responding to the stimulus. Another study

examined the changes in activation in visual cortex for an extended time course

of training using texture discrimination task [17]. Consistent with the previous

reports, V1 activation was found to increase at the beginning. However, after a

few sessions of training the activation in V1 returned to baseline level, coincid-

ing with the performance saturation. An initial increase in synaptic connections

followed by synaptic downscaling was suggested as the mechanism of observed

activation changes.

Although fMRI is a powerful tool for non-invasive whole-brain investigation,

conventional analysis methods provide limited information about brain mecha-

nisms underlying observed activation changes. An alternative framework is com-

putational fMRI which exploits machine learning algorithms and/or theory-driven

computational models in order to provide more mechanistically meaningful in-

sights into brain-behavior relationship. Unlike conventional fMRI which focuses

on localizing the task-related cortical areas, computational fMRI aims to identify

the computational role of a brain area. The analysis approaches include inves-

tigating distributed patterns of neural representations by multivariate analysis,

volitional control of neural activity by real-time fMRI analysis and predicting

hypothetical signals associated with the behavior by model-based analysis [18].

Recent neuroimaging studies of VPL benefit from these more advanced analysis

methods.

The use of computational fMRI in VPL research has revealed mixed evidence.

VPL of an orientation discrimination task was investigated by combining re-

inforcement learning model and multivariate decoding analysis [19]. Stimulus

orientation was shown to be encoded in early visual areas as well as higher corti-

cal areas such as LIP and anterior cingulate cortex (ACC). However, behavioral

improvements in the orientation discrimination task correlated only with changes

in ACC suggesting enhanced readout of sensory representation as the mechanism
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of VPL. In an interesting study using neurofeedback to investigate causal mecha-

nism of VPL, induced activity in early visual cortex resulted in orientation-specific

VPL [20]. The activation patterns in V1/V2 evoked by target orientation stimu-

lus presentation were decoded and repetitively induced in participants with online

feedback in the absence of stimulus presentation. Participants’ performance on

the orientation discrimination task improved after the induction stage. This was

interpreted as evidence that V1/V2 plasticity is sufficient for VPL. Motion di-

rection discrimination training was found to increase the decoding accuracy in

motion-sensitive area V3A together with connectivity from V3A to intraparietal

sulcus (IPS) [21]. This suggests that both sensory representation in early visual

areas and readout of this representation by decision-making areas were changed

by VPL.

Another area of VPL research investigates structural plasticity that accom-

panies functional changes associated with performance improvement. This can

be achieved on the cellular level thanks to the advancements in optical imaging

technology. In a longitudinal study investigating changes to long-range horizontal

connections in V1 of monkeys during training with a contour detection task, ax-

onal sprouting and pruning at the trained location were observed [22], similar to

a previous report of axonal plasticity in a retinal lesion model by the same group

[23]. The authors proposed that VPL arises from the contextual interactions

between feedback and horizontal connections. Dendritic spine density in layer

2/3 pyramidal neurons in V1 was found to increase as a result of training with

a pattern discrimination task in a mouse model of VPL [24]. The performance

improvement partially transferred to the untrained eye and untrained stimulus

orientations. It is known that layer 2/3 pyramidal neurons receive feedback from

higher cortical areas. This led the researchers to suggest that VPL involves higher

cortical areas in addition to V1.

Non-invasive investigation of VPL-dependent structural changes in human par-

ticipants was carried out using diffusion weighted imaging (DWI). Following up

on the seminal study that revealed the increased activation in V1 turns to base-

line in later phases of VPL [17], it was found that white matter structure of

the inferior longitudinal fasciculus (ILF) was changed after training with texture
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discrimination task[25]. ILF is an association tract that connects occipital lobe

and anterior temporal lobe. Functional connectivity analysis between V1 and

anterior cortical areas revealed increased connectivity suggesting that structural

and functional changes were in coordination. The authors proposed a two-phase

model of VPL where V1 plasticity that mediates the early phase is followed by

structural and functional connectivity changes that support the retention phase.

After decades of research, the mechanism and locus of VPL are still debated.

A couple points regarding the seemingly conflicting results emerge from the lit-

erature reviewed here. Most notably, many types of different stimuli are used to

investigate VPL. Given the functional specialization of visual cortex, it is rea-

sonable to assume that the involved visual areas will differ depending on type

of the stimulus. Even when studies report using the same type of stimulus, the

experimental procedure as well as task difficulty can greatly vary. Both increased

training [26] and increased task difficulty [3] leads to more specific VPL and

possibly require the engagement of different neuronal mechanisms. Longitudinal

neuroimaging studies provide evidence that different forms of plasticity underlie

different phases of VPL [17, 25]. It is possible that some of the conflicting results

are due to differences in time points the measurements are made. Taken together,

the variety of experimental parameters used in VPL research makes it difficult to

piece together the accumulated evidence and get the full picture.

The differences between two methods that predominantly used to investigate

neural correlates of VPL constitute another point to consider. Neurophysiological

recordings and fMRI measure different aspects of brain activity. Neurophysiolog-

ical recordings mentioned in this literature review measure spiking activity of

individual neurons whereas activity of millions of neurons contributes to fMRI

activation in a single voxel. In addition to the scale difference, as it is briefly

explained before, it is possible that fMRI is blind to spiking or output activity

of neurons and instead measures input activity. The comparison of findings from

these two literatures is therefore not straightforward. One possible approach is to

integrate the findings from neurophysiological research to computational models

used in fMRI analysis. This kind of model-based fMRI approach has the potential

to bridge the gap between two literatures.
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Another point concerns the use of animal models in neurophysiological re-

search due to the invasive nature of the technique. First of all, it is not yet

known whether mechanisms of VPL differ across species. Furthermore, regard-

less of possible interspecies differences, the use of animal models requires different

experimental procedures than studies on humans. Most studies with non-human

primates are conducted with awake-behaving animals. However, in some cases,

anesthetization of the animal might be necessary for recording, which in effect

renders the experimental condition to passive viewing. Active engagement with

task and passive exposure to the stimulus are subject to different levels of top-

down influences. In fact, it is suggested that passive exposure induces changes at

lower-levels whereas task-relevant learning involves changes to multiple levels [27].

Moreover, unlike human studies, VPL in animal models takes extended periods

(usually months) of training and occurs through rewards. All in all, differences in

experimental procedures warrant another caution to direct comparison of findings

from neurophysiology and fMRI literatures.

The aforementioned points raise the possibility that controversy over the mech-

anism and locus of VPL might be due to a failure to identify different aspects of

VPL. A more recent theoretical framework offers reconciliation to the discrepancy

in the literature by incorporating feature-based and task-based plasticity together.

In the dual plasticity model, both refined sensory representation and improved

processing of task-relevant information underlie VPL [28]. To test the validity

of this model, participants trained in a motion detection task were scanned both

while they were performing the task and while they were passively exposed to the

feature [29]. The pattern-classification analysis revealed changes in response to

trained stimulus in V1, V3A, and IPS when the task was engaged. However, only

V3A showed response changes in the passive exposure condition. The authors

concluded that V3A was the locus of feature-based plasticity whereas V1 and

IPS had roles in task-based plasticity. Although the dual plasticity model can

explain contradictory results in the literature, further investigation is necessary

to reveal the effect of different tasks or experimental procedures.

