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. . . . . .  

I . INTRODUCTION 

The purpose of this chapter is to provide a self-complete introduction to the 
fractional Fourier transform for those who wish to obtain an understanding 
of the essentials without having to work through the hundreds of papers 
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which have appeared in the last few years. A general introduction will be 
followed by the definition of the transform and a discussion of its funda- 
mental and operational properties. Of central importance is the relation- 
ship of the transform to the Wigner distribution and other phase-space 
distributions (also known as time-frequency or space-frequency repre- 
sentations). We will concentrate on two main application areas which 
have so far received the most attention: wave and beam propagation and 
signal processing. 

The fractional Fourier transform is a generalization of the ordinary 
Fourier transform with an order parameter a. Mathematically, the ath order 
fractional Fourier transform is the ath power of the Fourier transform 
operator. The a = 1st order fractional transform is the ordinary Fourier 
transform. With the development of the fractional Fourier transform and 
related concepts, we see that the ordinary frequency domain is merely a 
special case of a continuum of fractional Fourier domains, and we arrive at 
a richer and more general theory of alternate signal representations, all of 
which are elegantly related to phase-space distributions. Every property and 
application of the common Fourier transform becomes a special case of that 
of the fractional transform. In every area in which Fourier transforms and 
frequency domain concepts are used, there exists the potential for general- 
ization and improvement by using the fractional transform. For instance, 
the well-known result stating that the far-field diffraction pattern of an 
aperture is in the form of the Fourier transform of the aperture can be 
generalized to state that at closer distances, one observes the fractional 
Fourier transform of the aperture. The theory of optimal Wiener filtering in 
the ordinary Fourier domains can be generalized to optimal filtering in 
fractional domains, resulting in smaller mean-square errors at practically no 
additional cost. 

In essence, the ath order fractional Fourier transform interpolates be- 
tween a function f(u) and its Fourier transform &). The 0th order 
transform is simply the function itself, whereas the 1st order transform is its 
Fourier transform. The 0.5th transform is something in between, such that 
the same operation that takes us from the original function to its 0.5th 
transform will take us from its 0.5th transform to its ordinary Fourier 
transform. More generally, index additivity is satisfied: The a,th transform 
of the a,th transform is equal to the (az + u,)th transform. The - l th  
transform is the inverse Fourier transform, and the -ath transform is the 
inverse of the ath transform. 

Scattered early papers related to the fractional Fourier transform include 
Wiener [1929], Condon [1937], Bargmann [1961], and de Bruijn [1973]. 
Of importance are two separate streams of mathematical papers which 
appeared throughout the eighties [Namias, 1980; McBride and Kerr, 1987; 
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Mustard, 1987a,b, 1989, 1991, 19961. However, the number of publications 
exploded only after the introduction of the transform to the optics and 
signal processing communities [Seger, 1993; Lohmann, 1993; Ozaktas and 
Mendlovic, 1993a,b; Mendlovic and Ozaktas, 1993; Ozaktas and others, 
1994a; Alieva and others, 1994; Almeida, 19943. Not all of these authors 
were aware of each other or  building on the work of those preceding them, 
nor is the transform always immediately recognizable in some of these 
works. 

The fractional Fourier transform (or essentially equivalent transforms) 
appears in many contexts, although it has not always been recognized as 
being the fractional power of the Fourier transform and thus referred to as 
the fractional Fourier transform. For instance, the Green’s function of the 
quantum-mechanical harmonic oscillator is the kernel of the fractional 
Fourier transform. Also, the fractional Fourier transform is a special case of 
the more general linear canonical transform (see Wolf [1979] for an 
introduction and references). This transform has been studied in many 
contexts, but again the particular special case which is the fractional Fourier 
transform has usually not been recognized as such. 

The preceding citations do not represent a complete list of known 
historical references. For a more complete list and also a more comprehen- 
sive treatment of the fractional Fourier transform and its relation to 
phase-space distributions, we refer the reader to a forthcoming book on  the 
subject by the authors (Wiley, to be publ. 1999). We expect further scattered 
historical references not known to us to be revealed in time. Given the 
multitude of contexts in which essentially equivalent or closely related 
integral transforms appear, it is probably not possible to attribute its 
invention to a particular set of authors. These many contexts in which it was 
reinvented time after time in different guises is testimony to the elegance and 
ubiquity of the transform. 

