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ABSTRACT

NOVEL UNSOURCED RANDOM ACCESS
ALGORITHMS OVER GAUSSIAN AND FADING

CHANNELS

Mohammad Javad Ahmadi
Ph.D. in Electrical and Electronics Engineering

Advisor: Tolga Mete Duman
January 2024

Random access techniques play a crucial role in machine-type communications
(MTC), especially in the context of massive and sporadic device connectivity.
Unlike traditional communication systems with scheduled access, random access
allows devices to independently access the network without prior coordination.
This flexibility is particularly beneficial for MTC scenarios where a large number
of devices may transmit data sporadically. Unsourced random access (URA) is a
form of grant-free random access in which devices remain entirely unidentified. As
a result, there is no need for a codebook to store device identity preambles, whose
dimension is squared to the number of connected users. This elimination of the
codebook requirement empowers URA to efficiently accommodate an unbounded
number of devices, reaching hundreds of millions of devices.

This thesis proposes three unsourced random access algorithms suitable for
Gaussian and wireless fading channels. First, we introduce a URA algorithm for
use over Gaussian multiple access channels. In the proposed solution, the users
are randomly separated by assigning varying levels of transmit power to each of
them. This introduces power diversity, enhancing the system performance. In the
second part, we offer a solution for URA over Rayleigh block-fading channels with
a receiver equipped with multiple antennas. We employ a slotted structure with
multiple stages of orthogonal pilots; each randomly picked from a codebook. In
the proposed signaling structure, each user encodes its message using a polar code
and appends it to the selected pilot sequences to construct its transmitted sig-
nal. The receiver employs an iterative algorithm to detect messages transmitted
by different users. This algorithm comprises several components, including pi-
lot detection, channel estimation, soft data detection, single-user polar decoder,
and successive interference cancellation. Additionally, we improve this scheme
by incorporating an efficient strategy that separates users by random grouping.
Our extensive analytical and simulation results demonstrate the effectiveness of
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the proposed algorithm in terms of both energy efficiency and computational
complexity. In the last part of the thesis, we study URA employing a passive
reconfigurable intelligent surface, facilitating connections between the users and
the base station when the direct link is blocked or significantly attenuated. We
demonstrate through extensive simulations and analytical results that the pro-
posed approach notably enhances system performance, particularly in channels
with significant attenuation.

Keywords: Unsourced random access (URA), internet of things (IoT), grant-
based access, grant-free access, uncoordinated access, coordinated access, orthog-
onal pilots, massive MIMO, pilot detection, power diversity, reconfigurable intel-
ligent surface (RIS), RIS phase-shift design, Saleh-Valenzuela model, spreading
sequence, massive MIMO, pilot detection, channel estimation, Log-likelihood ra-
tio (LLR) generation, minimum mean squared error (MMSE), least squares (LS),
maximum ratio combining (MRC), polar code.



ÖZET

GAUSS VE SÖNÜMLEMELİ KANALLAR İÇİN YENİ
KAYNAKSIZ RASTGELE ERİŞİM ALGORİTMALARI

Mohammad Javad Ahmadi
Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Tolga Mete Duman
Ocak 2024

Rastgele erişim teknikleri, özellikle büyük ve düzensiz cihaz bağlantısı
bağlamında makine tipi iletişimlerde (MTC) önemli bir rol oynar. Zamanlanmış
erişime sahip geleneksel iletişim sistemlerinin aksine, rastgele erişim, cihazların
önceden koordinasyon olmaksızın bağımsız olarak ağa erişmelerine izin verir. Bu
esneklik, özellikle birçok cihazın veriyi düzensiz olarak iletebileceği MTC senary-
oları için faydalıdır. Kaynaksız rastgele erişim (URA), cihazların tamamen tanım-
lanmadığı bir hibesiz rastgele erişim biçimidir. Bu nedenle, cihaz kimlik girişlerini
depolamak için boyutu kullanıcı sayısının karesiyle orantılı olan bir kod kitabına
ihtiyaç duyulmaz. Bu kod kitabı gereksiniminin ortadan kaldırılması, URA şe-
masının etkili bir şekilde sayısı yüz milyonlara ulaşıp sınırsız sayılabilecek kadar
cihazı kolayca barındırabilmesini sağlar.

Bu tez, Gauss ve kablosuz sönümleme kanalları için uygun üç kaynaksız rast-
gele erişim algoritması önermektedir. İlk olarak, Gauss çoklu erişim kanalları üz-
erinde kullanılmak üzere bir URA algoritması tanıtıyoruz. Önerilen çözümde, kul-
lanıcılar, her birine değişen seviyelerde iletim gücü atanarak rastgele ayrılır. Bu,
sistem performansını artıran güç çeşitliliği getirir. İkinci bölümde, çoklu antenlere
sahip bir alıcı ile Rayleigh blok-sönümleme kanalları üzerinde URA için bir çözüm
sunmaktayız. Çok aşamalı, her biri bir kod kitabından rastgele seçilmiş dikey
pilotların kullanıldığı bir yuvalı yapıyı benimsemekteyiz. Önerilen sinyalleşme
yapısında, her kullanıcı mesajı bir kutupsal kod kullanarak kodlanmakta ve
bu iletim sinyalini oluşturmak için seçilen pilot dizilerine eklenmektedir. Alıcı,
farklı kullanıcılardan iletilen mesajları algılamak için bir yinelemeli algoritma
kullanır. Bu algoritma, pilot algılama, kanal kestirimi, yumuşak veri algılama,
tek kullanıcılı kutupsal çözücü ve ardışık müdahale iptali gibi çeşitli bileşenleri
içerir. Ayrıca, bu şemayı rastgele gruplandırma stratejisi ile kullanıcıları ayır-
mak için etkili bir strateji ile iyileştiriyoruz. Kapsamlı analitik ve simülasyon
sonuçlarımız, önerilen algoritmanın enerji verimliliği ve hesaplama karmaşıklığı
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açısından etkinliğini göstermektedir. Tezin son bölümünde, doğrudan bağlantı
engellendiğinde veya önemli ölçüde zayıflatıldığında kullanıcılar ile baz istasyonu
arasındaki bağlantıyı kolaylaştırmak için pasif bir yeniden yapılandırılabilir akıllı
yüzey kullanıldığı bir URA şeması incelenmektedir. Simülasyonlar ve analitik
bulgular ile önerilen yaklaşımın, özellikle önemli sönümleme yaşanan kanallarda,
sistem performansını dikkat çekecek miktarda artırdığını gösteriyoruz.

Anahtar sözcükler : Kaynaksız rastgele erişim (URA), Nesnelerin İnterneti (IoT),
hibeli erişim, hibesiz erişim, koordinatsız erişim, koordineli erişim, dik pilotlar,
kapsamlı MIMO, pilot algılama, güç çeşitliliği, yeniden yapılandırılabilir akıllı
yüzey (RIS), RIS faz kaydırma tasarımı, Saleh-Valenzuela modeli, yayılma dizisi,
kanal kestirimi, Log-likelihood oranı (LLR) üretimi, Minimum Ortalama Kare
Hatası (MMSE), En Küçük Kareler (LS), Maksimum Oran Birleştirme (MRC),
polar kod.
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Chapter 1

Introduction

Machine Type Communications (MTC) refers to the communication paradigm
tailored for the interaction between devices without direct human intervention
[1, 2]. It is a key aspect of the Internet of Things (IoT) paradigm, enabling
various machines, sensors, and devices to exchange information [1–3]. MTC plays
a crucial role in many applications such as smart cities, industrial automation, and
healthcare [2, 4, 6]. MTC exhibits distinctions from human-type communication
in several aspects. One notable difference is the ability of MTC to handle a large
number of devices with sporadic activity for each device [5–8]. Specifically, MTC
is anticipated to accommodate a density of up to 1 Million devices per square
kilometer, and these devices typically operate with low computational and storage
capabilities, low duty cycles, and small payloads [6–8].

Multiple access (MAC) techniques provide the opportunity for different users
to share common communication media simultaneously, thus playing a funda-
mental task in wireless communication systems [9]. Centralized access (referred
to as coordinated access) and random access (known also as initial access and
uncoordinated access) are two main categories of MAC technology [4, 5, 7–12].
Centralized access refers to a communication protocol or technique where access
to a shared communication channel is controlled and managed by a central au-
thority, which allocates distinct communication resources to each user and allows
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them to transfer data. On the contrary, in the random access, users send their
messages simultaneously as soon as they have information without the need for
explicit coordination with the central unit [4, 10–14].

Coordinated Multiple Access stands as the predominant multiple access mode
in 5G and preceding technologies [8]. Several fundamental coordinated ac-
cess techniques have been investigated from 1G to 4G, including time-division
MAC (TDMA), frequency-division MAC (FDMA), orthogonal frequency-division
multiplexing (OFDMA), code-division MAC (CDMA), and space-division MAC
(SDMA). These techniques belong to the large category of orthogonal multiple ac-
cess (OMA) [8]. In the context of 5G networks, the utilization of non-orthogonal
multiple access (NOMA) improves the capacity region compared to the conven-
tional techniques [15]. To manage the communication of available users in a sys-
tem, the mentioned techniques require appropriate scheduling protocols, which
are efficient only in the case of few active users [12, 17, 19]. However, in order
to accommodate a large number of users in massive MTC (in 6G), the coordi-
nated protocols incur excessively high access latency and prohibitive signaling
overhead [4, 12,14,16–19].

In contrast to the conventional centralized access, where the base station (BS)
waits for the preamble from devices to allocate resources to them, in random
access, users transmit their data without any coordination. Removing the need
for scheduling results in some benefits, such as reducing the latency and signaling
overhead, which makes the random access scheme interesting for serving massive
MTC systems with many users [4, 14, 16–19]. ALOHA and grant-free MAC are
two common random access schemes [19,20].

A widely used random access scheme is the ALOHA multiple access protocol,
which enables users to transmit data without prior coordination. In the original
description given in [21], Abramson explained that in an ALOHA network, a
single broadcast channel is used by multiple communication devices, each of which
independently sends packets without coordinating with other devices or following
a specific schedule. Specifically, a device sends the entire packet at a randomly
selected time, and then waits for an acknowledgment for a period of time. If
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no acknowledgment is received within the timeout period, it is assumed that a
collision has occurred with a packet sent by another device. In such cases, the
packet is retransmitted after an additional random waiting time to avoid repeated
collisions. This process is repeated until a successful transfer and confirmation
occurs or until the process is terminated by the user console. Slotted ALOHA
(SA), a variation of ALOHA, is presented as a method for transmitting packets in
designated time slots, which doubles the maximum throughput compared to the
pure ALOHA protocol [24]. However, there are still some challenges in SA. For
instance, in this protocol, several active users may share the same slot to send
their data packets, leading to packet collisions within that slot and discarding
of data due to its irreplaceable nature [21–23]. Many studies have focused on
improving the effectiveness of SA through various methods such as multiple packet
transmission, interference cancellation, and error correction codes [25–28]. Also,
further analyses of these techniques are provided in [29–32].

Grant-free random access is another type of random access method [6, 12].
In contrast to ALOHA, where users solely transmit data, the grant-free method
involves each user transmitting both a preamble and the data sequence [20].
Preamble transmission aims to facilitate collision reduction at the physical layer.
Hence, unlike ALOHA, which experiences a significant decline in performance
during intense collisions, grant-free random access is more resilient to such col-
lision scenarios [19, 33]. So, when there are massive number of users, grant-free
random access is a more effective solution than ALOHA. Sourced and unsourced
random access schemes are the main categories of grant-free random access [34].
In the first one, both the messages and the identities of users matter to the
BS. Therefore, a distinct pilot/preamble is defined for each user, leading to the
requirement of a codebook with dimensions proportional to the square of the po-
tential user count. It is impractical specially in next-generation wireless networks
with hundreds of millions of connected devices [34].

In the so-called unsourced random access (URA), which was introduced by
Polyanskiy in [35], the focus is only on the messages transmitted, and the identity
of the users is not important for the BS [36]. Removing user identity in the URA
system enhances its efficiency compared to sourced random access, enabling it
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to support a significantly larger number of users. In this paradigm, the BS is
connected to millions of cheap devices, a small fraction of which are active at
any given time. In this set-up, users share all resources without any one of them
having priority over the others. The per-user probability of error (PUPE) is
adopted as the performance criterion in URA system [36–39].

To support an even greater number of users in URA, various efficient techno-
logical solutions, such as multiple input multiple output (MIMO) systems, are
also adopted [37, 38]. MIMO systems help URA by providing high spectral effi-
ciencies, high energy efficiencies, high data rates, and spatial multiplexing gains.
This is achieved by generating a substantial number of spatial degrees of freedom
(DoF) [40–43].

Another promising technology that can furnish the URA system with high
spectral efficiency and energy savings is the reconfigurable intelligent surface
(RIS) [34, 39]. Specifically, a passive RIS equipped with many low-cost passive
elements, which can intelligently tune the phase-shift of the incident electromag-
netic waves, and reflect them in a desired direction without any amplification,
can improve the efficiency of the network by enabling line-of-sight paths between
the transmitters and the receivers in problematic environments with many block-
ing obstacles [34, 39, 44, 45]. URA schemes in the literature consider direct links
between all the users and the BS; however, in certain environments, the direct
link between some users and the BS may be blocked or significantly attenuated.
Therefore, the use of RIS can improve user connectivity in URA by creating
high-quality links between the BS and the users [34, 39].

1.1 Contributions of the Thesis

The objective of this thesis is to formulate novel and highly effective encoding and
decoding blocks tailored to the requirements of unsourced random access. To this
end, we develop an efficient URA coding scheme designed for use in GMAC. We
also propose a URA scheme over Rayleigh block-fading channels with a receiver

4



equipped with multiple antennas. Furthermore, we introduce a URA scheme
designed for scenarios where the direct communication link between users and
the BS is obstructed. Our contributions within each of these three key areas are
outlined as follows.

URA with power diversify over GMAC: In this line of work, we propose
a random spreading approach with polar codes for unsourced multiple access, for
which each user first encodes its message by a polar code, and then the coded
bits are spread using a random spreading sequence. The proposed approach
defines different groups, and employs different power levels for each group in
such a way that the average power constraint is satisfied. We formulate and
solve an optimization problem to determine both the number of groups and their
respective power levels, along with the expected number of users within each
group. Extensive simulations show that the proposed approach outperforms the
existing methods, especially when the number of active users is large.

The results of this line of investigation have been published in [36].

MIMO URA technique with multiple stages of orthogonal pilots: We
study the problem of URA over Rayleigh block-fading channels with a receiver
equipped with multiple antennas. We propose a slotted structure with multiple
stages of orthogonal pilots, each of which is randomly picked from a codebook.
In the proposed signaling structure, each user encodes its message using a polar
code and appends it to the selected pilot sequences to construct its transmitted
signal. Accordingly, the transmitted signal is composed of multiple orthogonal
pilot parts and a polar-coded part, which is sent through a randomly selected slot.
The performance of the proposed scheme is further improved by randomly divid-
ing users into different groups each having a unique interleaver-power pair. We
also apply the idea of multiple stages of orthogonal pilots to the case of a single
receive antenna. In all the set-ups, we use an iterative approach for decoding the
transmitted messages along with a suitable successive interference cancellation
technique. The use of orthogonal pilots and the slotted structure lead to im-
proved accuracy and reduced computational complexity in the proposed set-ups,
and make the implementation with short blocklengths more viable. Performance
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of the proposed set-ups is illustrated via extensive simulation results which show
that the proposed set-ups with multiple antennas perform better than the exist-
ing MIMO URA solutions for both short and large blocklengths, and that the
proposed single-antenna set-ups are superior to the existing single-antenna URA
schemes.

These research outcomes have been published in [37,38].

RIS-aided URA scheme: This study considers a URA set-up equipped with
a passive RIS, where a massive number of unidentified users (of which only a small
fraction are active at a given time) share the same communication resources. We
propose a slotted transmission scheme that operates in two phases. In the first
phase, called the RIS configuration phase, the BS detects the active pilots and
estimates their respective CSI. Then, using the estimated CSI, the BS suitably
selects the phase shifts of the RIS elements. In the second phase, called the
data phase, transmitted messages of active users are decoded. The proposed
channel estimator offers the capability to estimate the channel coefficients of the
users whose pilots interfere with each other without prior access to the list of
selected pilots or the number of active users. In the design of RIS elements, we
introduce an algorithm that relies on the semidefinite relaxation technique, as
well as a more efficient alternative based on eigenvalue decomposition. The latter
offers comparable performance while maintaining the high accuracy of the former
method. This study explores two scenarios: one in which the direct link between
users and the BS is entirely blocked, and the other in which direct links exist
between them. We demonstrate that improving the connectivity between the BS
and users through RIS enhances the performance of the URA system, particularly
in situations where the direct link is obstructed or experiences substantial signal
attenuation. The effectiveness of the proposed algorithms is confirmed through
extensive numerical evaluations and simulations results.

Part of our results on this topic have been presented at IEEE GLOBECOM
2023 [39].
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1.2 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides an overview
of unsourced random access and presents a literature survey, considering both
GMAC and fading channels. Chapter 3 introduces an efficient coding scheme
that utilizes power diversity to enhance the performance of the URA system on
a GMAC channel. In Chapter 4, we turn our attention to the URA over MIMO
Rayleigh fading channel by presenting a pilot-based scheme with multiple stages
of orthogonal pilots, improving it by randomly grouping the users, and providing
a theoretical analysis on its performance. In Chapter 5, we introduce a RIS-
assisted URA scheme designed to enhance system performance in scenarios where
the direct links between the base station and users are significantly attenuated.
Finally, we summarize our results, and provide conclusions and directions for
future research in Chapter 6.

1.3 Notation

Lower-case and upper-case boldface letters are used to denote a vector and a
matrix, respectively; We denote the sets of real and imaginary numbers by R
and C, respectively; diag(t) and IN represent a diagonal matrix with elements
of vector t in its diagonal, and an N × N identity matrix, respectively; Re(·),
Im(·), and trace(·) denote the real and imaginary parts, and trace of a matrix,
respectively; [T](i,j) refers to the element in the ith row and jth column of T;
[T](l,:) and [T](:,l) represent the lth row and the lth column of T, respectively; [t]i
represents the ith element of the vector t; vec(·) is the vectorization operator;
⊗ denotes the Kronecker product; CN (0,B) denotes the zero-mean circularly
symmetric complex Gaussian random variable with covariance matrix B; U(c, d)
is the continuous uniform distribution on [c, d]; the transpose and Hermitian of the
matrix T are denoted by TT and TH , respectively; |.| denotes the cardinality of a
set, IM and 1s denote the identity matrix and 1× s all-ones vector, respectively;
we use [a1 : a2] to denote {i ∈ Z : a1 ≤ i ≤ a2}; δi,j is the Kronecker delta; and,
the set F(N) = {−1,−1+∆N ,−1+2∆N , ...,−1+ (N − 1)∆N} with ∆N = 2/N .
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Chapter 2

Preliminaries and Literature

Review

In this chapter, we provide an overview of contemporary literature related to
URA, with a focus on GMAC, fading MAC, and MIMO fading MAC. More
specifically, we study the works that put forth coding schemes and those that
offer fundamental limits for the URA setup. Considering a URA model with
M receive antennas, in which Ka out of KT users are active at a given frame,
the received signal matrix in the absence of synchronization errors is written
as [36–38]

Y =
Ka∑
i=1

hixi(ui) + Z ∈ CM×n, (2.1)

with 
hi = 1, M = 1 GMAC
hi ∼ CN (0, 1), M = 1 Fading channel
hi ∼ CN (0, IM), M > 1 MIMO fading channels

(2.2)

where xi(ui) is the length n signal corresponding to the message bit sequence
ui ∈ {0, 1}B of user i, B denotes the number of information bits, and elements
of the additive Gaussian noise Z ∈ CM×n are drawn from CN (0, σ2

z). Each user
selects its message index uniformly from the set {1, 2, ..., 2B}. The objective
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in URA is to determine ui ∀i = 1, 2, ..., Ka by analyzing the received signal
Y [35–38].

2.1 Unsourced Random Access: Challenges and

Potential Solutions

To address specific constraints within the URA paradigm, certain challenges need
to be overcome, e.g., 1) heavy interference: the grant-free nature of communica-
tion leads to the received signal being a superposition of signals from multiple
users, resulting in considerable interference for each individual user; 2) colli-
sions: since users are unidentified, they have to randomly share communication
resources, which can result in heavy collisions; 3) developing a multi-user coding
scheme: decoding in massive random access techniques is a complex task, un-
like the single-user scenarios where various robust channel codes are available, 4)
Computational complexity: the task of separating and decoding a massive num-
ber of users involves substantial computational complexity. Consequently, pre-
senting decoding algorithms with low complexity is an important task in URA.
When designing a URA system, it is crucial to seek effective solutions to address
these challenges. In the following, we will delve into these challenges along with
possible solution approaches.

• Development of multi-user coding schemes: For decoding different
users’ messages with the received signal in (2.1), the most immediate solu-
tion is that active users map their bit sequences to the rows of a 2B × n

codebook to select their transmitted signals. The receiver can separate the
signals of different users and detect each one using detectors such as max-
imum likelihood (ML) [35, 52]. Nevertheless, it is crucial to note that this
coding scheme is only practical for lower values of B because its computa-
tional complexity experiences exponential growth as B increases.

In the context of coded compressed sensing and tensor-based techniques
(which will be discussed in the following sections), a more computationally
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efficient approach is adopted [34, 53–59]. These methods involve dividing
each user’s bit sequence into distinct segments, allowing each segment to
be mapped to a codebook with reduced dimensions. This reduction in
dimensionality helps lower the computational load on the decoder, albeit at
the cost of reduced accuracy.

In another category of coding schemes, some techniques are employed to
separate the received signals of different users. Then, each user can encode
its whole message sequence (without partitioning it) with a strong single-
user channel code such as polar, low-density parity-check (LDPC), forward
error correction (FEC), etc [36–39,60–79]. These algorithms are considered
efficient because they manage to strike a balance, avoiding both the high
computational complexity associated with ML-based coding schemes and
the low accuracy observed in schemes that segment bit sequences.

