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Abstract
Application of chemical mutagens is used for artificially induced in vitro mutation to develop new cultivars with elite 
characteristics. However, the optimization of selecting proper mutagen, its concentration, and exposure time is of utmost 
importance, especially for plants containing noteworthy secondary metabolites. In this study, the effect of sodium azide 
 (NaN3) and ethyl methanesulfonate (EMS) in different concentrations (0.025, 0.05, 0.1, and 0.2 mg  l−1), and treatment time 
(30, 60, and 120 min) was investigated on Bacopa monnieri; an important medicinal plant. The maximum shoot counts 
(57.0) were achieved from the combination of 0.10 mg  l−1 EMS × 60 min. Whereas, maximum shoot length (4.07 cm), node 
numbers (4.97) and leaf numbers (12,23) were achieved from the combination of 0.20 mg  l−1 EMS × 120 min, respectively. 
Combination of 0.025 mg  l−1  NaN3 × 120 mg/l yielded maximum shoot counts (52.30), shoot length (3.23 cm), node num-
bers (6.07) and leaf numbers (12.13). The trained model to predict the outputs were designed and calibrated with machine 
learning (ML) algorithms. Support Vector Classifier (SVC), Gaussian Process (GP), Extreme Gradient Boosting (XGBoost), 
Random Forest (RF) models, and Multilayer Perceptron (MLP) neural network algorithms were used to discover the best 
models and their hyperparameters. The RF model gave exceptional results in the prediction of the outputs. F1 scores of the 
RF were acquired in the range of 0.98–1.00 for different outputs. The other models’ F1 scores varied in the range of 0.65 
and 0.85. The present work opens the new era of applying ML and artificial neural network (ANN) models in plant tissue 
culture with the possibility of application for other economic crops.
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Introduction

Bacopa monnieri (L.) is an important medicinal plant that 
has been used extensively in the Ayurvedic system. It is 
native to both India and Australia (Aguiar and Borowski 
2013). The plant is a succulent semi-aquatic creeping herb, 
used as complementary and alternative medicines (CAM), 
since ancient times in the traditional Ayurvedic medicinal 
system (Kean et al. 2017) for curing neurological and neu-
ropsychiatric diseases. The importance of Bacopa plant 
is mainly due to the presence of Bacoside A (triterpenoid 
saponin) a major bioactive compound (Sivaramakrishna 
et al. 2005) in recent years, due to extensive research work 
on Alzheimer’s disease (Chaudhari et al. 2017) and other 
major illnesses and disorders (Aasim et al. 2019). Due to 
its economic and scientific significance, biotechnological 
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and molecular biological techniques along with classical 
breeding have been employed for its improvement with the 
foremost focus on Bacoside A.

In vitro mutation breeding is a simple, reliable, and fea-
sible method that is commonly practiced to induce genetic 
variation toobtain mutants with desired characteristics. 
Spontaneous mutations and induced mutations are two com-
mon types of mutations that are used for developing mutants 
of desired characteristics. Exposing different plants to dif-
ferent physical or chemical mutagens under in vitro condi-
tions (Suprasanna et al. 2014; Bado et al. 2015) leads to 
enhanced spontaneous mutation (Bairu et al. 2011), and that 
phenomenon is considered as ‘somaclonal variation’ (GMO 
et al. 2021). The occurrence of in vitro somaclones using 
mutagens, known as mutation breeding (Kharkwal 2012) is 
the major source of genetic diversity and can be employed 
for breeding programs (Bairu et al. 2011). Application of 
in vitro random mutagenesis offers certain advantages like 
the uniformity of the treatment, application of selective 
agent, screening large population in less time and space, 
and easy handling (Suprasanna et al. 2012) with a relatively 
high frequency of induced mutants (Suprasanna et al. 2014) 
as compared to in vivo mutagenesis. The development of 
chimerism due to random mutagenesis is another major 
issue, and it can be eliminated or reduced using plant tissue 
culture techniques (Jankowicz-Cieslak and Till 2017). The 
final step is the screening of mutants and can be estimated 
using in vitro regeneration parameters, morphogenic char-
acteristics of in vitro induced shoots (Rayan et al. 2014), or 
acclimatized plantlets and estimation of genetic diversity 
using different molecular biology techniques like employing 
molecular markers (Rayan et al. 2014; Aasim et al. 2019).

