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ABSTRACT

ESSAYS ON NETWORK THEORY AND

APPLICATIONS

İkizler, Hüseyin

Ph.D., Department of Economics

Supervisor: Assist. Prof. Dr. Kemal Yıldız

January 2019

This thesis consists of three essays centering on network theory. In the first essay,

we use a network model to show how homophily, conjoined with conformity, may

shape political divisions along ethnic lines in multi-ethnic societies. We find that

the decisive factor is not simply the degree of homophily but the presence of

monotone agents, who are only connected with their own types. When there is

no monotone agent, even if the level of homophily is unbounded, ethnic divisions

can be avoided. The presence of a few monotone agents necessarily divides a

sparsely integrated society along ethnic lines.

The second essay examines both theoretically and empirically (strong) Nash equi-

librium of the free labor mobility network formation game. First, we design a

network formation game in which each country’s action is a choice of a mobility

network between a subset of countries. The utility of each country is determined

by a country specific threshold level of absorption ratio and net labor flows. We
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theoretically characterize all stable and optimal mobility networks under spe-

cific assumptions. In our empirical analysis, we focus on EU and EFTA member

countries. We observe that some specific countries incur the maximum loss in

the grand mobility network according to our model. These countries turnout

to be the ones in which reintroduction of quotas on migration is approved via

referendum.

In the third essay, we examine a normal form game of network formation due

to Myerson (1991). All players simultaneously announce the links they wish to

form. A link is created if and only if there is mutual consent for its formation.

The empty network is always a Nash equilibrium of this game. We define a

refinement of Nash equilibria that we call trial perfect. We show that the set

of networks which can be supported by a pure strategy trial perfect equilibrium

coincides with the set of pairwise-Nash equilibrium networks, for games with

link-responsive payoff functions.

Keywords : Equilibrium Refinement, Homophily, Labor Mobility, Network For-

mation, Pairwise-stability.
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ÖZET

AĞ TEORİSİ VE UYGULAMALARI ÜZERİNE

DENEMELER

İkizler, Hüseyin

Doktora, Ekonomi Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi Kemal Yıldız

Ocak 2019

Bu tez çalışması, ağ teorisini merkez alan üç makaleden oluşmaktadır. İlk makalede,

çok etnikli toplumlarda, aynı türlülüğün uyumluluk ile siyasi bölünmeleri et-

nik kesimler boyunca nasıl şekillendirebileceğini göstermek için ağ modeli kul-

lanılmıştır. Belirleyici faktörün, sadece bireylerin kendilerine benzer kişilerle olan

bağlantı sayısından kaynaklanmadığını, karşı türden bireylerle bağlantısı olmayan

monoton bireylerin varlığının da olduğu görülmüştür. Monoton bireyin olmadığı

durumda, homojenlik seviyesi sınırsız olsa dahi, etnik bölünmeler önlenebilmek-

tedir. Birkaç monoton bireyin varlığı zorunlu olarak nadiren bütünleşmiş bir

toplumu etnik hatlar boyunca bölmektedir.

İkinci makale, serbest iş ağı oluşturma oyununun hem teorik hem de ampirik

olarak (güçlü) Nash dengelerini incelemektedir. Makalede tasarlanan ağ oluşturma

oyununda ülkeler herhangi bir ülke grubu arasında kurulan ağ yapısını seçmektedir.

Her ülkenin faydası, ülkeye özgü bir absorbe oranı ve net işgücü akışı eşik seviyesi
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ile belirlenmektedir. Belirli varsayımlar altında tüm kararlı ve optimal mobilite

ağları teorik olarak karakterize edilmiştir. Ampirik analizde ise, AB ve EFTA üye

ülkelerine odaklanılmıştır. Bazı ülkelerin, modele göre büyük hareketlilik ağında

maksimum zarara uğradıkları gözlenmiştir. Bu ülkelerin, göç kotalarının yeniden

oluşturulmasının referandum yoluyla onaylandığı ülkeler olduğu görülmüştür.

Üçüncü makalede, Myerson (1991)’dan kaynaklanan normal bir ağ oluşumu oyu-

nunu incelemekteyiz. Tüm oyuncular aynı anda oluşturmak istedikleri bağlantıları

duyururlar. Bir bağlantı ancak ve ancak onun oluşumu için karşılıklı rıza varsa

oluşturulur. Boş ağ her zaman bu oyunun Nash dengesidir. Deneme mükem-

mel olarak adlandırdığımız Nash dengelerinin iyileştirilmesini tanımlarız. Saf bir

strateji denemesiyle desteklenebilen ağlar kümesinin mükemmel dengeyi destek-

lediğini, bağlantıya duyarlı ödeme fonksiyonuna sahip oyunlar için ikili-Nash

denge ağları kümesine denk geldiğini gösterdik.

Anahtar Kelimeler: Ağ Oluşumu, Benzer Tür, Denge Düzeltmesi, İkili-kararlılık,

İşgücü Hareketliliği.
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CHAPTER 1

INTRODUCTION

Social networks are important in many aspects of our lives. In many circum-

stances agents act by imitating their neighbors who are similar to them, in that

similar agents contact more frequently. For example, the decision of an agent to

whether adopt or not a new product, find a job is often influenced by the choices

of his linkages. There is a growing literature that motivates the theoretical ex-

planation of network effects (Jackson and Zenou, 2015).

The tendency of agents to contact with agents who are similar to them is referred

to as “homophily” (Currarini et al. (2009), Jackson and López-Pintado (2013)).

When agents contact with others who have the same characteristics like race,

ethnicity, religion, age or education this is called “Status Homophily”. When

agents contact with others who think similarly (e.g. political views, consump-

tion behavior, etc.) this is called “Value Homophily”. As it can be evident from

their definitions, status homophily does not have any direct outcome relevant

implication, on the other hand value homophily does. It is observed that status
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homophily leads to value homophily (DiPrete et al. (2011)). For example, Mars-

den (1988) shows that Americans tend to discuss important issues mostly with

friends of the same race, age and education. Although the status homophily seems

to decrease in the last two decades (Mcpherson et al. (2006)), it still persists. In

Chapter 2, we use a network model to show how status homophily derives value

homophily.

The importance of network occurs also in economic settings, such as trading

alliances, research partnership, etc. As Jackson and van den Nouweland (2005)

suggest it is important to understand which networks are likely to form. In

Chapter 3, we consider a network in which nodes are interpreted as countries

and a link connecting two countries represents the free labor mobility agreement

between the two countries. This will give rather a simple network structure

to work with. As an application, we analyze enlargement of EU using a game

theoretic network formation model for the free labor mobility area.

The mutual consent requirement of the free labor mobility agreement game in

Chapter 3 creates coordination problems. In general, the game has a multiplic-

ity of Nash equilibrium. In Chapter 3, we use strong Nash equilibrium, because

both pairwise stability and Nash equilibrium concepts result multiple stable net-

works. A way of addressing this issue, pairwise-Nash equilibrium is commonly

used in the literature.1 It requires that, on top of the standard Nash equilibrium

conditions, any mutually beneficial link be formed at equilibrium2, without spec-

1Pairwise-Nash equilibrium was used, among others, in Bloch and Jackson (2007), Calvó-
Armengol (2004), Goyal and Joshi (2006), Buechel and Hellmann (2012) and Joshi and Mahmud
(2016).

2But, this is not demanding robustness to bilateral moves, as pairwise-Nash equilibrium does
not allow pairs of players to coordinate fully in their strategies.
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ifying any process through which players might coordinate such a deviation. The

aim of Chapter 4 is to redefine pairwise-Nash equilibrium as a non-cooperative

refinement. If the concept can be rephrased without referring to any implicit

cooperation, then its use in non-cooperative games would be justified.

3



CHAPTER 2

HOMOPHILY, CONFORMITY AND THE

DYNAMICS OF SEGREGATION

In many circumstances agents act by imitating their neighbors who are similar

to them, in that similar agents contact more frequently. The tendency of agents

to contact with agents who are similar to them is referred to as “homophily”

(Currarini et al. (2009), Jackson and López-Pintado (2013)). When agents con-

tact with others who have the same characteristics like race, ethnicity, religion,

age or education this is called “Status Homophily”. When agents contact with

others who think similarly (e.g. political views, consumption behavior, parental

attitudes, etc.) this is called “Value Homophily”. As it can be evident from

their definitions, status homophily does not have any direct outcome relevant

implication, on the other hand value homophily does. It is observed that status

homophily leads to value homophily (DiPrete et al. (2011)). For example, Mars-

den (1988) shows that Americans tend to discuss important issues mostly with

friends of the same race, age and education. Although the status homophily seems

to decrease in the last two decades (Mcpherson et al. (2006)), it still persists. We
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use a network model to show how status homophily derives value homophily.

In our model, we have two types of agents. These types might be different races

or ethnicities which stand for status homophily. Agents can choose between two

opinions, A or B. In our benchmark model, we assume that agents only care

about conformity and would like to have the same opinion with a majority of

their neighbors. This is inline with Schelling (1969)’s Segregation Model in which

an agent is said to be happy if half or more of his 10 nearest neighbors are of

the same type. In other words, agents go along with the majority of the group

regardless of what they themselves think. Also we extend this model in which

agents can possibly get an intrinsic utility from adopting opinion A or B alone.1

In our context, the more connections of an agent who adopts opinion A (B), the

more likely that agent will adopt opinion A (B). Precisely, let internal links of

an agent be the links that he forms with the same type of agents and external

links of an agent be the links that he forms with the opposite type of agents.

We refer the degree of status homophily as the internal/external link ratio of an

agent, so status homophily takes value between [1,∞). We say there is no status

homophily when ratio equals to 1 and there is extreme status homophily when

ratio converges to ∞.