• Dealing with heavy interference: Interference stands out as a pri-
mary challenge in multiple access channels. Failure to incorporate strate-
gies for reducing or canceling it can lead to a significant decline in perfor-
mance. To demonstrate the detrimental impact of interference, we study
the performance of the treat interference as noise (TIN) scheme, where
single-user decoding is carried out by treating interference from other users
as noise, without employing any techniques to mitigate it. Approximat-
ing ∥hi∥2≈ ∥hj∥2 ∀i, j in (2.1), the signal-to-interference-plus-noise ratio
(SINR) of a user in the TIN strategy can be written as [36]

αi ≈
P

σ2
z + (Ka − 1)P

, (2.3)

where P is the transmitted power of each user. For Ka being large enough,
the SINR can be written as

αi ≈
1

Ka − 1
. (2.4)

This equation illustrates that when the number of users surpasses a spe-
cific threshold, the SINR exhibits a linear decrease concerning Ka, and
boosting the transmitted power does not result in an enhanced SINR. Con-
sequently, a significant rise in Ka (equivalent to an increase in interference)
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adversely impacts the system’s performance. Furthermore, one can observe
this phenomenon by consulting [80], where the TIN scheme is compared
with TIN-SIC as a strategy designed to mitigate interference. The adverse
effects of neglecting interference reduction in the TIN scheme are evident
from the result of this study.

There are some techniques in the literature to mitigate the interference:

– Slotting: Dividing the time frame into multiple slots serves to diminish
interference by reducing the number of users in each slot [37–39,80,81].
Additionally, slotting results in a shorter duration for the transmitted
signal and a reduction in the number of users per slot. Consequently,
the overall computational complexity of the URA system is decreased
because an increase in these two parameters superlinearly increases
the computational workload of the multi-user decoder [38,77].

– Sending some preambles/pilots: In some URA schemes, each user
randomly selects a preamble/pilot, and transmits it along with its
main signal [36–39,62,63,72,73,77]. Upon detecting these transmitted
preambles/pilots at the receiver, there is an opportunity to signify the
influence of a desired user while mitigating the impact of other inter-
fering ones. For instance, in certain MIMO fading URA schemes, each
user selects a pilot and appends it to their codeword before transmis-
sion. At the receiver’s end, the channel coefficients for different users
can be estimated by using the detected pilots. With these estimated
channel vectors for various users, interference can be significantly re-
duced by employing estimators like the minimum mean square error
(MMSE) [37–39,72,73,77].

– SIC: Successive interference cancellation (SIC) is a useful technique for
interference mitigation in wireless multi-user scenarios. The idea be-
hind it is to re-encode the successfully detected messages and remove
them to decrease the interference [36–39, 83, 84]. It is important to
note that in fading channels with unknown CSI, an additional step is
necessary. This step involves estimating the corresponding channel co-
efficients of a detected message before proceeding with the subtraction
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process [37–39].

– Power diversity: An alternative approach for user separation involves
randomly distributing users into different groups with varying power
levels and adopting an appropriate technique to ensure that the decod-
ing process for each group is independent of the others [36, 38]. This
approach serves to reduce interference within each group. As previ-
ously discussed in the context of slotting, dividing users into distinct
groups also leads to a decrease in computational complexity of the
URA system.

• Addressing computational complexity: To increase the number of ac-
tive users supported by a URA system, larger values of parameters, such
as frame length and the number of antenna elements in MIMO systems,
are necessary [35, 56, 88]. Additionally, the computational complexity of
the system escalates with these parameters and the number of active users,
resulting in a superlinear dependence of computational load on the active
user count [37,77]. Consequently, a URA system with a substantial number
of active users is anticipated to exhibit high computational complexity. To
mitigate this complexity, various strategies are employed, such as slotting
the frame length and randomly dividing users into different independent
groups [36–38].

• Reducing collisions: In multi-user systems, a collision occurs when two
or more users access the same communication resource simultaneously. In
a URA system, a certain degree of collision, such as multiple users sharing
the same time slot or bandwidth, may be resolved. Nevertheless, there are
cases where the system encounters failure in the event of a collision. For
instance, in schemes where users choose from a preamble/pilot codebook
[36, 39, 64, 72], if multiple users happen to share the same preamble/pilot,
the system struggles to decode them. Therefore, it is crucial to perform a
preliminary analysis to keep the collision probability lower than a desired
threshold [38] or suggest techniques for its mitigation [37,38].
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Paper Contribution and techniques
Polyanskiy et al.,

2019 [35] Achievability and converse bounds + comparing with CDMA,
TDMA, and FDMA.

Glebov et al.,
2023 [52] Achievability bound for binary and Gaussian codebooks showing

comparable performance to [35].
Vem et al.,
2019 [60,61] A novel coding scheme that includes LDPC codes, slotting, per-

mutation, preamble transmission, and SIC.
Pradhan et al.,
2019 [62,63] A novel coding scheme that includes LDPC code, permutation,

preamble transmission, and SIC.
Marshako et al.,

2019 [67] A novel coding scheme that includes polar code, slotting, and SIC.

Pradhan et al.,
2020 [64] A novel coding scheme that includes polar code, preamble trans-

mission, random spreading, and SIC.
Pradhan et al.,

2021 [65] A novel coding scheme that includes LDPC code, preamble trans-
mission, random spreading, and SIC.

Han et al.,
2021 [66] A novel coding scheme that includes FEC, preamble transmission,

sparse spreading, and SIC.

Table 2.1: Summary of available coding schemes in URA over GMAC.

2.2 URA over GMAC

In this section, we review some basic results on URA over GMAC. In [35],
Polyanskiy established an achievability bound for unsourced random access, and
compared it with practical approaches including orthogonalization (FDMA and
TDMA), ALOHA, and CDMA, illustrating the superiority of URA over conven-
tional methods. Additionally, [35] delves into the asymptotic coding challenges
for a K-user GMAC, where K scales with the blocklength and each user’s pay-
load remains constant. While the achievability bound discussed in [35] is only
for Gaussian codebooks, the authors of [52] derive bounds for both Gaussian and
binary codebooks, and demonstrate that such codebooks exhibit comparable per-
formance to that given by Polyanskiy. Hence, they illustrate that Polyanskiy’s
achievability bound is not limited solely to Gaussian codebooks; instead, it holds
for a broader range of signaling structures. Here, the binary codebook consists of
entries drawn from {+1, -1}, while the Gaussian codebook involves entries drawn
from CN (0, 1).
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Several practical coding schemes have also been developed for URA over a
GMAC [60–67]. Despite having significantly lower computational complexity
compared to the coding scheme used to establish the achievability bound in [35],
these coding schemes exhibit comparable performance in certain scenarios. The
proposed solutions leverage a variety of methods to separate and then decode the
signals of distinct users. For instance, in some of them, each user divides its bit
sequence into two components: a preamble and a data part [60–66]. The first
part is mapped to a codebook to select a unique interleaving pattern, preamble,
or spreading sequence, which separates different users by giving identification to
them. The data part is encoded by a powerful channel code, e.g., a polar code or
an LDPC code. Another effective approach is slotting the frame [67]: as signals
from other users can act as sources of interference for a particular user, randomly
dividing users into distinct slots can reduce the number of users within each slot,
thereby having lower interference level in each slot. SIC is another efficient tech-
nique for reducing the interference, which mitigates interference by eliminating
successfully decoded codewords [60–67].

Table 2.1 provides a comprehensive summary of the techniques employed in
various schemes over the GMAC channel. Additionally, Figure 2.1 examines their
performance with respect to different number of active users. The results demon-
strate that when the number of active users is low, some of low-complexity coding
schemes achieve a performance similar to the achievability bound of Polyanskiy
in [35]. Conversely, with an increasing number of active users, the performance
gap becomes more pronounced. The improved performance observed in schemes
employing spreading sequences in [64–66] can be attributed to the spreading of
symbols from different users by distinct sequences, hence resulting in reduced
effective interference. In these schemes, the received signal associated with each
symbol is a mixture of Ka vectors, rather than Ka scalar values. This introduces
an additional degree of freedom that simplifies the procedure of estimating sym-
bols for individual users. This, in turn, provides us with a way of generating
LLR values with minimal interference from other users. In contrast, the schemes
in [60–63, 67] generate LLRs without making any effort to estimate the symbols
beforehand.
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Figure 2.1: The required Eb/N0 to achieve the target PUPE of 0.05 as a function of

the number of active users for n = 30000, B = 100, and different coding schemes over

GMAC channel.

2.3 URA over Fading Channels

Since GMAC is not a very realistic channel model for wireless communications, a
number of studies explore URA over Rayleigh fading channels [54, 63, 68–71, 80–
82,85–87]. In the references [80–82,85,86], the authors derive some performance
bounds for the URA set-up over a Rayleigh fading channel. In [81, 82], achiev-
ability and converse bounds are proposed for the cases of known and unknown
CSI in an asymptotic setting, where the number of users grows linearly with the
blocklength. Authors in [85, 86] provide both asymptotic and non-asymptotic
achievability and converse bounds for the case of unknown CSI. In [80], authors
derive an achievability bound for URA scheme over Rayleigh fading channel by
considering slotted structure and perfect SIC in their analysis. As clear from
Figure 2.6, their proposed non-asymptotic achievability bound works better than
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the ones in [81, 82, 85, 86] (i.e., its energy efficiency performance is closer to the
converse bound), however, the assumption of perfect SIC is not realistic.

The references [53, 54, 63, 68–71, 80, 85–87] introduce practical coding schemes
tailored for the URA scheme on fading channels. Within this collection of works,
some assume that the received signals from all users are synchronized [53,54,63,
80, 85, 86], while others take into account asynchronous transmission [68–71, 87].
To estimate the delay of asynchronous signals, [68–70,87] use OFDM transmission
to convert the time-delay to the phase shift in the frequency domain, while the
authors in [71] consider time-domain transmission, where the delay tap of a signal
is detected by finding the delay at which the compressed sensing (CS) preamble
has a peak. A summary of URA studies over fading channels involving a single
receive antenna is given in Table 2.2, and the performances of different coding
schemes are compared in Figure 2.6.

Focusing on the coding schemes in the context of Rayleigh fading channels, we
have the following classification:

• Treating interference as noise (TIN): Among all the URA algorithms,
this particular scheme is perhaps the simplest but it exhibits the poorest
performance. It operates under the assumption of the presence of just a
single user and treats other interfering users as noise. Consequently, this
approach results in an exceptionally low average signal-to-noise ratio (SNR)
due to the fact that it encounters interference-plus-noise as the system’s
overall noise level. Its performance compared to other URA schemes over
the Rayleigh fading channel is clear from Figure 2.6.

• Coded/coupled compressed sensing (CCS) [53, 54,71]:

– Encoder: the encoding process is performed in two phases (Figure 2.2
top): 1) in the tree encoder, B bits of information are divided into S
parts, and all of these segments, except the initial one, are appended
by additional redundant parity-check bits, 2) in the CS encoder, each
of S sub-message is mapped to a CS codebook to select a sequence for

16



Paper Contribution Description Synchron.
vs. Asynch.

Kowshik et al.,
2019&2021 [81,82]

Bounds Achievable and converse bounds for known
and unknown CSI in an asymptotic setting +
comparing with CDMA, TDMA, and FDMA.

Synchron.

Andreev et al.,
2020 [80] Bounds & cod-

ing scheme: polar
code with SIC

Non-asymptotic achievability and converse
bounds for unknown CSI + a new coding
scheme containing slotting, polar code, and
SIC.

Synchron.

Kowshik et al.,
2019&2020 [85,86]

Bounds& LDPC
code with joint
decoding

Achievable and converse bounds for known
and unknown CSI in asymptotic and non-
asymptotic manners + a new coding scheme
containing LDPC code, slotting, and iterative
joint decoding algorithm.

Synchron.

Amalladinne et al.,
2020 [53]

Coding scheme:
CCS-based

A novel coding scheme consists of pilot trans-
mission and detection and tree code.

Synchron.

Andreev et al.,
2022 [54] Coding scheme:

CCS-based
Improving CCS in [53] by replacing the con-
ventional outer tree code with 1) a code
capable of correcting t errors, and 2) a
Reed–Solomon code.

Synchron.

Pradhan et al.,
2022 [63] Coding scheme:

Sparse IDMA
A novel coding scheme that includes LDPC
code, signal repetition, permutation, pream-
ble transmission, and SIC.

Synchron.

Andreev et al.,
2019 [68,69] Coding scheme:

LDPC code with
SIC

A new coding scheme containing LDPC code,
OFDM, slotting, and SIC.

Asynch.

Chen et al.,
2017 [70] Coding scheme:

OFDM with SIC
A new coding scheme containing OFDM and
SIC.

Asynch.

Ozates et al.,
2023 [87] Coding scheme:

OFDM with SIC
A new coding scheme in the frequency-
selective channel, containing OFDM, pilot
transmission, slotting, polar code, and SIC.

Asynch.

Amalladinne et al.,
2019 [71]

Coding scheme:
CCS-based

They extend CCS in [53] to accommodate
asynchronous scenarios.

Asynch.

Table 2.2: Summary of available coding schemes in URA over fading channels.
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transmission. Hence, the received signal is comprised of S slots, with
each slot being the superposition of sequences from Ka users.

– Decoder: the decoder also functions in two stages. In the initial stage,
Ka sequences associated with the Ka active users are identified within
each slot. Subsequently, with the assistance of the unique parity bits,
the sub-messages corresponding to the detected sequences are com-
bined to create a message of length B for each user (the second stage
is called outer decoder or tree decoder which is shown in Figure 2.2
bottom).

– Variations: The explanations above are for the CCS algorithm in [53],
which is extended in other studies [54, 71]. Although [53] is designed
for the GMAC case, it can be applied to URA over fading channels as
well.

In [71], the authors utilize CCS for the asynchronous URA model.
More specifically, during the encoding stage, they append T additional
zeros to the end of each CS sequence, where T represents the maxi-
mum possible delay of the system. At the receiving end, the decoder
takes into account all potential delays, ranging from 1-symbol to a
maximum of T -symbol delays, when performing CS decoding.

Furthermore, in [54], authors modify the tree decoder of the CCS
scheme in [53] by replacing it by two codes capable of correcting t

errors: the first one modifies the conventional tree code by giving it
ability to recover t errors (called t-tree), and in the second one, Reed-
Solomon (RS) code is employed. As shown in Figure 2.6, t-tree scheme
improves the performance of the CCS in the lowKa regime. It is shown
that, the use of RS codes improves both schemes significantly, espe-
cially in the case of small number of active users. Also, it can be
seen in this figure that different variants of CCS exhibit lower energy
efficiency compared to other schemes, except for TIN. The reason is
that they employ a sub-optimal coding scheme, while others use strong
channel codes such as LDPC or polar codes.
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Figure 2.2: Encoding (top) and decoding (bottom) structures of a CCS scheme with

4 slots [53]. As depicted in the top figure, each user’s signal is divided into 4 parts,

and each part is appended to a parity-check bit. The result is mapped to a codebook

to construct the pilot of the user in a slot. Also, at the receiver side, sub-messages of

different users are detected at each slot, and corresponding ones in different slots are

connected to form the complete message sequence of a user.

• LDPC with joint decoding [85, 86]:

– Encoder: these algorithms partition the time frame into distinct slots.
Each user transmits its LDPC codeword through a randomly chosen
slot. As previously mentioned, slot allocation offers two significant
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benefits: it reduces the computational load on the decoder by reducing
the length of the LDPC signal and mitigates per-slot interference by
distributing users across various slots.

– Decoder: to perform decoding, they utilize an iterative belief propa-
gation (BP) decoder, as illustrated in Figure 2.3. The graph incor-
porates four distinct node types: variable nodes (in red), and check
nodes (in blue), which constitute the traditional LDPC decoder; func-
tional nodes (in green) corresponding to the symbols of the received
signal; and a fourth type (in magenta) corresponding to the fading
coefficients. This graph allows them to simultaneously update the es-
timated values of both the channel coefficients and the symbols for
each individual user. The diminished performance observed in [85,86]
compared to the ones in [63, 68, 69, 80] (as illustrated in Figure 2.6),
can be attributed to the absence of the highly efficient SIC block.

Figure 2.3: Iterative belief BP decoder for two users [85].

• Sparse IDMA [63]: Below, the encoding and decoding structures of sparse
interleave-division multiple access (IDMA) are presented:
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– Encoding: As illustrated in Figure 2.4, every user partitions its mes-
sage bit sequence into preamble and data segments. The data portion
of the message is subjected to LDPC encoding, repetition, and zero-
padding to fill the entire frame length requirement, experiences permu-
tation according to a predefined pattern, and ultimately gets attached
to a preamble sequence before transmission. The preamble part of the
message is used for selecting the preamble, the permutation pattern,
and the number of repetitions.

– Decoding: due to synchronous transmission, the signal received at the
receiver’s end is a composite of signals from Ka users. To decode
the transmitted bits of each user, an initial step involves detecting
the active preambles within the initial part (preamble part) of the
received signal. This detection is accomplished using LASSO as a
CS solver. Subsequently, by utilizing the identified preambles, the
repetition count and permutation pattern are determined. These, in
turn, determine the location of each symbol. Ultimately, the data bits
are detected by employing a message-passing algorithm tailored for
LDPC codes. As Figure 2.6 clearly illustrates, the approaches pre-
sented in [68, 69, 80] clearly surpass sparse IDMA. This performance
difference arises from the necessity of allocating extra energy for trans-
mitting preambles in sparse IDMA. In contrast, the former schemes
distribute users randomly across different slots, obviating the need for
a preamble to specify their locations.

Figure 2.4: Encoding process of sparse IDMA [63].

• LDPC coding with SIC [68, 69]: This coding design builds upon the
schemes presented in [85, 86], with the key distinction of incorporating
OFDM techniques to manage asynchronous scenarios and employing SIC
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instead of joint decoding. Performance of synchronous LDPC codes with
SIC surpasses that of LDPC with joint decoding [85, 86], as clearly illus-
trated in Figure 2.6. This superior performance can be attributed to the
enhanced capabilities of SIC compared to joint decoding.

• Polar coding with SIC [80]: Below, we will delve into the encoding and
decoding procedures of this scheme, which stands out as the state-of-the-
art among URA schemes operating over fading channels. The frame in
this scheme is divided into S slots. Each user randomly selects a slot to
transmit its polar coded and modulated signal. For decoding, the scheme
considers TIN strategy followed by an SIC: since different users in a slot are
prone to different fading coefficients, some of them with larger coefficients
are more likely to be decoded by TIN. After decoding the strongest user’s
signal while treating others as noise, its channel coefficient is estimated by
OMP. Given the estimated channel coefficient and the decoded signal of a
user, its contribution can be removed from the received signal using SIC.
This strategy continues until no signal is successfully detected during an
iteration. It is important to emphasize that the determination of whether a
decoded message is successful or not relies on the use of a cyclic redundancy
check (CRC) message sequence. The encoding and decoding process of the
polar coding with SIC scheme in a slot with K users is demonstrated in
Figure 2.5.

Figure 2.5: Encoding and decoding process of polar code with SIC in [80] in a slot

with K users.
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Figure 2.6: The required Eb/N0 to achieve the target PUPE of 0.1 as a function of

the number of active users for n = 30000, B = 100, and different coding schemes over

Rayleigh fading channel.

2.4 URA over MIMO Fading Channels

In [88], achievability and converse bounds are proposed for the URA scheme over
MIMO Rayleigh fading channels. Furthermore, several studies have investigated
practical coding schemes for MIMO setting, which can be categorized into four
groups: CCS-based, tensor-based, pilot-based, and Bayesian approaches [34, 56–
59,72–79].

As the computational complexity of mapping bit sequences of each user to a
codebook increases exponentially with the parameter B, CCS-based algorithms
are employed in which the bit sequence of each user is divided into S sub-messages
[56, 57]. Subsequently, these sub-messages are mapped to pilot codebooks with
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lower dimensions (see Figure 2.2 top as an example with S = 4) to obtain S

different pilots. Then, pilots are transmitted through S different slots. At the
receiving end, Ka sub-messages are detected within each slot, and they are then
combined (see Figure 2.2 bottom) to form the complete length-B bit sequence
for each user. To establish connections between these sub-messages, the authors
in [56] incorporate parity-check bits into each sub-message, while [57] relies on the
correlation between channel coefficients of each user in different slots (assuming a
quasi-fading channel model). Eliminating the necessity for additional parity bits
enhances the performance of [57] in comparison to [56].

Figure 2.7: Encoding and decoding structures of tensor-based schemes, where each

user divides its message sequence into d parts (here d = 2), then applies Kronecker

product on them [59].

In tensor-based URA schemes, each user sends a rank-1 tensor of order d.
Therefore, the received signal is a rank-Ka tensor of order d + 1 (considering
the channel coefficient vector as an extra dimension of the tensor) summed with
an additive noise [34, 58, 59]. For decoding, it is enough to only perform tensor
decomposition on the received signal. In particular, by tensor decomposition, the
rank-Ka tensor of order d+1 is decomposed into Ka rank-1 tensors of order d+1,
which is equivalent to separating the signals of Ka users, where the transmitted
tensors can be identified by the first d dimensions, and the (d + 1)th dimension
gives the channel vector of the user. The schemes in [58,59] address the challenge
of decoding in URA with MIMO Rayleigh fading channels, while the authors
in [34] attempt to employ a passive RIS to decode users in a scenario where there
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are obstructed channels between the unsourced users and the BS. The overall
coding structure of tensor-based methods is depicted in Figure 2.7.

Figure 2.8: Encoding structure of pilot-based schemes.