Recent advances in the field of machine learning (ML) 
and artificial neural networks (ANN) allow researchers to 
apply computer-based technologies for precision agricul-
ture (Sharma et al. 2020). The use of computer-based AI 
technologies under field conditions for precision agriculture 
has been documented for soil characteristics to estimate or 
predict crop yield, predicting climate, insect infestation fore-
casting, and other areas of commercial farming. Recently, 
the application of ML modeling in plant biotechnology is 
also prevailing but with limited reports, especially in the 
field of plant tissue culture, where experiments are per-
formed under in vitro conditions. To date, in vitro steriliza-
tion (Hesami et al. 2019), in vitro germination (Hesami et al. 
2021), in vitro elicitation (Salehi et al. 2020), in vitro cell 
culture (Farhadi et al. 2020; Kirtis et al. 2022), and in vitro 
somatic embryogenesis (Hesami et al. 2020b) have been 
optimized using different ML algorithms. In these studies, 
different models like Multilayer Perceptron (MLP), Gener-
alized Regression Neural Network (GRNN), Radial Basis 
Function (RBF), Random Forest (RF) have been favored by 
the researchers (Gago et al. 2010; Hesami and Jones 2020; 

Zhang et al. 2020). The selection of a proper model depends 
on the association between input and output variables (Hes-
ami et al. 2021), and the optimization of hyperparameters. 
The objective of this study is to generate the best model 
predicting the in vitro organogenesis and morphological 
indices of regenerated shoots induced by exposing explants 
to two different mutagens at different concentrations and 
exposure times. Thus, support vector classifier (Metlek 
and Kayaalp 2020), gaussian process (S Ad et al., 2018; 
Hu et al. 2019), XGBoost (Katirci et al. 2021), and ran-
dom forest (Yan et al. 2020) ML algorithms and multilayer 
perceptron neural network (Katırcı et al. 2021) algorithm 
were employed. The treatment of Sodium azide  (NaN3) and 
Ethyl methanesulfonate (EMS) concentration and treatment 
time were used as input variables. Whereas different in vitro 
regeneration parameters (regeneration frequency, shoots per 
explant, shoot length), and morphological indices (number 
of nodes, internode length, number of leaves) were specified 
as outputs.

Methods and Materials

In Vitro Mutagen Experiment

Bacopa monnieri L. used as plant material in this study was 
procured from the Biotechnology laboratory, Faculty of Sci-
ence, Necmettin Erbakan University, Turkey. Sodium azide 
 (NaN3) and Ethyl methanesulfonate (EMS) was used as a 
chemical mutagen. The stock solution of both mutagens was 
prepared at the rate of 1.0 mg/ml. The leaf explants were 
isolated aseptically from in vitro stock material and exposed 
to the solution including (0.025, 0.05, 0.10, and 0.20 mg  l−1) 
 NaN3.

(Sigma Aldrich, CAS: 26628-22-8) and EMS (Sigma 
Aldrich, CAS: 62-50-0) mutagens for 30, 60, and 120 min. 
After subsequent treatment, explants were cultured in 
the MS medium enriched with 1.0 mg  l−1 BAP (Karataş 
and Aasim 2014). The standard basal medium for in vitro 
regeneration was prepared using 0.44% MS and gelled with 
0.65% agar. The pH of the medium was adjusted to 5.8 using 
1 N NaOH or 1 N HCl. The basal medium was sterilized 
at 1.2-atmosphere pressure and 121 °C. The explants were 
cultured in a place equipped with White Light-emitting 
Diodes at 24 ± 1 °C and 16 h light photoperiod. Explants 
were cultured for 14 weeks on basal medium and thereafter, 
in vitro organogenesis and morphological traits of regener-
ated shoots were specified as output. The phenotype data 
(number of leaves, number of nodes, internode length) for 
somaclonal variation were also recorded as outputs. For phe-
notype data (node number, internode length, and leaf num-
bers), randomly selected 10 shoots per replication were used.
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Machine Learning Models