In our model, if a group of agents adopt the same opinion at an equilibrium then

this corresponds to value homophily for that group. In addition, if the same type

1Jahoda (1959) points out that there is an ample evidence for the existence of independence
in decision process. Also Terry and Hogg (1996) show that personal factors utilize a larger
influence on decision process when an agent has a lower number of connections adopting the
opinion. So we formulate our extended model as such: if the number of an agent’s connections
who adopt an opinion B is limited then personal factors make the agent adopt opinion A.
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of agents adopt the same opinion at an equilibrium then status homophily derives

value homophily. We analyze if there is a threshold degree of status homophily

that makes status homophily derive value homophily at any equilibrium. We

prove that for any degree of status homophily there is a network with almost

the same degree of status homophily such that status homophily does not derive

value homophily at some equilibria.

Our main finding shows that the decisive factor is not simply the degree of status

homophily, but the presence of monotone agents, who are only connected with

their own types. When there is no monotone agent, even if the level of status

homophily is unbounded, ethnic divisions can be avoided. The presence of a few

monotone agents necessarily divides a sparsely integrated society along ethnic

lines.

The rest of the essay is organized as follows. We introduce our theoretical frame-

work in Section 2.1. In Section 2.2 we present results. We extend our base model

in Section 2.3. In Section 2.4 we conclude.

2.1 The Base Model

Consider a population consisting of two equally sized groups of agents. We assume

that each group has n agents and each agent of the same type are linked to each

other, i.e. there is a complete network within types. Also, each agent has the

same number of external links with the opposite type denoted by p. So, the

6



degree of status homophily of each agent equals to
n− 1

p
.

Agents can choose between two opinions, A or B. They only care about confor-

mity and would like to have the same opinion with a majority of their neighbors.

A state of the system is a vector s = (s1, . . . , sn) ∈ S ≡ {0, 1}n where si = 0 if

agent i adopts opinion A, whereas si = 1 if agent i adopts opinion B. A state s∗

is an equilibrium if each agent adopts the same opinion with the majority of his

connections.

The main question is how does homophily in the initial network (status ho-

mophily) affect the segregation of agents between the two opinions at an equilib-

rium (value homophily).

To see the relationships between status homophily and value homophily let us

explore the following three networks (Figure 2.1):

1

6

3

4

2

5

1

6

3

4

2

5

1

6

3

4

2

5

g1 g2 g3

Figure 2.1: Networks g1-g3

In network g1, agents have half of their links with the opposite type, i.e. there is

no homophily. In network g1, there are eight equilibria at which there are different

opinions; only at two of them status homophily derives value homophily. Suppose,
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as in network g2, agents are initially connected only within types. There are four

Nash equilibria of the opinion game. In two of the equilibria every agent adopts

the same opinion. In the other two equilibria agents have different opinions. At

g2, obviously, at every equilibria status homophily derives value homophily. This

continues to be true at g3 as well. Although at g3 one third of each agent’s links

are with the opposite type, still at any equilibrium with two different opinions,

status homophily derives value homophily. In the following section we analyze

whether there is a threshold value for the degree of status homophily that makes

status homophily derive value homophily at every equilibria.

2.2 Results

There is always an equilibrium at which status homophily leads to value ho-

mophily. But, the following proposition asserts that there is no threshold value

for the degree of status homophily such that value homophily arises at each equi-

librium.

Proposition 1. For any degree of status homophily, h ∈ R+, there exists a

network g with almost the same degree of status homophily, y ∈ [h, h + 1), such

that status homophily does not derive value homophily at some equilibria of the

opinion game.

Proof. See Appendices.

Proposition 1 shows that for status homophily to derive value homophily the

8



decisive factor is not the degree of status homophily. Our next proposition,

Proposition 2, shows that the presence of monotone agents, agents who are only

connected with their own types, plays a key role for the status homophily to

derive value homophily.

Proposition 2. Let p be the number of external links of an agent and mi be the

number of monotone agents of Type i. If mi > p then for any network g status

homophily derives value homophily at every equilibria.

Proof. See Appendices.

Proposition 2 shows that a sparsely integrated society, in which status homophily

degree is rather high, can be polarized along ethnic lines by a few monotone

agents. On the contrary, highly integrated societies, in which status homophily

degree is rather low, are resilient to ethnic divisions if for each type the number

of monotone agents is rather limited.

2.3 The Extended Model

Different from the Base Model in Section 2.1, each agent i has a separable utility

function:

uAi (Ai) = uA + f(Ai) or uBi (Bi) = uB + f(Bi)

9



where uAi (Ai)[u
B
i (Bi)] is the total utility from adopting opinion A(B) when Ai(Bi)

number of agent i’s connections adopt opinion A(B), uA(uB) is the utility from

adopting opinion A(B) alone. We assume f(.) is a strictly increasing with the

number of connections who adopt the same opinion. For simplicity, we assume

f(0) = 0 and f(n − 1 + p) = 1 where n − 1 + p is the number of total links in

the network g defined in the base model. With out loss of generality, we assume

uA > uB, otherwise the model will be similar with the base model. Moreover, we

assume uB + 1 > uA to insure that agents can possibly adopt opinion B if there

is enough connections who adopt opinion B.

For a given network g,

• if uAi (Ai) > uBi (Bi), agent i will adopt opinion A,

• if uBi (Bi) > uAi (Ai), agent i will adopt opinion B,

• if uAi (Ai) = uBi (Bi), agent i will adopt opinion A with probability 1
2

and

will adopt opinion B with probability 1
2
.

A state s∗ is an equilibrium if each agent maximizes his utility. In the follow-

ing subsection we generalize our earlier results to this extended model. A key

observation in this generalization is the following:

Remark 1. Note that f(.) is a strictly increasing function and uA > uB, so for

some n∗ ∈ Z+ such that n∗

n−1+p ≤
1
2
, uAi (n∗) > uBi (n∗), i.e. agent i adopts opinion

A if he has more than or equal to n∗ connections who adopt opinion A. Thus, a

state s∗ is an equilibrium if each agent has at least n∗

n−1+p fraction of links who

adopt the same opinion.

10



2.3.1 The Generalization of the Results

The class of networks that satisfy Proposition 1 is a superset of the class of

networks that satisfy Proposition 1∗. Unlike in Proposition 1, in Proposition 1∗

the structure of links between types in the network g matters.

Proposition 1∗. See Proposition 1.

Proof. See Appendices.

Proposition 2∗. See Proposition 2.

Proof. See Appendices.

2.4 Conclusion

We introduce a simple network model to analyze if there is a threshold degree

of status homophily that makes status homophily derive value homophily at ev-

ery equilibria. The main takeaway of the essay is that the decisive factor is not

simply the degree of status homophily (Proposition 1), but the presence of mono-

tone agents, who are only connected with their own types (Proposition 2). It

follows that if there is no monotone agent, even if the level of status homophily

is unbounded, ethnic divisions can be avoided. On the other hand, the presence

of a few monotone agents necessarily divides a sparsely integrated society along

ethnic lines. Our results do generalize to an extended model in which agents can

possibly get an intrinsic utility from adopting an opinion alone.
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CHAPTER 3

FREE LABOR MOBILITY NETWORK

BETWEEN EU AND EFTA COUNTRIES

There is a growing body of literature questioning how does the enlargement of

a free labor mobility network (or simply mobility network) affect the incumbent

countries (e.g. Kahanec and Zimmermann (2010), Barrell et al. (2010) and Gal-

goczi et al. (2013)). However, little is known about the process of mobility

network formation. This essay contributes to the debate by analyzing enlarge-

ment of EU using a game theoretic network formation model for the free labor

mobility area.

We consider a network in which nodes are interpreted as countries and a link

connecting two countries represents the free labor mobility agreement between

the two countries. For our analysis, we need a measure of a country’s ability to

accommodate the labor inflows in a mobility network. For this purpose, we pro-

pose the “absorption ratio”, which is the ratio of the total amount of net labor

flows to the total amount of post-migration labor force. There is ample evidence
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in labor literature indicating that labor inflows increase the unemployment rate

and reduce the real wages (Harris and Todaro (1970), Stalder (2010) and Oh et

al. (2011)). We assume that country benefits from any amount of labor outflows

but tolerates labor inflows up to some country specific threshold level. In our

model, each country joins the mobility network if absorption ratio in the mobility

network is less than his threshold.

On the theoretical side, we characterize all stable and optimal mobility networks

under specific assumptions. Typically in each stable networks, the mobility clique

always occur. The size of these cliques changes according to the assumptions. In

taking these theoretical results to data, we focus on the mobility network within

EU and EFTA countries.

A major difficulty in taking our theoretical model to data is the identification

of the countries’ threshold levels. EU-EFTA data is particularly appropriate for

this. Following the enlargement, the majority of incumbent countries maintained

tough restrictions on labor immigration from the EU-10 countries. These re-

strictions have been applied up to seven years after the enlargement (Sedelmeier

(2014)). Therefore, we choose 2004-2011 as a controlled migration period (i.e.

countries revealed their threshold levels) and 2012-2015 as a free mobility period.

Our main empirical question is whether the free mobility network in 2012-2015

is stable compared to controlled mobility network in 2004-2011. We observe

that some specific countries incur the maximum loss in the grand mobility net-

work according to our model. These countries turnout to be the ones in which

reintroduction of quotas on migration is approved via referendum.
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3.1 Basic Model

Let N = {1, . . . , n} be the set of countries. The labor mobility relations among

these countries are formally represented via a network in which nodes are inter-

preted as countries. Having a link connecting two countries means there is a labor

mobility agreement between these countries.

A network g is an undirected graph connecting countries.1 For each pair of

countries i and j, let ij denote the link between i and j, so ij ∈ g indicates

that countries i and j are linked in the network g. The complete network in

which any pair of countries are linked to each other is denoted by gN . For

each network g, N(g) denotes the set of non-isolated nodes in g, i.e. N(g) =

{i | ∃j ∈ N with ij ∈ g}. The set of country i’s direct links in the network g is

Ni(g) = {j ∈ N \ {i} | ij ∈ g}.

Given any nonempty C ⊂ N , gC is the complete network among the countries in

C. We refer to gC as the free mobility clique among the countries in C. Let

G = {gC | ∅ 6= C ⊂ N} be the set of all possible complete networks on nonempty

subsets of N .