Pilot-based techniques constitute another category of algorithms in the con-
text of MIMO URA systems [72–77]. The idea behind them is to divide the bit
sequences into pilot and data parts. The transmitted signal of each user also
consists of two parts (see Figure 2.8 for details): the pilot part which is obtained
by mapping the pilot bits to a codebook, and the data part which is the encoded
(by polar or LDPC codes). For decoding, as shown in Figure 2.9, these schemes
iteratively employ the following steps: 1) at the initial stage, they detect the ac-
tive pilots using different algorithms such as orthogonal matching pursuit (OMP),
approximate message passing (AMP), energy detector, etc., 2) the channel coeffi-
cient vectors corresponding to each detected pilot is estimated by algorithms like
MMSE, 3) using the estimated channel coefficients, they obtain a soft estimation
of the transmitted codewords, which are used for generating log-likelihood ratio
(LLR) values, 4) after feeding the LLR to the decoder, the successfully decoded
codewords are removed from the received signal for decreasing the interference
level at next iterations (this step is not employed by all the pilot-based schemes).
As shown in Figure 2.10, due to adopting strong channel coding algorithms such as
LDPC and polar codes, pilot-based schemes usually outperform the tensor-based
and CCS-based schemes for which sub-optimal coding schemes are employed.
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Figure 2.9: Decoding structure of pilot-based schemes.

Figure 2.10: The required Eb/N0 to achieve the target PUPE of 0.05 as a function of

the number of active users for n = 3200, B = 100, and different coding schemes over

MIMO Rayleigh fading channels.

In pilot-based algorithms, the channel estimation and data detection tasks
are performed independently, hence the error from one block is propagated to
the next one. To resolve this issue, there is also a new set of MIMO URA
schemes which employ multi-layer iterative Bayesian decoder to jointly estimate
each user’s transmitted signal, and their corresponding channel coefficients [78,
79]. The superiority of Bayesian schemes over the pilot-based ones (see Figure
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2.10) lies in their ability to carry out channel estimation and data detection in an
iterative manner, allowing errors from one block to be resolved in a subsequent
block. A summary of MIMO URA schemes is provided in Table 2.3.

Paper Contributions Description

Gao et al.,
2023 [88]

Bounds Achievability and converse bounds.

Fengler et al.,
2021 [56]

Coding scheme:
CCS-based

The pilots at each slot are found using a newly proposed
coordinate-wise activity detector. Then, the detected pi-
lots of different slots are stitched together using parity
bits.

Shyianov et al.,
2021 [57]

Coding scheme:
CCS-based

Instead of employing parity-check bits (as in [56]), the
correlation between different slots is used for stitching pi-
lots, hence, the energy efficiency is improved.

Decurninge et al.,
2020 [58]

Coding scheme:
tensor-based

Users’ signal separation and detection is done by tensor
decomposition.

Luan et al.,
2022 [59]

Coding scheme:
Tensor-based

A new tensor-based modulation scheme in two versions:
one employing QPSK encoding and the other implement-
ing Grassmann encoding. It shows improved energy effi-
ciency over the tensor-based scheme in [58].

Shao et al.,
2022 [34]

Coding scheme:
tensor-based

Users communicate with the BS through the RIS. For
detecting the transmitted signals, a Bayesian approach is
employed.

Fengler et al.,
2022 [72]

Coding scheme:
pilot-based

A pilot and a polar codeword are transmitted sequentially.
For decoding, the active pilots and corresponding channel
coefficients are detected using MMV-AMP and MMSE,
respectively, and a polar decoder is employed for data
detection.

Gkagkos et al.,
2023 [73]

Coding scheme:
pilot-based

A pilot and a random spread polar codeword are trans-
mitted sequentially. An energy detector, an MMSE, and a
polar list decoder are employed for pilot detection, chan-
nel estimation, and decoding, respectively. Finally, an
SIC removes the contribution of successfully decoded sig-
nals.
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Ustinova et al.,
2022 [74]

Coding scheme:
pilot-based

OMP is employed for pilot detection and channel estima-
tion, polar code is used for decoding, and SIC is used for
reducing the interference.

Su et al.,
2023 [75]

Coding scheme:
pilot-based

A pilot is transmitted along with an LDPC coded and
modulated codeword. At the receiver side, AMP is used
for pilot detection and channel estimation, and an LDPC
decoder is used for data detection. The selected pilot
specifies the indexes over which every symbol of the LDPC
codeword is transmitted.

Su et al.,
2023 [76]

Coding scheme:
pilot-based

A pilot and an LDPC codeword are spread and trans-
mitted consecutively. At the receiver’s end, an ML algo-
rithm detects active pilots, an AMP technique estimates
the corresponding channels, and an SIC block is applied
following the LDPC decoder.

Ozates et al.,
2023 [77]

Coding scheme:
pilot-based

The channel length is slotted, and each user randomly
selects a slot to transmit a pilot along with a polar code-
word. For decoding, a generalized OMP and an MMSE
estimator are used for pilot detection and channel esti-
mation, the polar decoder is used for data detection, and
SIC removes the contribution of the decoded messages.

Han et al.,
2021 [78]

Coding scheme:
Bayesian approach

Employs FEC code, and sparse spreading.

Jiang et al.,
2023 [79]

Coding scheme:
Bayesian approach

Combines sparse regression codes for encoding and a
message-passing algorithm for decoding.

Table 2.3: Summary of available coding schemes in URA with MIMO fading
channels.
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2.5 Chapter Summary

In this chapter, we examined unsourced random access as a highly effective scheme
in massive machine-type communication. Initially, our focus was on investigat-
ing various multiple access techniques. Following that, we presented distinct
advantages that URA exhibits in comparison to other multiple access methods,
particularly in scenarios involving massive access. Subsequently, we delved into
the challenges associated with URA and potential solutions. Lastly, we provided
an overview of the literature on URA, placing emphasis on GMAC and fading
channels. We reviewed research that introduced coding schemes and investigated
performance bounds within the URA framework.
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Chapter 3

Random Spreading With Power

Diversity for URA over GMAC

In this chapter, we propose an extension of the random spreading idea in [64]
by allowing for the use of different power levels among active users. In our
approach, each user initially employs a polar code to encode their message, after
which the encoded bits are spread using a randomly generated spreading sequence.
This novel method involves categorizing active users into distinct groups and
applying varying power levels to each group, ensuring compliance with the average
power constraint. To achieve this, we introduce an optimization problem that
determines the optimal number of groups, the expected number of users within
each group, and the respective power levels. we will demonstrate the superior
performance of our approach, particularly when dealing with a large number of
active users.

The chapter is organized as follows. In Section 3.1, we describe the system
model. In Section 3.2, the proposed random access scheme is described. In
Section 3.3 an optimization problem for power allocation (PA) is formulated and
solved. Simulation results are provided in Section 3.4, and our conclusions are
given in Section 3.5.
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3.1 System Model

We consider an unsourced random access model in which Ka out of KT users
are active at a given frame. The number of active users Ka is assumed to be
known at the receiver. Each active user transmits B bits of information through
n channel uses. Assuming a GMAC, the received signal vector in the absence of
synchronization errors and fading is written as

y =

KT∑
i=1

sixi(ui) + z, (3.1)

where si is 1 for active users and 0 otherwise, xi is the length n spread polar-
coded signal corresponding to the message bit sequence ui ∈ {0, 1}B of user i, and
z ∼ N (0, In) is the additive white Gaussian noise. Each user selects its message
index uniformly from the set {i ∈ Z : 1 ≤ i ≤ 2B}. The average power of each
user per channel use is set to P . Therefore, the energy-per-bit of the system can
be written as

Eb
N0

=
nP

2B
, (3.2)

and the PUPE of the system is defined as

Pe = max∑KT
i=1 si=Ka

1

Ka

KT∑
i=1

siPr(ui /∈ L(y)), (3.3)

where L(y) is the list of decoded messages with size at most Ka. The primary
purpose is to design encoding and decoding schemes to reach a PUPE less than
the target block error probability ϵ with the lowest Eb/N0.

3.2 Proposed Unsourced MAC Scheme

3.2.1 Encoder

The message selected by each user is divided into two parts with Bs and Bc =

B −Bs bits, i.e., ui = (uis,uic). The first part is used to map the preamble bits,
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uis, to columns of a signature codebook A ∈ Rns,2Bs , where ns is the spreading
sequence length. Since

P [∃j ̸= i : uis = ujs] ≤
Ka − 1

2Bs
, (3.4)

Bs is selected to make the right-hand side of (3.4) in such a way to satisfy the
PUPE requirement. The elements of the matrix A are generated by first picking
independent zero-mean Gaussian random variables with unit variance, forcing
each column to have an average of zero by subtracting its mean from each element,
and then scaling them to distinct power levels (the determination of the power
levels will be discussed in the following section). Let us denote the column picked
by the ith user by ai. The second part of the message, uic, is encoded using a
polar code. As in [64], this message is appended by r CRC bits, and the result
is passed to an (nc, Bc + r) polar encoder. The CRC bits are used to check the
success of polar decoding. The polar codeword is modulated using binary shift
keying (BPSK), resulting in vi ∈ {±1}nc×1. The transmitted signal for user i is
then obtained as

xi = vi ⊗ ai, (3.5)

where ⊗ represents the Kronecker product.

3.2.2 Design of the Codebook

While the elements of the codebook A are selected in a similar fashion to [64],
unlike the codebook in [64] where the empirical variance of all the columns of A
are normalized, we divide the columns of A into m groups, and assign different
power levels to each. There are lk columns with power level Pk in the kth group,
with k = 1, 2, . . . ,m. Hence, with a uniform selection, the probability of choosing
a column with power Pk from the codebook is

Pr(∥ai∥2= Pk) =
lk
2Bs

. (3.6)

Since Ka active users pick columns of A randomly, the number of users with
power Pk can be approximated by

Kk ≈
lk
2Bs

Ka, (3.7)
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for Ka ≫ 1. Optimization of the codebook parameters lk and Pk is described in
the next section.

3.2.3 Decoder

The decoder is composed of three parts. A newly proposed covariance-based
detector identifies the set of spreading sequences employed by the active users;
a MMSE estimator is used to produce the soft estimates corresponding to the
detected sequences; and finally, the estimated symbols are fed as input to the
channel decoder, implemented as a polar list decoder. SIC is employed to remove
the contribution of the successfully decoded messages from the received signal at
each step, and the procedure is repeated until messages of all the active users are
decoded or there are no successfully decoded users in an iteration.

3.2.3.1 Covariance-based Detector

As an alternative to the energy detector in [64], which requires searching through
possible codeword sequences, we propose an approach which generates an esti-
mate of the covariance matrix of the received signal, and declares the signatures
corresponding to the largest diagonal entries as the active ones. Namely, we write
the remaining signal after last SIC step, Y′ ∈ Rns×nc , as

Y′ = AaV + Z, (3.8)

where Aa ∈ Rns×K and V ∈ { ± 1}K×nc are constructed by aggregating the
signatures and codewords of the remaining K active users; and, Z ∈ Rns×nc is
the noise matrix with independent and identically distributed zero-mean unit-
variance Gaussian random variables as its elements. Note that since via a CRC
check, we only remove the contribution from the correct decoded message at the
SIC steps, (3.8) holds for all the iterations (with the remaining users’ messages).
We form

C = AT
NY

′Y′TAN , (3.9)
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where AN is obtained by scaling the columns of the codebook to 1 (after removing
signatures of correctly decoded users) to prevent higher detection probability for
the sequences with greater power levels. The covariance-based detector outputs
Kγ = Kr+Kδ signatures corresponding to largest diagonal elements of C, where
Kr is the number of remaining users up to the current iteration and Kδ is a small
integer.

Let us comment on the complexity of the proposed approach. The number
of multiplications required to calculate the diagonal entries of matrix C in (3.9)
is Nc = n2

snc + 2Bsn2
s + 2Bsns, while the number of multiplications required in

the energy detector [64] is Ne = nsnc2
(g+Bs). Here g denotes the length of each

partition in the energy detector approach. Clearly, for moderate values of g, e.g.,
for g = 8, the complexity of the energy detector is significantly higher than that
of the newly proposed one. For small g values, however, the complexities of the
two approaches are in the same order.

3.2.3.2 Channel Decoder and SIC

Accumulating the signatures declared by the covariance-based detector in the
matrix ÂD ∈ Rns×(Kr+Kδ), the MMSE estimate of V is obtained by [64]

V̂ = ÂT
DĈ

−1
y Y′, (3.10)

with Ĉy = (Ins+ÂDÂ
T
D), where the ith row of V̂ (denoted by v̂i) is the estimated

codeword of user i. We treat v̂i as the output of an AWGN channel with noise
variance σ̂2

i , where σ̂2
i is obtained by picking the ith diagonal entry of the mean

square error (MSE) matrix, MSE = I − ÂT
DC

−1
y ÂD. The ith user’s message is

then decoded by feeding di = 2v̂i/σ̂
2
i as the set of LLRs to the list decoder.

After polar decoding, the successfully decoded codewords that satisfy the CRC
check are removed from the received signal. The residual received signal is then
passed back to the covariance-based detector for the next iteration. This proce-
dure is repeated until there are no successful decoding results or all the active
users are decoded.

We finally note that there could be some false signatures declared by the
covariance-based detector. In practice, during the decoding process, these falsely
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detected signatures with higher power levels can adversely affect the decoding
performance of the users with lower power levels. To alleviate this effect, we run
the decoder m+1 times with indices i = 0, 1, ...,m. At the ith step, the signatures
of the i groups with the larger power levels are removed from the codebook when
using the covariance-based detector. Therefore, the matrix ÂD does not have the
spreading sequences with high power levels in it. This helps the MMSE estimator
in (3.10) to avoid possible negative effects of the falsely detected signatures with
high power levels particularly when most of the users with these power levels are
removed from the received signal by SIC. Note again that the falsely detected
signatures do not negatively affect the SIC process since CRC check is used to
verify the correctness of decoder outputs. The details of the decoding procedure
are given as a pseudo-code in Algorithm 1.

Algorithm 1: Pseudo-code for the decoder steps.
Input: Y, A, and Ka.
flag = 1.
Kr = Ka.
Y′ = Y.
while flag = 1 do Decoding

Kx = 0.
for i = 0, 1, . . . ,m do

i groups with higher powers are removed from AN .
S = ∅.
ÂD is the output of covariance-based detector.
Calculate V̂ = ÂT

DĈ
−1
y Y′.

Feed di = 2v̂i/σ̂
2
i to the list decoder.

update S as the set of decoded codewords.
Kr = Kr − |S| and Kx = Kx + |S|.
Y′ = Y′ −ASVS .
if Kx ≥ 1 then

break.
end

end
if Kx = 0 or Kr = 0 then

flag = 0.
end

end
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3.3 Design of Spreading Sequences: Optimal

Power Allocation

3.3.1 Selection of Optimal Parameters

Suppose that active users are divided into m groups consisting of K1, K2, ..., Km

users with power levels P1 ≤ P2 ≤ ... ≤ Pm, where K1 + K2 + ... + Km = Ka.
Note that during the interference cancellation procedure, the users wih the highest
power levels are expected to be decoded first. Focusing on (3.5), we notice that
xi is obtained by normalizing a zero-mean Gaussian vector, hence we model the
aggregate interference as a Gaussian random vector added to each user’s signal.
For instance, for the group with the highest power level, Km users with power Pm
experience interference with variance σ2

m = 1 +K1P1 +K2P2 + ... +Km−1Pm−1.
After successful decoding and interference cancellation, we decode the Km−1 users
with power level Pm−1, which experience interference with variance σ2

m−1 = 1 +

K1P1 +K2P2 + ... +Km−2Pm−2. Similarly, for the jth group, the Kj users with
power Pj experience interference with variance σ2

j = 1 +
∑j−1

i=1 KiPi.

Corollary 1. The minimum required power for the jth group becomes

Pj =
αmin(Kj)

1− (Kj − 1)αmin(Kj)

(
1 +

j−1∑
i=1

KiPi

)
, (3.11)

where αmin(Kj) is the minimum required SINR for achieving a target PUPE in a
group with Kj users.

Proof. Since we are treating interference as noise, from the perspective of a user,
the SINR becomes the important performance metric. In a group with Kj users
with power level Pj, and noise variance σ2

j , we need

αmin(Kj) ≤
Pj

σ2
j + (Kj − 1)Pj

. (3.12)

Since our objective is to minimize the total power, we can select the power
level for each user as
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Pj =
αmin(Kj)

1− (Kj − 1)αmin(Kj)
σ2
j . (3.13)

We can rewrite (3.11) as

Pj = γj

j−1∏
i=1

(1 +Kiγi) ∀j = 1, 2, . . . ,m, (3.14)

where γj =
αmin(Kj)

1− (Kj − 1)αmin(Kj)
. Note that αmin(Kj) depends on the particular

coding and transmission scheme employed, and can be determined via simula-
tions. Therefore, the total power can be written as a function of K1, K2, ..., Km

as

PT = K1P1 +K2P2 + ...+KmPm

=
m∏
i=1

(1 +Kiγi)− 1. (3.15)

We can find values of K1, K2, ..., Km which minimize the total power by solving
the following optimization problem:

(K̂1, ..., K̂m) = argmin
K1,...,Km

PT , s.t.
m∑
i=1

Ki = Ka. (3.16)

To proceed further, we relax the integer constraint onKj’s, and use the method
of Lagrange multipliers. The cost function to be minimized is

J(K1, . . . , Km) =
m∏
i=1

(1 +Kiγi) + λ

(
m∑
i=1

Ki −Ka

)
(3.17)

where λ is the Lagrange multiplier. Setting the derivative of the Lagrangian
function to zero gives

K1γ
′
1 + γ1

1 +K1γ1
=
K2γ

′
2 + γ2

1 +K2γ2
= ... =

Kmγ
′
m + γm

1 +Kmγm
= − λ

PT + 1
. (3.18)

Strictly speaking, while αmin(Kj) is a function of Kj, this value is almost a
constant (for a given target PUPE level). Dropping this dependence, after some
calculations, we obtain

Kiγ
′
i + γi

1 +Kiγi
=

αmin

1− (Ki − 1)αmin

. (3.19)
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Since
αmin

1− (Ki − 1)αmin

is a one-to-one function of Ki, the optimal values of

Ki satisfy K1 = K2 = ... = Km = K0, with K0 = Ka/m. We can also argue that
(with a constant αmin), the Hessian for J(K1, . . . , Km) is given as

∇2(J) = (PT + 1)diag

(
K1γ

′′
1 + 2γ′1

1 +K1γ1
, . . . ,

Kmγ
′′
m + 2γ′m

1 +Kmγm

)
(3.20)

with

γ′i =
∂γi
∂Ki

=

(
αmin

1− (Ki − 1)αmin

)2

, (3.21)

γ′′i =
∂2γi
∂K2

i

= 2

(
αmin

1− (Ki − 1)αmin

)3

, (3.22)

where diag(ζ1, ..., ζl) is an l× l diagonal matrix with the ith diagonal element ζi.
From (3.13), we observe that

αmin

1− (Ki − 1)αmin

is proportional to the minimum

required power, which is always positive. Thus, the Hessian in (3.20) is a positive
definite matrix, and (3.16) is verified to be a convex optimization problem.

Determining that the number of users in all the groups should be the same,
we optimize the number of groups via

m = min
m̂

(
1 +

Kaγ0
m̂

)m̂
. (3.23)

3.3.2 General case

We highlight that, even though the optimal PA approach is applied to the random
spreading scheme, the basic ideas can be extended to other unsourced MAC
scenarios (for which the interference is treated as noise) as well by solving (3.23)
for the specific αmin(K) values.
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Figure 3.1: (a) The required SINR and (b) optimal number of groups for random

spreading scheme with ns = 117 and nc = 256 and sparse spreading scheme in [89].

3.4 Numerical Results

In this section, we study the performance of the proposed approach and compare
it with other existing solutions for unsourced MAC. The total number of channel
uses is selected as n ∼= 30000 (ns = 117 and nc = 256), the number of active users
is 150 ≤ Ka ≤ 600, the list size for the polar decoder is L = 512, and the target
PUPE is set to Pe = 0.05. The number of information bits per message is chosen
as B = 100, where Bs is selected as Bs = 14 for 150 ≤ Ka < 200, Bs = 15 for
200 ≤ Ka ≤ 250, Bs = 16 for 250 < Ka ≤ 350, Bs = 17 for 350 < Ka ≤ 500,
and Bs = 18 for 500 < Ka ≤ 600. Note that, the probability that three or more
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users are in collision is very small for the selected values of Bs, hence their effects
can be neglected. Also, as discussed in [64], the random spreading scheme with
channel coding rate lower than 1/2 is able to resolve the possible collision of two
users, providing a good performance.

Figure 3.2: The required Eb/N0 as a function of the number of active users in the sparse

spreading scheme [89], the random spreading scheme [64], the sparse spreading with optimal

PA, and the random spreading with optimal PA.

To obtain αmin(K0) for the random spreading scheme, the method in [64] is
run for different values of K0, and the result is shown in Figure 3.1(a) for Bs = 14

and 18. One should keep in mind that the required SINR must be computed for
different values of Bs separately, because in the random spreading scheme, it is
sensitive to Bs. Plugging αmin(K0) into (3.23), the optimal number of groups, m,
is obtained (as depicted in Figure 3.1(b)). Clearly, for Ka ≤ 125, only one group
should be employed, however, beyond that number of users, employing more than
one group with different power levels becomes optimal.
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Figure 3.3: The required Eb/N0 as a function of the number of active users for the

proposed scheme, the random coding bound in [64], SIC-based scheme with T = 4

[60], sparse IDMA [62], IRSA scheme [67], random spreading scheme [64], and sparse

spreading scheme [89].

We also apply our approach to the sparse spreading idea of [89] to determine
the optimal number of groups and the corresponding power levels without any
need for extensive simulations. The results are depicted in Figure 3.1. We com-
pare the required Eb/N0 of the scheme in [89], random spreading scheme in [64],
sparse spreading with optimal PA, and random spreading with optimal PA in
Figure 3.2. It can be inferred from this result that applying optimal PA on the
random spreading scheme decreases the required Eb/N0 of the system remarkably,
especially, for the larger number of active users, i.e., for Ka > 225. Moreover,
it is shown that the required Eb/N0 is the same for the sparse spreading scheme
with optimal PA and sparse spreading scheme in [89] where the parameters are
empirically chosen.
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In Figure 3.3, the performance of the proposed random spreading solution with
optimal PA is compared with the other existing unsourced MAC schemes. The
result clearly indicates that the proposed method offering superior performance,
particularly, when the number of active users is large.