The experimental data were assessed using SVC, GP, XGB, 
RF machine learning models, and MLP neural networks. 
The model was generated by training the data with ML 
algorithms to predict the output variables. Different levels 
(concentration and treatment time) of sodium azide  (NaN3) 
and Ethyl methanesulfonate (EMS) were used as inputs, 
and different in vitro regeneration and growth parameters 
presented in Table 1 were used as the outputs. The leave-
one-out cross-validation (LOO-CV) method (Qi et al. 2019), 
was used to validate and measure the performance of dif-
ferent models via test data. This method of training and 
cross-validation is generally preferred for small datasets as it 
becomes computationally expensive with large datasets. The 
confusion matrix was used to summarize the performance of 
the employed classification algorithms. The optimum value 
for the hyperparameters was obtained by performing a grid 
search technique. The coding was performed with Python 
language. Sklearn library was used for model training, fit-
ting, and testing. Before training the model for the dataset, 
the threshold which reflects the superiority of the outputs in 
response to the treatments was specified to classify the target 
outputs (Table 1). The outputs above the given threshold 
levels were coded as 1, whereas values below the threshold 
levels were coded as 0.

Support Vector Classifier (SVC)

The SVC is a supervised machine learning algorithm that 
is inspired by statistical learning theory. The major benefit 
of using this algorithm is due to its ability to run with small 
datasets with high performance. In general, the application 
of traditional artificial intelligence algorithms needs a lot of 
training data, getting stuck in a local minimum, relatively 
low convergence rate, and overfitting may be encountered 
in other algorithms. The SVC algorithm can easily over-
come these issues. The function of the SVC algorithm is 

presented in Eq. 1, which tries to detect the farthest separator 
line among the classes (Metlek and Kayaalp 2020).

Gaussian Process (GP)

The GP is another powerful supervised learning algorithm 
that can solve both classification and regression problems. 
The Gaussian probability density function is used to describe 
the random variable distribution. The GP classifier (non-
parametric algorithm), is applied to a binary dataset, and it 
calculates the probability of any input sample belonging to a 
certain class. It runs with small datasets, provides accuracy, 
ease of calculation, and consistency altogether (Hu et al. 
2019). The function used to calculate the relation between 
an input x and output y is illustrated in Eq. 2.

Extreme Gradient Boosting (XGBoost)

XGBoost is another popular algorithm that is extensively 
used for regression and classification problems (Chen and 
Guestrin 2016). The XGBoost model is an algorithm of Gra-
dient Boosting Decision Tree, designed for performance and 
speed, and it utilizes a gradient boosting framework. The 
principal advantage of the XGBoost is that it learns from 
errors and lessens the error rate via iteration. The XGBoost 
objective function and iterative model are represented in 
Eqs. 3 and 4, respectively (Katirci et al. 2021).

Lj =
n
∑

(i=1)
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�
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(j−1)
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Random Forest (RF)

RF is a decision tree-based supervised machine learning 
algorithm that can be utilized for both regression and clas-
sification problems. Decision trees produce the forest, and 
each tree owns the same distribution. A random sampling 
of data is used for calculation and feature selection for each 
decision tree during training. The RF algorithm prevents 
overfitting and provides lower noise performance (Yan et al. 
2020).

Multilayer Perceptron (MLP)

MLP is a feedforward artificial neural network that consists 
of more than one perceptron, which utilizes a nonlinear 

(1)f (x) = (w, x) + b

(2)yi = f (xi) + �

(3)yi = F
(

xi
)

=

D
∑

(d=1)

fd
(

xi
)

, fd ∈ F, i = 1,… , n

Table 1  Targeted thresholds of the in  vitro organogenesis and mor-
phological traits of regenerated shoots for data training

The outputs Thresholds

In vitro organogenesis
Regeneration frequency (%) 50
Shoots per explant (numbers) 10
Mean shoot length (cm) 1
Morphological traits of regenerated shoots
Mean node numbers (numbers) 2
Mean internodal length (cm) 0.5
Mean leaf numbers(numbers) 5
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activation function besides the input nodes. It is composed 
of fully interconnected three layers namely (i) input layer, 
(ii) one or more hidden layers, and (iii) an output layer. The 
input layer occurs from the input of the dataset, while the 
output layer is composed of a single or more neurons repre-
senting the class number of outputs. MLP is often executed 
in supervised learning tasks. The backpropagation method is 
utilized to modify the weights and biases to reduce the error 
(Katırcı et al. 2021).

Confusion Matrix

The confusion matrix map was used to evaluate the 
employed models using values of TP, TN, FP, and FN met-
rics. (Table 2). Accuracy, recall, precision, and F1 scores 
were computed in accordance with Eqs. 5–8. F1 score is 
a powerful metric to select the best model as it considers 
precision and recall metrics together.