Through decades of research dedicated to determining the brain regions altered

by VPL, supporting evidence has been accumulated for a variety of candidates.
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Early visual areas, higher visual areas, decision making regions, and connectiv-

ity between visual cortex and decision making regions have been considered as

the locus of VPL-induced plasticity. The recent effort in VPL research has been

directed towards understanding VPL as a product of distribution of plasticity

in multiple brain regions along with effect of attention, reward, and feedback in

contrast to earlier research which focused on specific brain regions. The existing

literature establishes that it is crucial to evaluate the findings together with the

details of the experimental procedure to prevent misleading inferences. Under-

standing the nature of functional and structural plasticity that underlies VPL is

important not only because of the theoretical implications but also the potential

use of VPL as a treatment for visual impairments. Longitudinal investigations

have great importance here in order to reveal the dynamics of VPL-induced plas-

ticity and differentiate between transient and persistent changes.

1.2 Scope of the Present Study

In this study, we investigated VPL-induced plasticity in the visual cortex.

For behavioral training, we used bisection discrimination task, a well-established

paradigm in the VPL literature. We collected MRI data at three time points

during the experimental timeline: before training, approximately midway through

training, and after training to assess VPL-dependent changes over the course of

learning. Chapter 2 outlines the experimental procedure and presents the results

of the behavioral training.

Functional changes were examined with population receptive field (pRF) anal-

ysis, a biologically-inspired model-based fMRI analysis method. pRF model is

based on decades worth of evidence from neurophysiological research of the re-

ceptive field properties of the visual cortex. This analysis approach allows char-

acterization of the response properties of neuronal populations within each voxel

and therefore examination of the functional architecture of the visual cortex at a

finer scale. We used pRF analysis to reconstruct visual field maps and to estimate

pRF sizes in our regions of interest. The method and results of the pRF analysis
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are given in Chapter 3.

We collected DWI data to investigate structural changes. Specifically, we

assessed microstructural changes in the visual cortex with NODDI (neurite ori-

entation dispersion and density imaging), a DWI-based modeling technique that

allows noninvasive imaging of tissue microstructure. To our knowledge, this is the

first microstructural level study of VPL-induced plasticity in the human visual

cortex. Our analysis pipeline and results are presented in Chapter 4.

Model-based computational neuroimaging approach employed in this study

enables a fine-scale investigation of brain function and structure. This approach

has the potential to relate better to findings from invasive procedures on animal

models and therefore reduce the gap between neuroimaging studies and animal

studies. By investigating the whole visual cortex, we aimed to identify which

level of the visual processing hierarchy changes through VPL. Furthermore, we

examined the dynamics of VPL-induced plasticity through the longitudinal aspect

of the study. Overall, this study offers a step towards an in-depth analysis of

experience-dependent neuroplasticity in the human visual cortex.

10



Chapter 2

Experimental Procedure

The data presented in this thesis were collected as a part of a research project

our group is working on. The project aims to identify the changes to the brain

function and structure over the course of VPL by taking a longitudinal approach

and employing a broad range of neuroimaging techniques. Both threshold mea-

surements and MRI sessions were conducted before the training started (pre-

training), after three training sessions (mid-training) and once the training has

been completed (post-training). The experimental timeline can be seen in Figure

2.1.

Figure 2.1: Experimental timeline. Behavioral training consisted of eight ses-
sions. Perceptual threshold measurements and MRI sessions were conducted at
three different time points during the experiment (pre-, mid-, and post-training).
MRI protocols were split over two days due to time constraints (first day: high-
resolution T1 image, resting-state fMRI, task-based fMRI, functional localizer;
second day: pRF runs, DWI).
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MRI sessions were held on two consecutive days because it was not feasible

to collect all MRI data in a single session. On the first day, high-resolution

T1 image, resting-state and task-based fMRI data were collected. Functional

localizer scan was also acquired on the first day. fMRI data for pRF analysis and

DWI data, which are the focus of this thesis, were collected on the following day.

Each MRI session took about 1-1.5 hour. The participants did not receive any

training between these consecutive sessions. Accordingly, they will be referred to

as a single session from now on in the text.

(a) Stimulus (b) Training Location

Figure 2.2: Bisection Discrimination Task. The stimulus consisted of an off-
center middle line and two flanking lines (a). The participants determined the
displacement of the middle line relative to the center. The training stimulus was
presented at 4◦ eccentricity and 240◦ polar angle (b). Two control locations were
at 300◦ and 45◦ polar angle at the same eccentricity as the training location.

The participants were trained with three-line bisection discrimination task

where they were asked to determine the displacement of the target line relative

to the midline of two flanking lines (Figure 2.2a). The stimulus was presented at

4◦ eccentricity and 240◦ polar angle (7 o’clock) (Figure 2.2b). The area spanned

by the stimulus was approximately 30◦ and remained in between 3◦-5◦ eccentricity.
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Two control locations were determined as 300◦ (5 o’clock) and 45◦ (north-east)

polar angle at the same eccentricity as the training location.

The training consisted of eight sessions with 1200 trials per session. A single

training session was held in each day since sleep is established as an important

factor of performance improvement in VPL [30, 31]. By the same token, the

participants were scanned the following day after the relevant part of the training

was completed. MRI session was followed by a training session in the second (pre-

training MRI session - first training session) and sixth days (mid-training MRI

session - fourth training session) for time efficiency.

2.1 Participants

Six participants took part in the experiment (1 author; age range: 18-30,

M = 23.5, SD = 4.46; 1 male; 1 left-handed). All participants had normal

or corrected-to-normal visual acuity. Participants gave their written informed

consent to take part in the study. All procedures were approved by Bilkent

University Ethics Committee for Research with Human Participants. Participants

were financially compensated for their time.

2.2 Behavioral Training Results

We investigated the effect of training by comparing the mean perceptual

threshold at the training and control locations in pre-, mid-, and post-training

sessions. A two-way repeated measures ANOVA was conducted to determine

if there was a change in mean perceptual threshold as a result of the interac-

tion between session and location. The results, given in Table 2.1, revealed that

there was no significant interaction between session and location. However, there

was a main effect of location which was further examined with post-hoc pairwise

comparisons (see Table 2.2). Mean perceptual threshold at the training location
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(240◦ polar angle) and the control location at 300◦ polar angle was significantly

different than control location at 45◦ polar angle.

Table 2.1: rm-ANOVA Table - Performance Improvement

Cases Sum of Squares df Mean Square F p

Session 17.882 2 8.941 2.758 0.111
Residuals 32.413 10 3.241
Location 96.362 2 48.181 46.499 < .001
Residuals 10.362 10 1.036
Session * Location 19.859 4 4.965 2.204 0.105
Residuals 45.041 20 2.252

Note. Type III Sum of Squares

The descriptive plots of perceptual threshold changes at training and con-

trol locations, shown in Figure 2.3, revealed an unexpected trend for 240◦ polar

angle (Figure 2.3a) where perceptual thresholds decreased with training up to

mid-training threshold measurement but returned to pre-training values in post-

training threshold measurement. This trend is evident in both the individual

data and mean across the subjects. Typically in a VPL experiment, performance

improves drastically as a result of initial training and eventually reaches a satu-

ration level. Therefore, we were expecting much of the performance improvement

to occur in the early training sessions and performance to stabilize in the later

training sessions. However, in contradiction with the literature, we observed

the performance improvement to diminish with ongoing training. There was no

chance during our study to detect this unexpected behavioral effect we observed

here since the behavioral data and MRI data were collected simultaneously.

Table 2.2: Performance Improvement Post Hoc Comparisons - Location

Mean Difference SE t pholm

240◦ 300◦ 0.007 0.339 0.019 0.985
45◦ -2.830 0.339 -8.342 < .001

300◦ 45◦ -2.837 0.339 -8.361 < .001

Note. P-value adjusted for comparing a family of 3
Note. Results are averaged over the levels of: Session
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(c) 45◦ polar angle

Figure 2.3: Perceptual thresholds at the training (a) and control (b and c) lo-
cations. The dots show the mean values across all subjects, and the rings are
individual mean for each subject.