Initially countries constitute a complete network on N . Each country’s action is

choice of a free mobility clique. That is, the action space of each country i is Si =

{gC ∈ G | i ∈ C}. An action profile is thus a vector s = (s1, . . . , sn) indicating

desired free mobility clique for each country. A free mobility clique gC will be

formed if and only if for all i ∈ C, si = gC . An action profile s = (s1, . . . , sn)

1Notations are from Bloch and Jackson (2006).
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induces a set of free mobility cliques gC1 , . . . , gCk such that N =
⋃k
l=1Cl.

We identify induced network structure of the countries with action profile s such

that the induced network structure g(s) satisfies

g(s) =
k⋃
l=1

gCl

We assume that each country i has a unit of citizens. Based on the random

utility model, it is possible to express the probability that citizens of country i

will migrate to country j conditional on the set of available countries. Under the

IIA assumption for a given network g, we have

Pij(Ni(g)) =
Pij(N)∑

l∈Ni(g)∪{i} Pil(N)

Let PRLFi be the pre-migration labor force in country i’s labor market. Given

a network g the total amount of labors that prefer to migrate from the country

is [1 − Pii(Ni(g))] × PRLFi. The post-migration labor force POLFi(g) is then

given by
∑

j∈Ni(g)∪{i} Pji(Nj(g))×PRLFj. The “absorption ratio” is the ratio

of the total amount of net labor flows to the total amount of post-migration labor

force. We consider the absorption ratio ARi(g) as a measure of a country’s ability

to accommodate the labor inflows in a mobility network g. If ARi(g) is positive

(negative) this means that there is a net labor inflows from (outflows to) the

country.
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ARi(g) =
POLFi − PRLFi(g)

POLFi(g)
× 100

We design a normal form game Γ =< N, {Si}i∈N , {ui}i∈N > where N is the set

of countries, Si is the action space of each country i and ui : S1 × . . .× Sn → R

is country i’s payoff function. For any action profile s = (s1, . . . , sn), the utility

function is:

ui(s) =


ARi − ARi(g(s)) , if Ni(g(s)) 6= ∅

0 , otherwise.

In our model, each country decides to join the mobility network if absorption

ratio in the mobility network is less than his threshold which can take the value

at least 0. For simplicity, we assume that a country will choose to be in a coalition

even if he gets zero utility.

For given free mobility cliques gC1 , . . . , gCk induced by the action profile s, a

nonempty coalition C ⊂ N is an admissible coalition if there exists l ∈

{1, . . . , k} such that C ⊂ Cl. We define a strong Nash equilibrium as an action

profile that is stable against deviations by admissible coalitions. An action profile

s is a strong Nash equilibrium if there is no free mobility cliques gC1 , . . . , gCk

induced by the action profile s and no admissible coalition C with action profile

s′ = (s′C , s−C) such that ui(s
′) ≥ ui(s) for all i ∈ C and for some i ∈ C we have

ui(s
′) > ui(s). We say that a network g is stable if the state which induces the
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network g is a strong Nash equilibrium. Additionally, a network g is optimal if

it is a stable network containing the largest number of links in the set of stable

networks.

3.2 Theoretical Results

In this section, we will characterize strong Nash equilibrium of the mobility net-

work formation game under the following assumptions.

Assumption 1. Each country has equal size of pre-migration labor force, i.e.

for all i, j ∈ N , we have PRLFi = PRLFj.

Proposition 3. Under A1, every action profile is a strong Nash equilibrium.

Proof. See Appendices.

Proposition 3 asserts that A1 guarantees that every action profile is a strong Nash

equilibrium, even though absorption threshold levels and migration probability

distributions of countries are different.

Corollary. Under A1, the grand coalition network is the unique optimal network.

Assumption 2. Each country has the same migration probability distribution

defined on host countries. That is, with equal probability, citizens of countries i

and j stay in the home country, i.e. Pii(N) = Pjj(N) and citizens of country i
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migrate to any host country with the same probability, i.e. Pij(N) = Pik(N), for

j, k ∈ N .

Under A2, the migration probability parameters of a country reduce to Pii(N)

where Pij(N) = 1−Pii(N)
n

.

Assumption 3. No two countries has equal size of pre-migration labor force,

i.e. there exists no i, j ∈ N such that PRLFi = PRLFj.

Proposition 4. Under A2-A3, an action profile s is a strong Nash equilibrium

if and only if s induces a network g with free mobility cliques gC1 , . . . , gCk such

that for every l ∈ {1, . . . , k}, |Cl| ≤ 2 and for any i ∈ Cl, ui(s) ≥ 0.

Proof. See Appendices.

Under A2-A3, if an action profile s is a strong Nash equilibrium, then s induces

a network g which has free mobility cliques containing at most two countries.

Remark 2. Under A2, there exists a strong Nash equilibrium which induces a

network that has free mobility cliques containing more than two countries. In

such free mobility cliques, all countries must have equal size of pre-migration

labor force.

Remark 3. Under A2-A3, the grand coalition network is not an optimal network.

There may exist more than two optimal networks. The common characteristic of

the optimal networks is that all of them contains at most n
2

free mobility cliques.

Proposition 5 gives the necessary and sufficient condition for the existence of
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stable network with free mobility cliques containing at least two members. Note

that Proposition 5 allows any type of heterogeneity in the countries.

Proposition 5. A stable network with free mobility cliques containing at least

two members exists if and only if for some action profile s there exists C ⊂ N

such that |C| ≥ 2 and for all i ∈ C, ui(s) ≥ 0.

Proof. See Appendices.

3.3 Free Labor Mobility Networks between EU

and EFTA Countries

3.3.1 Data

We use OECD labor mobility data for periods 2004-2015. In this era, there are

32 countries who have joint labor mobility agreement. 28 of them are EU mem-

bers and 4 of them are EFTA members. Among these, there is no available labor

mobility data for 6 countries (Estonia, Croatia, Cyprus, Lithuania, Malta, Liecht-

enstein).2 Since the total population of these 6 countries is nearly 2 percent of

the total population of 32 countries, the non-existence of data for these countries

is assumed to be insignificant.

For the 2004-2015 period, data consist of: (1) total nationals in countries, (2)

2Croatia became EU member in 2013, the effect of the absence of Croatia’s data can be
negligible.
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total immigrants from, to EU/EFTA countries and (3) labor force participation

rate of citizens of countries. We use 2012-2015 period averages of the stocks

of EU/EFTA immigrants of working age by citizenship and by country. We

calculate the percentage of citizens who leave country i but prefer to participate

in another country j’s labor market in the mobility network gN , i.e. Pij(N).

These percentages are shown in Table 3.1.

3.3.2 Stability and Optimality

Following the 2004 enlargement, the majority of incumbent countries maintained

tough restrictions on labor immigration from the EU-10 countries. These restric-

tions have been applied up to seven years after the enlargement. Therefore, we

choose 2004-2011 as a controlled migration period (i.e. countries revealed their

threshold levels) and 2012-2015 as a free mobility period. Our main question is

if the free mobility network in 2012-2015 is stable compared to controlled mobil-

ity network in 2004-2011. We use 2004-2011 period data to calculate country

specific threshold level of absorption ratio (ARi). We normalize the threshold

levels that are greater than zero as zero.
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Table 3.2: Absorption ratio period average levels

Country
Absorption Ratio

Utility Country
Absorption Ratio

Utility
2004-2011 2012-2015 2004-2011 2012-2015

NO (EFTA) 0.4 2.6 -2.2 NL (EU15) 0.0 -1.1 1.1

CH (EFTA) 10.0 12.1 -2.1 FI (EU15) 0.0 -2.0 2.0

UK (EU15) 1.2 2.4 -1.2 SI (EU10) 0.0 -2.1 2.1

LU (EU15) 35.9 36.9 -1.0 HU (EU10) 0.0 -2.5 2.5

BE (EU15) 4.8 5.7 -0.9 EL (EU15) 0.0 -2.8 2.8

ES (EU15) 2.9 3.5 -0.6 IE (EU15) 0.0 -2.8 2.8

DE (EU15) 2.0 2.3 -0.3 SK (EU10) 0.0 -4.9 4.9

CZ (EU10) 0.1 0.3 -0.2 IS (EFTA) 0.0 -5.0 5.0

SE (EU15) 1.3 1.2 0.1 PL (EU10) 0.0 -6.0 6.0

FR (EU15) 1.4 1.3 0.1 BG (EU10) 0.0 -7.6 7.6

AT (EU15) 0.0 1.4 -1.4 LV (EU10) 0.0 -10.8 10.8

DK (EU15) 0.0 0.6 -0.6 PT (EU15) 0.0 -11.2 11.2

IT (EU15) 0.0 -0.3 0.3 RO (EU10) 0.0 -12.5 12.5

To check the stability of the grand mobility network in the post-enlargement pe-

riod with no migration restrictions, we calculate the utility levels of each country.3

From Table 3.2 one can observe that 10 of the 26 countries get negative utility.

That is, the grand free mobility network is not stable compared to controlled

mobility network in 2004-2011. If we rank utilities of the countries with strictly

positive absorption threshold levels, then we have Norway, Switzerland, and UK

in the top three. First in 2014 Switzerland, then in 2016 UK put whether to stay

in the free mobility network or not to a vote. These findings seem to be consistent

with the implications of our model.

3AT:Austria, BE:Belgium, DK:Denmark, FI:Finland, FR:France, DE:Germany, EL:Greece,
IE:Ireland, IT:Italy, LU:Luxembourg, NL:Netherlands, PT:Portugal, ES:Spain, SE:Sweden,
UK:United Kingdom, CZ:Czech Republic, LV:Latvia, HU:Hungary, PL:Poland, SK:Slovakia,
SI:Slovenia, BG:Bulgaria, RO:Romania, IS:Iceland, NO:Norway, CH:Switzerland.
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As our Proposition 5 suggests, we observe that countries form free mobility cliques

in stable networks. By our Proposition 4, under A2-A3, the maximum size of

the cliques should be 2. We observe that A3 is satisfied, however since country

specific migration probability distributions are different A2 is violated. This

leads to the maximum size of the cliques changes to be 5 instead of 2.