Data Analysis

The analysis of data and graphs regarding in vitro regenera-
tion and morphological traits was performed using SPSS 
20.0 program via one-way ANOVA (analysis of variance). 
DMRT test was used for comparing the means (post hoc test) 
and data with standard error are presented as supplementary 
material. The arcsine square root transformation was used 
before performing the statistical analysis of the data. All 
contour plots were generated with the aid of Minitab 15.0 
program.

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)F1score = 2 ×
Precision × Recall

Precision + Recall

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

Results

Impact of Mutagens Type, Concentration, 
and Exposure Time

Two different chemical mutagens used in this study 
revealed a significant impact on shoot regeneration fre-
quency (p0.01), shoot counts (p0.05), and internode length 
(p0.05). Shoot length, node numbers, and leaf numbers 
were found to be statistically insignificant. Comparing 
mutagen type, EMS induced more shoot regeneration 
frequency (76.11), shoot counts (30.15), shoot length 
(2.10 cm), internode length (0.83 cm), and leaf numbers 
(6.35) when compared to  NAN3. Whereas EMS induced 
more node numbers (2.74) compared to EMS (2.33) 
(Fig. 1, Table S1).

Results on type of mutagens, concentration, and treat-
ment time revealed a significant impact on shoot regen-
eration frequency (p < 0.01), shoot length (p < 0.05), node 
numbers (p < 0.05), and leaf numbers (p < 0.05). On the 
other hand, statistically insignificant impact was observed 
on shoot counts and internode length. Results on shoot 
regeneration frequency revealed the variable response of 
both mutagens, and increased with increased concentration 
and exposure time of EMS. On the contrary, elevated  NaN3 
concentration exerted a negative impact on shoot regenera-
tion frequency. Shoot regeneration frequency of EMS and 
 NaN3 treated explants ranged 33.33–100%, and 0–93.33%, 
respectively (Fig. 2, Table S2). Results on shoot counts and 
shoot length exhibited a similar response to both mutagens 
treatments. In general, elevated mutagen concentration and 
treatment time resulted in enhanced shoot counts and shoot 
length. Shoot counts ranged 1.05–57 and 0.00–52.30 for 
EMS and  NaN3, respectively (Fig. 2, Table S2). Whereas 
shoot length was recorded as 0.34–4.07 cm (EMS) and 
0.00–3.23 cm  (NaN3). Maximum shoot counts and shoot 
length were recorded on same treatments of highest con-
centration and treatment time (0.025 mg  l−1 + 120 min, 
0.05 mg  l−1 + 120 min, 0.20 mg  l−1 + 120 min) for both 
mutagens. However, the application of 0.10 mg  l−1 of EMS 
and  NaN3 generated maximum shoot counts and shoot 
length with 60 min treatment (Fig. 2, Table S2).

Results on node number revealed the effect of muta-
gen type, concentration, and treatment time. Treating leaf 
explants to EMS required high concentration and treat-
ment time for inducing more node numbers. On the con-
trary,  NaN3 induced relatively high node numbers when 
leaf explants were treated with low  NaN3 concentration 
for a prolonged treatment time of 60 to 120 min. Maxi-
mum node number of 4.97 from EMS treated explants 
was attained from 0.20  mg   l−1 EMS + 120  min treat-
ment (Fig. 3, Table S3). On the other hand, a maximum 

Table 2  The confusion matrix table

Confusion Matrix Y-predicted

0 1

Y-true 0 True negative (TN) False positive (FP)
1 False negative (FN) True positive (TP)
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of 6.07 node numbers were attributed to 0.025 mg   l−1 
 NaN3 + 120 min followed by 5.33 shoots (0.025 mg  l−1 
 NaN3 + 60 min). The internode length was statistically 
insignificant and in general, treating explants with EMS 
induced more internode length compared to  NaN3 and 
recorded as 0.33–1.14  cm (EMS) and 0.00–1.05  cm 
 (NaN3). Maximum internode length was recorded as 
1.14  cm (0.10  mg   l−1 EMS + 120  min) and 1.05  cm 
(0.05 mg  l−1 EMS + 120 min). Results on leaf numbers 
were linked with node numbers and followed the same 
pattern. Leaf numbers ranged 1.21–12.23 and 0.00–12.13, 
respectively, for EMS and  NaN3. Maximum leaf numbers 
for EMS-treated explants were recorded from 0.20 mg  l−1 
EMS + 120  min treatment. Whereas maximum leaf 
numbers (12.13) were recorded as from 0.025  mg   l−1 
 NaN3 + 120 min treated explants (Fig. 3, Table S3).