We further note our observation that the detection probability of the
covariance-based detector is slightly higher than that of the energy detector for
manageable values of g, and for the specific parameters of ns, nc, and Bs in this
section. Regarding its complexity, for Ka = 500 and Bs = 17, the total number
of multiplications required by the proposed covariance-based detector and the
energy detector with g = 1 are Nc = 1.81 × 109 and Ne = 7.85 × 109, respec-
tively. That is, the computational complexity of the covariance-based detector
and energy detector with g = 1 are comparable.

3.5 Chapter Summary

In this chapter, we have studied unsourced MAC with polar codes and random
spreading, and developed an approach which divides the active users into different
groups with varying transmit power levels. The optimal number of groups and
the power levels are selected through a suitably formulated optimization problem,
and it is shown by numerical evaluations that the idea of using different power
levels provides a significant reduction in the required Eb/N0, particularly, for
systems with a large number of active users.
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Chapter 4

MS-MRA: Multi-stage URA Set-up

over MIMO Fading Channels

In this chapter, we study the problem of URA over Rayleigh block-fading channels
with a receiver equipped with multiple antennas. We propose a slotted structure
with multiple stages of orthogonal pilots, each of which is randomly picked from
a codebook. In the proposed signaling structure, each user encodes its message
using a polar code and appends it to the selected pilot sequences to construct its
transmitted signal. Accordingly, the transmitted signal is composed of multiple
orthogonal pilot parts and a polar-coded part, which is sent through a randomly
selected slot. The performance of the proposed scheme is further improved by
randomly dividing users into different groups each having a unique interleaver-
power pair. We also apply the idea of multiple stages of orthogonal pilots to
the case of a single receive antenna. In all the set-ups, we use an iterative ap-
proach for decoding the transmitted messages along with a suitable successive
interference cancellation technique. The use of orthogonal pilots and the slot-
ted structure lead to improved accuracy and reduced computational complexity
in the proposed set-ups, and make the implementation with short blocklengths
more viable. Performance of the proposed set-ups is illustrated via extensive
simulation results which show that the proposed set-ups with multiple antennas
perform better than the existing MIMO URA solutions for both short and large
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blocklengths, and that the proposed single-antenna set-ups are superior to the
existing single-antenna URA schemes.

The chapter is organized as follows. In Section 4.1, an introductory overview
for the chapter is presented. Section 4.2 presents the system model for the pro-
posed framework. The encoding and decoding procedures of the proposed schemes
are introduced in Section 4.3. In Section 4.4, extensive numerical results and ex-
amples are provided. Finally, Section 4.5 provides our conclusions.

4.1 Introduction

Most coding schemes in URA employ non-orthogonal pilots/sequences for iden-
tification and estimation purposes [36,56,64,65,72,73]. Performance of detectors
and channel estimators may be improved in terms of accuracy and computational
complexity by employing a codebook of orthogonal pilots; however, this signifi-
cantly increases the amount of collisions due to the limited number of available
orthogonal pilot sequences. To address this problem, the proposed schemes in this
chapter employ multiple stages of orthogonal pilots combined with an iterative
detector.

In the proposed scheme, the transmitted signal of each user is composed of
J + 1 stages: a polar codeword appended to J independently generated orthog-
onal pilots. Thus, the scheme is called multi-stage set-up with multiple receive
antennas (MS-MRA). At each iteration of MS-MRA at the receiver side, only one
of the pilot parts is employed for pilot detection and channel estimation, and the
polar codeword is decoded using a polar list decoder. Therefore, the transmitted
pilots in the remaining J − 1 pilot parts are still unknown. To determine the
active pilots in these, we adopt two approaches. In the first one, all the pilot bits
are coded jointly with the data bits and CRC bits (therefore, the transmitted bits
of all the pilot parts are detected after successful polar decoding). As a second
approach, to avoid waste of resources, we propose an enhanced version of the MS-
MRA, where only data and CRC bits are fed to the polar encoder. At the receiver
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side, the decoder iteratively moves through different J + 1 parts of the signal to
detect all the parts of an active user’s message. Since it does not encode the pilot
bits, this is called MS-MRA without pilot bits encoding (MS-MRA-WOPBE).
We further improve the performance of the MS-MRA by randomly dividing users
into different groups. In this scheme (called multi-stage set-up with user group-
ing for multiple receive antennas (MSUG-MRA)), each group is assigned a unique
interleaver-power pair. Transmission with different power levels increases the de-
coding probability of the users with the highest power (because they are perturbed
by interfering users with low power levels). Since successfully decoded signals are
removed using SIC, users with lower power levels have increased chance of being
decoded in the subsequent steps. By repeating each user’s signal multiple times,
we further extend the idea in MS-MRA and MSUG-MRA to the case of a single
receive antenna. These extensions are called multi-stage set-up with a single re-
ceive antenna (MS-SRA) and multi-stage set-up with user grouping for a single
receive antenna (MSUG-SRA).

Several studies have investigated Rayleigh block-fading channels in a massive
MIMO setting [37,56,72,73]. In [56], a covariance-based activity detection (AD)
algorithm is used to detect the active messages. A pilot-based scheme is intro-
duced in [72] where non-orthogonal pilots are employed for detection and channel
estimation, and a polar list decoder is used for decoding messages. Furthermore,
in a scheme called FASURA [73], each user transmits a signal containing a non-
orthogonal pilot and a randomly spread polar code. The AD algorithm in [56]
performs well in the fast fading scenario (e.g., when Lc ≤ 320); however, it is
not implementable with larger blocklengths due to run-time complexity scaling
with L2

c . In contrast, the schemes in [72, 73] work well in the large-blocklength
regimes (e.g., for Lc = 3200); that is, in a slow fading environment where large
blocklengths can be employed, their decoding performance is better than that
of [56]. We demonstrate that, while the covariance-based AD algorithm in [56]
suffers from performance degradation with large blocklengths, and the algorithms
in [72, 73] do not work well in the short blocklength regime (hence not suitable
for fast fading scenarios), the proposed schemes in this chapter have a superior
performance in both regimes.
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Our contributions are summarized as follows:

• We propose a URA set-up with multiple receive antennas, namely MS-
MRA. The proposed set-up offers comparable performance with the ex-
isting schemes with large blocklengths, while having lower computational
complexity. Moreover, for the short-blocklength scenario, it significantly
improves the state-of-the-art.

• We provide a theoretical analysis to predict the error probability of the
MS-MRA, taking into account all the sources of error, namely, errors re-
sulting from pilot detection, channel estimation, channel decoding, SIC, and
collisions.

• We extend the MS-MRA set-up by randomly dividing the users into groups,
i.e., MSUG-MRA, which is more energy-efficient than MS-MRA and other
MIMO URA schemes.

• Two URA set-ups with a single receive antenna, called MS-SRA and MSUG-
SRA, are provided by adopting the ideas of the MS-MRA and MSUG-MRA
to the case of a single receive antenna. They perform better than the
alternative solutions over fading channels.

4.2 System Model

We consider an unsourced random access model over a block-fading wireless chan-
nel. The BS is equipped withM receive antennas connected toKT potential users,
for which Ka of them are active in a given frame. Assuming that the channel
coherence time is larger than L, we divide the length-n time-frame into S slots
of length L each (n = SL). Each active user randomly selects a single slot to
transmit B bits of information. In the absence of synchronization errors, the
received signal vector corresponding to the sth slot at the mth antenna is written
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as

ym,s =
∑
i∈Ks

hm,ix (w(i)) + zm,s, (4.1)

where ym,s ∈ C1×L, Ks denotes the set of active user indices available in the sth
slot, Ks = |Ks|, x (w(i)) ∈ C1×L is the encoded and modulated signal correspond-
ing to the message bit sequence w(i) ∈ {0, 1}B of the ith user, hm,i ∼ CN (0, 1)

is the channel coefficient between the ith user and the mth receive antenna, and
zm,s ∼ CN (0, σ2

zIL) is the circularly symmetric complex white Gaussian noise
vector. Letting Ka and Ld be the set of active user indices and the list of de-
coded messages, respectively, the PUPE of the system is defined in terms of the
probability of false-alarm, pfa, and the probability of missed-detection, pmd, as

Pe = pfa + pmd, (4.2)

where pmd =
1

Ka

∑
i∈Ka

Pr(w(i) /∈ Ld) and pfa = E
{
nfa
|Ld|

}
, with nfa being the

number of decoded messages that were indeed not sent. The energy-per-bit of the
set-up can be written as

Eb
N0

=
LP

σ2
zB

, where P denotes the average power of each

user per channel use. The objective is to minimize the required energy-per-bit
for a target PUPE.

4.3 URA with Multiple Stages of Orthogonal Pi-

lots

4.3.1 MS-MRA Encoder

In this part, we introduce a multi-stage signal structure which is used in both of
the proposed URA set-ups. As shown in Figure 4.1, we divide the message of the
ith user into J +1 parts (one coded part and J pilot parts) denoted by wc(i) and
wpj(i), j = 1, 2, ..., J with lengths Bc and Bp, respectively, where Bc + JBp = B.
The ith user obtains its jth pilot sequence, bji, with length np = 2Bp by mapping
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Figure 4.1: Illustration of the encoding process in the proposed MS-MRA schemes.

wpj(i) to the orthogonal rows of an np × np Hadamard matrix Bnp , which is
generated as

B2 =

[
1 1

1 −1

]
, B2i = B2 ⊗B2i−1 ∀ i = 2, 3, . . . ,

where ⊗ represents the Kronecker product. Since the number of possible pilots
in the orthogonal Hadamard codebook is limited, it is likely that the users will
be in collision in certain pilot segments, that is, they share the same pilots with
the other users. However, the parameters are chosen such that two different users
are in a complete collision in all the pilot parts with a very low probability. To
construct the coded sequence of the ith user, we accumulate all the message bits
in a row vector as

w(i) = [wp1(i),wp2(i), . . . ,wpJ (i),wc(i)] , (4.3)

and pass it to an (2nc, B + r) polar code, where r is the number of CRC bits.
Note that contrary to the existing schemes in URA, we feed not only data bits but
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the pilot bit sequences to the encoder. Hence, in the case of successful decoding,
all the pilot sequences for the user can be retrieved. The polar codeword is
then modulated using quadrature phase shift keying (QPSK), resulting in vi ∈
{
√
Pc/2(±1±j)}1×nc , where Pc is the average power of the polar coded part, and

Gray mapping is used. The overall transmitted signal for the ith user consists of
J pilot parts and one coded part, i.e.,

xi =
[√

Ppb1i,
√
Ppb2i, . . . ,

√
PpbJi,vi

]
∈ C1×L, (4.4)

where L = nc + Jnp and Pp denotes the average power of the pilot sequence.
Accordingly, the received signal in a slot is composed of J + 1 parts, for which,
at each iteration, the decoding is done by employing one of the J pilot parts
(sequentially) and the coded part of the received signal. Generally, only the
non-colliding users can be decoded. Some non-colliding users in the current pilot
stage may experience collisions in the other pilot parts. Therefore, by successfully
decoding and removing them using SIC, the collision density is reduced, and with
further decoding iterations, the effects of such collisions are ameliorated.

4.3.2 MS-MRA Decoder

We now introduce the decoding steps of MS-MRA where the transmitted signal
in (4.4) is received by M antennas through a fading channel. The jth pilot part
and the polar coded part of the received signal in the sth slot of the MS-MRA
can be modeled using (4.1) as

Ypj =
√
PpHBj + Zpj ∈ CM×np , j = 1, 2, . . . , J, (4.5)

Yc = HV + Zc ∈ CM×nc , (4.6)

where H ∈ CM×Ks is the channel coefficient matrix with hm,i in its mth row
and ith column, Zpj and Zc consist of independent and identically distributed
(i.i.d.) noise samples drawn from CN (0, σ2

z) (i.e., a circularly symmetric complex
Gaussian distribution), and bji and vi determine the rows of Bj ∈ {±1}Ks×np

and V ∈ {
√
Pc/2(±1 ± j)}Ks×nc , respectively, with i ∈ Ks. Note that we have

removed the slot indices from the above matrices to simplify the notation.
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The decoding process is comprised of five different steps that work in tandem.
A pilot detector based on a Neyman-Pearson (NP) test identifies the active pilots
in the current pilot part; channel coefficients corresponding to the detected pilots
are estimated using a channel estimator; maximum-ratio combining (MRC) is
used to produce a soft estimate of the modulated signal; after demodulation, the
signal is passed to a polar list decoder; and, the successfully decoded codewords
are added to the list of successfully decoded signals before being subtracted from
the received signal via SIC. The process is repeated until there are no successfully
decoded users in J consecutive SIC iterations. In the following, Y′

pj
and Y′

c

denote the received signals in (4.5) and (4.6) after removing the list of messages
successfully decoded in the current slot up to the current iteration.

4.3.2.1 Pilot Detection Based on NP Hypothesis Testing

At the jth pilot part, we can write the following binary hypothesis testing prob-
lem:

uji|H0 ∼ CN
(
0, σ2

zIM
)
,

uji|H1 ∼ CN
(
0, σ2

1IM
)
, (4.7)

where σ1 =
√
σ2
z +mijnpPp, uji = Y′

pj b̄
H
i /

√
np, with b̄i =

[
Bnp

]
(i,:)

, H1 and H0

are alternative and null hypotheses that show the existence and absence of the
pilot b̄i at the jth pilot part, respectively, and mij is the number of users that
pick the pilot b̄i as their jth pilots.

Lemma 1. Let D̂j be the estimate of the set of active rows of Bnp in the jth pilot
part. Using a γ−level Neyman-Pearson hypothesis testing (where γ is the bound
on the false-alarm probability), D̂j can be obtained as

D̂j =
{
l : uHjlujl ≥ τ ′0

}
, (4.8)

where τ ′0 = 0.5σ2
zΓ

−1
2M(1−γ), Γk(.) denotes the cumulative distribution function of

the chi-squared distribution with k degrees of freedom χ2
k, and Γ−1

k (.) is its inverse.
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Proof. The likelihood ratio for (4.7) is given by L(uji) =
P (uji|H1)

P (uji|H0)
=

1

σM1
eu

H
jiuji/σ

2
0 , where σ2

0 = σ2
z

(
σ2
z +mijnpPp
mijnpPp

)
. Thus, the Neyman-Pearson test

for detection of b̄i is obtained by

δNP (uji) =

{
1 L(uji) ≥ τ0

0 L(uji) < τ0

=

{
1 uHjiuji ≥ τ ′0

0 uHjiuji < τ ′0
, (4.9)

where τ ′0 = σ2
0 ln(τ0σ

M
1 ). The false-alarm probability of the above decision rule is

calculated as

PF (δNP ) = P
(
uHjiuji ≥ τ ′0|H0

)
(a)
= 1− Γ2M

(
2

σ2
z

τ ′0

)
, (4.10)

where (a) follows from the fact that
2

σ2
z

uHjiuji|H0 ∼ χ2
2M , with χ2

k denoting the chi-

squared distribution with k degrees of freedom. To find the threshold for a γ−level
Neyman-Pearson test, the probability of the false-alarm in (4.10) must satisfy

PF (δNP ) ≤ γ. Therefore, the threshold in (4.9) is obtained as τ ′0 =
σ2
z

2
Γ−1
2M(1−γ).

The detection probability of a non-colliding user (mij = 1) is then obtained as

PD(δNP ) =P
(
uHjiuji ≥ τ ′0|H1

)
(a)
=1− Γ2M

(
2τ ′0

σ2
z + npPp

)
=1− Γ2M

(
σ2
zΓ

−1
2M(1− γ)

σ2
z + npPp

)
, (4.11)

where in (a), we use the fact that
2

σ2
1

uHjiuji|H1 ∼ χ2
2M . Note that a higher

probability of detection is obtained in the general case of mij > 1. It is clear that
the probability of detection is increased by increasing the parameters γ, np, Pp,
and M .
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4.3.2.2 Channel Estimation

Let BD̂j
∈ {±1}|D̂j |×np be a sub-matrix of Bnp consisting of the detected pilots

in (4.8), and suppose that b̃jk =
[
BD̂j

]
(k,:)

is the corresponding pilot of the ith
user. Since the rows of the codebook are orthogonal to each other, the channel
coefficient vector of the ith user can be estimated as

ĥi =
1

np
√
Pp

Y′
pj b̃

T
jk. (4.12)

If the ith user is in a collision ( mij > 1), (4.12) gives an unreliable estimate of
the channel coefficient vector. However, this is not important since a CRC check
is employed after decoding and such errors do not propagate.

4.3.2.3 MRC, Demodulation, and Channel Decoding

Let hi be the channel coefficient vector of the ith user, where i ∈ S̃s with S̃s
denoting the set of remaining users in the sth slot. Using ĥi in (4.12), the
modulated signal of the ith user can be estimated employing the MRC technique
as

v̂i = ĥHi Y
′
c. (4.13)

Plugging (4.6) into (4.13), v̂i is written as

v̂i = ĥHi hivi + ni, (4.14)

where ni =
∑

k∈S̃s,k ̸=i ĥ
H
i hkvk + ĥHi Zc. The first and second terms on the right-

hand side of (4.14) are the signal and interference-plus-noise terms, respectively.
We can approximate ni to be Gaussian distributed, i.e., ni ∼ CN (0, σ2

oiInc), where

σ2
oi =

1

nc
E{ninHi } = Pc

∑
k∈D̂j ,k ̸=i|ĥ

H
i hk|2+σ2

z∥ĥi∥2, which is obtained by treating
the coded data sequences of different users to be uncorrelated. The demodulated
signal can be obtained as

gi = [Im (ϑ1i) ,Re (ϑ1i) , . . . , Im (ϑnci) ,Re (ϑnci)] , (4.15)
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where ϑti = [v̂i](:,t). From (4.14) and (4.15), and using ĥHi hi ≈ ∥ĥi∥2, each sample

of gi can be approximated as ±
√
Pc/2∥ĥi∥2+n′, where n′ ∼ CN

(
0,
σ2
oi

2

)
. The

following log-likelihood ratio (LLR) is obtained as the input to the polar list
decoder

fi =
2
√
2Pc∥ĥi∥2

σ̂2
oi

gi, (4.16)

where σ̂2
oi is an approximation of σ2

oi which is obtained by replacing hk’s by their
estimates. At the jth pilot part, the ith user is declared as successfully decoded
if 1) its decoder output satisfies the CRC check, and 2) by mapping the jth pilot
part of its decoded message to the Hadamard codebook, b̃jk is obtained. Then,
all the successfully decoded messages (in the current and previous iterations) are
accumulated in the set Ss, where |Ss|+|S̃s|= Ks.

4.3.2.4 SIC

we can see in (4.3) that the successfully decoded messages contain bit sequences
of pilot parts and the coded part (wpj(i), j = 1, 2, ..., J and wc(i)). Having the bit
sequences of successfully decoded messages, we can construct the corresponding
transmitted signals using (4.4). The received signal matrix can be written as

Y = HSsXSs +HS̃s
XS̃s

+ Zs, (4.17)

where Y is obtained by merging received signal matrices of different parts, i.e.,

Y = [Yp1 , . . . ,YpJ ,Yc] ∈ CM×L

with XSs ∈ C|Ss|×L and XS̃s
∈ C|S̃s|×L including the signals in the sets Ss and

S̃s, and HSs ∈ CM×|Ss| and HS̃s
∈ CM×|S̃s| comprising the channel coefficients

corresponding to the users in the sets Ss and S̃s, respectively. Employing the
least squares (LS) technique, HSs is estimated as

ĤSs = YXH
Ss
(XSsX

H
Ss
)−1. (4.18)

Note that XSs consists of all the successfully decoded signals in the sth slot so
far, and Y is the initially received signal matrix (not the output of the latest SIC
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iteration). The SIC procedure is performed as follows

Y′ = [Y′
p1 ,Y

′
p2 , . . . ,Y

′
pJ ,Y

′
c] = Y − ĤSsXSs . (4.19)

Finally, Y′ is fed back to the pilot detection algorithm for the next iteration,
where the next pilot part is employed. We note that if no user is successfully
decoded in J consecutive iterations (corresponding to J different pilot parts), the
algorithm is stopped. The details of the decoding stages of MS-MRA are shown
in Figure 4.2 and Algorithm 2. Note that we will discuss MS-MRA-WOPBE,
which deviates from the above model, in Section 4.3.4.

Theorem 1. The SINR at the output of MRC for a non-colliding user in the sth
slot can be approximated as

βs ≈
ωcsPc

(
ωpsE{∥hi∥4}+

σ2
z

npPp
E{∥hi∥2}

)
(
Pc(|S̃s|−1) + σ2

z

)(
ωpsE{∥hi∥2}+

Mσ2
z

npPp

) , (4.20)

where ωps = ωcs = 1 − |Ss|
L

if the transmitted signals are randomly interleaved,

and ωps = 1− 1

Ex
Pp|Ss|, ωcs = 1− 1

Ex
Pc|Ss|, otherwise, with Ex = JnpPp+ncPc.

Proof.

Lemma 2. Assuming that the transmitted data part contains uncorrelated and
equally likely QPSK symbols, for i, j ∈ Ss and np, nc → ∞, the transmitted signals
satisfy

1

Ex
xix

H
j

p→ 0, (4.21)

where Ex = JnpPp + ncPc.