Table 3.3: Number of distinct cliques containing the country in a stable network

Country
Size 5

cliques

Size 4

cliques

Size 3

cliques

Size 2

cliques

Country
Size 5

cliques

Size 4

cliques

Size 3

cliques

Size 2

cliques

UK 1 5 12 22 EL 0 0 1 9

FR 1 4 7 24 IT 0 0 1 9

DE 1 3 11 24 CH 0 0 0 25

SE 1 2 4 25 CZ 0 0 0 16

IS 1 2 3 8 PT 0 0 0 10

NO 0 2 4 24 LV 0 0 0 10

AT 0 2 2 8 HU 0 0 0 10

LU 0 1 6 25 BG 0 0 0 10

SI 0 1 5 9 RO 0 0 0 10

ES 0 1 4 25 FI 0 0 0 9

DK 0 1 1 8 IE 0 0 0 9

BE 0 0 1 25 SK 0 0 0 9

NL 0 0 1 10 PL 0 0 0 7

The common characteristic of the optimal networks is that all of them con-

tains 6 free mobility cliques (Table 3.4). In each optimal network, Austria-

France-Spain-Norway, Sweden-United Kingdom-Slovenia-Iceland and Germany-

Denmark-Luxembourg form free mobility cliques. Belgium, Czech Republic, and

Switzerland can only form 2-member cliques in each optimal network.
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Table 3.4: Structure of the optimal networks

1st Clique 2nd Clique 3rd Clique 4th Clique 5th Clique 6th Clique

AT (EU15) SE (EU15) DK (EU15) BE (EU15) CZ (EU10) CH (EFTA)

FR (EU15) UK (EU15) DE(EU15) ? ? ?

ES (EU15) SI (EU10) LU (EU15) ⇓ ⇓ ⇓

NO (EFTA) IS (EFTA)

Candidates

FI (EU15) FI (EU15)

EL (EU15) EL (EU15)

IE (EU15) IE (EU15)

IT (EU15) IT (EU15)

NL (EU15) NL (EU15) NL (EU15)

PT (EU15) PT (EU15) PT (EU15)

LV (EU10) LV (EU10) LV (EU10)

HU (EU10) HU (EU10) HU (EU10)

PL (EU10) PL (EU10)

SK (EU10) SK (EU10)

BG (EU10) BG (EU10) BG (EU10)

RO (EU10) RO (EU10) RO (EU10)

3.4 Concluding Remarks

We observe that implications of our theoretical model for labor mobility network

formation within EU and EFTA countries are consistent with some of the ob-

served facts. As a main takeaway from these observations, we can suggest that

country specific conditions should be applied that restrict the free labor mobility

flows between member countries. The network structure between countries might

lead the migration issue to spread to all EU and EFTA countries. We consider

extending our analysis with different skills of labors as a promising future work.
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CHAPTER 4

EQUILIBRIUM REFINEMENTS FOR THE

NETWORK FORMATION GAME

This chapter is already published in a journal as: İlkılıç, R. & İkizler H. (2019).

“Equilibrium Refinements for the Network Formation Game”, Rev Econ Design,

https://doi.org/10.1007/s10058-019-00218-y.

To understand which networks can emerge when players strategically decide with

whom to establish links, a model of network formation needs to specify the process

through which players set up links, together with a notion for network equilibrium

compatible with this process. We will analyze a normal form game of network

formation due to Myerson (1991). All players simultaneously announce the links

they wish to form, and a link is formed if and only if there is mutual consent for

its formation.

The mutual consent requirement of the Myerson game creates coordination prob-

lems. Nash equilibrium does not lead to sharp predictions. The empty network

can always be supported by a Nash equilibrium, when nobody announces any
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link, and in general the game has a multiplicity of Nash equilibria. To address

this multiplicity, pairwise-Nash equilibrium is commonly used in the literature.1

It requires that, on top of the standard Nash equilibrium conditions, any mu-

tually beneficial link be formed at equilibrium2, without specifying any process

through which players might coordinate such a deviation.

The aim of this essay is to redefine pairwise-Nash equilibrium as a non-cooperative

refinement. If the concept can be rephrased without referring to any implicit

cooperation, then its use in non-cooperative games would be justified.

One thing needs to be cleared before one begins to talk about non-cooperative

“equilibrium networks”. In this game, there usually exists many pure strategy

equilibria that support the same network.3 So, when we refer to the set, for

example, of “Nash equilibrium networks”, we mean the set of networks for which

there exists a pure strategy Nash equilibrium that leads to that network structure.

Hence, the existence of one Nash equilibrium for the network qualifies it as a Nash

equilibrium network.

We define a new non-cooperative equilibrium, trial perfect equilibrium. In a trial

perfect equilibrium players best respond to trembles of their opponents, where all

best responses are given a strictly positive probability and trembles are ordered

so that more costly mistakes are made with less or zero probability. Hence it is a

1Pairwise-Nash equilibrium was used, among others, in Bloch and Jackson (2007), Calvó-
Armengol (2004), Goyal and Joshi (2006), Buechel and Hellmann (2012) and Joshi and Mahmud
(2016).

2But, this is not demanding robustness to bilateral moves, as pairwise-Nash equilibrium does
not allow pairs of players to coordinate fully in their strategies.

3Any network, except the complete network and networks where all absent links are beneficial
to both parties involved, can be supported by multiple pure strategy Nash equilibria.
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non-cooperative equilibrium in the spirit (and an extension) of Myerson’s (1978)

proper equilibrium and does not presume any coordination between players.

We show that trial perfect equilibria coincide with pairwise-Nash equilibria for

network formation games with link-responsive payoffs. This shows that it is

unnecessary to refer to any bilateral coordination to eliminate networks where

players fail to form mutually beneficial links.

Link responsiveness requires that a change in the network changes the payoffs of

the players whose links change. It is generically satisfied by network payoffs with

some exogenous parameters (such as a constant marginal link cost).

Section 4.1 introduces the model and describes the network formation game and

the equilibrium concepts. The main result is provided in Section 4.2. Section 4.3

concludes with a discussion of our contribution. The proofs are in Appendices.

4.1 The Model

Networks N = {1, . . . , n} is the set of players who may be involved in a net-

work. A network4 g is a list of pairs of players who are linked to each other.

We denote the link between two players i and j by ij, so ij ∈ g indicates that i

and j are linked in the network. Let gN be the set of all subsets of N of size 2.

The network gN is referred to as the complete network. The set G =
{
g ⊆ gN

}
denotes the set of all possible networks on N . The set of i’s direct links in g is

4We adopt the network and link notation from Bloch and Jackson (2006).
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Li(g) = {jk ∈ g : j = i or k = i} and Li(g
N\g) = {ij : j 6= i and ij /∈ g} is the

set of i’s direct links not in g. That is, ij /∈ g is equivalent to ij ∈ Li(gN\g).

We let g+ ij denote the network obtained by adding the link ij to the network g

and g − ij denote the network obtained by deleting the link ij from the network

g. More generally, given i ∈ N , for every collection of links ` ⊆ Li(g), g − `

is the network obtained from g by eliminating all the links in `, while for every

collection of links ` ⊆ Li(g
N\g), g + ` is the network obtained from g by adding

all the links in `.

Network payoffs A network payoff function is a mapping u : G → RN that

assigns to each network g a payoff ui(g) for each player i ∈ N .

Link marginal payoffs Let g ∈ G. For all i, j ∈ N such that ij ∈ g:

mijui(g) = ui(g)− ui(g − ij)

is the marginal payoff to i from the link ij in g. More generally, consider a set of

links ` ⊆ Li(g). The joint value to i of ` is:

m`ui(g) = ui(g)− ui(g − `).

Consider now some link ij /∈ g. Then, mijui(g+ij) is the marginal payoff accruing

to i from the new link ij being added to g. More generally, consider a collection
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of i’s links absent from g, ` ⊆ Li(g
N\g). The joint value to i of these new links

added to g is m`ui(g + `) = ui(g + `)− ui(g).

Definition 1 (link-responsiveness). The network payoff function u is link-responsive

on g if and only if we have ui(g + `′ − `) − ui(g) 6= 0, for all i ∈ N, and for all

` ⊆ Li (g) and `′ ⊆ Li
(
gN\g

)
such that g + `′ − ` 6= g.

Link-responsiveness requires that no player is indifferent to a change in his set of

direct links, whether due to formation, link removal, or a combination of both.

A positive theory of network formation needs to specify the process through which

players set up links, together with a notion for network equilibrium compatible

with this process. We formulate a simultaneous move game of network formation

due to Myerson (1991), defined originally in the context of cooperative games

with communication structures.5 This game is simple and intuitive, but generally

displays a multiplicity of Nash equilibria.

A simultaneous move game of network formation The set of players is

N . All players i ∈ N individually and simultaneously announce the direct links

they wish to form. Formally, Si = {0, 1}n is the set of pure strategies available to

i and let si = (si1, . . . , sin) ∈ Si with the restriction that sii = 0. Then, sij = 1 if

and only if i wants to set up a direct link with j 6= i (and thus sij = 0, otherwise).