Contour plots of in vitro regeneration and morphogenic 
traits of in vitro induced shoots are given in Figs. 4 and 5, 
respectively. Results clearly showed the impact of mutagen 
type, concentration, and treatment time and contour plots 
distributed the data regarding regeneration frequency (%), 
number of shoots, shoot length (Fig. 4), number of nodes, 
internode length, and number of leaves (Fig. 5) into their 
respective sub-groups and highlighted with a different color. 
Comparing mutagen types, EMS was most responsive and 
contour plots revealed the maximum output variable opti-
mization compared to  NaN3. Supplementation of high EMS 
concentration of approximately 0.17 mg/l or above with 
exposure time of 110 min or above may be required for the 
maximum output parameters. On the other hand, supplemen-
tation of low concentration of around or below 0.05 mg/l 
 NaN3 with exposure time of 110 min or above may lead to 
maximum output variables. It is evident from the results 
that prolonged exposure time for both mutagens with all 
concentration responded better, and yielded better regen-
eration and with relative better response on morphological 
characteristics of in vitro induced shoots. Figure 6a–h pre-
sents the impact of different mutagens types, concentration 
and exposure time of leaf explants. 

Machine Learning Algorithms

The confusion matrix is a powerful metrics tool used for 
measuring the accuracy of classification when training 
ML models. As a result, true negatives (TN), false posi-
tives (FP), false negatives (FN), and true positives (TP) 
were obtained. These values were utilized to compute the 
parameters of accuracy, F1 score, precision, and recall. 
Table 3 indicates the confusion matrix of the models for 
in vitro organogenesis (regeneration frequency, shoots per 
explant, mean shoot length). Results for morphological 
traits (mean internode length, mean node numbers, and 
mean leaf numbers) of in vitro regenerated shoots are 

presented in Table 4. Among the models tested, the RF 
algorithm gave the best results and estimated all outputs 
of morphological traits of in vitro regenerated shoots cor-
rectly. In the RF model, the values of FN and FP are 0 
for shoots per explant, mean shoot length, mean inter-
node length, node numbers, and leaf numbers. However, 
the RF model predicted 1 FN for regeneration frequency 
(Table 3). RF model estimated all outputs (accuracy, F1 
score, precision and recall) without error, while regen-
eration frequency was computed as 0.99 (accuracy), 
0.99 (F1), 1 (precision), and 0.98 (recall) values. MLP 
model ranked second among tested models for all output 
variables.

Comparison of individual output variables responded in 
variable way using accuracy, F1 scores, precision and recall 
values of all tested models. The RF model ranked first for 
all outputs followed by MLP model. The position of remain-
ing three models changed with output variables. Accuracy 
values of tested models were registered in similar fashion, 
and RF model yielded maximum accuracy values followed 
by MLP model. The RF model yielded all accuracy values as 
1, except shoot regeneration frequency which was recorded 
0.99. Accuracy values of individual parameters were reg-
istered in the order of RF (0.99) > MLP (0.78) > SVC 
(0.75) > XGBoost (0.71) > GP (0.69) for shoot regeneration 
frequency (Table 3); RF (1) > MLP (0.81) > SVC (0.75) > GP 
(0.74) > XGBoost (0.69) for shoot counts (Table 3); RF 
(1) > MLP (0.79) > GP (0.76) > SVC (0.74) > XGBoost 
(0.65) for shoot length (Table 3); RF (1) > MLP (0.82) > GP 
(0.81) > SVC (0.79) > XGBoost (0.69) for numbers of 
nodes (Table 4); RF (1) > MLP (0.78) > SVC (0.76) > GP 
(0.72) > XGBoost (0.69) for internode length (Table 4); and 
RF (1) > MLP (0.82) > GP (0.76) > SVC (0.74) > XGBoost 
(0.69) for leaf numbers (Table 4).