Interestingly, a similar trend was also observed in the control location at 300◦

polar angle (Figure 2.3b) which is the mirror-symmetric of the trained location in

the contrahemisphere. The other contrahemispheric control location (Figure 2.3c)

did not show such trend. Interhemispheric homotopic connections (connections

between equivalent regions of each hemisphere) might be responsible for this same

pattern emerging in mirror-symmetric locations in the visual cortex.
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2.3 MRI Data Acquisition

We used multiband (MB) sequences provided by the Center for Magnetic Res-

onance Research (CMRR), University of Minnesota, Minneapolis for both func-

tional and diffusion weighted scans. Imaging protocols were adapted from Human

Connectome Project and optimized for 3T MRI scanner using available guidelines

[32]. This approach allowed us to shorten acquisition time with comparable image

quality.

MRI sessions were held at National Magnetic Resonance Research Center (UM-

RAM), Bilkent University, Ankara. MRI data were collected on a Siemens Tim

Trio 3T scanner with a 32-channel phase array head coil. The participants’ heads

were supported using foam padding to minimize motion during image acquisition.

The stimulus was presented on an MRI compatible LCD screen (TELEMED,

1920×1080 pixel, 32 inch) placed at the back of the scanner bore. The partic-

ipants viewed the stimulus display via a mirror system mounted on top of the

head coil. The total viewing distance was measured as 168 cm. The position of

the screen was marked and kept constant across participants and sessions. The

participants’ response was collected with a fiber optic response box (fORP 904

fMRI trigger and response system, 4 Button Bimanual HHSC-2x2, Current De-

signs). Further details about MRI data acquisition protocols are given in the

relevant chapters.
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Chapter 3

Population Receptive Field

Analysis

3.1 Background

The visual system has a topographic organization. Visual information is con-

veyed to the visual cortex in an orderly fashion such that adjacent points in the

visual field are projected to adjacent positions in the retina, the lateral genicu-

late nucleus, and the cortex. The topographic representation of the visual field

or retinotopy is the fundamental principle for functionally defining boundaries

between visual areas. V1 contains a complete and continuous representation of

the contralateral visual hemifield and lies along the calcarine sulcus. V2 and V3

have discontinuous hemifield representations which further divides the hemifield

to quarter-fields dorsal (V2d, V3d) and ventral (V2v, V3v) to V1. Thus, the

boundaries between the visual areas correspond to vertical (V1/V2 boundary)

and horizontal (V2/V3 boundary) meridians of the visual field. Angular stimuli

such as rotating wedge reveal these boundaries at polar angle reversals. Cortical

architecture can also be indicative when delineating visual areas as the verti-

cal meridian is usually represented on gyri, whereas the horizontal meridian is

represented in sulci[33].
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Another dimension of the retinotopy is eccentricity. Annular stimuli are used to

map eccentricity along the visual cortex. Cortical representation of eccentricity

moves central to periphery in the posterior-anterior direction with the center

of gaze represented at the posterior end of the occipital lobe. The retinotopic

representation, however, is distorted as projections from the center of the gaze,

foveal projections, occupy disproportionately large cortical surface. Moreover, the

cortical surface devoted to a visual degree decreases as a function of eccentricity.

This is called cortical magnification.

Imaging V1-V3 maps is fairly straightforward thanks to their highly retinotopic

organization. Mapping the extrastriate cortex, on the other hand, proves to be

a challenge partly due to the hierarchical nature of visual processing. As we go

up in the visual processing stream, inputs from earlier levels converge in higher

levels, allowing integration of visual information. Accordingly, the receptive field

size increases in higher-level visual areas. This results in smaller retinotopic maps

which are more difficult to identify.

The hierarchical organization posits an additional challenge with regard to

effective retinotopic stimulus. Early visual areas respond to low-level stimulus

features such as contrast, orientation, or contours. At each stage of the visual

hierarchy, information from earlier stages is integrated to process more complex

features of the visual stimulus. Thus, the traditional retinotopic stimuli, which

are typically rendered with high-contrast patterns such as flickering checkerboard

pattern and elicit a high response in early visual areas, are not effective at imaging

the extrastriate retinotopic maps.

In this study, we used population receptive field (pRF) method to analyze

retinotopic maps [34]. pRF refers to the combined receptive field of the pop-

ulation of neurons within a given voxel and is defined with a two-dimensional

Gaussian model,

g(x, y) = exp

(
−(x− x0)

2 + (y − y0)
2

2σ2

)
(3.1)

where (x0,y0) is the pRF center and σ is the pRF size. The neuronal response can
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be predicted since the time course of stimulus presentation, s(x, y, t), is known.

The predicted blood oxygenation level-dependent (BOLD) response is estimated

by convolution of the predicted neuronal response with a hemodynamic response

function (HRF). The optimal pRF parameters are then determined by minimizing

the errors between the predicted and observed BOLD response. pRF parameters

are defined in stimulus space.

pRF method reconstructs the retinotopic maps with greater spatial precision

as compared to conventional retinotopy methods. However, the major advantage

of pRF modeling over conventional retinotopy methods is the ability to estimate

pRF size. There is a fundamental relationship between receptive field size and

eccentricity: receptive field size increases with eccentricity within each retinotopic

map. This relationship can be observed with pRF analysis as the increase in pRF

size as a function of eccentricity [35]. Moreover, pRF size estimates have been

shown to be in agreement with neurophysiology measurements in V1-V3 maps[34].

We used pRF analysis both for pRF size estimation and for visual area de-

lineation. By using visual area boundaries, we were able to further specify our

regions of interest (ROI) on the basis of visual areas and to focus our investigation

of VPL-induced plasticity on these ROIs. Here, we investigated training-induced

changes in pRF size in training and control locations. Smaller receptive fields are

associated with better visual acuity (e.g. sharp central vision at the fovea). By

the same token, decrease in receptive field size might underpin increased ability to

discriminate simple visual attributes in VPL. Alternatively, increased receptive

field size might improve spatial discrimination through pooling of the activity

from neurons with overlapping receptive fields.
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3.2 Methods

3.2.1 Participants

Participants were the same as detailed in Chapter 2. One participant of the

six that participated in the experiment was excluded due to poor activation in

the functional localizer scan. Another participant whose mid-training data was

missing was excluded for consistency in repeated measures design. Four partic-

ipants were included in the remaining steps of the study (1 author; age range:

18-27, M = 22.75, SD = 3.77).

3.2.2 Stimulus

We used natural scenes which are rich in visual information and thus poten-

tially more effective than conventional high-contrast stimuli for mapping higher

visual areas. We preferred simultaneous wedge and ring stimulus configuration

which provides consistent estimates and good model fits with shorter scan dura-

tions [36]. The resulting mapping stimulus, a combined wedge and ring stimulus

carrying natural images, is previously shown to result in pRF estimations reliable

across sessions [37]. This mapping stimulus, especially in terms of intersession

reliability, serves well for purposes of our study.

To create the mapping stimulus, the natural images were masked with an aper-

ture consisting of a wedge and a ring. The image presented within the aperture

changed every 1 s. The wedge completed a full circle in 60 steps and circled 3

times per run. The ring swept through 36 eccentricity bands in each cycle and

completed 5 cycles per run. Each step of the simultaneous wedge and ring stimu-

lus was presented for the duration of 1 TR (2 s). The maximum stimulus radius

was 6.75◦ of visual angle. The wedge rotated a clockwise direction and the ring

contracted during odd-numbered runs and vice versa during even-numbered runs.