The game due to Myerson (1991) assumes that mutual consent is needed to create

5To quote Myerson: “Now consider a link-formation process in which each player indepen-
dently writes down a list of players with whom he wants to form a link (...) and the payoff
allocation is (...) for the graph that contains a link for every pair of players who have named
each other.”(p. 448)
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a direct link, that is, the link ij is created if and only if sij.sji = 1.6

A pure strategy profile s = (s1, . . . , sn) induces an undirected network g (s) where

ij ∈ g(s) if and only if sij.sji = 1. The set of pure strategy profiles are denoted

by S = S1 × ...× Sn and by Σ = Σ1 × ...× Σn the set of mixed strategy profiles,

where Σi is the set of the mixed strategies available to player i. For n = 2, a

mixed strategy for a player is simply a binomial distribution, the probability of

announcing the single possible link, and the probability of not announcing it. For

more players, a mixed strategy profile becomes a multivariate binomial probability

distribution. A mixed strategy profile generates a probability distribution over

G. Thus, like the result of a pure strategy profile is a single network, the outcome

of a mixed strategy profile is a random graph.7

For a network g ∈ G, let D(g) = {s ∈ S|g(s) = g} be the set of pure strategy

profiles that induce g. Given σ ∈ Σ, let pσ(s) be the probability that s is played

under the mixed strategy profile σ. Then the probability, pσ(g), that σ induces

a network g ∈ G is

pσ(g) =
∑
s∈D(g)

pσ(s)

6Although this is a very simple game, the number of pure strategies of a player, 2n−1,
increases exponentially with the number of players. Baron et al. (2008) shows that it is NP-
hard to check whether there exists a Nash equilibrium that guarantees a minimum payoff to all
players.

7Jackson and Rogers (2004) deals with random graphs in strategic network formation, though
in a different context.
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and the expected utility of player i is:

Eui(σ) =
∑
g∈G

ui(g).pσ(g)

Pairwise-Nash equilibrium A pure strategy profile s∗ = (s∗1, . . . , s
∗
n) is a

Nash equilibrium of the simultaneous move game of network formation if and

only if ui (g (s∗)) ≥ ui
(
g
(
si, s

∗
−i
))

, for all si ∈ Si, i ∈ N . The Nash equilibrium,

though, is too weak an equilibrium concept to single out equilibrium networks.

For instance, the empty network is always a Nash equilibrium.8 To remedy this,

following Goyal and Joshi (2006), we define pairwise-Nash equilibrium9, which

has a coalitional flavor as players are allowed to deviate by pairs.10 Beyond

the standard Nash equilibrium conditions it further requires that any mutually

beneficial link be formed at equilibrium. Pairwise-Nash equilibrium networks

are robust to bilateral and commonly agreed one-link creation, and to unilateral

multi-link severance.

Formally,

Definition 2. A network g ∈ G is a pairwise-Nash equilibrium network with

respect to the network payoff function u if and only if there exists a Nash equilib-

rium strategy profile s∗ that supports g, that is, g = g(s∗), and, for all ij /∈ g, if

mijui(g + ij) > 0, then mijuj(g + ij) < 0, for all i ∈ N .

For a given network payoff function u, we denote by PN(u) the set of pairwise-

8When nobody announces any link.
9See, also, Calvó-Armengol (2004) for an application of this equilibrium notion.

10See Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2005) for alterna-
tives to pairwise-Nash equilibrium that allow for coalitional moves.
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Nash equilibrium networks with respect to u.

Trial perfect equilibrium We now define trial perfect equilibrium which re-

quires that players best respond to their opponents trials of, other than equilib-

rium, best responses. Moreover their costly mistakes, like in proper equilibrium

(Myerson 1978), are ordered so that more costly mistakes are made with less

probability. The set of trial perfect equilibria, by definition, includes the set of

proper equilibria.11

Definition 3. A strategy profile σ ∈ Σ is a trial perfect equilibrium if there exists

a sequence of strategy profiles {σεt}t∈N with limit σ and a sequence of strictly

positive reals {εt}t∈N with limit 0 such that, for all i ∈ N , s′i, s
′′
i ∈ Si, and t ∈ N:

(i) s′i ∈ arg maxsi∈Si
ui(si, σ

εt
−i) implies that σεti (s′i) 6= 0, and

(ii) Eui(s
′
i, σ

εt
−i) > Eui(s

′′
i , σ

εt
−i) implies that σεti (s′′i ) ≤ εt · σεti (s′i).

A trial perfect equilibrium is the limit of mixed strategies where a positive proba-

bility is assigned to all the best responses, but unlike a proper equilibrium, those

strategies which are not best responses need not be assigned a positive probabil-

ity. We call a network g′ ∈ G a trial perfect equilibrium network, if there exists a

pure strategy trial perfect equilibrium s ∈ S such that g(s) = g′. For a given net-

work payoff function u, we denote by TPE(u) the set of trial perfect equilibrium

networks with respect to u.

11See Calvó-Armengol and İlkılıç (2009) for a characterization of proper equilibria of the
Myerson network formation game.
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4.2 Result

Theorem 1. If the network payoff u is link-responsive, then PN(u) = TPE(u).

Proof. See Appendices.

The equivalence between pairwise-Nash equilibrium and trial perfect equilibrium

qualifies the first as a non-cooperative equilibrium concept. It is attainable with-

out assuming any implicit cooperation between players.

Link-responsiveness is enough to show that a network g is a pairwise-Nash equi-

librium network if and only if it is also a trial perfect equilibrium network. We

separate the equivalence into two inclusion relations, which are given as Propo-

sitions 6 and 7, in Appendices, where the proof of Theorem 1 is. Proposition 6

declares the set of trial perfect equilibrium networks as a subset of pairwise-Nash

equilibrium networks.12 Proposition 7, vice versa.

To prove Proposition 6, first consider a network g which is not a pairwise-Nash

equilibrium network, then either, g is not a Nash equilibrium network, or there

exists ij /∈ g, which would have benefited both parties had it been formed. If the

first of these conditions hold, then g is not a trial perfect equilibrium network.

So assume the first holds and it is the latter that fails to hold. Then, it must be

the case that neither i nor j has announced this link. We show that this cannot

be a trial perfect equilibrium. In a Nash equilibrium profile, if neither i nor j

12Though the technique used in the proof is similar to that of Proposition 3 of Calvó-Armengol
and İlkılıç (2009), in fact, the result in this essay is stronger and implies that proposition.
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announces the link ij, then for both i and j, there exists a best response, where

they announce this link. Hence, there cannot be a sequence of equilibria that

converges to this strategy profile, where each player uses all his best responses

with positive probability.

To prove Proposition 7 we first define the minimal strategy profile that supports

g. This is the profile where players announce only their existing links in g. Then

we provide a sequence of profiles. In those profiles all players always announce

all their existing links in g. Plus, if a player gains from the formation of a non-

existing link, with probabilities that converge to zero, he announces these links.

Next, we index the players from 1 to n. For those links which are not in g due to

the fact that the link marginal returns are negative for both parties, we let the

lower indexed player involved in such a link announce the link with probabilities

that converge to zero. This announcement is not to be reciprocated in a best re-

sponse by the other party, as the formation of the link would have harmed. Hence,

none of the extra announcements incorporated into the converging sequence of

equilibria are reciprocated, making the network g the only possible outcome of

any realization of the strategy profiles that constitute the sequence.

We show that this sequence satisfies the conditions of the definition of trial perfect

equilibrium. Hence the strategy profile it converges is a trial perfect equilibrium.

So, any pairwise-Nash equilibrium network can be supported by a trial perfect

equilibrium.
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4.3 Discussion

Pairwise-Nash equilibria, although a strict subset of Nash equilibria, is not a

non-cooperative equilibrium refinement. It is a conceptual drawback to use this

notion for a non-cooperative game. We remedy this by defining a non-cooperative

equilibrium refinement, trial perfect equilibrium. We show that this new equi-

librium notion coincides with pairwise-Nash equilibrium for games of network

formation with link responsive payoffs. Adding pairwise-Nash equilibrium (trial

perfect equilibrium) to the list of non-cooperative equilibrium concepts justifies

its use in non-cooperative analysis of network formation.

Calvó-Armengol and İlkılıç (2009) and this essay introduce mixed strategies to the

analysis of the network formation game. Although the results are for pure strategy

equilibria, the analysis can not do without mixed strategies. As each mixed

strategy profile gives a probability distribution over the set of possible networks,

the use of mixed strategies brings into focus the formation of random graphs,

which arise naturally via players whose best responses are mixed strategies.
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Union, 1-12.

37



Stalder, P. (2010). Free migration between the EU and Switzerland: impacts
on the Swiss economy and implications for monetary policy. Swiss Journal
of Economics and Statistics, 146(4), 821-874.

Terry, D. J., & Hogg, M. A. (1996). Group norms and the attitude-behavior rela-
tionship: A role for group identification. Personality and Social Psychology
Bulletin, 22(8), 776-793.

38



APPENDICES

A Proofs of Chapter 2

Lemma 1. Suppose there are n agents on both sides in network g. Agents form

complete networks within their types and each agent is connected to two and only

two agents of the opposite type. At some equilibria status homophily does not

derive value homophily when n is odd.

Proof. Since n is odd, ∃k ∈ Z+ such that n := 2k + 1. Note that each agent is

connected to two and only two agents of the opposite type, then there exists an

onto correspondence from a set N1 of agents with cardinality k to a set N2 of

agents with cardinality 2k.

Each agent has 2k+ 2 links in the network, so at an equilibrium necessarily each

agent has at least k + 1 links. Since agents form a complete network within

types (i.e. each has 2k links in Ni) there is always two equilibria at which status

homophily derives value homophily.

For some j0 ∈ N2 there exist N1
1 , N

2
1 ⊂ N1 such that |N1

1 | = k and |N2
1 | = k + 1
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where13

g(N1
1 ) = N1

⋃
N2 \ {j0}

In particular, ∀k ∈ N2 \ {j0} ∃ i1 ∈ N1
1 such that (i1, k) ∈ g and i1 is unique.

Similarly, ∀k ∈ N2 \ {j0} ∃ i2 ∈ N2
1 such that (i2, k) ∈ g and i2 is unique.

Since agent j0 is connected to two agents of the opposite type, these agents must

be in N2
1 .