Proof. Let bji and bjr be the jth pilots of the ith and rth users, and vi and vr be
the corresponding polar-coded and QPSK-modulated signals. Since bji and bjr

are randomly chosen rows of the Hadamard matrix, bjibTji = np with probability
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1

np
, and it is zero with probability 1 − 1

np
. Besides, for nc → ∞, vit and vrt are

zero-mean and uncorrelated, where vit = [vi](:,t). Therefore,

lim
np,nc→∞

P
(

1

Ex
|xrxHi |> 0

)
= lim

np,nc→∞
P

(
1

Ex

∣∣∣∣∣Pp
J∑
j=1

bjrb
H
ji + vrv

H
i

∣∣∣∣∣ > 0

)

≤ lim
np,nc→∞

P

(
Pp
Ex

J∑
j=1

∣∣bjrbHji ∣∣+ 1

Ex

∣∣vrvHi ∣∣ > 0

)

≤ lim
np,nc→∞

J∑
j=1

P
(
Pp
Ex

∣∣bjrbHji ∣∣ > 0

)

+ P

(
1

Ex

∣∣∣∣∣
nc∑
t=1

vrtv
H
it

∣∣∣∣∣ > 0

)

≈ lim
np,nc→∞

JPp
npEx

+ P
(
nc
Ex

∣∣E{vrtvHit }∣∣ > 0

)
≈ 0.

Note that, strictly speaking, the uncorrelated QPSK symbol assumption is not
accurate for coded systems. Nevertheless, it is useful to obtain a good approxi-
mation of SINR, as we will show later.

Lemma 3. By applying LS-based SIC, the residual received signal matrices of
pilot and coded parts can be written based on the signal and interference-plus-
noise terms as

Y′
pj

≈
√
PphibjiLpj +

√
Pp

∑
k∈S̃s,k ̸=i

hkbjkLpj + Zn,pj , (4.22)

Y′
c ≈ hiviLc +

∑
k∈S̃s,k ̸=i

hkvkLc + Zn,c, (4.23)

where hi ∈ CM×1 is the channel coefficient vector of the ith user, Lpj = ωpsInp,
Lc = ωcsInc, and the elements of Zn,pj and Zn,c are drawn from CN (0, ωcsσ

2
z) and

CN (0, ωpsσ
2
z), respectively, with ωps and ωcs are as defined in the statement of

the Theorem 1.
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Proof. Plugging (4.17) and (4.18) into (4.19), we obtain

Y′ = HSsXSsL+HS̃s
XS̃s

L+ ZsL

= HS̃s
XS̃s

L+ ZsL

= hixiL+
∑

k∈S̃s,k ̸=i

hkxkL+ Zn, (4.24)

where L = IL − XH
Ss
(XSsX

H
Ss
)−1XSs , and Zn = ZsL. Since LHL = L and

Zs ∼ CN (0, σ2
zIL), we have

Zn ∼ CN
(
0, σ2

zE{L}
)
. (4.25)

Since the values of np and nc are large, and using (4.21), we have
1

Ex
XSsX

H
Ss

≈
I|Ss|, where Ex = JnpPp + ncPc. In other words, we can approximate L as

L ≈ IL − 1

Ex

∑
r∈Ss

xHr xr. (4.26)

Using the weak law of large numbers, and assuming samples of xr to be uncorre-
lated and |Sl|≫ 1, we can rewrite L in (4.26) as

L ≈


Lp1 ... 0 0
... . . . ...

...
0 ... LpJ 0

0 ... 0 Lc

 , (4.27)

where Lpj = ωpsInp and Lc = ωcsInc with ωps = ωcs = 1− |Ss|
L

if the transmitted

signals are randomly interleaved, and ωps = 1 − 1

Ex
Pp|Ss|, ωcs = 1 − 1

Ex
Pc|Ss|,

otherwise.

Letting Zn = [Zn,p1 , . . . ,Zn,pJ ,Zn,c], we can infer from (4.25) and (4.27)
that the elements of Zn,pj and Zn,c approximately follow CN (0, ωpsσ

2
z) and

CN (0, ωcsσ
2
z), respectively. Besides, using (4.27) and the signal structure in (4.4),

we can divide (4.24) into pilot and coded parts as in (4.22) and (4.23).
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Lemma 4. The estimated channel coefficients of a non-colliding user approxi-
mately satisfy the following expressions:

E{∥ĥi∥2} ≈ ω2
psE{∥hi∥

2}+ Mωpsσ
2
z

npPp
, (4.28a)

E{|ĥHi hk|2} ≈ ω2
psE{∥hi∥

2}+ Mωpsσ
2
z

npPp
, (4.28b)

E{|ĥHi hi|2} ≈ ω2
psE{∥hi∥

4}+ ωpsσ
2
z

npPp
E{∥hi∥2}. (4.28c)

Proof. Using the approximation of Y′
pj

in (4.22) in (4.12), the channel coefficient
vector of the ith user can be estimated as

ĥi ≈
ωps
np

hibjib̃
H
jk +

ωps
np

∑
f∈S̃s,f ̸=i

hfbjf b̃
H
jk + zpj ,n

(a)
= ωpshi + zpj ,n, (4.29)

where zpj ,n =
1

np
√
Pp

Zn,pj b̃
H
jk, and in (a), we use the assumption that the ith

user is non-colliding, hence b̃jk is only selected by the ith user (bji = b̃jk

and bjf ̸= b̃Hjk for f ∈ S̃s, f ̸= i). We can argue the following approxima-

tion zpj ,n ∼ CN
(
0,
ωpsσ

2
z

npPp

)
. Using (4.29), we can show that E{∥ĥi∥2} ≈

ω2
psE{∥hi∥

2} +
Mωpsσ

2
z

npPp
, E{|ĥHi hi|2} ≈ ω2

psE{∥hi∥
4} +

ωpsσ
2
z

npPp
E{∥hi∥2}, and

E{|ĥHi hk|2} = E{∥ĥi∥2}.

Plugging (4.23) into the MRC expression in (4.13), v̂i can be estimated as

v̂i ≈ ωcsĥ
H
i hivi + zin, (4.30)

where the first term on the right-hand side is the signal term, and zin =∑
k∈S̃s,k ̸=i ĥ

H
i hkvkLc+ĥHi Zn,c is the interference-plus-noise term. Since LHL = L,

and using (4.27), we can show LHc Lc ≈ Lc. Therefore, by employing Lemma 4,
we can approximate zin ∼ CN (0, σ2

inInc), where

σ2
in = ωcs

(
Pc(|S̃s|−1) + σ2

z

)(
ω2
psE{∥hi∥

2}+ Mωpsσ
2
z

npPp

)
.
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Figure 4.2: The decoding process of MS-MRA at the jth pilot part and the sth slot.

Besides, the per-symbol power of the signal term can be obtained as σ2
s ≈

ω2
csE{|ĥ

H
i hi|2}Pc. Then, using Lemma 4, the SINR of v̂i can be calculated as

in (4.20).

We employ the above approximate SINR expression 1) to estimate the error
probability of MS-MRA analytically, and 2) to determine the optimal power al-
location for each group in MSUG-MRA. We further note that using this SINR
approximation, the performance of the MS-MRA is well predicted in the low and
medium Ka regimes (see Figure 4.6). The reason why the SINR approximation
does not work well in the high Ka regime is the employed approximations in
Lemma 3.

4.3.3 Analysis of MS-MRA

In this part, the PUPE of the MS-MRA is analytically calculated, where errors
resulting from the collision, pilot detection, and polar decoder are considered.
For our analyses, we assume that after successfully decoding and removing a user
using a pilot part, the decoder moves to the next pilot part. Hence, in the tth
iteration of the sth slot, we have

|Ss| = t− 1, (4.31a)

|S̃s| = Ks − t+ 1. (4.31b)

Lemma 5. Let ξk be the event that k out of Ks users remain in the sth slot, and
define ηi = ∥hi∥2, where hi ∼ CN (0, IM). Assuming that the strongest users with
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Algorithm 2: The proposed MS-MRA decoder.
for l = 0, 1, . . . , S do Different slots

Ss = ∅.
flag = 1.
t′ = 0 (t′ denotes the iteration index ).
while flag = 1 do

t′ = t′ + 1.
for j = 1, 2, ..., J do different pilot parts

Pilot detection: estimate D̂j using (4.8).
Ch. estimation: estimate channel coefficient using (4.12).
if MS-MRA then

for i ∈ D̂j do different detected pilots
MRC estimation: obtain v̂i using (4.13).
Demodulation: obtain gi using (4.15).
Decoding: pass fi in (4.16) to list decoder.

end
end
if MS-MRA-WOPBE then

Perform IISD in Section 4.3.4.2.
end
St′j : set of successfully decoded users in the current iteration.
Ss = Ss

⋃
St′j .

LS-based ch. estimation: estimate ĤSs using (4.18).
SIC: update Y′

pj and Y′
c using (4.19).

end
if
⋃J
j=1 St′j = ∅ then
flag = 0.

end
end

end
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highest ηi values are decoded first, we have

E{ηmi |ξk} = µ(k,m), (4.32)

where µ(k,m) =

∫ x̄k
−∞ ηmfχ

2

2M(2η)dη∫ x̄k
−∞ fχ

2

2M(2η)dη
, with fχ

2

k (.) denoting the PDF of the chi-

squared distribution with k degrees of freedom and x̄k = 0.5Γ−1
2M(k/Ks).

Proof. In the first iteration of the sth slot for which no user is decoded yet (all
the Ks active users are available), since hi ∼ CN (0, IM), we have 2ηi|ξKs ∼ χ2

2M .
We assume that the users with higher values of ηi are decoded first. Hence,
if in an iteration, k out of Ks users remain in the slot, the distribution of ηi is
obtained by 2ηi|ξk ∼ {χ2

2M}k/Ks
, where {.}β removes 1−β portion of the samples

with higher values from the distribution and normalizes the distribution of the
remaining samples, i.e.,

P(ηi = y|ξk) =
fχ

2

2M(2y)∫ x̄k
−∞ fχ

2

2M(2y)dy
, y < x̄k,

where x̄k is obtained by solving the following equation P (ηi < x̄k|ξKs) = k/Ks,
which results in x̄k = 0.5Γ−1

2M(k/Ks). Therefore, we obtain

E{ηmi |ξk} =

∫ x̄k
−∞ ηmfχ

2

2M(2η)dη∫ x̄k
−∞ fχ

2

2M(2η)dη
. (4.33)

We can see from (4.15) and (4.16) that the input of the polar decoder is a
1 × 2nc real codeword. Thus, the average decoding error probability of a non-
colliding user in the tth iteration of a slot with Ks users can be approximated as
(see [90])

P dec
Ks,t ≈ Q


0.5 log (1 + αKs,t)−

B + r

2nc√
1

2nc

αKs,t(αKs,t + 2) log2 e

2(αKs,t + 1)2

 , (4.34)
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where Q(.) denotes the standard Q-function, and αKs,t is the SINR of a non-
colliding user in the tth iteration of a slot with Ks users, which is calculated
using Theorem 1, Lemma 5, and (4.31) as

αKs,t ≈
sctPc

(
sptµ(Ks−t+1,2) +

σ2
z

npPp
µ(Ks−t+1,1)

)
(Pc(Ks − t) + σ2

z)

(
sptµ(Ks−t+1,1) +

Mσ2
z

npPp

) , (4.35)

where spt = 1−Pp
t− 1

Ex
and sct = 1−Pc

t− 1

Ex
. Note that since the powers of signal

and interference-plus-noise terms of v̂i are equal in their real and imaginary parts,
the SINRs of fi in (4.16) and v̂i are the same. Therefore, in (4.34), we employ
the SINR calculated in Theorem 1 for the input of the polar list decoder.

Since decoding in the initial iterations well represents the overall decoding
performance of the MS-MRA, we approximate the SINR of the first iteration by
setting t = 1 in (4.35) as

αKs,1 ≈
PcM

(σ2
z + PcKs)

(
1 +

σ2
z

npPp

) . (4.36)

Concentrating on (4.34), we notice that P dec
Ks,1

is a decreasing function of nc and
αKs,1. Besides, (4.36) shows that αKs,1 increases by decreasing nc and J (con-
sidering Ks ≈ Ka(Jnp + nc)/n), and increasing M , Pc, and Pp, however, it is
not a strictly monotonic function of np. Since our goal is to achieve the lowest
P dec
Ks,t

by spending the minimum Eb/N0 = (ncPc+JnpPp)/B, we can optimize the
parameters nc, np, Pc, and Pp.

Theorem 2. In the tth iteration of the sth slot, the probability of collision for a
remaining user i ∈ S̃s can be approximated as

P col
Ks,t ≈ 1− N

(t)
1

Ks − t+ 1
, (4.37)

where N (k)
i denotes the average number of pilots that are in i-collision (selected

by i different users) in the kth iteration, which is calculated as

N
(k+1)
i ≈ N

(k)
i +

κk
(
(i+ 1)N

(k)
i+1 − iN

(k)
i

)
i ≥ 2

κk

(
2N

(k)
2 −N

(k)
1

)
− 1

J
i = 1

, (4.38)
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where κk =
J − 1

J(Ks − k + 1)
, and N (1)

i ≈ npfp(i;Ks/np) with fp(i; a) denoting the

probability mass function (PMF) of the Poisson distribution with the parameter
a.

Proof. In the first iteration of the sth slot, since Ks users have selected one
out of np pilots randomly, the number of users that select an arbitrary pilot
approximately follows a Poisson distribution with the parameter Ks/np. In the
kth iteration of the sth slot, let T (k)

j,i be the average number of i-collision pilots
(pilots selected by i different users) in the jth pilot part. We have

T
(1)
j,i ≈ npfp(i;Ks/np), (4.39)

where fp(i; a) denotes the PMF of the Poisson distribution with the parameter a.
The average number of i-collision users in the kth iteration of the jth pilot part
is then calculated as K(k)

j,i ≈ iT
(k)
j,i . Supposing that in the kth iteration (using

the assumption in (4.31)), the decoder employs the jth pilot part for channel
estimation, the removed user is non-colliding (1-collision) in its jth pilot part
(we assume that the decoder can only decode the non-colliding users), and it is

in i-collision in its j′th (j′ ̸= j) pilot part with probability p
(k)
i,j′ =

K
(k)
j′,i

Ks − k + 1
.

Therefore, removing a user from the jth pilot part results in

• In the jth pilot part, we have T (k+1)
j,1 = T

(k)
j,1 −1, and T (k+1)

j,i = T
(k)
j,i for i > 1.

• In the j′th pilot part (j′ ̸= j), we have T (k+1)
j′,i = T

(k)
j′,i + p

(k)
i+1,j′ − p

(k)
i,j′ .

The collision probability of the jth pilot part in the tth iteration is then obtained

as Pcol(j, t) = 1 −
T

(t)
j,1

Ks − t+ 1
. Finally, by approximating T

(t)
j,i by its average

over different pilot parts (i.e., T (t)
j,i ≈ N

(t)
i =

1

J

∑J
j=1 T

(t)
j,i ) in above equations,

the results in Theorem 2 are obtained. Note that since all the pilot parts are
equally likely in the first iteration, we have N (1)

i ≈ T
(1)
j,i ≈ npfp(i;Ks/np),∀j =

1, ..., J .
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Note that to extend the result in Theorem 2 to an SIC-based system with only
one pilot sequence (orthogonal or non-orthogonal), we only need to set J = 1 in
the above expressions. From (4.37), the collision probability in the first iteration
can be calculated as P col

Ks,1
≈ 1 − e−Ks/np , which is a decreasing function of np.

Since the overall decoding performance of the system depends dramatically on
the collision probability in the first iteration, we can increase np, however, this
results in additional overhead.

Corollary 2. Assuming a relatively large CRC length (hence negligible pfa), the
PUPE of the MS-MRA with S slots and Ka active users can be approximated as

Pe ≈ 1−
Ka∑
r=1

(1− ϵr)

(
Ka − 1

r − 1

)(
1

S

)r−1(
1− 1

S

)Ka−r

, (4.40)

where ϵr denotes the PUPE of a slot with r users, which is obtained as

ϵr ≈
r∑
j=1

r − j + 1

r
pj,r, (4.41)

with pj,r = (ej,r)
r−j+1

∏j−1
f=1

(
1− (ef,r)

r−f+1
)
, and

et,r = 1− PD(δNP )
(
1− P dec

r,t

) (
1− P col

r,t

)
, (4.42)

where P dec
r,t , P col

r,t , and PD(δNP ) are computed in (4.34), Theorem 2, and (4.11),
respectively.

Note that the result in Corollary 2 can also be used in any other slotted system
with SIC by replacing appropriate ej,r.

4.3.4 MS-MRA-WOPBE

As discussed in Section 4.3.1, in the MS-MRA scheme, the pilot bits are fed to the
polar encoder along with the data and CRC bits. To improve the performance by
decreasing the coding rate, the MS-MRA-WOPBE scheme passes only the data
and CRC bits to the encoder. To detect the bit sequences of different parts of the
message, it employs an extra iterative decoding block called iterative inter-symbol
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decoder (IISD) (described in Section 4.3.4.2). At each step of IISD, it detects
one part of a user’s signal (polar or pilot part), appends the detected part to
the current pilot (which was used for channel estimation in the previous step) to
have an extended pilot, and re-estimates the channel coefficients accordingly. The
encoding and decoding procedures of MS-MRA-WOPBE are described below.

4.3.4.1 Encoder

The ith user encodes its bits using the following steps (the general construction
is shown in Figure 4.1). Similar to the MS-MRA encoder in Section 4.3.1, B
information bits are divided into J + 1 parts as in (4.3), and the transmitted
signal is generated as in (4.4). The only difference is in the construction of the
QPSK signal. The encoder in MS-MRA-WOPBE defines two CRC bit sequences
as c2(i) = w(i)G2 and c1(i) = [wc(i), c2(i)]G1, where G2 ∈ {0, 1}B×r2 and
G1 ∈ {0, 1}(Bc+r2)×r1 are generator matrices known by the BS and users. Then, it
passes [wc(i), c2(i), c1(i)] to an (2nc, Bc + r1 + r2) polar encoder, and modulates
the output by QPSK to obtain vi ∈ {

√
Pc/2(±1± j)}1×nc .

4.3.4.2 Decoder

As shown in Algorithm 2, MS-MRA-WOPBE exploits the same decoding steps
as the MS-MRA scheme, except for the IISD step. We can see in Algorithm 2
that the jth pilot of the ith user is detected before employing the IISD. Then,
IISD must detect the data (polar) sequence and the fth pilot of the ith user,
where f = 1, ..., J, f ̸= j. In the following, IISD is described in detail.
Step 1 [Detecting wc(i)∀i ∈ D̂j]: We first obtain gi using (4.15), where
v̂i = ĥHi R

−1
h Y′

c, and Rh = σ2
zIM + Pc

∑
l∈D̂j

ĥlĥ
H
l . Then, we pass fi =

2
√
2Pc

1− PcĥHi R
−1
h ĥi

gi to the list decoder. A CRC check flagCRC1(i) ∈ {0, 1} and

an estimate of [wc(i), c2(i), c1(i)]
1 are obtained by the polar list decoder.

1In the output of the polar list decoder, there is a list of possible messages. If more than one
messages satisfy the CRC check (c1(i) = [wc(i), c2(i)]G1), the most likely of them is returned
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Step 2 [Updating ĥi]: Since the jth pilot and polar codeword of the ith user are
detected so far, we append them to construct a longer signal as qi = [bji,vi] ∈
C1×(np+nc). Then, we update ĥi by MMSE estimation as ĥi = Y′

qR
−1
q qHi , where

Rq = σ2
zI(np+nc) +

∑
l∈D̂j

qHl ql, and Y′
q = [Y′

pj ,Y
′
c].

Step 3 [Detecting wpf (i)∀i ∈ D̂j, f ̸= j]: Assuming that the tth row of the
Hadamard matrix is active in the fth pilot part (f ̸= j), we estimate the cor-

responding channel coefficient as sft =
1

np
√
Pp

Y′
pf b̃

T
ft (see (4.12)). To find the

fth pilot sequence of the ith user, we find the pilot whose corresponding channel
coefficient vector is most similar to ĥi, i.e., we maximize the correlation between
ĥi and sft as

t̂fi = max
t

|ĥHi sft|2

sHftsft
, f = 1, ..., J, f ̸= j. (4.43)

Step4 [Updating ĥi]: Since the bit sequences of all J + 1 parts are detected, we
can construct xi using (4.4). The channel coefficient vector can be updated by
MMSE as ĥi = Y′R−1xHi , where R = σ2

zIL+
∑

l∈D̂j
xHl xl. If the number of users

that satisfy flagCRC1(i) = 1 is not changed in an iteration, the iteration is stopped,
otherwise, the algorithm goes to Step 1 for another iteration with updated ĥi.
Users whose bit sequences satisfy c2(i) = w(i)G2 and c1(i) = [wc(i), c2(i)]G1 are
added to the set St′j as successfully decoded users of the current iteration.

4.3.5 MSUG-MRA

Different from MS-MRA where the power of every user is the same and sig-
nals are not interleaved, MSUG-MRA defines G groups, each being assigned
unique interleaver and power pair (πg(.), Ppg , Pcg), g = 1, 2, ..., G. We assume

that ϕ =
Ppg
Pcg

is constant in all groups, hence each group can be identified with

a unique interleaver-power pair (πg(.), Pcg), which is known at both transmitter
and receiver sides. The details of encoding and decoding procedures as well as
the power selection strategy are explained below. Note that we assume without
loss of generality that Pc1 < Pc2 ... < PcG .

as the detected message and the CRC flag is set to one. Otherwise, the most likely message is
returned as the detected message and the CRC flag is set to zero.
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4.3.5.1 Encoder

The encoding is adopted as follows:

• Every user randomly selects a group, e.g., with index g.

• Each user employs Pcg and ϕPcg as the powers of the coded and pilot parts,
with which it generates its multi-stage signal xi similar to MS-MRA (ac-
cording to (4.4)).

• The transmitted signal is created as x̃i = πg(xi).