Note that the reporting of clock directions is according to the mirror image the

participants viewed during MRI sessions. The stimulus presentation protocol is
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(a) Snapshots of the mapping stimulus

(b) Scheme of alternating stimulus directions

Figure 3.1: Stimulus presentation protocol. The mapping stimulus consisted of
natural images masked with a combined wedge and ring aperture (a). In the odd-
numbered runs the wedge rotated clockwise and the ring expanded (b, top). In the
even-numbered runs the wedge rotated counterclockwise and the ring contracted
(b, bottom).

illustrated in Figure 3.1.

Participants were instructed to fixate on a black fixation point presented at

the center of the screen at all times. In addition, a low-contrast spider web

pattern covering the entire screen was presented together with the fixation point

to further facilitate fixation stability. The fixation point changed color with a 0.1

probability in every 200 ms epoch. To ensure fixation compliance, participants

were instructed to report color changes (red or green) by pressing corresponding

buttons on the response box. Mean percentage correct responses and standard

deviations for each participant averaged across runs in each session is given in

Table 3.1. We experienced a problem registering responses at one session. Other

than that mean correct response percentages were above 75% for every session

21



indicating good central fixation.

Table 3.1: Fixation Task Results

Pre-training Mid-training Post-training

Subject Mean SD Mean SD Mean SD

Sub-02 79.83 2.61 86.65 2.44 89.9 3.09
Sub-04 88.39 1.74 89.06 2.86 90.01 1.88
Sub-05 1.76 0.72 82.32 5.9 87.57 1.17
Sub-07 88.13 4.73 89 2.9 89.28 3.57

3.2.3 MRI Acquisition Parameters

T1-weighted structural images were obtained using the 3D MP-RAGE se-

quence (TR=2600 ms, TE=2.92 ms, flip angle=12◦, FoV read=256 mm, FoV

phase=87.5% , 176 slices with 1×1×1 mm3 resolution). pRF runs were col-

lected using the CMRR MB accelerated EPI sequence with following parameters:

TR=2000 ms, TE=42.8 ms, MB factor=4, flip angle=80◦, FoV read=192 mm,

FoV phase=100.0%, partial Fourier factor=7/8, EPI factor=120, 76 slices with

1.6×1.6×1.6 mm3 resolution. Each pRF run contained 180 measurements and

five dummy scans with a total acquisition time of 6 min 22 s. Eight pRF runs

were collected in each session.

3.2.4 MRI Data Analysis

3.2.4.1 Preprocessing

Cortical reconstruction and volumetric segmentation of high resolution T1-

weighted images was performed with the FreeSurfer v6.0.0 software package

(http://surfer.nmr.mgh.harvard.edu/). Dummy volumes of each pRF run were

deleted to ensure signal stability. Functional images were realigned and unwarped

to correct for head motion and coregistered to the structural scan using SPM12
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(http://www.fil.ion.ucl.ac.uk/spm/). The time series at each voxel was linearly

detrended and z-score normalized using built-in functions on MATLAB 2017a

(Mathworks Inc., Massachusetts, USA). The time series were then averaged across

runs separately for both stimulus directions. Next, the averaged time series for

two directions were concatenated resulting in a time series with 360 measure-

ments in total. Finally, the data were projected from voxels in the volume space

to vertices on the reconstructed surface with a nearest-neighbor interpolation us-

ing the FreeSurfer software package. The preprocessing pipeline is illustrated in

Figure 3.2.

3.2.4.2 pRF Analysis

pRF model fitting was performed using SamSrf 6.05 (http://osf.io/2rgsm/)

on MATLAB 2017a (Mathworks Inc., Massachusetts, USA). The binary image

of the stimulus aperture indicated the position of stimulus at each time point.

The canonical HRF based on previous empirical data fit to a double gamma

function [38] as implemented in SamSrf was used to predict the BOLD signal.

The pRF parameters were estimated with a coarse-to-fine optimization approach

on unsmoothed data. Surface calculations were then carried out on smoothed

data to obtain maps for delineation and visualization purposes. Only vertices

with a goodness-of-fit R2 > 0.05 were included in surface calculations. A set of

example pRF maps of a representative participant can be seen in Figure 3.3.

Pre-training pRF maps were used to define visual area boundaries except for

one participant whose pre-training maps were not eligible for delineation. Mid-

training pRF runs were projected onto pre-training reconstructed surface to gen-

erate pRF maps of this participant. Visual areas were manually delineated based

on polar and eccentricity maps using the delineation tool in SamSrf. We re-

stricted our analysis to early visual areas V1, V2, and V3 in order to ensure

consistency since it was not possible to reliably identify further extrastriate areas

in all participants.
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Motion correction

Coregistration

Linear detrending

z-scoringAveraging

Merging

Surface projection

pRF model fitting

Figure 3.2: pRF Preprocessing Pipeline. After motion correction and coregistra-
tion, the time series for each run were z-score normalized and linearly detrended.
Next, the time series were averaged separately for two stimulus directions. The
resulting averages were then merged together and projected to the reconstructed
surface.
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Figure 3.3: Example pRF maps of a representative participant. The maps are
generated on a spherical representation of the cortex in order to reveal areas
buried in sulci. The polar angle maps are used in visual area delineation (top).
The boundaries between the visual areas lie along polar angle reversals. Eccen-
tricity maps show the distance from center (bottom). The maximum eccentricity
of the stimulus was 6.75◦ of visual angle.
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3.2.4.3 ROI Identification

We used a functional localizer scan to locate subject-specific ROIs at the train-

ing location (240◦ polar angle) and two control locations (45◦ and 300◦ polar

angles). A flickering checkerboard with same size as the behavioral task stimulus

was presented at one of three locations at each run. The resulting activation clus-

ter was projected onto the reconstructed surface using Freesurfer’s tksurfer tool

together with visual area labels generated with pRF analysis. The activation was

divided manually into visual areas using boundaries of visual area labels. Three

functional ROIs (V1, V2, and V3) at each location were obtained as a result.

ROI identification pipeline is illustrated in Figure 3.4.

3.2.4.4 Further Analysis

Intersession alignment of functional ROIs were performed with Freesurfer’s

mri label2label in the surface space. Estimates of pRF size (σ) and pRF center

(x0,y0) were extracted at each functional ROI from vertices with a goodness-of-

fit R2 > 0.15. Since it was not possible to obtain well-defined ROIs through

our functional localization protocol, we further specified the vertices based on

the location of pRF centers. Only the pRF centers located between within 15◦

polar angle proximity of the stimulus presentation location and between 3◦ - 5◦

eccentricity bands were included. In this way, we restricted our analysis to pRF

estimates located in the area spanned by the behavioral stimulus. An example of

pRF estimates satisfying these criteria is visualized in Figure 3.5.

In order to investigate VPL-dependent changes to pRF size, we computed

mean pRF size from selected vertices in each functional ROI and compared with

each other on the basis of session, location, and visual area. Statistical analysis

was performed with JASP (Version 0.12.2)
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Funtional Localizer pRF Mapping

Functional ROIs

Figure 3.4: ROI Identification Pipeline. The activation yielded by functional
localizer was overlaid together with visual area labels obtained from pRF map-
ping. The functional ROIs were identified at the intersections of activation cluster
and visual area boundaries.The pipeline depicts the identification of ROIs at the
training location (240◦ polar angle) (Pink: V1, Orange:V2d, Green: V3d).
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(a) V1 (b) V2

(c) V3

Figure 3.5: Polar plots of pRF estimates of a representative participant at each
functional ROI represented in the visual space. Green points represent the pRF
estimates with centers located in the training location (240◦ polar angle). Red
and blue points represent pRF estimates at the control locations (red: 300◦ polar
angle, blue: 45◦ polar angle). The center of each point represents the pRF center.
The size of data points is proportional to the estimated pRF size.
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3.3 Results

A 3×3×3 repeated measures ANOVA was conducted to investigate the effect

of session (pre-, mid-, and post-training), location (240◦, 300◦, and 45◦ polar

angle), and visual area (V1, V2, and V3) on mean pRF size. The results, given

in Table 3.2, do not show any training related differences in mean pRF size. The

descriptive plots are given in Figure 3.6.