∃ i20, i
2
1 ∈ N2

1 such that (i20, j0), (i
2
1, j0) ∈ g and (i20, i

2
1) is a unique pair. By

construction, each agent in N2 \ {j0} is connected to only one agent in N1
1 and

only one agent in N2
1 . So, there exist i12 ∈ N1

1 and j1 ∈ N2 \ {j0} and such that

(i12, j1), (i21, j1) ∈ g and (i12, j1) is a unique pair. Similarly, there exist i23 ∈ N2
1

and j2 ∈ N2 \ {j0, j1} and such that (i23, j2), (i12, j2) ∈ g and (i23, j2) is a unique

pair (Figure 4.1).

i20 i21 i12 i23 ixk

j0 j1 j2 jk−1

Figure 4.1: Sketch of the proof

Continuing this, we get {j0, j1, . . . , jk−1} ⊂ N2 such that each agent has two links

with {i20, i21, i12, i23, . . . , ixk} ⊂ N1 and each agent in {i20, i21, i12, i23, . . . , ixk} has at least

13g(A) is the set of agents linked with the agents in A.
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one link with {j0, j1, . . . , jk−1}.14

Let D1 := {i20, i21, i12, i23, . . . , ixk} and D2 := {j0, j1, . . . , jk−1}. Except i20 and ixk each

agent in D1 has k+2 links in the subnetwork g1 of g in which the vertices are the

elements of D1 and D2. In this subnetwork i20, i
x
k and each agent in D1 has k + 1

links.

Also each agent in N1 \D1 has two links with N2 \D2 and each agent in N2 \D2

has at least one link with N1 \D1. That is, each agent in subnetwork g2 of g in

which the vertices are the element of (N1

⋃
N2) \ (D1

⋃
D2) has at least k + 1

links.

Thus, g is partitioned into two subnetworks g1 and g2. A state s where each

agent in g1 adopts opinion A(B) and each agent in g2 adopts opinion B(A) is an

equilibrium such that status homophily does not derive value homophily.

Proof of Proposition 1.

Lemma 1 tells that for any degree of status homophily, h ∈ Z+ \ {1}, there exists

a network g such that status homophily does not derive value homophily at some

equilibria. Also when h = 1, trivially any state at which for each type half of

the same type of agents adopt opinion A and the rest of the same type of agents

adopt opinion B is an equilibrium such that status homophily does not derive

value homophily.

14x equals 2 if k is odd, 1 otherwise.
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Let h be a degree of status homophily. There exists y ∈ Z+ such that y ∈ [h, h+1),

then by Lemma 1 there exists a network g such that we may not end up with

value homophily at some equilibria. Thus h is not a threshold degree of status

homophily, that is, for any network with a degree of status homophily larger than

h, status homophily derives value homophily at every equilibria.

Lemma 2. Each monotone agent of the same type adopts the same opinion at

every equilibria.

Proof. Suppose there is an equilibrium at which there exists a monotone agent i

who adopts the opposite opinion with the other monotone agents of his type. So,

he has at least same number of links who adopt different opinions. But then, each

of other monotone agents will have more links with the agents of the opposite

opinion than they have with the agents of the same opinion, i.e. this state is not

an equilibrium. Thus, each monotone agents must adopt the same opinion at

every equilibrium.

Proof of Proposition 2.

Let Di
j be a subset of non-monotone agents of Type i where j = 1, 2 such that

Di
1 ∪ Di

2 is the set of agents of Type i. Let nij be the number of agents in Di
j

where i = 1, 2 and j = 1, 2.

Without loss of generality (WLOG) let m1 > 0 and m2 = 0.

Case 1: m1 ≤ p

Let nij = p for any i, j ∈ {1, 2}. Let g be a network such that each type of agents
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forms a complete network. Also let agents in D1
1 ∪D2

1 form a complete network

and agents in D1
2 ∪ D2

2 form a complete network. Let s be a state such that

agents in D1
1 ∪D2

1 and agents in D1
2 ∪D2

2 adopt the opposite opinion. So, s is an

equilibrium at which status homophily does not derive value homophily.

Case 2: m1 > p

Let s be a state such that agents in D1
1 ∪ D2

1 and agents in D1
2 ∪ D2

2 adopt the

opposite opinion.

Case 2-a: (WLOG) n1
1 > n1

2

Then by Lemma 2 and conformity assumption monotone agents of Type 1 will

adopt the same opinion with the agents in D1
1. Note that agents in D1

2 have at

most p external links. So, agents in D1
2 will have more links with the agents of

the opposite opinion than they have with the agents of the same opinion, i.e. s

is not an equilibrium.

Case 2-b: n1
1 = n1

2

Again by Lemma 2 and conformity assumption monotone agents of Type 1 will

adopt either D1
1’s opinion or D1

2’s opinion. In both cases, the agents who have the

different opinion with the monotone agents will have more links with the agents

of the opposite opinion, i.e. s is not an equilibrium.

Therefore, when m1 > p at every equilibria status homophily derives value ho-

mophily.

Lemma 1∗. See Lemma 1.
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Proof. Note that for some n∗ ∈ Z+ such that n∗

n−1+p ≤
1
2
, uAi (n∗) > uBi (n∗), i.e.

agent i adopts opinion A. Let g be a network in which n∗ − 1 agents of Type

1 are only connected to some n∗ − 1 agents of Type 2. So, each agent in this

subnetwork has n∗ links, i.e. they all can adopt opinion A. Also, let the rest of

Type 1 or Type 2 agents have no links with these agents who adopt opinion A

and they all adopt opinion B. Such a state s is an equilibrium, since each agent

who adopts opinion B has n∗−1 links who adopts opinion A and each agent who

adopts opinion A has n∗ links who adopts opinion A. Therefore, this will result

a network such that status homophily does not derive value homophily at some

equilibrium s.

Proof of Proposition 1∗.

One can prove using the same logic of the proof of Proposition 1 and Lemma

1∗.

Lemma 2∗. See Lemma 2.

Proof. Let s be an equilibrium such that there exist two monotone agents who

adopt opposite opinions. So, by construction of the model, the monotone agent

who adopts opinion A has at least n∗ links who adopts opinion A. Then, the rest

of the monotone agents will also adopt opinion A as a result of the decision crite-

ria. So, s cannot be an equilibrium (Contradiction). Therefore, every monotone

agents adopt the same opinion in every equilibria.

Proof of Proposition 2∗.

WLOG let m1 > 0 and m2 = 0. Suppose m1 > p. By Lemma 2∗ every monotone
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agents adopt the same opinion. Suppose there is a group of Type 1 agents who

adopt opinion A. By the decision criteria, the number of this group can be at

least n∗− p+ 1 since each Type 1 agent in this group can have p links with Type

2 agents who adopt opinion A. So, with p external links each agent in that group

has n∗ links. For each monotone agent to adopt opinion B, it must be the case

that:

(n∗ − p+ 1) + (m1 − 1) < n∗

⇓

n∗ − p+m1 < n∗

But since m1 > p, this cannot be the case, i.e. each monotone agent adopts

opinion A. Then each agent who adopt opinion B has (n∗ − p + 1 + m1) > n∗

links who adopt opinion A. Hence they will also adopt opinion A. Therefore,

status homophily derives value homophily at every equilibria.
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B Proofs of Chapter 3

Proof of Proposition 3.

Under A1, for a given action profile s, let g be the induced network structure

with the free labor mobility cliques gC1 , . . . , gCk . For any i ∈ N ,

POLFi(g) = Pii(g)× PRLFi + Σj∈Ni(g)(Pij(g)× PRLFj)

A1 ⇓

= PRLFi × [Pii(g) + Σj∈Ni(g)Pij(g)]

= PRLFi

That is, ARi(g) = 0. So, for any i ∈ N(g), ui(s) = ARi. Similarly, for any

admissible coalition C ⊂ Ni(g) with any action profile s′ and for any i ∈ C,

ui(s
′) = ARi where s′ = (s′C , s−C). So, there is no admissible coalition C ⊂ Ni(g)

with an action profile s′ such that ui(s
′) ≥ ui(s) for all i ∈ C and for some i ∈ C,

ui(s
′) > ui(s), i.e. action profile s is a strong Nash equilibrium.

Proof of Proposition 4.

(⇐)

Suppose an action profile s induces a network g with the free labor mobility

cliques gC1 , . . . , gCk such that for any l ∈ {1, . . . , k}, |Cl| ≤ 2 and for any i ∈ Cl,

ui(s) ≥ 0. Since there is no non-singleton admissible coalition for any Cl the
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action profile s is a strong Nash equilibrium.

(⇒)

Under A2-A3, let’s assume an action profile s is a strong Nash equilibrium.

Assume by contradiction, action profile s induces a network g with free labor

mobility cliques gC1 , . . . , gCk , such that there exists l ∈ {1, . . . , k}, |Cl| > 2. Note

that by definition for every l ∈ {1, . . . , k} and for any i ∈ Cl we have ui(s) ≥ 0.

Let j̃ denotes the country in C that has the largest labor force among the countries

in C and let C̃ = C \ {j̃}. By A3, country j̃ is unique.

Claim: For a given action profile s and for any C ⊂ N , we have for every i ∈ C̃,

ui(s
′) > ui(s) where s′ = (s′

C̃
, s−C̃).

Proof of Claim.

For a given action profile s and for any C ⊂ N , let |C \{i}| = m and let for every

i, j, k ∈ C,

Pij(Ni(g
C)) = Pik(Ni(g

C)) = P (m) (4.1)

Pij(Ni(g
C̃)) = Pik(Ni(g

C̃)) = P (m− 1) (4.2)

Pii(Ni(g
C)) = Pjj(Ni(g

C)) = 1−m× P (m) (4.3)

Pii(Ni(g
C̃)) = Pjj(Nj(g

C̃)) = 1− (m− 1)× P (m− 1) (4.4)

Want to show: For every i ∈ C̃ ui(s
′) > ui(s).
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Note that,

ui(s
′) = ARi − ARi(g

C̃) (4.5)

ui(s) = ARi − ARi(g
C) (4.6)

Using Equations (4.5) and (4.6),

ui(s
′)− ui(s) = ARi(g

C)− ARi(g
C̃)

=
POLFi(g

C)− PRLFi
POLFi(gC)

− POLFi(g
C̃)− PRLFi

POLFi(gC̃)

=
PRLFi × [POLFi(g

C)− POLFi(gC̃)]

POLFi(gC)× POLFi(gC̃)

Thus,

ui(s
′)− ui(s) > 0⇔ POLFi(g

C)− POLFi(gC̃) > 0

From Equations (4.1)-(4.4), we have

POLFi(g
C)− POLFi(gC̃) =

P (m)− P (m− 1)

P (m− 1)
× [Σj∈CPRLFj − (m+ 1)× PRLFi] + PRLFj̃ − PRLFi

= −P (m)× [Σj∈CPRLFj − (m+ 1)× PRLFi] + PRLFj̃ − PRLFi

= −P (m)× [Σj∈CPRLFj − (m+ 1)× PRLFi] + PRLFj̃ − PRLFi

= −P (m)× (m+ 1)× [PRLFC − PRLFi] + PRLFj̃ − PRLFi

where PRLFC is the mean of the pre-migration labor force of the countries in C.