The F1 score of shoots per explant, shoot numbers, mean 
internode length, mean node numbers and mean leaf num-
bers were recorded 1, which reflects that RF model estimated 
all the test samples without error. The performance scores of 
the models for regeneration frequency (Table 3) followed the 
order of RF (0.99) > SVC (0.84) > MLP (0.83) > XGBoost 
(0.80) > GP (0.79). The RF model predicted all 0’s correctly, 
but it predicted 1 as 0 in only single sample. The F1 scores 
for shoots per explant (Table 3) were acquired in the order of 
RF (1) > MLP (0.81) > SVC (0.72) = GP (0.72) > XGBoost 
(0.69). The F1 scores of ML algorithms for mean shoot 
length (Table 3) were recorded as RF (1) > MLP (0.81) > GP 
(0.77) > SVC (0.75) > XGBoost (0.68). The data on mean 
node numbers (Table 4) exhibited that RF model predicted 
the output correctly and, overall acquired in the order of 
RF (1) > MLP (0.84) > GP (0.83) > XGBoost (0.82) > SVC 
(0.81). The F1 scores of internode length (Table 4) were 
in the order of RF (1) > MLP (0.85) > SVC (0.83) > GP 
(0.82) = XGBoost (0.82). The F1 scores of the models for 
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mean leaf numbers (Table 4) were recorded in the order of 
RF (1) > MLP (0.84) > GP (0.80) > SVC (0.77) > XGBoost 
(0.73).

Results on precision also highlighted the supremacy of 
RF models, which were followed by MLP model. Among 
the tested models, XGBoost was least effective for all 
output variables. The precision values of in vitro regen-
eration traits variables (Table 3) were registered as shoot 
regeneration frequency (0.72–1), shoot counts (0.75–1), 
and shoot length (0.76–1). The precision scores of in 
induced shoots (Table 4) were registered as 0.69–1 for 
both internode length and number of nodes, and 0.71–1 
for the leaf numbers. Recall values exhibited variable 
scores, with RF model ranked first for all output variables 

(Tables 3, 4). Whereas, the performance of remaining four 
models changed with respective to output variable. Recall 
scores for shoot regeneration frequency was scored in the 
order of RF (0.98) = SVC (0.98) > GP (0.87) = XGBoost 
(0.87) > MLP (0.85). Shoot counts scores were recorded as 
RF (1) > MLP (0.83) > GP (0.69) = XGBoost (0.69) > SVC 
(0.66). Whereas, recall scores of shoot length were in 
accordance of RF (1) > MLP (0.84) > GP (0.76) > SVC 
(0.74) > XGBoost (0.68). Outcomes on morphogenic 
traits were recorded as RF (1) = XGBoost (1.0) > GP 
(0.85) = MLP (0.85) > SVC (0.82) for number of nodes, 
RF (1) = XGBoost (1.0) > GP (0.94) > MLP (0.90) > SVC 
(0.86) for intermode length, and RF (1) > MLP (0.85) = GP 
(0.85) > SVC (0.80) > XGBoost (0.75).

Fig. 6  In vitro multiple shoot induction from leaf explants exposed to 120 min at different mutagens and concentration a 0.025 mg  l−1 EMS b 
0.05 mg  l−1 EMS, c 0.10 mg  l−1 EMS, d 0.20 mg  l−1 EMS e 0.025 mg  l−1 EMS f 0.05 mg  l−1 EMS, g 0.10 mg  l−1 EMS, h 0.20 mg  l−1 EMS
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Discussion

The application of mutagens under in vitro conditions is 
highly significant for inducing mutations. Type of mutagens, 
concentration, treatment time, time of application, plant 
type, and explants are some eminent parameters for induc-
ing in vitro mutants (Spencer-Lopes et al. 2018; Aasim et al. 
2019; GMO et al. 2021). Bacopa is an important medici-
nal plant due to containing Bacoside and limited studies 
revealed the use of chemical mutagens like EMS, MMS 
(Vajpayee et al. 2006), and colchicine (Kharde et al. 2017). 
These studies revealed the significant role of mutagens type 

and concentration on in vitro regeneration and organogenesis 
parameters. In this study, mutagens type and concentration 
on in vitro organogenesis and morphogenic traits of in vitro 
induced shoots is conducted in detail. Results illustrated 
the variable impact of both mutagens on in vitro regenera-
tion frequency. The results are contrary to the findings on 
apple rootstock, where decreased regeneration frequency 
in response to mutagens was observed (Rayan et al. 2014), 
with possibility of different input treatments and genotypes. 
Whereas, enhanced shoot counts and shoot length were 
observed accordingly with an increase of concentration and 
exposure time. Results further exhibited that both in vitro 