Table 3.2: rm-ANOVA Table - Mean pRF Size

Cases Sum of Squares df Mean Square F p

Session 0.031 2 0.015 1.959 0.221
Residuals 0.047 6 0.008
Location 0.275 2 0.137 1.349 0.328
Residuals 0.610 6 0.102
Visual Area 7.155 2 3.578 39.766 < .001
Residuals 0.540 6 0.090
Session * Location 0.026 4 0.007 0.604 0.667
Residuals 0.132 12 0.011
Session * Visual Area 0.039 4 0.010 0.585 0.679
Residuals 0.198 12 0.017
Location * Visual Area 0.318 4 0.080 1.066 0.415
Residuals 0.896 12 0.075
Session * Location * Visual Area 0.060 8 0.007 1.307 0.287
Residuals 0.137 24 0.006

Note. Type III Sum of Squares

There was a main effect of visual area on mean pRF size (F (2, 6) = 39.766, p <

0.001) as expected. Post-hoc pairwise comparisons for visual area (Table 3.3)

indicated that mean pRF sizes in each visual area was significantly different from

each other. This result is in accordance with our knowledge of visual hierarchy

and expected regardless of VPL.
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(a) 240◦ polar angle

(b) 300◦ polar angle

(c) 45◦ polar angle

Figure 3.6: Mean pRF sizes for each functional ROI at the training (a) and control
(b and c) locations. The bars show the mean values across all subjects, and the
points are individual mean for each subject.
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Table 3.3: Mean pRF Size Post Hoc Comparisons - Visual Area

Mean Difference SE t pholm

V1 V2 -0.329 0.071 -4.647 0.007
V3 -0.630 0.071 -8.915 < .001

V2 V3 -0.302 0.071 -4.269 0.007

Note. P-value adjusted for comparing a family of 3
Note. Results are averaged over the levels of: Session, Location

3.4 Intermediate Discussion

In this part of the study, we investigated VPL-dependent changes to pRF size

in early visual areas V1, V2, and V3. There were no training-related changes

in mean pRF size. This finding is consistent with a previous study investigating

VPL of bisection discrimination task in monkeys where receptive field size of V1

neurons in trained and untrained animals did not differ [12]. However, given our

small sample size, this result is not conclusive and needs to be confirmed with a

larger sample.

Unfortunately, we were not able to acquire high-quality retinotopic maps in

all participants which prevented us to identify visual areas beyond V1-V3. This

calls for further optimization of the imaging protocol to increase the signal-to-

noise ratio (SNR). The most straightforward approach to increase SNR would

be increasing the run number. However, this is not convenient for our research

which already requires long MRI sessions. A more favorable solution for the

current research is the optimization of scan parameters without increasing the

total acquisition time for example through increasing voxel size and decreasing

TR.

Another possible source of failure to identify areas beyond early visual cortex

might be that the fixation task was overdemanding in terms of spatial attention.

Enhanced response reliability and increased SNR were found with phase-encoded

retinotopic mapping when attention is directed to retinotopic mapping stimulus

instead of central fixation point [39]. Conversely, it might be possible that high
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attentional demand at the central fixation point results in decreased SNR in

retinotopic maps. The probability of color change in our fixation task was two to

three times higher as compared to studies using similar stimulus configurations

[36] [37]. This was done as a precautionary measure to ensure constant fixation in

the absence of an eye-tracking system but might cause a counterintuitive effect.

A target detection task within the stimulus aperture in combination with a less

demanding central fixation task might allocate spatial attention to the retinotopic

mapping stimulus and thus provide more reliable visual responses in higher-visual

areas.

It is important to note that although SNR was insufficient for identification of

higher-visual areas this does not translate to decreased reliability of the pRF esti-

mates in the early visual areas we were able to identify. Nevertheless, confirmation

of our findings with a larger sample and further investigation of VPL-dependent

changes in higher-visual areas are necessary.
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Chapter 4

Diffusion Weighted Imaging

4.1 Background

The fundamental principle of diffusion weighted imaging (DWI) is based on

the random Brownian motion of water molecules. When water molecules do

not encounter any restrictions they move freely in every direction. This type of

motion is called isotropic diffusion. However, in structured spaces such as biolog-

ical tissue or a piece of paper, the movement of water molecules is directionally

restricted or anisotropic. Diffusion anisotropy carries information about the un-

derlying tissue structure. Diffusion of water in highly organized structures such

as the white matter is more anisotropic compared to diffusion in less coherent

structures such as gray matter. The degree of anisotropy can be quantified using

models. Diffusion tensor imaging (DTI), the most widely used DWI method, uses

a six-parameter ellipsoid to characterize diffusion [40]. The shape of diffusion el-

lipsoid provides information about anisotropy. The longest axis of the ellipsoid

indicates the principal diffusion direction which is assumed to represent the fiber

orientation. The information from the tensor model can be used to generate

contrast and reconstruct white matter tracts.

An important limitation of DTI is the assumption of a single fiber orientation
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in each voxel. More often than not there are multiple fiber orientations in a

voxel due to crossing, fanning or bending fibers [41]. DTI approach can not ac-

count for these orientation configurations except for a lower diffusion anisotropy.

Higher-order models have been proposed to address this limitation. One such

model is constrained spherical deconvolution (CSD) which estimates a fiber ori-

entation distribution at each voxel [42]. CSD-based tractography has been shown

to provide biologically reliable mapping in contrast to DTI-based tractography

methods which fails to accurately estimate fiber orientations [43]. In our study,

we used a CSD-based tractography algorithm to generate white matter tracks

between functional ROIs identified as described in the previous chapter.

In addition to macrostructural organization, cellular level structures also con-

tribute to diffusion anisotropy with membranes being the primary determinant

[44]. The signal’s sensitivity to cellular architecture makes it a promising probe

for microstructural imaging. However, the signal in a voxel represents the combi-

nation of water diffusion in multiple water compartments where water molecules

have different diffusion patterns. These diffusion patterns must be distinguished

in order to extract information about the tissue microstructure. Neurite ori-

entation dispersion and density imaging (NODDI) achieves this by combining

multi-shell DWI with a two-level multicompartment model [45].

NODDI tissue model differentiates between non-tissue (CSF) and tissue (white

matter and gray matter) at the first level by fitting a isotropic diffusion model as

the water diffuses freely outside the tissue. At the second level, intra-neurite com-

partment (the space bounded by membranes of axons and dendrites) is modeled

with sticks to reflect the highly restricted diffusion in this space. The orientation

distribution of the neurites is represented with the Watson distribution and ranges

from highly parallel (e.g. corpus callosum) to highly dispersed (e.g. cortex). The

hindered diffusion in the extra-neurite compartment (cell bodies and glial cells)

is modeled with an ellipsoid. NODDI returns three summary statistics: neurite

density or intra-cellular volume fraction (ICVF) representing amount of neurites,

orientation dispersion index (ODI) representing variability of neurite orientations,

and isotropic volume fraction (ISO) representing amount of free water. NODDI

tissue model is illustrated in Figure 4.1.
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Figure 4.1: NODDI Tissue Model. Diffusion MRI signal is broken down at two
levels. At the first level, isotropic diffusion which accounts for CSF is modeled. At
the second level, restricted diffusion in the intra-neurite compartment is modeled
with sticks and hindered diffusion in the extra-neurite compartment is modeled
with an ellipsoid. Three indices are calculated as a result: intra-cellular vol-
ume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume
fraction (ISO).