Given the widespread use of the ordinary Fourier transform in science 
and engineering, it is important to recognize this integral transform as the 
fractional power of the Fourier transform. Indeed, it has been this recogni- 
tion which has inspired most of the many recent applications. Replacing the 
ordinary Fourier transform with the fractional Fourier transform (which is 
more general and includes the ordinary Fourier transforms as its special 
case) adds an additional degree of freedom to the problem, represented by 
the order parameter a. This in turn may allow either a more general 
formulation of the problem (as in the diffraction from an aperture example) 
or improvements based on the possibility of optimizing over a (as in the 
optimal Wiener filtering example). 

The fractional Fourier transforms has been found to have several appli- 
cations in the area known as analog optical information processing, or 
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Fourier optics. This transform allows a reformulation of this area in a way 
much more general than that found in standard texts on the subject. It has 
also led to generalizations of the notions of space (or time) and frequency 
domains, which are central concepts in signal processing, leading to many 
applications in this area. More generally, the transform may be expected to 
have an impact in the form of deeper understanding or new applications in 
every area in which the Fourier transform plays a significant role, and to 
take its place among the standard mathematical tools of physics and 
engineering. 

More specifically, some applications which have already been investigated 
or suggested include diffraction theory [Alieva and others, 1994; Gori, 
Santarsiero, and Bagini, 1994; Pellat-Finet, 1994; Pellat-Finet, 1995; Ozak- 
tas and Mendlovic, 1995; Abe and Sheridan, 1995a; Alonso and Forbes, 
1997; Ozaktas and Erden, 19971, optical beam propagation and spherical 
mirror resonators (lasers) [Ozaktas and Mendlovic, 1994; Erden and 
Ozaktas, 1997; Ozaktas and Erden, 19971, propagation in graded index 
media [Ozaktas and Mendlovic, 1993a,b; Mendlovic and Ozaktas, 1993; 
Mendlovic, Ozaktas, and Lohmann, 1994a; Alieva and Agullo-Lopez, 1995; 
Abe and Sheridan, 1995b; Gomez-Reino, Bao, and Perez, 19961, Fourier 
optics [Bernardo and Soares, 1994a,b; Pellat-Finet and Bonnet, 1994; 
Ozaktas and Mendlovic, 1995; Ozaktas and Mendlovic, 19961, statistical 
optics [Erden, Ozaktas, and Mendlovic, 1996a, b], optical systems design 
[Dorsch, 1995; Dorsch and Lohmann, 1995; Lohmann, 19951, quantum 
optics [Yurke and others, 1990; Aytur and Ozaktas, 19951, radar and phase 
retrieval [Raymer, Beck, and McAlister, 1994a,b; McAlister and others, 
19951, tomography [Beck and others, 1993; Smithey and others, 1993; 
Lohmann and Soffer, 1994; Wood and Barry, 1994a,b], signal detection, 
correlation, and pattern recognition [Mendlovic, Ozaktas, and Lohmann, 
1995d; Alieva and Agullo-Lopez, 1995; Garcia and others, 1996; Lohmann, 
Zalevsky, and Mendlovic, 1996b; Bitran and others, 1996; Mendlovic and 
others, 1995a; Mendlovic, Zalevsky, and Ozaktas, 19981, space- or time- 
variant filtering [Ozaktas and others, 1994a; Granieri, Trabocchi, and Sicre, 
1995; Mendlovic and others, 1996b; Ozaktas, 1996; Zalevsky and Men- 
dlovic, 1996; Mendlovic and others, 1996b; Kutay and others, 1997; Mus- 
tard, 19971, signal recovery, restoration, and enhancement [Lohmann and 
others, 1996a; Erden and others, 1997a,b; Ozaktas, Erden, and Kutay, 1997; 
Kutay and Ozaktas, 1998; Kutay and others, 1998a,b], multiplexing and 
data compression [Ozaktas and others, 1994a1, study of space- or time- 
frequency distributions [Almeida, 1994; Fonollosa and Nikias, 1994; Loh- 
mann and Soffer, 1994; Ozaktas and others, 1994a; Mendlovic and others, 
1995c; Dragoman, 1996; Mendlovic and others, 1996a; Ozaktas, Erkaya, 
and Kutay, 1996a; Mihovilovic and Bracewell, 19913, and solution of 
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differential equations [Namias, 1980; McBride and Kerr, 19871. We believe 
that these are only a fraction of the possible applications. We hope that this 
chapter will make possible the discovery of new applications by introducing 
the subject to new audiences. 