Note that if Pii(N) = 0, then for any j ∈ C \ {i}, Pij(N) = 1
m

.
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So, for any m ∈ Z+ P (m) ≤ 1
m

. This implies;

POLFi(g
C)− POLFi(g

C̃) > −m + 1

m
× [PRLFC − PRLFi] + PRLFj̃ − PRLFi

= −PRLFC − PRLFi

m
+ PRLFj̃ − PRLFC

= −
PRLFC − PRLFi + m× PRLFj̃ −m× PRLFC

m

=
PRLFi + m× PRLFj̃ − Σj∈CPRLFj

m

=
m× PRLFj̃ − Σj∈C\{i}PRLFj

m

> 0

Hence, for a given action profile s and for any C ⊂ N , we have for every i ∈ C̃,

ui(s
′) > ui(s) where s′ = (s′

C̃
, s−C̃).

Therefore, for an action profile s which induces a network g with free labor

mobility cliques gC1 , . . . , gCk , if there exists l ∈ {1, . . . , k} such that |Cl| > 2, then

by the claim, action profile s cannot be a strong Nash equilibrium (Contradiction).

Proof of Proposition 5.

(⇒) This part trivially holds.

(⇐) Let for a given action profile s with an induced network structure g, there

exists a coalition C ⊂ N such that |C| ≥ 2 and for all i ∈ C, ui(s) ≥ 0. With

out loss of generality, let for all j ∈ N \C, Nj(g) = ∅, that is, every j ∈ N \C is

isolated country.

Case 1: There is no admissible coalition C ′ ⊂ C with an action profile s′ such
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that for every j ∈ C ′, ui(s′) > ui(s), i.e. s is a strong Nash equilibrium leading

to stable network with free mobility cliques containing at least two members.

Case 2: There exists an admissible coalition C ′ ⊂ C with an action profile s′

such that for every j ∈ C ′, ui(s′) > ui(s).

Case 2a: s′ is a strong Nash equilibrium leading to stable network with free

mobility cliques containing at least two members as in Case 1.

Case 2b: s′ is not a strong Nash equilibrium.

This can continue until there exists C ′′ ⊂ C with an action profile s′′ such that

|C ′′| = 2 and for every j ∈ C ′′, ui(s
′′) > 0, i.e. s′′ is a strong Nash equilib-

rium leading to stable network with free mobility cliques containing at least two

members.
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C Proofs of Chapter 4

Proposition 6. If the network payoff u is link-responsive, then TPE(u) ⊆

PN(u).

Proof. Let u be link-responsive. We show that g /∈ PN(u) implies that g /∈

TPE(u).

If g∗ is not a Nash equilibrium network, then g /∈ PN(u) and g /∈ TPE(u). Let

g∗ be a Nash equilibrium outcome of the simultaneous move game of network

formation such that mijui(g
∗ + ij) > 0 and mijuj(g

∗ + ij) > 0, for some ij /∈ g∗.

Then, g∗ /∈ PN(u). Suppose that g∗ ∈ TPE(u), and let s∗ be a pure strategy

trial perfect equilibrium that supports g∗. Then, g∗ = g(s∗). Let {σεt}t∈N be a

sequence of ε−trial equilibria such that limt→+∞ σ
εt(s∗) = 1.

Given that s∗ is also a Nash equilibrium strategy and that ij /∈ g∗, necessarily,

s∗ij = s∗ji = 0.

As {σεt}t∈N is a sequence of ε−trial equilibria, for all t ∈ N, either, there exists

si ∈ Si such that sij = 1 and σεti (si) > 0, or there exists sj ∈ Sj such that sji = 1

and σεtj (sj) > 0. Given a t ∈ N, w.l.o.g., assume the latter holds.

For all j 6= i, define e(ij) = (0, ..., sij = 1, 0, ..., 0). With the pure strategy e(ij),

player i only announces the link with j. Let s′i = s∗i ∨ e(ij). With s′i, player i

announces exactly the same links announced in the pure equilibrium strategy s∗i

plus an extra link with player j. This extra link is not reciprocated by player j
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in s∗.

For all t ∈ N, define:

∆i(s
′
i, s
∗
i ;σ

εt
−i) = Eui(g(s′i, σ

εt
−i))−Eui(g(s∗i , σ

εt
−i)) =

∑
s̃−i∈S−i

σεt−i(s̃−i).∆i(s
′
i, s
∗
i ; s̃−i),

(4.7)

where

∆i(s
′
i, s
∗
i ; s̃−i) = ui(g(s′i, s̃−i))− ui(g(s∗i , s̃−i)).

For all s̃−i such that s̃ji = 0, we have g(s′i, s̃−i) = g(s∗i , s̃−i), and ∆i(s
′
i, s
∗
i ; s̃−i) = 0.

Therefore,

∆i(s
′
i, s
∗
i ;σ

εt
−i) =

∑
s̃−i∈S−i : s̃ji=1

σεt−i(s̃−i).∆i(s
′
i, s
∗
i ; s̃−i).

Let s̃−i ∈ S−i such that s̃ji = 1. Define g̃ = g(s∗i , s̃−i). Note that ij /∈ g̃, and that

g(s′i, s̃−i) = g̃ + ij. Also, sik = 0 implies that ik /∈ g̃. Define

G(s∗i ) = {g ∈ G : s∗ik = 0⇒ gik = 0}.

It is readily checked that

G(s∗i ) = {g(s∗i , s̃−i) : s̃−i ∈ S−i, s̃ji = 1}.

Therefore, we can write:

∆i(s
′
i, s
∗
i ;σ

εt
−i) =

∑
g̃∈G(s∗i )

µεt(g̃).mijui(g̃ + ij),
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where

µεt(g̃) =
∑

s̃−i∈S−i : s̃ji=1
g(s∗i ,s̃−i)=g̃

σεt−i(s̃−i).

Given that {σεt}t∈N be a sequence of ε−trial equilibria that converges to s∗, there

exists T ∈ N such that, for all t ≥ T , µεt(g
∗) > 0. Therefore, ∆i(s

′
i, s
∗
i ;σ

εt
−i) > 0

is equivalent to

mijui(g
∗ + ij) +

∑
g̃∈G(s∗i ) , g̃ 6=g∗

µεt(g̃)

µεt(g
∗)
.mijui(g̃ + ij) > 0.

Since ∆i(s
′
i, s
∗
i ;σ

εt
−i) is continuous in σεt−i, and given that mijui(g

∗ + ij) > 0, it

suffices to show that limt→+∞ µεt(g̃)/µεt(g
∗) = 0, for all g̃ ∈ G(s∗i ), for g̃ 6= g∗.

Note that limt→+∞ σ
εt
−i(s̃−i) = 0, for all s̃−i ∈ S−i such that s̃ji = 1. Therefore,

limt→+∞ µεt(g̃) = 0, for all g̃ ∈ G(s∗i ), including g̃ = g∗.

Establishing that

lim
t→+∞

µεt(g̃)

µεt(g
∗)

= 0, for all g̃ ∈ G(s∗i ), g̃ 6= g∗,

is thus equivalent to showing that the rate of convergence of µεt(g̃), g̃ 6= g∗ is at

least one order of magnitude higher than that of µεt(g
∗). This will be implied by

the definition of an ε−trial equilibrium, as detailed below.

For each player k ∈ N , we partition the strategy set Sk into two disjoint sets S+
k
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and S−k defined as follows:


S+
k = {sk ∈ Sk : uk(g(sk, s

∗
−k)) ≥ uk(g

∗)}

S−k = {sk ∈ Sk : uk(g(sk, s
∗
−k)) < uk(g

∗)}
.

It is plain that Sk = S+
k ∪ S

−
k and that S+

k ∩ S
−
k = ∅. Given that u is link-

responsive together with the fact that s∗ is a Nash equilibrium strategy supporting

g∗ implies that g(s′k, s
∗
−k) = g∗, for all s′k ∈ S+

k . Moreover, as limt→+∞ σ
εt = s∗,

and given that each player’s expected payoff is continuous in the vector of other

players’ mixed strategies, there exists some tk such that, for all t ≥ tk, we have

uk(g(s+k , σ
εt
−k)) > uk(g(s−k , σ

εt
−k)), for all s+k ∈ S+

k and s−k ∈ S−k . Given that

{σεt}t∈N is a sequence of εt−trial equilibria, this implies that, for all t ≥ tk,

s+k ∈ S
+
k and s−k ∈ S

−
k we have:

σεtk (s−k ) ≤ εt.σ
εt
k (s+k ).

Note, also, that s′j ∈ S+
j .

We assumed w.l.o.g that there exists sj ∈ Sj such that sji = 1 and σεtj (sj) > 0.

Now, let’s show that there exists some T ∈ N such that, for some t ≥ T , there

exists s+j ∈ S+
j such that s+ji = 1 and σεtj (s+j ) > 0. Assume not, then there exists

s−j ∈ S−j such that s−ji = 1 and σεtj (s−j ) 6= 0, and for all s+j ∈ S+
j such that s+ji = 1

and σεtj (s+j ) = 0. But this contradicts with the result above that there exists some

tj such that, for all t ≥ tj, s
+
k ∈ S

+
k and s−k ∈ S

−
k we have σεtj (s−j ) ≤ εt.σ

εt
j (s+j ).