The advantage of NODDI over other model-based microimaging techniques is

its feasibility. NODDI allows quantification of tissue microstructure with rea-

sonable acquisition time and moderate hardware requirements. Furthermore,

NODDI provides robust estimates with comparable scan-rescan reproducibility

to DTI [46, 47]. Overall, NODDI emerges as a promising technique to explore

longitudinal changes in the brain microstructure.

Here, we used NODDI to investigate training-induced changes both in cortical

microstructure and in white matter microstructure. Cortical plasticity refers

to the experience-dependent changes in gray matter structure. Based on an

expansion-renormalization model of neuroplasticity [48], we predict an initial

growth of new connections followed by a selective elimination process by which

neuronal circuitry is refined. Such a process might reflect itself in ICVF and

ODI with an increase in the early stages of training and a subsequent retreat to
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pre-learning values in the later stages.

Complementary to cortical plasticity, white matter can also demonstrate neu-

roplasticity in response to training. Being a more recently identified phenomenon,

the mechanisms of white matter plasticity are not fully disclosed. Possible

experience-dependent structural changes in white matter involve new myelin for-

mation, remodeling of existing myelin, and alterations to myelin sheath length.

Since myelination is inversely related to the fraction of extracellular space in a

given volume, ICVF can indirectly detect differences in myelination. In addition

to regulation of myelin, regulation of axonal branching is also suggested as a pos-

sible plasticity mechanism although yet to be shown in brain white matter [49].

Both ODI and ICVF indicate changes in axonal branching in the white matter.

4.2 Methods

4.2.1 Participants

Same participants were included here as the pRF analysis (N = 4, 1 author;

age range: 18-27, M = 22.75, SD = 3.77).

4.2.2 MRI Acquisition Parameters

Two sets of diffusion weighted images were obtained using the CMRR MB

accelerated EPI sequence in an anterior to posterior phase encoding direction

with following parameters: TR=3510 ms, TE=114.4 ms, MB factor=4, flip

angle=78◦, FoV read=211 mm, FoV phase=86.4%, partial Fourier factor=6/8,

EPI factor=114, 76 slices with 1.6×1.6×1.6 mm3 resolution. The diffusion gra-

dients were generated using MASSIVE gradient tool [50].

Single-shell diffusion weighted data was acquired with 60 diffusion gradient

directions using a b-value of b=1000 s/mm2. Seven images with no diffusion
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weighting (b=0 s/mm2) were interspersed throughout the scan to minimize the

signal drift. Total acquisition time was 4 minutes 9 seconds.

Multi-shell diffusion weighted data was acquired with three b-value shells (20

directions in b=1000 s/mm2, 40 directions in b=1800 s/mm2, and 60 directions

in b=2400 s/mm2) and eight interspersed b0 images (TA=7 min 47 s). A sin-

gle b0 image was collected in opposite phase-encoding direction to be used in

susceptibility-induced geometric distortion correction of the diffusion weighted

images.

4.2.3 MRI Data Analysis

4.2.3.1 Preprocessing

Same preprocessing steps were deployed for both sets of diffusion weighted

images. Images were corrected for signal drift using ExploreDTI v4.8.6 [51]. The

resulting left-right orientation flip was corrected using FSLUTILS as implemented

in FSL v6.0.2 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Susceptibility-induced ge-

ometric distortions were estimated using FSL’s topup tool. FSL’s eddy tool was

used to correct for susceptibility-induced geometric distortions, eddy current-

induced distortions and subject movements. The preprocessing pipeline is illus-

trated in Figure 4.2.

4.2.3.2 ROI Alignment

Functional ROIs identified in the surface space (described under Section 3.2.4.3

on page 26) were converted to volume space via Freesurfer’s mri label2vol. We

generated two ROI sets different in the cortical depth they span: deep corti-

cal ROIs and superficial cortical ROIs. An example of deep cortical ROIs and

superficial cortical ROIs can be seen in Figure 4.3.
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Signal drift correction

Susceptibility distortion estimation

Susceptibility distortion correction

Eddy current distortion correction

Motion correction

Single-shell data Multi-shell data

CSD-based tractography NODDI model fitting

Figure 4.2: DWI Preprocessing Pipeline. Signal drift correction was applied
to both single-shell and multi-shell diffusion weighted images as the first step.
Next, susceptibility-induced geometric distortions were estimated. The images
were then corrected for susceptibility-induced geometric distortions, eddy current-
induced distortions and motion. CSD-based tractography was performed on the
single-shell data whereas multi-shell data was fit to the NODDI model.

38



(a) Deep Cortical ROI (b) Superficial Cortical ROI

Figure 4.3: An example of deep cortical ROIs and superficial cortical ROIs. The
figure shows functional ROIs (V1, V2, and V3) at the trained location (240◦)
converted to volume space. Deep cortical ROIs (a) were restricted to proximity
of the gray-white matter boundary. Superficial cortical ROIs (b) reached upto the
pial surface. Both sets of ROIs are shown here on the high-resolution T1-weighted
image for visualization purposes.
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Deep cortical ROIs were restricted to deep gray matter close to the gray-

white matter boundary (Figure 4.3a). These ROIs were than prepared to be

used in tractography analysis by binarizing, indexing and merging together with

FSLUTILS. This step resulted in a mask where every ROI has a specific intensity

value. Any voxels appearing in more than one ROI were excluded from the mask.

This mask served as an atlas in tractography analysis we conducted to reconstruct

white matter tracts between functional ROIs.

Superficial cortical ROIs were allowed to reach upto the pial surface (Figure

4.3b). These ROIs used in the investigation of cortical changes in response to

training. Intersession alignment of superficial cortical ROIs was achieved with

FSL’s FLIRT.

4.2.3.3 Tractography Analysis

Whole-brain tractography was performed on the single-shell diffusion weighted

data from pre-learning session using the CSD-based tractography algorithm im-

plemented in ExploreDTI with following tracking parameters: 2×2×2 mm3 seed

point resolution, 1 mm step size, 30◦ angle threshold, 50 - 500 mm fiber length

range. Fiber tracts between ROIs were identified and extracted from the whole-

brain tractography. We were able to reliably identify the fiber tracts between

trained location (240◦) and the homotopic control location (300◦) in V1 of three

participants (1 author; age range: 18-27, M = 23, SD = 4.58). These tracts

were converted to binarized masks to be used in further analysis. Tractography

analysis pipeline is illustrated in Figure 4.4.

4.2.3.4 NODDI Model Fitting

Multi-shell diffusion weighted data was fitted to the NODDI model [45] using

AMICO toolbox [52]. Whole-brain ICVF, ODI and ISO maps were generated

for all three sessions. Whole-brain NODDI parameter maps of a representative

participant can be seen in Figure ??.
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Deep Cortical ROIs

White Matter Tract ROIWhole-brain tractography

Figure 4.4: Tractography Analysis Pipeline. Deep cortical ROIs were binarized,
indexed and merged together in order to serve as an atlas for tractography anal-
ysis. Fiber tracts between ROIs were extracted from whole-brain tractography.
This analysis resulted in a single white matter tract identified between trained
location (240◦) and the homotopic control location (300◦) in V1.
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Figure 4.5: Whole-brain NODDI parameter maps of a representative participant.
The maps are consistent with our anatomical knowledge of the brain. ICVF map
(top) shows a pattern where neurite density is higher in white matter as com-
pared to gray matter whereas ODI map (middle) demonstrates higher orientation
dispersion in gray matter than in white matter. ISO map (bottom) shows the
highest values at the ventricles.
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Table 4.1: rm-ANOVA Table - Mean ICVF

Cases Sum of Squares df Mean Square F p

Session 0.004 2 0.002 1.688 0.262
Residuals 0.008 6 0.001
Location 0.008 2 0.004 0.791 0.496
Residuals 0.032 6 0.005
Visual Area 0.010 2 0.005 4.831 0.056
Residuals 0.006 6 0.001
Session * Location 0.008 4 0.002 1.553 0.249
Residuals 0.015 12 0.001
Session * Visual Area 0.003 4 8.488e-4 0.946 0.471
Residuals 0.011 12 8.975e-4
Location * Visual Area 0.012 4 0.003 2.416 0.106
Residuals 0.015 12 0.001
Session * Location * Visual Area 0.006 8 7.879e-4 1.403 0.245
Residuals 0.013 24 5.616e-4

Note. Type III Sum of Squares

4.2.3.5 Further Analysis

The NODDI indices at the superficial cortical ROIs and at the white matter

tract ROI were extracted from whole-brain NODDI parameter maps and aver-

aged within ROIs using FSLUTILS. Training-related changes to NODDI indices

were investigated by repeated measures ANOVA tests. Statistical analysis was

performed with JASP (Version 0.12.2).