Table 3  Confusion matrix and performance score of the ML algorithms models trained for in vitro shoot regeneration traits

Y-true 0 = TN; Y-true 1 = FN; Y-predicted 0 = TP; Y-predicted 1 = FP

Confusion Matrix Y-predicted Shoot regeneration frequency (%)

Model Y-true 0 1 Accuracy F1 score Precision Recall

MLP 0 16 9 0.81 0.81 0.78 0.83
1 7 40

SVC 0 8 17 0.75 0.72 0.79 0.66
1 1 46

GP 0 9 16 0.74 0.72 0.75 0.69
1 6 41

XGBoost 0 10 15 0.69 0.69 0.69 0.69
1 6 41

RF 0 25 0 1 1 1 1
1 1 46

Confusion Matrix Y-predicted Number of shoots

MLP 0 29 6 0.81 0.81 0.78 0.83
1 8 29

SVC 0 31 12 0.75 0.72 0.79 0.66
1 6 23

GP 0 29 8 0.74 0.72 0.75 0.69
1 11 24

XGBoost 0 26 11 0.69 0.69 0.69 0.69
1 11 24

RF 0 37 0 1 1 1 1
1 0 35

Confusion Matrix Y-predicted Shoot length (cm)

MLP 0 25 9 0.79 0.81 0.78 0.84
1 6 32

SVC 0 25 9 0.74 0.75 0.76 0.74
1 10 28

GP 0 26 8 0.76 0.77 0.78 0.76
1 9 29

XGBoost 0 21 13 0.65 0.68 0.67 0.68
1 12 26

RF 0 34 0 1 1 1 1
1 0 38
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regeneration and morphological traits responded in variable 
ways to both mutagens and their concentration. The results 
on node numbers revealed the need for high  NaN3 and low 
EMS concentration along with more exposure time. How-
ever, internode length remained statistically insignificant to 
all mutagens and treatment time. On the contrary, variable 
response of both mutagens were observed on leaf numbers 
(Rayan et al. 2014). The results evidently exhibited that both 
mutagens, concentration and treatment time exerted variable 
impact on morphological traits of in vitro induced shoots 
of B. monnieri. Previous results on using individual muta-
gens (EMS,  NaN3) also revealed the variable impact on the 

morphological traits of other plants under in vitro condi-
tions. Variable internode length of in vitro induced mutants 
(plantlets) of Asteracantha longifolia (L.), exposed to differ-
ent concentrations and treatment time of EMS has also been 
registered (Behera et al. 2012).

The impact of mutagens type and concentration was also 
analyzed by 2D contour plots. Contour plots are powerful 
tools that classified the results into different subunits and 
can be used to optimize the desired traits. Results depicted 
the distribution of output variables into different sub-classes, 
and can be used to optimize the results or interactions 
between two input variables (Kelly et al. 2021). The results 

Table 4  Confusion matrix and performance score of the ML algorithms models trained for in vitro morphogenic traits of in vitro induced shoots

Y-true 0 = TN; Y-true 1 = FN; Y-predicted 0 = TP; Y-predicted 1 = FP

Confusion matrix Y-predicted Number of nodes

Model Y-true 0 1 Accuracy F1 score Precision Recall

MLP 0 26 7 0.82 0.84 0.82 0.85
1 6 33

SVC 0 25 8 0.79 0.81 0.8 0.82
1 7 32

GP 0 25 8 0.81 0.83 0.8 0.85
1 6 33

XGBoost 0 0 22 0.69 0.82 0.69 1
1 0 50

RF 0 33 0 1 1 1 1
1 0 39

Confusion matrix Y-predicted Internodal distance (cm)