Hence, there exists s+j ∈ S+
j such that s+ji = 1 and σεtj (s+j ) > 0. Fix sj, as the
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strategy such that s+ji = 1 implies σεtj (sj) > σεtj (s+j ). The strategy sj is well

defined as S+
j is finite.

Define,

G−1(g) = {(s∗i , s̃−i) = s ∈ S : g(s) ∈ G(s∗i )},

as the set of strategy profiles that support the networks in G(s∗i ).

We now define

G−11 (g) = {(s∗i , s̃−i) = s ∈ S : g(s) = g∗}

G−12 (g) = {(s∗i , s̃−i) = s ∈ S : s = (s̃j, s
∗
−j), s

∗
−j ∈ Sj, s̃ji = 1, and g(s) 6= g∗}

G−13 (g) = {(s∗i , s̃−i) = s ∈ S : s = (s∗i , s̃−i), s̃−i ∈ S−i, s̃ji = 1, s̃k 6= s∗k for some k 6= j

and g(s) 6= g∗}

In words, the profiles in G−11 (g) always lead to g∗, where only player j makes a mis-

take (including always the announcement of the link ij, in particular (sj, s
∗
−j) ∈

G−11 (g)), whereas the profiles in G−12 (g) are the ones where only player j makes a

mistake, but this mistake changes the network structure, and G−13 (g) corresponds

to the set of profiles where additional mistakes by at least one other player is

committed. Clearly, G−1(g) = G−11 (g) ∪ G−12 (g) ∪ G−13 (g).

But, for all s̃j ∈ Sj such that s̃ = (s̃j, s
∗
−j) ∈ G−12 (g), necessarily, s̃j ∈ S−j (since

s∗ is a Nash equilibrium strategy), implying in turn that σεtj (s̃j) ≤ εt.σ
εt
j (sj), for

all t ≥ tj. Therefore, for all t ≥ tj, we have:

σεt−i(s̃−i) ≤ εt.σ
εt
−i(sj, s

∗
−i−j).
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Hence, for all s̃ ∈ G−12 (g), limt→+∞
σ
εt
−i(s̃−i)

σ
εt
j (sj ,s∗−i−j)

= 0.

Let now s̃ ∈ G−13 (g). Define L = {k 6= j : s̃k 6= s∗k}. By definition, L 6= ∅. Now,

σεt−i(s̃−i) = σεtj (s̃j).σ
εt
L (s̃L).σεt−i−j−L(s∗−i−j−L),

and, thus,

lim
t→+∞

σεt−i(s̃−i)

σεt−i(sj, s
∗
−i−j)

= lim
t→+∞

σεtj (s̃j).σ
εt
L (s̃L).σεt−i−j−L(s∗−i−j−L)

σεtj (sj).σ
εt
L (s∗L).σεt−i−j−L(s∗−i−j−L)

= lim
t→+∞

σεtj (s̃j)

σεtj (sj)
. lim
t→+∞

σεtL (s̃L)

σεtL (s∗L)

Now, since for all t ≥ tj, σ
εt
j (sj) > σεtj (s̃j) if s̃j ∈ S+

j and σεtj (s̃j) ≤ εt.σ
εt
j (sj) if

s̃j ∈ S−j )

lim
t→+∞

σεtj (s̃j)

σεtj (sj)
6 1

and since limt→+∞ σ
εt
L (s̃L) = 0 and limt→+∞ σ

εt
L (s∗L) = 1

lim
t→+∞

σεtL (s̃L)

σεtL (s∗L)
= 0,

then

lim
t→+∞

σεt−i(s̃−i)

σεt−i(sj, s
∗
−i−j)

= 0.
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Then, since there exists only a finite set of strategy profiles s ∈ S that supports

a g ∈ G, and for g̃ ∈ G(s∗i ), µεt(g̃) =
∑

s̃−i∈S−i : s̃ji=1
g(s∗i ,s̃−i)=g̃

σεt−i(s̃−i), limt→+∞
µεt (g̃)

µεt (g
∗)

= 0,

for all g̃ ∈ G(s∗i ), g̃ 6= g∗.

But then, given that σεt is an εt−trial equilibrium, there exists some T ∈ N, such

that σεti (s∗i ) ≤ εt.σ
εt
i (s′i), for all t ≥ T , implying that limt→+∞ σ

εt
i (s∗i ) 6= 1, which

is a contradiction.

Proposition 7. If the network payoff u is link-responsive, then PN(u) ⊆ TPE(u).

Proof. Let u be link-responsive. Let g∗ ∈ PN(u), let s0 ∈ S be a strategy that

supports g∗, that is g∗ = g(s0), such that ij /∈ g∗ implies s0ij = s0ji = 0. As g∗ is a

pairwise-Nash equilibrium network, s0 is a Nash equilibrium.

Fix a labeling of players with positive integers, from 1 to n.

For each i ∈ N , define,

Si(s
0) = {si ∈ Si : for j ∈ N , j 6= i, [s0ij = 1⇒ sij = 1]

and [[mijui(g
∗ + ij) < 0 and mijuj(g

∗ + ij) > 0] implies sij = 0]

and [[mijui(g
∗ + ij) < 0 and mijuj(g

∗ + ij) < 0 and j < i] implies sij = 0]}

Define, {σεt}t∈N, so that, for all i ∈ N :

(i) σεti (s0i ) = 1− (#Si(s
0)− 1).εt, and

(ii) for si ∈ Si(s0), si 6= s0i , σ
εt
i (si) = εt.
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As there exists only a finite number of strategies in Si(s
0), the above sequence of

strategies is well-defined.

Now, let’s show that {σεt}t∈N has a subsequence of ε−trial equilibria that con-

verges to s0.

By definition, as εt → 0, {σεt}t∈N converges to s0.

For g ∈ G, given a mixed strategy profile σ, define,

µ(g, σ) =
∑
s∈S
g(s)=g

σ(s),

as the probability of g being formed when σ is played.

Then, by definition, for all t ∈ N, µ(g∗, σεt) = 1.

To show that {σεt}t∈N has a subsequence of ε−trial equilibria that converges to

s0, we will establish that there exists T ∈ N such that for all t > T , for all i ∈ N,

si /∈ Si(s0), implies Eui(g(si, σ
εt
−i))− Eui(g(s0)) < 0.

Take i ∈ N , take si /∈ Si(s0), then:

(i) there exists j ∈ N such that s0ij = 1 and sij = 0, or

(ii) there exists j ∈ N such that mijui(g
∗ + ij) < 0 and mijuj(g

∗ + ij) > 0 and

sij = 1, or

(iii) there exists j ∈ N such that j < i and mijui(g
∗ + ij) < 0 and mijuj(g

∗ +

ij) < 0 and sij = 1.
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If (i) holds, then si ∈ S−i , as Eui(g(si, σ
εt
−i)) is continuous in σεt−i, there exists

T ∈ N such that for all t > T , Eui(g(si, σ
εt
−i))−Eui(g(s0)) < 0, and we are done.

Suppose (i) does not hold, then there exist {j1, ..., jl} ⊆ N such that, for all

jp ∈ {j1, ..., jl} there exists sjp ∈ Sjp , sjpi = 1, σεtjp(sjp) = εt and mijui(g
∗+ij) < 0.

For this {j1, ..., jl} ⊆ N , let:

G0 = {g∗},

G1 = {g ∈ G : g = g∗ + ijp, for some jp ∈ {j1, ..., jl}},

G2 = {g ∈ G : g = g∗ + ijp + ijq, for some jp, jq ∈ {j1, ..., jl}, jp 6= jq},

...

Gl = {g ∈ G : g = g∗ + ij1 + ...+ ijl}.

Then, for p ∈ {1, ..., l}, for g ∈ Gp, µ(g, (si, σ
εt
−i)) = εpt .(1− εt)l−p. Hence,

Eui(g(si, σ
εt
−i))− Eui(g(s0)) =

∑
g∈G0∪...∪Gl

µ(g, (si, σ
εt
−i)).(ui(g)− ui(g∗))

=
∑

g∈G1∪...∪Gl

µ(g, (si, σ
εt
−i)).(ui(g)− ui(g∗))

For g ∈ G1, µ(g, (si, σ
εt
−i)) = εt.(1− εt)l−1.

Then, for l ≥ p > 1, gp ∈ Gp implies limt→+∞
µ(g,(si,σ

εt
−i))

εt.(1−εt)l−1 = 0.
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Hence, there exists T ∈ N such that for all t > T , for all i ∈ N, si /∈ Si(s0),

∑
g∈G1∪...∪Gl

µ(g, (si, σ
εt
−i)).(ui(g)− ui(g∗))

is equivalent to ∑
g∈G1

(ui(g)− ui(g∗)).

But g ∈ G1 implies ui(g)− ui(g∗) < 0. So,

∑
g∈G1

(ui(g)− ui(g∗)) < 0.

Hence, there exists T ∈ N such that for all t > T , for all i ∈ N, si /∈ Si(s
0),

Eui(g(si, σ
εt
−i))− Eui(g(s0)) < 0.

Then, there exists T ∈ N such that for all t > T , for all i ∈ N , si ∈ Si(s0) implies

Eui(g(si, σ
εt
−i) = Eui(g

∗) > Eui(g(s′i, σ
εt
−i)), for all s′i ∈ Si, and si /∈ Si(s0) implies

Eui(g(si, σ
εt
−i)) < Eui(g

∗).

Accordingly, in {σεt}t∈N, si ∈ Si(s0) implies σεti (si) > εt, and si /∈ Si(s0) implies

σεti (si) = 0.

Hence, {σεt}t∈N has a subsequence of ε−trial equilibria that converges to s0,

meaning s0 is a trial perfect equilibrium.
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