4.3.5.2 Decoder

In each iteration, the decoder tends to decode the messages belonging to the
users of the dominant group (the Gth group with the highest power level). After
decoding and removing users in the Gth group, users in the (G − 1)st group
become the dominant ones. Using the same trend, all the groups have the chance
to be the dominant group at some point. Since users in different groups are
interleaved differently, signals of users in other groups are uncorrelated from the
signals in the dominant group. Thus, letting the g0th group to be dominant, we
approximately model the fth signal in the the gth group (g ̸= g0) as

x̃f ∼ CN (0, ζPcgIL), (4.44)

where ζ =
Jϕnp + nc

L
. Therefore, when the g0th group is dominant (the users in

the groups with indices greater than g0 are already removed using SIC), users in
the g0th group are perturbed by i.i.d. noise samples drawn from CN (0, δg0), with

δg0 ≈ ζK0

∑g0−1
g=1 Pcg +σ

2
z , where K0 =

Ka

SG
is the average number of users in each

group of the current slot. Consequently, by replacing σ2
z , Pp, and Pc with δg0 ,

ϕPcg0 , and Pcg0 in the decoding steps of MS-MRA (in Section 4.3.2), the decoding
procedure of MSUG-MRA is obtained as:

• Deinterleave the rows of the received signals:Ỹ′
pj

= π−1
g0
(Y′

pj) and Ỹ′
c =

π−1
g0
(Y′

c).
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• Find active pilots as

D̂j =
{
l : ũHjl ũjl ≥ 0.5δg0Γ

−1
2M(1− γ)

}
,

where ũji = Ỹ′
pj
b̄Hi /

√
np.

• Channel estimation and MRC: v̂i = ĥHi Ỹ
′
c, where ĥi =

1

np
√
ϕPcg0

Ỹ′
pj
b̃Tjk,

and b̃jk is one of the detected pilots.

• Pass fi =
2
√

2Pcg0∥ĥi∥
2

σ̂2
oi

gi to the polar decoder, where σ̂2
oi =

Pcg0
∑

k∈D̂j ,k ̸=i|ĥ
H
i ĥk|2+δg0∥ĥi∥2, and gi is defined in (4.15).

• Regenerate signals of successfully decoded users according to Section 4.3.5.1
(using (πg0(.),Pcg0 ) pair), and collect them in the rows of X̃Ss .

• Apply LS-based SIC similar to (4.19), i.e., Y′ = Y(IL−X̃H
Ss
(X̃SsX̃

H
Ss
)−1X̃Ss).

Note that this loop is repeated for G different group indices and J different pilot
parts, and the iteration is stopped if there is no successfully decoded users in GJ
consecutive iterations.

4.3.5.3 Power Calculation

When MSUG-MRA starts the decoding in the g0th group, there are |Ss|≈
K0(G − g0) successfully decoded users from previous groups (with higher power
levels), |S̃s|= K0 users remain in the g0th group, and users in the current group are
perturbed with a complex Gaussian noise with covariance matrix δg0IM . There-
fore, the SINR of a non-colliding user in the current group can be calculated by
replacing |S̃s|≈ K0, |Ss|= K0(G−g0), E{∥hi∥2} =M , E{∥hi∥4} =M2, Pc = Pcg0 ,

Pp = ϕPcg0 , σ
2
z ≈ δg0 , and ωps = ωcs = 1− |Ss|

L
in (4.20) as

β′
g0

≈
ρg0MP 2

cg0
+

δg0
npϕ

Pcg0(
Pcg0 (K0 − 1) + δg0

)(
Pcg0 +

δg0
ρg0npϕ

) , (4.45)
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where ρg0 = 1 − K0(G− g0)

L
. To impose similar performance on different

groups, we set β′
1 = β′

2 = . . . = β′
G. Solving this equation, the power of

the gth group satisfies c1P 2
g + c2Pg + c3 = 0, where c1 = (K0 − 1) − ρgM

β′
g−1

,

c2 = δg

(
1 +

(K0 − 1)

ϕnpρg
− 1

ϕnpβ′
g−1

)
, c3 =

δ2g
ϕnpρg

. Solving this equation, we have

Pt =
−c2 +

√
c22 − 4c1c3
2c1

, (4.46)

s.t.
1

G

G∑
f=1

Pf = P and Pt ∈ R+.

Note that the MS-MRA scheme is a special case of the MSUG-MRA with G = 1.

4.3.6 MS-SRA and MSUG-SRA

In this part, we apply the proposed MIMO coding schemes to the case of a single
receive antenna. To accomplish this, we repeat each user’s length-L signal multi-
ple times to create temporal diversity in MS-SRA and MSUG-SRA. Accordingly,
we divide the whole frame into V sub-frames of length n′ = n/V , then divide
each sub-frame into S slots of length L = n′/S. Each user randomly selects a slot
index, namely s, and transmits its signal, through the sth slot of each sub-frame.
Assuming the coherence time to be L, each sub-frame is analogous to a receive an-
tenna. Therefore, the transmitted messages in MS-SRA and MSUG-SRA can be
decoded using MS-MRA and MSUG-MRA decoders in Sections 4.3.2 and 4.3.5.2,
respectively, considering V receive antennas. Since each user repeats its signal V
times, for this case, we have Eb/N0 =

V LP

σ2
zB

.

4.3.7 Computational Complexity

We focus on the number of multiplications as a measure of the computational
complexity, and make a complexity comparison among the proposed and existing
URA solutions. The per-iteration computational complexity of the MS-MRA in
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a slot is calculated as follows: The pilot detection in (4.8) has a complexity of
O(n2

pMJS) corresponding to J different pilot parts and S different slots, where
O(.) is the standard big-O notation, denoting the order of complexity. The chan-
nel estimator in (4.12) does not require any extra computation, because ĥi corre-
sponds to uji which is calculated before for pilot detection; the MRC in (4.13) has
a complexity of O(

∑J
j=1|Dj|MncS); to compute the LLR in (4.16), the required

computational complexity is O(
∑J

j=1|Dj|2MS); the computational complexity of
the polar list decoder is [91] O(

∑J
j=1|Dj|nc log ncS); and, the SIC has a complex-

ity of O(ML|Ss|S + |Ss|2LS). We know from (4.39) that in the first iteration,
we have |Dj|≈ np − npe

−Ka/(npS) < Ka/S, and |Ss|= 0; in the last iterations, we
have |Ss|≈ Ka/S and |Dj|≈ 0. Hence, considering M ≫ log nc and nc|Dj|≫ np,
we can compute the computational complexity of the MS-MRA in the first and
last iterations as O (KaMJ(nc +Ka/S)) and O (LKa(M +Ka/S)), respectively.
Considering the computational complexity in the intermediate iterations to be in
the same order, the per-iteration computational complexity of the MS-MRA can
be bounded by O

(
n2
pMJS+max (KaMJ(nc +Ka/S), LKa(M +Ka/S))

)
. Note

that the computational complexity of MSUG-MRA is in the same order as MS-
MRA, and for MS-SRA and MSUG-SRA schemes, the computational complexity
is obtained by replacing M by V in the above figures.

Looking at Algorithm 2, we can infer that MS-MRA-WOPBE is obtained by
employing the same pilot detector (with complexity O(n2

pMJS)), channel estima-
tor (does not incur any extra computational complexity), and SIC (with complex-
ity O(ML|Ss|S+|Ss|2LS)) as in the MS-MRA case, except for employing the IISD
block. In Step 1 of IISD, the complexity for computing fi and implementing polar
decoder are O((Mnc+M

2)TIS
∑J

j=1|Dj|) and O(TInc log ncS
∑J

j=1|Dj|), respec-
tively, where TI denotes the number of iterations of IISD. In the Step 2 of IISD,
computing ĥi and ek has the complexity of O(TI(nc + np)

2S
∑J

j=1|Dj|+TI(nc +
np)MS

∑J
j=1|Dj|) and O(TI(J −1)npMS

∑J
j=1|Dj|), respectively. The computa-

tional complexity of obtaining ĥi in Step 3 of IISD is O(TI(L
2+LM)S

∑J
j=1|Dj|).

Then, replacing |Dj| and |Ss| with their approximate values (discussed in the pre-
vious paragraph), the overall computational complexity of the MS-MRA-WOPBE
is bounded by O

(
n2
pMJS+max (((L2 +M2) +ML)TIJKa, LKa(M +Ka/S))

)
.
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For comparison purposes, the dominant per-iteration computational complex-
ity of the FASURA in [73] (which is due to energy detector and SIC operation)
can also be computed as O

(
M(np + L′nc)2

Bf +Ka(nM + n2)
)
, where Bf de-

notes the number of pilot bits, n is the frame length, and L′ is the length of the
spreading sequence.

4.4 Numerical Results

We provide a set of numerical results to assess the performance of the proposed
URA set-ups. In all the results, we set B = 100, the number of CRC bits r = 11,
the Neyman-Pearson threshold γ = 0.1, and the list size of the decoder to 64. For
MS-MRA and MSUG-MRA, we set the frame length n ≈ 3200, and Pe = 0.05.
The corresponding values for the MS-SRA and MSUG-SRA are n ≈ 30000, and
Pe = 0.1.

In Figure 4.3, the performance of the proposed MS-MRA and MSUG-MRA is
compared with the short blocklength scheme of [56] with the number of antennas
M = 100 and slot length L = 200. (In this scenario, we consider a fast-fading
environment, where the coherence blocklength is considered as Lc = 200). To
facilitate a fair comparison, we consider (J, np, nc) = (2, 32, 128) (L = 192) and
Pp/Pc = 1 (ϕ = 1 for MSUG-MRA) for all the proposed schemes. For MSUG-
MRA, the value of G is set as G = 1 for Ka ≤ 400, G = 3 for Ka = 500, G = 6 for
600 ≤ Ka ≤ 800, G = 8 for 900 ≤ Ka ≤ 1000, and G = 10 for Ka > 1000. The
superiority of the proposed schemes over the one in [56] is mostly due to the more
powerful performance of the polar code compared to the simple coding scheme
adopted in [56] and the use of the SIC block, which significantly diminishes the
effect of interference. We also observe that MS-MRA-WOPBE outperforms MS-
MRA, which is due to 1) employing IISD, which iteratively improves the accuracy
of the channel estimation, and 2) lower coding rate by not encoding the pilot bits.
Besides, the range of the number of active users that are detected by the MSUG-
MRA is higher than those of MS-MRA and MS-MRA-WOPBE schemes. This
improvement results from randomly dividing users into different groups, which
provides each group with a lower number of active users (hence a lower effective
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Figure 4.3: The required Eb/N0 in the proposed MIMO set-ups and the scheme in [56]
for L ≈ 200, M = 100, and Pe = 0.05.

interference level).

In Figure 4.4, we compare the proposed MS-MRA and MSUG-MRA with the
ones in [72, 73], considering the slow-fading channel with coherence blocklength
Lc = 3200. We set (J, np, nc) = (2, 256, 512), M = 50, Pp/Pc = 0.66 for MS-
MRA. We choose (J, np, nc, G) = (2, 256, 512, 1) for Ka ≤ 700, (J, np, nc, G) =

(2, 64, 512, 6) for Ka = 900, and (J, np, nc, G) = (2, 64, 512, 18) for Ka > 900 with
ϕ = 0.66. Thanks to employing the slotted structure, SIC, and orthogonal pilots,
all the proposed schemes have superior performance compared to [72]. Due to
employing random spreading and an efficient block called NOPICE, FASURA
in [73] performs better than the proposed MS-MRA and MSUG-MRA in the low
Ka regimes; however, its performance is worse than the MSUG-MRA in higher
values of Ka (thanks to the random user grouping employed in MSUG-MRA).
The proposed MS-MRA-WOPBE also shows a similar performance as FASURA.
To achieve the result in Figure 4.4, FASURA sets np = 896, L′ = 9, nc = 256,
n = 3200, Bf = 16, and M = 50. The order of computational complexity for
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Figure 4.4: The required Eb/N0 in the proposed MIMO set-ups and the results in
[72,73] for M = 50.

these schemes is given in the performance-complexity plot in Figure 4.5. It can be
interpreted from this figure that the proposed MS-MRA-WOPBE has comparable
accuracy to FASURA while offering a lower computational complexity. Note also
that despite the higher required Eb/N0 compared to FASURA, MS-MRA offers
very large savings in terms of computational complexity, which is attributed to
employing orthogonal pilots, slotted structure, and simpler decoding blocks.

As a further note, FASURA considers 2Bp possible spreading sequences of
length L′ for each symbol of the polar codeword; hence every transceiver should
store nc2Bp vectors of length L′, as well as a pilot codebook of size 2J×np. For typ-
ical values reported in [73], the BS and every user must store 1.6× 107 vectors of
length 9 and a matrix of size 5.8×107. For our proposed scheme, every transceiver
must store only an orthogonal codebook of size np × np, where np = 256. Thus,
FASURA requires about 3000 times larger memory than our proposed schemes,
which may be restrictive for some target URA applications such as sensor net-
works, where a massive number of cheap sensors are deployed. Moreover, unlike
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Figure 4.5: Performance-complexity curve for the proposed MIMO schemes and FA-
SURA in [73].

FASURA, the proposed solutions are implementable with short blocklengths (see
Figure 4.3), which makes them appropriate for fast fading scenarios as well.

In Figure 4.6, we compare the theoretical PUPE in (4.40) with the simula-
tion results of the MS-MRA for three different scenarios (M = 50, 100, 200) with
Pp/Pc = 0.66 and (J, np, nc) = (2, 256, 512). It is shown that the approximate
theoretical analysis well predicts the performance of the MS-MRA for Ka ≤ 700,
however, the results are not consistent for higher values of Ka. The reason for
the mismatch for the Ka > 800 regime is the approximations employed while
analyzing SIC in Lemma 3 (e.g., nc, np ≫ 1, |Ss|≫ 1, uncorrelated QPSK code-
words of two different users, and uncorrelated samples of xi). Besides, in Figure
4.7 we compare the simulated and theoretical results of MS-MRA for different
frame-length values. We can see in this figure that the prediction accuracy of
our theoretical analysis well matches the simulation when L is large (the region
where the approximation in (4.27) is valid).
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Figure 4.6: Comparison of the simulation and analytical performance of the MS-MRA

for different values of M .
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Figure 4.7: Comparison of the simulation and analytical performance of the MS-MRA

for different values of blocklength.

Figure 4.8 compares the MS-SRA and MSUG-SRA with the existing single-
antenna solutions [68, 80, 86]. For both set-ups, we set (J, np, nc) = (2, 64, 512),
Pp/Pc = 1 (ϕ = 1 for MSUG-SRA), (S, V ) = (6, 8) for Ka ≤ 200, and (S, V ) =

(12, 4) for Ka ≥ 300. For MSUG-SRA, we also choose G = 1 for Ka ≤ 300,
G = 3 for 500 ≤ Ka ≤ 700, and G = 6 for Ka ≥ 900. It is observed that the
proposed MS-SRA has a superior performance compared to the existing URA
approaches for the low number of active users, However, it performs worse than
the scheme in [80] for higher values of Ka. Furthermore, the proposed MSUG-
SRA outperforms existing solutions, and its effective range of Ka is up to 1500

users.
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Figure 4.8: The required Eb/N0 of the proposed MS-SRA and MSUG-SRA for the

case of single-antenna receiver.

In order to validate our derivations in Theorem 2, Figure 4.9 compares P col
Ks,t

in (4.37) and its corresponding values derived from Monte Carlo simulations. We
conducted these simulations with specific parameters, namely, JKs = 300, Jnp =
512, and different values of J . The results indicate a strong alignment between
the theoretical calculations and the empirical observations. Furthermore, it is
noteworthy that increasing the value of J leads to a more pronounced reduction
in collisions.
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Figure 4.9: Comparison between the theoretical and simulated values of collision prob-

ability.

In Figure 4.10, we have plotted the required Eb/N0 of the MS-MRA for different
values of J such that Jnp = 512. Note that due to employing the Hadamard
matrix in our pilot design, the pilot length needs to be a power of 2. We can
see in this figure that for Ka > 100, J = 2 is the efficient selection, while for
Ka ≤ 100, J = 1 is the optimal choice. This figure clearly shows the trade-off in
selecting J . Also, to show the effect of the parameter np on the performance of
the proposed scheme, we provide several examples for nc = 512, J = 2,M = 50,
Pc/Pp = 1.5 in Figure 4.11. It is observed that the performance of the decoder is
highly sensitive to this parameter, especially, for larger values of Ka.
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Figure 4.10: The required Eb/N0 of MS-MRA for different J values with fixed Jnp.
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Figure 4.11: The required Eb/N0 as a function of the number of active users in the

proposed scheme for M = 50, J = 2, and different values of np.

To show the effect of selecting unequal lengths for different pilot parts, we have
plotted the Eb/N0 of MS-MRA for different values of np1 and np2 in Figure 4.12.
It can be seen that the optimal choice is to select equal lengths for all pilot parts,
i.e., np1 = np2.
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Figure 4.12: The required Eb/N0 of MS-MRA for J = 2, and different sizes of pilots.

4.5 Chapter Summary

We propose a family of unsourced random access solutions for MIMO Rayleigh
block fading channels. The proposed approaches employ a slotted structure with
multiple stages of orthogonal pilots. The use of a slotted structure along with the
orthogonal pilots leads to the lower computational complexity at the receiver,
and also makes the proposed designs implementable for fast fading scenarios.
We further improve the performance of the proposed solutions when the num-
ber of active users is very large by randomly dividing the users into different
interleaver-power groups. The results show that the proposed MIMO URA de-
signs are superior for both short and large blocklengths, while offering a lower
computational complexity.
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Chapter 5

RISUMA: RIS-Aided Unsourced

Multiple Access

In this chapter, we consider a URA set-up equipped with a passive RIS, where
a massive number of unidentified users (only a small fraction of them being ac-
tive at any given time) transmit their data to the base station BS, without any
collaborations among themselves or with the BS. We introduce a slotted coding
scheme where each user chooses a slot at random for transmitting its signal, which
consists of a pilot part and a randomly spread polar codeword. The proposed
decoder operates in two phases. In the first phase, called the RIS configuration
phase, the BS detects the pilots transmitted by users. The detected pilots are
then utilized to estimate their corresponding channel state information, using
which the BS suitably selects RIS phase shift employing the proposed RIS design
algorithms, namely, alternating SDR (ASDR) and adaptive eigenvalue decompo-
sition (AEVD). The proposed channel estimator offers the capability to estimate
the channel coefficients of the users whose pilots interfere with each other with-
out prior access to the list of transmitted pilots or the number of active users. In
the second phase, called the data phase, transmitted messages of active users are
decoded. It is illustrated that in the scenarios where the direct user-BS links are
completely blocked or significantly attenuated, employing RIS improves the per-
formance of a URA system by creating additional links between the BS and the
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users. The proposed scheme outperforms the current state-of-the-art RIS-aided
URA schemes, demonstrating up to a 6 dB improvement in the required energy.

The chapter is organized as follows. An introduction is provided in Section
5.1. In Section 5.2, we describe the system model. Sections 5.3 and 5.4 present
the proposed RIS-aided URA scheme, taking into account the blocked user-BS
channel in Section 5.3 and the existing user-BS channel in Section 5.4. We also
describe the proposed encoder, pilot detector, channel estimator, RIS design, and
decoding procedures in detail. We provide simulation results in Section 5.5, and
conclude the chapter in Section 5.6.

5.1 Introduction

Reconfigurable intelligent surface is a promising technology developed for pro-
viding high spectral efficiency and energy savings for 5G and beyond wireless
communication systems. Specifically, a passive RIS equipped with many low-
cost passive elements, which can intelligently tune the phase shift of the incident
electromagnetic waves, and reflect them in a desired direction without any am-
plification, can improve the efficiency of the network by enabling line-of-sight
paths between the transmitters and the receivers in problematic environments
with many blocking obstacles [34,44,45,97].

URA schemes in the literature consider direct links between all the users and
the BS [35–38,64]; however, in certain environments, the direct link between some
users and the BS may be blocked or significantly attenuated. Therefore, the use
of RIS can improve user connectivity in the URA by creating high-quality links
between the BS and the users.

One of the most crucial problems in RIS-aided communication systems is the
design of RIS reflecting coefficients to achieve the best system performance. This
is solved via various approaches such as alternating optimization [44, 92], Gaus-
sian randomization [34, 93], gradient descent [94], and semidefinite relaxation
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(SDR) [45,97]. To design the RIS elements, a reliable knowledge of channel state
information (CSI) is required. For this purpose, many grant-based multiple-access
schemes solve the channel estimation problem by providing each user with an in-
dividual time slot [46,48–51,95]. Specifically, they assign each user an orthogonal
pilot so that its CSI can be estimated without suffering from interference due
to the simultaneous transmission of other users. However, orthogonal transmis-
sion is not feasible in the URA, hence new solutions are needed. Authors in [34]
employ passive RIS to improve the URA system, which performs joint channel
estimation and data detection in the presence of interfering signals of several
users, all without the need for pilot transmissions. Every user transmits a rank-1
tensor, and as a result, the received signal is a tensor with a rank equal to the
number of active users, perturbed by AWGN noise. Utilizing a coupled tensor
decomposition technique at the receiver, the signals from distinct users along
with their respective channel coefficient vectors are jointly estimated. In addition
to channel estimation and data detection, they also propose a RIS design algo-
rithm. Despite a suitable performance in the case of Rayleigh RIS-BS channel
with full-rank channel coefficient matrix, this study encounters notable perfor-
mance deterioration in cases where rank-deficient RIS-BS channel matrices are
considered.