4.3 Results

3×3×3 repeated measures ANOVA tests (session: pre-, mid-, and post-

training; location: 240◦, 300◦, and 45◦ polar angle; visual area: V1, V2, and

V3) did not reveal any training related effects on mean ICVF (Table 4.1), mean

ODI (Table 4.2) and mean ISO (Table 4.3) values at the superficial cortical ROIs.

Descriptive plots of mean ICVF, ODI and ISO values at each ROI can be seen

in Figure 4.6, Figure 4.7, and Figure 4.8, respectively.
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Table 4.2: rm-ANOVA Table - Mean ODI

Cases Sum of Squares df Mean Square F p

Session 0.001 2 5.622e-4 1.403 0.316
Residuals 0.002 6 4.008e-4
Location 0.007 2 0.004 2.252 0.186
Residuals 0.009 6 0.002
Visual Area 0.002 2 0.001 0.900 0.455
Residuals 0.008 6 0.001
Session * Location 9.770e-4 4 2.442e-4 1.476 0.270
Residuals 0.002 12 1.655e-4
Session * Visual Area 0.001 4 3.622e-4 0.719 0.595
Residuals 0.006 12 5.038e-4
Location * Visual Area 0.010 4 0.002 2.088 0.145
Residuals 0.014 12 0.001
Session * Location * Visual Area 0.002 8 2.385e-4 1.152 0.367
Residuals 0.005 24 2.071e-4

Note. Type III Sum of Squares

Table 4.3: rm-ANOVA Table - Mean ISO

Cases Sum of Squares df Mean Square F p

Session 0.004 2 0.002 0.250 0.787
Residuals 0.052 6 0.009
Location 0.003 2 0.002 0.102 0.904
Residuals 0.103 6 0.017
Visual Area 0.147 2 0.073 7.892 0.021
Residuals 0.056 6 0.009
Session * Location 0.004 4 0.001 0.318 0.860
Residuals 0.042 12 0.003
Session * Visual Area 9.285e-4 4 2.321e-4 0.186 0.941
Residuals 0.015 12 0.001
Location * Visual Area 0.021 4 0.005 0.583 0.681
Residuals 0.106 12 0.009
Session * Location * Visual Area 0.021 8 0.003 1.502 0.209
Residuals 0.042 24 0.002

Note. Type III Sum of Squares
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(a) 240◦ polar angle

(b) 300◦ polar angle

(c) 45◦ polar angle

Figure 4.6: Mean ICVF at each functional ROI at the training (a) and control
(b and c) locations. The bars show the mean values across all subjects, and the
points are individual mean for each subject.
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(a) 240◦ polar angle

(b) 300◦ polar angle

(c) 45◦ polar angle

Figure 4.7: Mean ODI at each functional ROI at the training (a) and control
(b and c) locations. The bars show the mean values across all subjects, and the
points are individual mean for each subject.
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(a) 240◦ polar angle

(b) 300◦ polar angle

(c) 45◦ polar angle

Figure 4.8: Mean ISO at each functional ROI at the training (a) and control (b
and c) locations. The bars show the mean values across all subjects, and the
points are individual mean for each subject.
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Table 4.4: Mean ISO Post Hoc Comparisons - Visual Area

Mean Difference SE t pholm

V1 V2 0.069 0.023 3.018 0.047
V3 0.085 0.023 3.746 0.029

V2 V3 0.017 0.023 0.728 0.494

Note. P-value adjusted for comparing a family of 3
Note. Results are averaged over the levels of: Session, Location

There was a main effect of visual area on mean ISO (F (2, 6) = 7.892, p =

0.021). Post-hoc pairwise comparisons for visual area (Table 4.4) indicated that

mean ISO in V1 was significantly different from V2 and V3. ISO is a comple-

mentary NODDI index that models for CSF partial-volume contamination. Since

sulci in the brain are filled with CSF and V1 lies along the calcarine sulcus, it is

expected that voxels in V1 to have higher levels of CSF contamination.

Repeated measures ANOVA tests (session: pre-, mid- and, post-training) did

not reveal any effects on mean ICVF (F (2, 4) = 0.602, p = 0.591), mean ODI

(F (2, 4) = 1.117, p = 0.412), and mean ISO (F (2, 4) = 6.239, p = 0.059) at the

white matter tract ROI. Descriptive plots can be seen in Figure 4.9.

4.4 Intermediate Discussion

Here, we investigated VPL-induced microstructural changes in the early vi-

sual cortex. We computed NODDI indices in the superficial cortical ROIs at the

training and control locations to explore neuroplasticity in the local cortical cir-

cuitry. Furthermore, we isolated the white matter tract connecting the training

location and the homotopic control location in the primary visual cortices of each

hemisphere. We analyzed the NODDI indices in this white matter tract ROI to

examine training-related changes in the interhemispheric connections.

We did not find any changes in NODDI indices that indicate neuroplasticity

in the superficial cortical ROIs. In the gray matter, ICVF and ODI represent
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Figure 4.9: Mean ICVF (a), mean ODI (b), and mean ISO (c) at the white
matter tract ROI. The dots show the mean values across subjects, and the rings
are individual mean for each subject.
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the characteristics of cellular processes that form the neuropil: dendrites and

unmyelinated axons. Therefore, changes in horizontal axonal projections and

dendritic arborization are expected to be captured by these indices. Previously,

axonal plasticity at the trained location in V1 is was reported in monkeys trained

with contrast detection task [22]. Similarly, performance improvement in bisec-

tion discrimination task was hypothesized to be underpinned by modulation of

horizontal connections at the trained location [12]. In contrast, we did not ob-

serve any significant difference in mean ICVF or mean ODI of superficial ROIs

between sessions and locations.

Consistent with our findings in the superficial ROIs, the white matter tract

ROI did not show any change in NODDI indices during training. White matter

plasticity has a complementary function to cortical plasticity. Since we did not

find any change in cortical microstructure of the superficial V1 ROIs at the train-

ing and homotopic control location, we did not expect microstructural alteration

of the white matter track that connects these cortical regions.

In sum, we did not find any VPL-induced changes in the microstructure of early

visual areas V1, V2, and V3 that would indicate experience-dependent plasticity.

However, there might be subtle changes we were not able to detect due to the

small sample size in our study.
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Chapter 5

General Discussion

In this thesis, we investigated experience-dependent neuroplasticity over the

course of perceptual learning of bisection discrimination task. We used model-

based MRI methods to examine functional and structural changes in the early

visual cortex. Specifically, we used pRF analysis to assess how functional archi-

tecture of the visual cortex was affected by perceptual learning. We used NODDI

to study potential microstructural changes both in the visual cortex and in the

interhemispheric connections between the visual cortices. We did not find any

training-related changes indicative of experience-dependent neuroplasticity in the

early visual cortex.