MLP 0 11 11 0.78 0.85 0.80 0.90
1 5 45

SVC 0 12 10 0.76 0.83 0.81 0.86
1 7 43

GP 0 5 17 0.72 0.82 0.73 0.94
1 3 47

XGBoost 0 0 22 0.69 0.82 0.69 1
1 0 50

RF 0 22 0 1 1 1 1
1 0 50

Confusion matrix Y-predicted Number of leaves

MLP 0 25 7 0.82 0.84 0.83 0.85
1 6 34

SVC 0 21 11 0.74 0.77 0.74 0.80
1 8 32

GP 0 21 11 0.76 0.80 0.76 0.85
1 6 34

XGBoost 0 20 12 0.69 0.73 0.71 0.75
1 10 30

RF 0 32 0 1 1 1 1
1 0 40
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confirmed that it is possible to obtain in vitro somaclones 
by exposing explants to both mutagens but need more work 
to check them on molecular or phytochemical basis. Most 
importantly, in this study we used machine learning algo-
rithms to validate the results using five different ML or ANN 
models using a confusion matrix system.

Application of ML models in the field of agriculture and 
plant sciences is prevailing for better prediction and optimi-
zation of the collected data. Some of the examples include 
predicting insects based on data collection on environmental 
factors like temperature and humidity (Sagar et al. 2017) or 
counting the number of insects trapped in a certain period 
(Skawsang et al. 2019). Similarly, edaphic, climatic, water, 
agronomic, and crop properties using ML algorithms can be 
employed for yield prediction of different crops (Elavarasan 
et al. 2018; Shahhosseini et al. 2019; Whitmire et al. 2021). 
These results suggest that ML algorithms can be employed 
successfully to analyze the data by binarizing the data into 
two sub-groups (Visa et al. 2011; Marković et al. 2021). In 
this way, ML models evaluate and predict the results using 
confusion matrix and cross-validation techniques. In the pre-
sent study, the confusion matrix of different ML models was 
used for predicting the impact of different mutagens type, 
concentration, and their treatment time on in vitro regenera-
tion and morphogenic traits of in vitro induced shoots. The 
confusion matrix is a powerful tool used for predicting the 
data and was recently successfully reported for predicting 
the insect appearance (Marković et al. 2021). Cross-vali-
dation is another technique in ML that is used to estimate 
the accuracy of the employed model for the unseen data, 
and allow to select the best one or two models (Suganya 
2020). It also helps to get the error rate of the given dataset. 
The results achieved confirmed the significance of the cross 
validation technique and clearly illustrated the better per-
formance of the RF model for all output variables followed 
by the MLP model over the remaining three other models 
(Aasim et al. 2022).

The use of ML and ANN models in the field of agricul-
ture and plant biotechnology is limited (Silva et al. 2019), 
with some successful reports on predicting the results in 
plant tissue culture studies (Hesami and Jones 2021; Salehi 
et al. 2021). Application of different ML models presented 
the variable prediction based on input variables like geno-
types, culture conditions, or variable outputs (TU et al. 2018; 
Hesami et al. 2020a; Jafari and Shahsavar 2020; Saffariha 
et al. 2020). Among the models utilized in this study, the 
RF algorithm was the best model to estimate the outputs of 
in vitro organogenesis and morphological traits of regener-
ated shoots. This model showed outstanding performance in 
all predictions with a performance score of 1.0 for 5 output 
variables and 0.99 for the sixth variable. Similarly, studies in 
plant tissue culture using ML models also revealed the bet-
ter performance of the RF model compared to other models 

used for optimizing in vitro callus growth and development 
of hemp (Hesami and Jones 2021). The MLP ranked second 
with a better prediction of the five out of six output variables 
as compared to other models. The performance of the other 
models was relatively less than RF Model and varied accord-
ing to the type of the outputs. The results confirmed that ML 
algorithms may predict in variable ways to the given data-
set (Suganya 2020). These results further illustrated that the 
response of applied models is depending on the target and 
mode of the model applied in plant tissue culture (Hesami 
and Jones 2021; Salehi et al. 2021).

Conclusion

Application of ML and ANN models are powerful tools 
for predicting the attained results more precisely. Analysis 
of data followed by optimizing and predicting the results 
can be useful for complex biological processes like in vitro 
mutagenesis. In this study, the effect of sodium azide  (NaN3) 
and ethyl methanesulfonate (EMS) in different concentra-
tions and treatment time on the outputs was investigated. 
Machine learning algorithms were utilized to predict the 
outputs. The RF model was the best model predicting the 
outputs correctly and displayed outstanding performance. 
The results attained from this study will alow to apply ML 
models for plant tissue culture and other areas of plant 
biotechnology.
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