In this chapter, we propose a slotted URA scheme facilitated by a passive RIS
coupled with the necessary channel estimation, RIS design, and pilot and data de-
tection algorithms. In the proposed RIS-aided unsourced multiple access scheme
(RISUMA), every user transmits a signal consisting of a pilot, appended to a
polar codeword. The decoding process at the receiver takes place in two phases:
the RIS configuration phase and the data phase. The RIS configuration phase is
responsible for jointly detecting the active pilots and estimating the CSI via the
newly proposed joint pilot detection and channel estimation (JDCE) algorithm,
as well as designing the reflection coefficients of the RIS elements. During the
data phase, the actual data transmission takes place. As stated above, unlike the
grant-based schemes, where each identified user’s CSI is estimated without any
interference from the other users, in the URA, pilots from multiple users interfere
with each other due to the unsourced nature of transmission for which there is
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no cooperation between the users and the BS, or among the users themselves.
Therefore, the CSI estimation task becomes more challenging. Nevertheless, the
proposed JDCE algorithm is able to perform channel estimation successfully with-
out any prior knowledge of the number of active users or their transmitted pilots.
In the proposed RIS-aided URA set-up, in addition, we need to design the RIS
reflection coefficients, which is not an issue in the standard URA. In particular,
we propose two RIS design algorithms: alternating SDR (ASDR) and adaptive
eigenvalue decomposition (AEVD). In the former, we alternatively solve a stan-
dard SDR problem, and update the RIS coefficients at each iteration. At each
iteration of the latter algorithm, we employ the eigenvalue decomposition to find
the appropriate RIS coefficients of each active user, and then the resulting co-
efficients of different users are combined. We show that the AEVD algorithm
performs similarly to the ASDR, while having a lower computational complexity.
On the other hand, for the encoder and decoder designs, similar solutions with
other URA schemes can be adopted [37, 38]. Moreover, in this chapter, we em-
ploy polar codes along with SIC for the data phase to recover the transmitted
messages. The aforementioned algorithms are devised for the situation where the
direct communication links between the user and the BS are completely blocked.
We also extend these algorithms to the scenario where there exist direct user-BS
paths. We demonstrate that the newly proposed RISUMA method surpasses the
CTAD algorithm introduced in [34], which currently stands as the state-of-the-art
within RIS-assisted URA schemes.

Our contributions are as follows:

• We propose a RIS-assisted URA scheme, namely RISUMA, including ap-
propriate encoding/decoding blocks, considering the direct user-BS link to
be completely blocked. The proposed scheme offers superior performance
compared to the state-of-the-art.

• A joint pilot detector and channel estimator algorithm (called JDCE) is pro-
posed, which detects active pilots and estimates their corresponding chan-
nel coefficients in the pool of interfering signals without having knowledge
about the number of active users and their identity. The proposed JDCE’s

84



Figure 5.1: Illustration of a RIS-aided URA system.

ability for detection and channel estimation in the presence of interference
makes it a unique and novel algorithm in the RIS literature.

• Two RIS phase shift design algorithms (namely, ASDR and AEVD) are
devised whose goal is to increase the SINR of the input to the polar decoder,
which is a suitable metric in URA systems.

• We modify the proposed decoding blocks to apply RISUMA to the scenario
where a direct link exists between the users and the BS. In the resulting
scheme, the direct user-BS channels are estimated as well as the cascaded
channels. Then, the RIS design algorithm and the decoder are designed
based on the overall channel coefficients of all the users.
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5.2 System Model

Consider a RIS-aided URA system as depicted in Figure 5.1, where a BS with M
receive antennas serves KT single-antenna users (of which only Ka are active in
any transmission frame) with the help of a passive N -element RIS. We assume
that both the BS and the RIS are equipped with a uniform planer array (UPA)
[95]. Active users send B bits of information to the BS through n channel uses.
Employing the Saleh-Valenzuela channel model, the RIS-BS channel is written
as [34]

G =
√
MN

LG∑
l=1

µlaM(ϕr,l, ψr,l)
TaN(ϕt,l, ψt,l) ∈ CM×N , (5.1)

where (ϕr,l, ψr,l) are the azimuth and elevation angles of arrival (AOA) at the
BS from the lth path, (ϕt,l, ψt,l) are the azimuth and elevation angles of de-
parture (AOD) from the RIS to the BS through the lth path, LG is the num-
ber of paths from the RIS to the BS, µl denotes the lth path’s gain which
is modeled as a circularly symmetric complex Gaussian random variable, i.e.,
µl ∼ CN (0, L0d

−αPL
l ) [96], dl is the length of the lth path, L0 and αPL denote the

path loss at the reference distance and the path loss exponent, respectively, and
aN(ϕ, ψ) is the array steering vector of an N1 × N2 UPA (N = N1N2) which is
represented as 1

aN(ϕ, ψ) = āN,ϕ̄,ψ̄ =
1√
N
e−j2πϕ̄n1 ⊗ e−j2πψ̄n2 ∈ C1×N , (5.2)

where n1 =
d

λ
[0, ..., N1−1], n2 =

d

λ
[0, ..., N2−1], ϕ̄ = sin (ϕ) cos (ψ), ψ̄ = sin (ψ),

λ denotes the carrier wavelength, and d is the antenna spacing. Note also that
aM(ϕ, ψ) is the array steering vector of an M1 ×M2 UPA (M =M1M2) which is
obtained by replacing N by M in (5.2). Similarly, the channel from the ith user
to the RIS can be expressed as

hi =
√
N

LR,i∑
fi=1

µfiaN(ϕi,fi , ψi,fi) ∈ C1×N , (5.3)

1For the vector t, we denote the element-wise exponentiation by et.
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Figure 5.2: Transmission structure of the proposed URA scheme.

where LR,i is the number of paths between the ith user and the RIS, (ϕi,fi , ψi,fi)
are azimuth and elevation AOAs at the RIS for the fith path of the ith user’s
signal, with the distance dfi and the corresponding path gain µfi(the path-loss
model is the same as the one for the RIS-BS channel). The channel between the
RIS and the BS is assumed to be perfectly known. This can be justified by the
fact that the RIS and the BS are stationary, so the channel between them changes
very slowly, and it can be well estimated with negligible overhead. Therefore, it
is enough to focus on the estimation of the channel between each user and the
RIS for our set-up.

5.3 RISUMA with Blocked User-BS link

Let yt ∈ CM×1 denote the uplink signal received at the BS at time t. Assuming
that the direct link between the users and the BS is completely blocked, and the
channel coefficients are constant throughout the frame, the received signal can be
written as [95]

yt =
Ka∑
i=1

Gdiag(hi)wtxi,t + zt,∈ CM×1, t = 1, ..., n, (5.4)

where wt ∈ CN×1 denotes the reflection coefficient vector of the RIS at time t
with |[wt]i| = 1 (passive RIS assumption), xi,t ∈ C is the symbol transmitted by
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the ith user at time t, and zt ∼ CN (0, σ2
zIM) represents the noise vector at time

t.

The proposed coding scheme divides the entire frame into slot pairs. Each ac-
tive user randomly selects only one slot pair to transmit its pilot and data signals
as illustrated in Figure 5.2. At the receiver side, transmitted messages are de-
coded in two phases: the RIS configuration phase and the data phase. In the RIS
configuration phase, active pilots in each slot are identified, and the correspond-
ing CSI between the users and the RIS is estimated. Given the estimated channel
of each active user, the BS designs the RIS reflection coefficients, and transmits
them back to the RIS unit. After the phase shifts of the RIS elements are ad-
justed accordingly, the active users transmit their encoded signals in the data
transmission phase. We describe the proposed encoder and decoder structures in
more detail in the following.

5.3.1 Encoder

As shown in Figure 5.2, in the proposed transmission scheme, a length-n frame
is divided into pilot and data parts with lengths n1 and n2, respectively, where
n2 + n1 = n. We also divide each part into S slots of lengths np = n1/S and
nc = n2/S. The ith user divides its B bits of information into two parts: pilot
part ωpi ∈ {0, 1}1×Bp and data part ωci ∈ {0, 1}1×Bc , where B = Bp + Bc. Every
user obtains a preamble bi ∈ C1×ns and a pilot pi ∈ C1×np by mapping ωpi to the
rows of the preamble codebook B ∈ C2Bp×ns and the pilot codebook P ∈ C2Bp×np ,
respectively. The ith user adds cyclic redundancy check (CRC) bits to ωci , and
encodes the result with an (nd, Bc + r) polar code, where r is the number of
CRC bits. The encoded bits are then modulated using binary phase shift keying
(BPSK), which results in vi = [vi,1, vi,2, ...vi,nd

] ∈ {±1}1×nd . To construct the
signal of the data part, the encoder spreads each symbol of the modulated signal
by its preamble [36,64], i.e., ci = vi⊗bi ∈ C1×nc , where nc = nsnd. The ith user
randomly selects a slot index (denoted by ζi), and transmits pi and ci through
the ζith slot of the pilot and data parts, respectively.
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Using the signal model in (5.4), the received signal at the sth slot of the pilot
part can be written as

Yp =
√
Pp
∑
i∈Ss

Gdiag(hi)Wpsdiag(pi) + Zp ∈ CM×np , (5.5)

where Pp denotes the signal power in the pilot part, Ss is the set of users in the
sth slot, Wps = [wj1,s , ...,wjnp,s

] contains the RIS reflecting coefficients in the sth
slot of the pilot part, Zp = [zj1,s , ..., zjnp,s

], and jt,s = (s− 1)np + t. We omit the
slot index from matrices for notational simplicity. Similarly, the received signal
at the sth slot of the data part corresponding to the fth (f = 1, 2, ..., nc) symbol
of the modulated signal can be written as

Yc,f =
√
Pc
∑
i∈Ss

Gdiag(hi)Wcsdiag(bi)vi,f

+ Zc,f ∈ CM×ns , (5.6)

where Pc denotes the signal power in the data part, Wcs ∈ CN×ns contains the
RIS reflecting coefficients in the sth slot of the data part, Zc,f = [zk1,s , ..., zkns,s

],
and kt,s = Snp + (s − 1)nc + (f − 1)ns + t. Note that we consider two choices
for selecting Wcs . C0: the RIS coefficient vectors remain constant during each
symbol’s duration, and C1: the RIS coefficient vectors vary symbol by symbol,
i.e.,

Wcs =

{
[wf,s, ...,wf,s] C0
[wk1,s , ...,wkns,s

] C1
. (5.7)

5.3.2 Decoder

5.3.2.1 Joint Pilot Detection and Channel Estimation (JDCE)

In the following, we describe the steps of the JDCE algorithm. It is clear from
(5.3) that detecting all the active paths (finding angles of active paths), and
estimating the corresponding path gains give us an estimate of the user-RIS
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channel hi. The pilot with the highest probability of existence is detected first,
and then the strongest path over which the detected pilot arrives at the RIS is
identified. We also estimate the gain corresponding to the detected path using
the least-squares (LS) technique. Finally, we remove the contribution of the
detected pilot-path pair from the received signal, and repeat the procedure on
the remaining signal to detect the next pilot-path pair. Note that since the
residual received signal is updated at each iteration, we denote it by Yj

p, where j
is the iteration index. Details of the proposed JDCE algorithm are given below:

• Step 1 (pilot detection): the pilot with the highest probability of existence
is detected using the energy detection approach as in [36,64]

k̂ = argmax
k∈1,2,...,2Bp

trace(QkRpjQ
H
k )

trace(QkQH
k )

, (5.8)

where Rpj = Yj
p
H
Yj
p, Qk = Wpsdiag(p̄k), and p̄k is the kth row of the

codebook P.

• Step 2 (path detection): By solving the following problem, we find the
strongest path through which the k̂th pilot (the detected pilot) arrives at
the RIS

(l̂, q̂) = argmax
l∈T (N1),q∈T (N2)

trace(Fl,qRpjF
H
l,q)

trace(Fl,qFH
l,q)

, (5.9)

where Fl,q = Gdiag(āN,l,q)Wpsdiag(p̄k̂), and āN,l,q is defined in (5.2).

• Step 3 (SIC): from (5.5), we can infer that the contribution of the received
signal corresponding to the detected pilot-path pair in the jth iteration can
be obtained as

Uj =
√
PpGdiag(āN,l̂,q̂)Wpsdiag(p̄k̂) ∈ CM×np . (5.10)

Vectorizing both sides of (5.5), the received signal vector at the initial
iteration (y1

p = vec(Y1
p) ∈ CMnp×1) can be written as

y1
p =

j∑
j′=1

µ̄j′uj′ + z′p, (5.11)
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where uj = vec(Uj) ∈ CMnp×1, µ̄j′ ∈ C is the path gain corresponding to
the pilot-path pair detected at the j′th iteration, and z′p ∈ CMnp×1 contains
the signals corresponding to the pilot-path pairs that are not detected yet
along with the vectorized noise term. The path gains are estimated using
LS as

m̂ = (ŪHŪ)−1ŪHy1
p, (5.12)

where the kth column of Ū ∈ CMnp×j is uk. Then, the contribution of Ū is
removed from the initially received signal to obtain

y(j+1)
p = y1

p − Ūm̂. (5.13)

Finally, y(j+1)
p is converted back to an M × np matrix Y

(j+1)
p before being

passed to Step 1 for the (j+1)th iteration. The procedure is stopped if the
condition

1

Mnp

∥y(j+1)
p ∥2−∥yjp∥2

σ2
z

≤ α1 (5.14)

is satisfied, where α1 ∈ R+ is a threshold.

5.3.2.2 Data Phase

We now devise an iterative algorithm to detect the message bits ωci using the
received signal corresponding to the data part. The algorithm 1) generates log-
likelihood ratios (LLRs) of the polar coded bits using the estimated channel coef-
ficients, 2) passes the LLRs to the polar list decoder, 3) removes the contribution
of the successfully decoded users (users whose detected messages satisfy the CRC
check) from the received signal. The remaining received signal is passed back to
the first step to generate a new LLR. Details of the proposed algorithm are given
below.
We can rewrite the received signal in (5.6) as

Yc,f =
∑
i∈Ss

Tivi,f + Zc,f , (5.15)
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where Ti =
√
PcGdiag(hi)Wcsdiag(bi) ∈ CM×ns . Vectorizing both sides of

(5.15), we write

yc,f =
∑
i∈Ss

tivi,f + zc,f

= T̄ṽf + zc,f , (5.16)

where

ti = vec(Ti)

=
√
Pcvec(Gdiag(hi)Wcsdiag(bi)) ∈ CMns×1, (5.17)

where yc,f = vec(Yc,f ) ∈ CMns×1, zc,f = vec(Zc,f ) ∈ CMns×1, vi,f is the ith row
of ṽf ∈ C|Ss|×1, and ti is the ith column of T̄ ∈ CMns×|Ss|. We estimate ṽf using
the minimum mean square error (MMSE) estimator as

v̂f = [v̂1,f , v̂2,f , ..., v̂|Ss|,f ]
T = T̄HR̂−1yc,f , (5.18)

where

R̂ = E{yc,fyHc,f} = T̄T̄H + σ2
zIMns . (5.19)

In a similar way as in [64], the LLR of the fth symbol of the ith user is approxi-
mated as

ĝi,f ≈ 2Re (v̂i,f/δi) , (5.20)

where δi is the ith diagonal element of the matrix Σ = I|Ss| − T̄HR̂−1T̄. The
obtained LLR values are then passed to the polar list decoder. Finally, the
contributions of users whose decoded message sequences satisfy the CRC check
are removed from the received signal employing

Yc,f = Yc,f −Tiv̄i,f , (5.21)

where v̄i,f is the fth symbol of the ith user obtained by encoding and modulating
its successfully decoded message. The remaining signal Yc,f is passed back to the
MMSE estimator in (5.18) for the next iteration. The step terminates if no user
is successfully decoded during an iteration.
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5.3.2.3 RIS Design

Unlike the RIS phase shift coefficient matrix Wps , which is arbitrarily selected,
in this section, we propose algorithms for designing the RIS phase shift matrix
for use in the data part, denoted by Wcs . Note that since the RIS algorithm
is designed based on the decoder, we introduce it here, after studying the data
phase of the decoder. However, in practice, the RIS coefficients are obtained
before data transmission.

We know from Section 5.3.2.2 that the MMSE estimate of the BPSK signal is
fed to the polar decoder. Thus, improving the SINR at the output of the MMSE
block is a good way to decrease the decoding error of each user. Plugging (5.16)
into (5.18), we can obtain the MMSE estimate of the fth symbol of the ith user’s
codeword as

v̂i,f = tHi R̂
−1tivi,f + tHi R̂

−1

( ∑
k∈Ss,k ̸=i

tkvk,f + zc,f

)
, (5.22)

where the first and second terms are signal and interference-plus-noise terms,
respectively, whose powers can be computed as

σ2
s,i = E{∥tHi R̂−1tivi,f∥2}

= (tHi R̂
−1ti)

2, (5.23)

σ2
IN,i = E{∥v̂i,f∥2} − σ2

s,i (5.24)

= E{∥tHi R̂−1yc,f∥2} − σ2
s,i

= tHi R̂
−1E{yc,fyHc,f}R̂−1ti − σ2

s,i

= tHi R̂
−1ti − σ2

s,i

= σs,i − σ2
s,i. (5.25)

Therefore, the SINR of the ith user at the output of the MMSE estimator (input
to the polar decoder) can be calculated as βi = σs,i/(1 − σs,i). Using this SINR
term, the decoding error probability of the ith user is obtained as [90]

er,i = F(σs,i), (5.26)
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where

F(x) = Q


0.5 log2 (1 + x′)− Bc + r

nd√
1

nd

x′(x′ + 2) log22 e

2(x′ + 1)2

 , (5.27)

with x′ = x/(1 − x), and Q(.) denotes the standard Q-function. Using vec trick
property [100], vec(A1A2A3) = (AT

3 ⊗A1)vec(A2), we can write ti in (5.17) as

ti = Eiwc, (5.28)

where Ei and wc are obtained as

Ei =

{ √
Pc
(
bTi ⊗Gdiag(hi)

)
∈ CMns×N C0√

Pc (diag(bi)⊗Gdiag(hi)) ∈ CMns×Nns C1
, (5.29)

and

wc =

{
[Wcs ](:,i) ∈ CN×1 C0
vec(Wcs) ∈ CNns×1 C1

, (5.30)

respectively. Hence

σs,i = wH
c Ci(wc)wc, (5.31)

where

Ci(wc) = EH
i R̂

−1Ei. (5.32)

Plugging (5.31) into (5.26), the RIS reflecting matrix that minimizes the total
decoding error of the system is obtained by solving the following optimization
problem

argmin
wc

∑
i∈Ss

F(wH
c Giwc), (5.33a)

s.t. |[wc]n| = 1, (5.33b)

Gi = Ci(wc), i ∈ Ss, (5.33c)

where Gi is an auxiliary parameter matrix. It is evident that neither the objec-
tive function in (5.33a) nor the constraint in (5.33b) are convex. Therefore, it
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cannot be solved using the standard convex optimization solvers. However, in
the following, we proceed to adapt and refine it prior to solving by two distinct
algorithms, namely ASDR and AEVD. Details of these algorithms are delineated
below.

ASDR: It can be proved that once x surpasses a specific threshold, namely
ᾱ, there is no further significant reduction in the value of F(x), and F(x) is a
non-increasing function of x. Given this motivation, the problem in (5.33) can
be approximated as

argmax
wc

wH
c

(∑
i∈Ss

Gi

)
wc, (5.34a)

s.t. |[wc]n| = 1,

wH
c Giwc ≤ ᾱ, i ∈ Ss, (5.34b)

Gi = Ci(wc), i ∈ Ss. (5.34c)

We solve this problem using a two-step alternating optimization method: In the
first step, we estimate Gi by Gi = Ci(wn−1), where wn−1 is the estimated RIS
vector in the (n − 1)th iteration, and in the second step, we solve the problem
(5.34) given Gi. The details of the second step of the algorithm are as follows.
We define W̄ = wcw

H
c , where W̄ ⪰ 0 and rank(W̄) = 1, so we can write

wH
c Giwc = trace(W̄Gi). Since the rank-one constraint is non-convex, we relax

it using SDR to obtain the following convex semidefinite program (SDP) from
(5.34)

argmax
W̄

trace(W̄Ḡ), (5.35)

s.t. [W̄](n,n) = 1, n = 1, ..., Nns

trace(W̄Gi) ≤ ᾱ, i ∈ Ss,

where Ḡ =
∑

i∈Ss
Gi. The problem in (5.35) can be solved using convex op-

timization solvers such as CVX. Note that the solution to the relaxed problem
(5.35) is not necessarily rank-1. Thus, we perform additional steps similar to [97]
to ensure that the rank-1 constraint is satisfied. Particularly, by applying the
eigenvalue decomposition (EVD) on the solution, W̄ = UΣUH , the sub-optimal
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solution to (5.35) is obtained as

ŵc = argmin
l=1,...,TSDR

∑
i∈Ss

F(w̃H
l Giw̃l), (5.36)

where [w̃l]i = [ūl]i/|[ūl]i|, ūl = UΣ1/2rl, rl ∼ CN (0, INnt
s
) with t ∈ {0, 1} corre-

sponding to C0 and C1, respectively, and TSDR denotes the number of realizations
of rl. Note that for finding the solution in (5.36), we minimize the main cost
function in (5.33) instead of the approximated one in (5.34). The details of the
ASDR method for Ct scenario are shown in Algorithm 3, where Titer is the total
number of iterations.

Algorithm 3: ASDR method for the RIS design for Ct
Initialization: w0 = [ejθ1 , ..., ejθNnt

s ]T , where θj ∼ U(0, 2π)
for n = 1, 2, ..., Titer do

1. Calculate Gi = Ci(wn−1) according to (5.32).

2. Calculate W̄ by SDP

3. Perform EVD, W̄ = UΣUH .

4. Calculate wn according to (5.36).

end

Algorithm 4: AEVD method for the RIS design for Ct
Initialization: w0 = [ejθ1 , ..., ejθNnt

s ]T , where θj ∼ U(0, 2π)
for n = 1, 2, ..., Titer do

1) Calculate Gi = Ci(wn−1) according to (5.32).
2) Calculate qi,max.

3) vn =
1

|Ss|
∑

i∈Ss
qi,max.

4) [wn]i = [vn]i/|[vn]i| , i = 1, ..., Nnts
5) Pe(n) =

∑
i∈Ds

F(wH
n Giwn).

if Pe(n) < α2 then
Stop the algorithm.

end
end
Output: ŵc = wn′ , where n′ =argmin

n
Pe(n)
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AEVD: To decrease the computational complexity of the RIS design algo-
rithm, we propose AEVD for solving (5.33). The AEVD method comprises the
following steps: 1) First, we identify the RIS coefficient vectors that minimize
the error for each user individually. To achieve this, we compute the eigenvec-
tor of the matrix Gi corresponding to its largest eigenvalue, denoted as qi,max

2,
2) subsequently, we calculate the average of these individual vectors to obtain
a combined vector, 3) to ensure compliance with the unit-modulus constraint of
the RIS elements, we rescale each element of the resulting vector. We repeat
this AEVD algorithm for a total of Titer iterations, stopping only when the total
decoding error falls below the predefined threshold α2. A detailed description of
the AEVD algorithm can be found in Algorithm 4.