The results of pRF analysis presented in Chapter 3 show that pRF size in

the early visual areas did not change in response to training. Consistent with

our result, it was previously shown that receptive field size in monkey V1 were

unaffected by training with bisection discrimination task [12]. Instead of basic

receptive field properties, it was suggested that performance on bisection dis-

crimination task depends on contextual tuning of V1 neurons. Contextual tuning

arises from interactions between neurons with non-overlapping adjacent recep-

tive fields through long-range horizontal connections and allows the neurons to

use information from beyond their classical receptive field. It was proposed that

perceptual learning of bisection discrimination task is underpinned by dynamic
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modulation of contextual tuning of V1 neurons under top-down control [12] [13].

pRF method as we implemented in this study can not detect this kind of mod-

ulatory effect since it was only present during task performance. Moreover, it

is not clear how changes in contextual tuning of individual neurons would affect

pRF estimates which reflect combined receptive field of the neural population in

a given voxel.

In Chapter 3, we investigated the training-related changes to tissue microstruc-

ture in the early visual cortex. NODDI analysis of the cortical microstructure

presents the opportunity to capture changes to long-range horizontal connections,

the anatomical substrate of contextual tuning. We did not observe any change in

ICVF or ODI in cortical regions corresponding to trained location. In contrast to

a previous study reporting axonal plasticity in response to training with contrast

discrimination task [22], our results suggest no change to axonal projections. We

also examined microstructural plasticity in the white matter track connecting

the training location and homotopic control location in V1 to examine interhemi-

spheric interactions. This analysis did not reveal any training related changes as

expected given the complementary role of white matter plasticity.

There is an ongoing debate concerning the extent of neuroplasticity in the adult

early visual cortex [53]. While there is consensus that adult visual experience is

shaped by the interplay between plasticity and stability, which side the brain

favors is the subject of debate. Plasticity provides adaptability to changing envi-

ronmental conditions throughout our lives. However, stability is also required for

an optimized perceptual experience. It is argued that the balance between plas-

ticity and stability is determined by the cost of ”coding catastrophe” [54]. When

neural code is changed in any level of visual processing hierarchy, the downstream

levels must update their interpretation of the neural code for reliable visual per-

ception. Accordingly, the cost is lower when plastic changes occur in higher-level

areas instead of the early visual cortex since there are fewer downstream areas

that interpret the changed neural code. In a similar vein, the selective reweight-

ing model of perceptual learning supports stability in the early visual cortex and

plasticity in higher-levels of visual processing. As explained in the introduction,

this model asserts that performance improvement is underpinned by optimized

52



readout from early sensory representations which remain stable [5, 6]. The lack

of training-related changes in the early visual cortex can be seen as in accordance

with such notion of experience-dependent neuroplasticity in the visual cortex.

Nevertheless, the results of our study are inconclusive due to limitations which

will be discussed next.

The primary limitation to this study is the small sample size. As discussed

earlier, stability is an important part of normal visual function. Thus the plastic

changes in response to training are expected to be subtle in contrast to large-

scale changes such as reorganization of the visual cortex as a result of sensory

impairment. When combined with the subtlety of changes in the short term

experience-dependent plasticity, the small sample size might prevent statistically

significant results to be obtained. Unfortunately, it was not possible to recruit

more participants due to the global COVID-19 pandemic at the time of study.

Moreover, the already small sample size was further scaled down in some cases

due to missing data or noneligible analysis results. Although subject exclusion

from analysis is not uncommon in research, the combination of longitudinal study

design and multimodal MRI approach increases the likelihood of exclusion. For

example, we were able to study white matter plasticity in three participants out

of the six that took part in the study since the rest were excluded from the

analysis pipeline due to various reasons. Increased likelihood of exclusion and

discontinuation constitutes a caveat for determining the optimal sample size in

similar research.

Another important limitation is the restriction of analysis to the early visual

cortex. The current understanding of VPL, as emphasized in the introduction,

favors that it involves changes at multiple levels of the visual hierarchy. In order

to get a comprehensive understanding of VPL, it is important to treat the visual

cortex as a whole instead of focusing on a specific processing level. Accordingly,

the main purpose of the study was to investigate VPL-induced plasticity in the

visual cortex. However, we were not able to identify high-level visual areas con-

sistently in all participants which led us to restrict our analysis to early visual

areas V1, V2, and V3. Therefore, the training-related changes that potentially

took place in high-level visual areas were unexplored. The factors that might
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have prevented successful delineation of high-level visual areas were discussed

in Chapter 3. In light of these considerations, further optimization of both the

functional imaging protocol and the stimulus presentation protocol is needed.

In addition to these limitations, the unexpected behavioral effect observed in

the training complicates the interpretation of the results. Although not statisti-

cally significant, perceptual thresholds at the trained location initially decreased

with training but returned to pre-training values by the end of training. In other

words, the performance improvement diminished with ongoing training. This is

contradicting the literature where performance improvement in VPL is shown to

be persistent. The training protocol used in our study consisted of eight sessions

run on separate days. While there is no standardized protocol for behavioral

training in the VPL literature, similar training intervals are commonly used. A

distinguishing aspect of our experimental timeline is the intensity of neuroimaging

sessions. The participants attended six MRI sessions each lasting about a period

of 1.5 hour. Moreover, the threshold measurements were conducted on the same

day after MRI sessions in an attempt to shorten the duration of experiment. Such

time-consuming MRI sessions might deplete the motivation of participants which

in turn might reflect itself as decrease in task performance.

Although VPL does not require external reinforcement, both feedback [55] and

reward [56] have been shown to accelerate the rate of learning and enhance perfor-

mance improvement. By utilizing this facilitatory effect of external reinforcement,

it might be possible to observe faster and stronger learning effects and shorten

the experimental duration. We did not benefit from external reinforcement. The

monetary reward provided in our experiment did not serve as an external rein-

forcement since it did not vary with performance. Moreover, no feedback was

given during behavioral training. Considering the inconsistent learning effect we

observed, it might be favorable to provide both feedback and reward in such a

long experimental timeline.

In conclusion, we report no experience-dependent plasticity in early visual cor-

tex following training in bisection discrimination task. However, the small sample
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size renders the results inconclusive. Moreover, we cannot rule out the possibil-

ity that the lack of plastic changes was due to the failure of behavioral training

since we did not observe a significant improvement in performance with training.

Nevertheless, the model-based neuroimaging approach we employed here offers a

unique opportunity for fine-scale examination of functional and structural changes

in the visual cortex and has the potential to provide a more in-depth understand-

ing of VPL-induced plasticity.

As explained previously in Chapter 2, the work presented in this thesis is part

of an extensive research project that investigates experience-dependent plastic-

ity in response to VPL by combining task-based fMRI, resting-state fMRI, pRF

analysis, tractography and NODDI analysis together. Although we focused on

the plasticity in the visual cortex here, it would be possible to conduct a whole-

brain multimodal investigation of VPL-induced plasticity within the scope of this

project. This provides the opportunity to simultaneously examine all proposed

loci of plasticity: early visual areas, higher visual areas, decision making regions,

and connectivity between visual cortex and decision making regions. Despite

requiring further optimization, we were able to build the analysis pipeline that

would allow the integration of findings from multiple neuroimaging modalities.

This would allow combining findings obtained from different neuroimaging tech-

niques to overcome the limitations of each technique and to understand brain

dynamics underlying VPL with greater detail. In the future, it is necessary

to increase the sample size to reveal the full potential of the proposed analysis

pipeline.
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