5.4 RISUMA with Direct User-BS Link

In this section, we extend the proposed RISUMA approach by modifying it to
accommodate scenarios where a direct path exists between the users and the BS.
In this case, the system model is the same as in Sections 5.2, except for the
existence of direct paths between the users and the BS. Then, in a similar way
as in (5.4), the received signal at the BS can be modeled as

yt =
Ka∑
i=1

(Gdiag(hi)wt + di)xi,t + zt,∈ CM×1

, t = 1, ..., n, (5.37)

where di is modeled as

di =
√
M

LB,i∑
gi=1

µgiaM(ϕi,gi , ψi,gi)
T ∈ CM×1, (5.38)

where LB,i is the number of direct paths between the ith user and the BS, re-
spectively, (ϕi,gi , ψi,gi) are azimuth and elevation AOAs at the BS for the gith

2For a Hermitian matrix C and a vector with unit norm, ∥w∥2= 1, the maximum value
of c = wHCw is obtained by choosing w as the eigenvector of C corresponding to its largest
eigenvalue [98]
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direct path of the ith user’s signal. For the user-BS direct path, we consider
the same path-loss model as the ones presented for the RIS-BS and the user-RIS
channels in Section 5.2 with dgi and µgi being the distance and path gain of the
gith direct path, respectively. Employing the same encoder as in Section 5.3.1,
while considering the user-BS direct channel, the received signal models in (5.5)
and (5.6) are rewritten as

Yp =
√
Pp
∑
i∈Ss

Gdiag(hi)Wpsdiag(pi) + dipi + Zp, (5.39)

Yc,f =
√
Pc
∑
i∈Ss

(Gdiag(hi)Wcsdiag(bi) + dibi) vi,f

+ Zc,f . (5.40)

The decoder is also presented below.

5.4.1 Decoder

Similar to Section 5.3.2, the decoder in the presence of the direct user-BS link
operates in two phases: The RIS configuration phase, where pilot detection,
channel estimation, and RIS design are performed; and the data phase where
transmitted bit sequences are decoded. Decoding blocks are described below.

5.4.1.1 Joint Pilot Detection and Channel Estimation

In this part, we modify the JDCE algorithm in Section 5.3.2.1 to estimate di as
well. Different steps of the modified version are described below.

• Step 1 (Pilot detection): the pilot with the highest probability of existence
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(with index k̂) is obtained as

k̂ = max(k̂1, k̂2), (5.41)

k̂1 = argmax
k∈1,2,...,2Bp

trace(QkRpjQ
H
k )

trace(QkQH
k )

, (5.42)

k̂2 = argmax
k∈1,2,...,2Bp

p̄kRpjp̄
H
k

∥p̄k∥2
. (5.43)

Note that if k̂1 > k̂2, the strongest scatterer belongs to the user-RIS-BS
channel, and it belongs to the user-BS direct channel otherwise.

• Step 2 (path detection): using the following problem, we find the AOAs of
the k̂th pilot’s strongest scatterer.

(l̂, q̂) = argmax
l∈T (N1),q∈T (N2)

δl,q, (5.44)

δl,q =


trace(Fl,qRpjF

H
l,q)

trace(Fl,qFH
l,q)

if k̂ = k̂1

ā∗
N,l,qY

j
pp̄

H
k̂

if k̂ = k̂2

. (5.45)

• Step 3 (SIC): replacing

[Ū](:,j) =

{√
PpFl̂,q̂ if k̂ = k̂1√
Ppā

T
N,l̂,q̂

p̄k̂ if k̂ = k̂1
(5.46)

with the one in Section 5.3.2.1, the SIC operation in the jth iteration can
be performed as in (5.13). The stopping criterion is also the same as in
(5.14).

5.4.1.2 Data Detection

We employ the same MMSE-based decoder as in Section 5.3.2.2, except for mod-
ifying the matrix Ti as

Ti =
√
Pc (Gdiag(hi)Wcsdiag(bi) + dibi) ∈ CM×ns , (5.47)

to incorporate the direct path.
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5.4.1.3 RIS Design

In a similar way as in Section 5.3.2.3, the SINR of the ith user in the input of
the polar decoder is calculated as βi = σs,i/(1− σs,i) where σs,i = tHi R̂

−1ti, and
ti = vec (Ti). Then, using (5.47), we can write ti = Eiwc + ei, where Ei and wc

are defined in (5.29) and (5.30), respectively, and ei = vec(dibi). Therefore, we
can write σs,i in the following form

σs,i = wH
c E

H
i R̂

−1Eiwc +wH
c E

H
i R̂

−1ei

+ eHi R̂
−1Eiwc + eHi R̂

−1ei,

= w̄H
c C

′
i(w̄c)w̄c (5.48)

where

C′
i(w̄c) =

[
EH
i R̂

−1Ei EH
i R̂

−1ei

eHi R̂
−1Ei eHi R̂

−1ei

]
, (5.49)

w̄c =

[
wc

1

]
. (5.50)

We can see that the parameter σs,i has exactly the same structures in (5.48) and
(5.31). With the same argument as in Section 5.3.2.3, the RIS reflecting matrix
that minimizes the total decoding error of the system is obtained by solving the
following optimization problem

argmin
w̄c

∑
i∈Ss

F(w̄H
c Giw̄c), (5.51a)

s.t. |[w̄c]n| = 1, n = 1, 2, ..., Nnts (5.51b)

[w̄c]Nnt
s+1 = 1, (5.51c)

Gi = C′
i(w̄c), i ∈ Ss, (5.51d)

where Gi is an auxiliary parameter matrix. The problem in (5.51) can be
solved via modified ASDR and AEVD algorithms as described below.

ASDR: The modified ASDR algorithm is obtained by revising Algorithm
3. Particularly, in the first step of Algorithm 3, we calculate Gi = C′

i(wn−1)
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according to (5.49). For the SDP in the second step, we replace Nnts + 1 with
Nnts for Ct structure. For the fourth step, ŵc is obtained by

ŵc = argmin
l=1,...,TSDR

∑
i∈Ss

F

[w̃l

1

]H
Gi

[
w̃l

1

] . (5.52)

AEVD: The modified AEVD is the same as Algorithm 4, except replacingNnts+1

with Nnts, and correcting the first and second steps as follows. In the first step,
the Gi matrix is obtained by Gi = C′

i(w̄n−1). In the second step, we find the
eigenvector corresponding to the largest eigenvector, qi,max ∈ C(Nnt

s+1)×1, then
we calculate qi,max =

qi,max

[qi,max]Nnt
s+1

to satisfy the constraint in (5.51c).

5.4.2 Computational Complexity

In this part, we calculate the computational complexity of the proposed RISUMA.
Note that we consider the number of multiplications as a measure of computa-
tional complexity.

5.4.2.1 Joint Pilot Detection and Channel Estimation

Energy detectors in (5.8) and (5.41) has the computational complexity of
O
(
MNnp2

Bp
)
, where O(.) is the standard big-O notation, denoting the order

of complexity. The computational complexity of the path detectors in (5.9) and
(5.44) is O (NM2np +MN2np). Note that for calculating the order of computa-
tional complexity of these blocks, we use the fact that trace(ABBHAH) can be
implemented with the computational complexity of order O(ABC), where A and
B are A×B and B×C matrices. Performing the SIC in (5.13) at the jth iteration
has the complexity of order O(j3 + j2Mnp). Besides, the maximum iterations
for performing JDCE is upper bounded by Ta = KaLa/S, where La is the aver-
age number of paths between each user and RIS, and we consider |Ss|≈ Ka/S.
Therefore, the total computational complexity of JDCE in S slots is then upper
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bounded by

O

(
STaMNnp

(
2Bp +M +N

)
+ S

Ta∑
j=1

(j3 + j2Mnp)

)
. (5.53)

5.4.2.2 Data Detection

The computational complexity for LLR generation and SIC in Sections 5.3.2.2
and 5.4.1.2 is in the order of O((Mns)

3 + |Ss|(Mns)
2), and the polar list decoder

has a computational complexity of O(|Ss|nd log nd). Considering |Ss|≈ Ka/S, the
total computational complexity for the data detection part can be approximated
as

O
(
S(Mns)

3 +KaM
2n2

s +Kand log nd
)
. (5.54)

5.4.2.3 RIS Design

In this part, we calculate the computational complexity of ASDR and AEVD
for the Ct scenario. Calculating R̂−1 in both algorithms has the complexity of
O((Mns)

3 + |Ss|(Mns)
2). Calculating Ci(w̄c) and C′

i(w̄c) in (5.32) and (5.49)
have the computational complexity of O(|Ss|MNn

(2+t)
s (M + N)). Finding the

qi,max in AEVD has the computational complexity of δAEVD = O(|Ss|N2n2t
s )

[98]. For performing SDR in ASDR algorithm, the computational complexity
is δASDR = O

(
max(|Ss|, Nnts)4

√
Nnts log(1/ϵ

′)
)
, where ϵ′ > 0 denotes the so-

lution accuracy [101]. Considering |Ss|≈ Ka/S, the total complexity of ASDR
and AEVD algorithms (which is performed in Titer iterations) in S slots can be
approximated as

O
(
STiter

(
M3n3

s + |Ss|MNn(2+t)
s (M +N) + δalg

))
, (5.55)

where alg ∈ {ASDR,AEVD}. Looking at (5.55), it is clear that setting t = 0

(selecting the structure C0 in (5.7)) significantly decreases the computational com-
plexity of the RIS design algorithms. Moreover, the computational complexity of
AEVD is lower than that of ASDR.
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5.5 Numerical Results

In this section, we provide several numerical examples to demonstrate the per-
formance of the proposed RIS-aided URA solution. In all the simulations, unless
otherwise stated, we consider the user-BS link to be completely blocked, and
we choose σ2

z = −95dBm, Bc = 90, Bp = 10, S = 4, nd = 256, ns = 10,
np = 440, r = 16, LG = 2, LR,i = 2, i = 1, ..., Ka, M1 = M2 = N1 = N2 = 8,
α1 = 0.01, L0 = 10−3, αPL = 2.3 (for user-RIS and RIS-BS paths), and
d = λ/2. The distances of each user-RIS and each user-BS paths are drawn
from di ∈ U(200m, 300m) and di ∈ U(250m, 350m), respectively, and it is set as
di = 100m for every RIS-BS path. We draw every element of B, P, and Wps

from CN (0, 1), then each element of Wps is rescaled to have unit modulus, ev-
ery row of B is normalized to have a norm of ns, and rows of P are scaled to
satisfy ∥Wpsdiag(p̄i)∥2= ∥Wpsdiag(p̄j)∥2,

1

2Bp

∑2Bp

i=1∥p̄i∥2= np (for a completely
blocked user-BS path), and ∥p̄i∥2= ∥p̄j∥2= np (for non-blocked user-BS path)
with p̄i being the ith row of P. To construct the steering vectors of each path for
the RIS in (5.1) and (5.3), we randomly choose ϕ̄ and ψ̄ from T (N1) and T (N2),
respectively, where T (.) is as defined in the last paragraph of the introduction
section. Similarly, the AOAs of each received path at the BS in (5.1) and (5.38)
are randomly selected from the sets T (M1) and T (M2). The energy-per-bit and
the PUPE of the system are defined as

Eb/N0 =
PnT
B

(5.56)

Pe = pfa + pmd, (5.57)

where P and nT are the average per-symbol power and the total length of the
transmitted signal of each user, pmd is the probability that an active user’s mes-
sage is not decoded, and pfa is the probability that a decoded message is indeed
not sent.
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Figure 5.3: The required Pc to achieve the target PUPE of 0.1 for ns = 10, nd = 256,

and different RIS phase shift strategies.

In Figure 5.3, we depict the average transmit power required by the proposed
scheme to achieve the target PUPE of 0.1 for different RIS design strategies and
different RIS reflection strategies defined in (5.7). Note that the simulations are
run for known CSI. We can deduce from this figure that the proposed beamform-
ing strategy performs better than the strategy employed in [34] and the case of
randomly generated phase shifts (resulting in up to 11dBm and 17dBm power
savings, respectively). This improvement is due to the employment of a more
suitable metric for the RIS design in the proposed algorithm, where the overall
phase shift matrix is obtained by minimizing the decoding error probability. This
is in contrast to the RIS design algorithm in [34] maximizes the minimum channel
gain among active users. Besides, it is clear that the proposed AEVD performs
comparable to the proposed ASVD (with ᾱ = 0.53), while having lower compu-
tational complexity. Also, we can interpret from this figure that employing C1
structure provides higher accuracy, however, according to our discussion in Sec-
tion. 5.4.2, it suffers from a considerably higher computational complexity than
the C0 case. Note that since we consider the direct link between each user and
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the BS to be completely blocked in this simulation, no communication is possible
without the help of RIS.

Figure 5.4: The required Eb/N0 for the proposed RISUMA and CTAD in [34] for

achieving a target PUPE of 0.1.

As shown in (5.1), RISUMA is designed based on the Saleh-Valenzuela model
for the RIS-BS channel. However, to ensure a fair comparison with CTAD al-
gorithm in [34], we consider a Rayleigh model assumption, i.e., the elements
of RIS-BS channel matrix are generated as [G](i,j) ∼ CN (0, L0d

αPL
l ), where

rank(G) = min(M,N). The performance of the RISUMA and CTAD is com-
pared in Figure 5.4 for n = 12288 (S = 12, nd = 512, ns = 1, Pc/Pp = 0.5,
np = 512, and AEVD for RISUMA), B = 316, and different values of M and
N . We can see from this figure that the proposed RISUMA shows superior per-
formance compared to CTAD. The reasons for this are: 1) RISUMA adopts a
more reliable RIS design algorithm than CTAD, i.e., minimizing the decoding
error of the polar code instead of maximizing the minimum channel gain of the
users in CTAD, 2) RISUMA employs the powerful polar list decoder for decoding
transmitted messages, while CTAD uses a dequantizer for mapping soft estimated
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codewords to the bit sequences, 3) RISUMA employs SIC, which is an effective
block in a URA set-up [37, 38]. We should also note that in the case of a rank-
deficient G matrix (rank(G) < min(M,N)), there is a meaningful performance
degradation in CTAD algorithm; however, the proposed RISUMA does not make
any assumptions regarding the rank of this matrix, and is almost unaffected by
it.

Figure 5.5: The required Eb/N0 to achieve the target PUPE of 0.1 for different user-BS

path-loss exponents.

To assess the contribution of the RIS to the efficiency of the URA system, in
Figure 5.5, we compare the performance of the proposed RISUMA with and with-
out employing RIS for achieving the target PUPE of 0.1, when the user-BS com-
munication channel exists for different path-loss exponents, αPL = 3.5, 4, 4.5,∞.
Note that αPL = ∞ corresponds to the scenario of fully obstructed user-BS chan-
nels. We set LB,i = LR,i = 1, i = 1, ..., Ka, ᾱ = 2, Pc/Pp = 0.01, and employ the
C0 strategy. It is shown in Figure 5.5 that for the stronger user-BS channel with
path-loss exponent αPL = 3.5, employing RIS only slightly improves the perfor-
mance of the system. However, for weaker user-BS channels (with the path-loss
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exponents of the user-BS channel αPL = 4, 4.5 and ∞), employing RIS improves
the performance of the URA system considerably. Hence, employing RIS is cru-
cial for scenarios with weak user-BS channels. It is seen that the AEVD operates
as well as the ASDR algorithm, while having less computational complexity.

5.6 Chapter Summary

We have proposed a RIS-aided URA scheme to enable connectivity between the
BS and the users whose direct channel to the BS is blocked or significantly at-
tenuated. The proposed scheme operates in two phases: the RIS configuration
phase and the data phase. In the former, transmitted pilots are identified in the
presence of heavy interference, their corresponding CSI is estimated, and RIS re-
flection coefficients are suitably designed by employing two different approaches.
In the data phase, the receiver detects the transmitted messages using a polar list
decoder, and the contribution of successfully decoded messages is removed from
the received signal using SIC. We have demonstrated that the proposed scheme
enhances the URA system performance when the connection between users and
the base station has significantly degraded. Moreover, it achieves a reduction in
energy consumption of up to 4 dB when compared to the existing RIS-assisted
URA algorithms.
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Chapter 6

Summary and Conclusions

In this thesis, three different solutions are proposed for unsourced random ac-
cess. The first algorithm utilizes random spreading of polar codewords, and
proposes power diversity and SIC over GMACs as a way of increasing the num-
ber of supported users. The second URA scheme, designed for MIMO fading
channels, leverages frame slotting, transmission of multiple stages of orthogonal
pilots, the implementation of polar codes, and SIC. The proposed approach is
further improved by randomly dividing users into different groups each of which
has a unique transmitting power and an interleaving pattern. The third scheme
explores a URA configuration with a receiver equipped with multiple antennas
and a passive RIS, incorporating frame slotting, pilot transmission, RIS phase
shift design, polar code transmission, and SIC.

In the first part of the thesis, we consider URA over GMAC, and propose a
random spreading approach with polar codes, for which each user first encodes
its message by a polar code, and then the coded bits are spread using a random
spreading sequence. The proposed approach divides the active users into different
groups, and employs different power levels for each group in such a way that the
average power constraint is satisfied. We formulate and solve an optimization
problem to determine the number of groups, and the corresponding expected user
numbers and power levels. Extensive simulations demonstrate that the proposed

108



algorithm surpasses existing URA schemes in GMAC, with greater effectiveness
observed particularly in scenarios with a large number of active users.

We then explore URA over Rayleigh block-fading channels with a receiver
equipped with multiple antennas. We propose a slotted structure with multiple
stages of orthogonal pilots, each of which is randomly picked from a codebook.
In the proposed signaling structure, each user encodes its message using a polar
code and appends it to the selected pilot sequences to construct its transmitted
signal. Accordingly, the transmitted signal is composed of multiple orthogonal
pilot parts and a polar-coded part, which is sent through a randomly selected
slot. The performance of the proposed scheme is further improved by randomly
dividing users into different groups each having a unique interleaver-power pair.
We also apply the idea of multiple stages of orthogonal pilots to the case of
a single receive antenna. In all the set-ups, we use an iterative approach for
decoding the transmitted messages along with a suitable successive interference
cancellation technique. The use of orthogonal pilots and the slotted structure
lead to improved message recovery and reduced computational complexity in the
proposed set-ups, and make the implementation with short blocklengths more
viable.

In the third and final part of the thesis, we consider a URA set-up equipped
with a passive RIS, where a massive number of unidentified users only a small
fraction of them being active at any given time transmit their data to the BS,
without any collaborations among themselves or with the BS. We introduce a
slotted coding scheme, where each user chooses a slot at random for transmitting
its signal. This signal consists of a pilot in its initial portion and a polar code-
word that has been randomly spread in its subsequent segment. The proposed
decoder operates in two phases. In the first phase, called the RIS configuration
phase, the BS detects the pilots transmitted by users. The detected pilots are
then utilized to estimate their corresponding CSI, using which the BS suitably
selects the phase shifts of the RIS elements. In the second phase, called the data
phase, transmitted messages of active users are decoded. The proposed channel
estimator offers the capability to estimate the channel coefficients of the users
whose pilots interfere with each other without prior access to the list of selected
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pilots or the number of active users. The algorithms put forth for selecting the
phase shifts of the RIS elements are specifically designed to optimize an appropri-
ate metric within URA systems. Moreover, we extend the proposed algorithms,
which are originally designed under the assumption of complete blockage of di-
rect links between the users and the BS, to the case where direct links exist. It
is illustrated that in the scenarios where the direct user-BS links are completely
blocked or significantly attenuated, employing RIS improves the performance of
a URA system by creating additional links between the BS and the users. The
effectiveness of the proposed scheme highlights its superiority when compared to
state-of-the-art RIS-aided URA schemes, demonstrating up to a 6 dB improve-
ment in the required energy.

The studies in this dissertation can be extended in different ways. For exam-
ple, the currently proposed and other existing RIS-aided URA schemes primarily
focus on introducing channel coding for such scenarios. However, there remains a
promising research avenue in exploring performance bounds for this configuration,
which may serve as benchmarks for practical and implementable solutions.

This provides the opportunity for researchers to use these performance bounds
as a benchmark for future studies.

Presently, machine learning, particularly deep learning, is finding practical use
in wireless communications across tasks like resource allocation, signal processing,
channel estimation, and transceiver design. Evidence suggests that the integra-
tion of machine learning can simplify the intricacies of designing wireless commu-
nication networks while achieving excellent performance. Within the context of
URA, BS encounters with the challenge of handling the wireless connections of
a large number of devices, leading to substantial computational complexity. The
application of machine learning to URA may substantially alleviate this com-
plexity. Therefore, a prospective avenue for future research could involve the
application of machine learning based solutions to develop algorithms tailored to
the URA domain.
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Current URA schemes focus solely on uplink transmission. Nevertheless, incor-
porating feedback can enhance system performance by alerting users to decoding
failures, offering them the chance for retransmission. However, the challenge lies
in providing feedback to unsourced active users, as the base station lacks knowl-
edge of their identities. Future research directions could explore novel URA
schemes that integrate very limited downlink feedback to enhance the effective-
ness of traditional URA approaches.

Another potential avenue for further exploration is the consideration of hard-
ware impairments within the URA framework. To link an unbounded number
of users in the URA system, it is inevitable to utilize cheap sensors, which are
susceptible to impairments originating from various sources such as amplifier non-
linearities, I/Q-imbalance, phase noise, and quantization errors. Since there is
only a limited amount of related work on the effect of hardware impairments on
URA, exploring novel algorithms resilient to such impairments may be a practical
and appealing research topic.
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