11. NOTATION AND DEFINITIONS 

The ath order fractional Fourier transform of the function f ( u )  will most 
often be denoted by f a (u )  or, equivalently, Faf(u). When there is possibility 
of confusion, we may more explicitly write @'[ f (u ) ] .  The transform is 
defined as a linear integral transform with kernel K,(u, u'): 

f,(~) = F [ , f ( u ) ]  = K,(u, u ' ) f ( u ' )  du'. J 
The kernel will be given explicitly in the following text. All integrals are from 
minus to plus infinity unless otherwise stated. We prefer to use the same 
dummy variable u both for the original function in the space (or time) 
domain and its fractional Fourier transform. This is in contrast to the 
conventional practice associated with the ordinary Fourier transform, where 
a different symbol, say p, denotes the argument of the Fourier transform 
w: 

F ( p )  = s f ( u ) e - i 2 f f p u  du, (2) 

f ( u )  = F(p)ei2"fiU d p .  (3) s 
s 

But these can be rewritten as 

F(u)  = f ( ~ ' ) e - " ~ " ~ '  du' (4) 

dp' .  ( 5 )  f ( u )  = 1 F(u' )e i2xu'u 

When it is desirable to distinguish the argument of the transformed function 
from that of the original function, we will let u, denote the argument of the 
ath order fractional Fourier transform: f,(u,) = (Fa [ f (u) ] ) (u,) .  With this 
convention, u,, corresponds to u, the space (or time) coordinate; u1 corre- 
sponds to the spatial (or temporal) frequency coordinate p ;  and u2 = -uo, 
u3 = -u l .  Finally, we will agree to always interpret u as a dimensionless 
variable. 
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We will refer to 9;“[.], or simply Pa, as the ath order fractional Fourier 
transform operator. This operator transforms a function f ( u )  into its 
fractional Fourier transform f,(u). We will restrict ourselves to the case 
where the order parameter a is a real number. The signal ,f is a finite energy 
signal and f ( u )  is a finite energy function both of which are well behaved in 
the sense usually presumed in physical applications. In quantum mechanics 
f is the abstract state vector I f )  and f ( u )  = ( u l f )  is the u-representation 
of J: Likewise, f,(u) = (u, I f )  is the u,-representation, which we will also 
refer to as the representation of f in the ath order fractional Fourier 
domain. In this context If(u)l’ is interpreted as a probability distribution so 
that the energy of the function En[f] = f l f (u)l ’du = ( , f l . f )  corresponds to 
its integrated probability and is thus equal to 1. In signal processing 
and optics, the energy can take on any finite value but is conserved 
if attenuation or amplification mechanisms do not exist. (We will also 
deal with sets of signals and functions whose energies are not finite 
(delta functions and harmonic functions); these will not correspond to 
physically realizable functions, but rather serve as intermediaries in our 
formulations.) 

We now define the ath order fractional Fourier transform f,(u) through 
the following linear integral transform: 

f,(u) = K,(u, u ’ ) f (u ’ )  du‘, (6 )  s 
K,(u, u’) = A ,  exp[ir(cot u2 - 2 csc 4 uu‘ + cot 4 u ‘ ~ ) ] .  

where 

A,  = JI - icotd.  (8) 

The square root is defined such that the argument of the result lies in the 
interval (-n/2,  421.  The kernel is not strictly defined when a is an even 
integer. However, it is possible to show that as a approaches an even integer, 
the kernel behaves like a delta function under the integral sign. Thus, 
consistent with the limiting behavior of the above kernel for values of a 
approaching even integers (further discussed later), we define Kl j (u ,  u‘) 
= 6(u - u’) and K A j k 2 ( u ,  u’)  = 6(u + u’), where j is an arbitrary integer. 

Generally speaking, the fractional Fourier transform of f ( u )  exists under the 
same conditions under which its Fourier transform exists [McBride and 
Kerr, 1987; Almeida, 19943. 
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111. FUNDAMENTAL PROPERTIES 

We first examine the case when a is equal to an integer j .  We note that 
by definition P4’ and F4j+2 correspond to the identity operator 9 and 
the parity operator 9, respectively (that is, f4j(u) = f (u )  and f4 j+2(u)  = 

f( - u)). For a = 1 we find 4 = 4 2 ,  A ,  = 1, and 

fi(u) = exp(- i2nu211),f(u’) du’. (9 )  

We see that f,(u) is equal to the ordinary Fourier transform of f(u), which 
was previously denoted by the conventional upper case F(u). Likewise, it is 
possible to see that F -  ,(u) is the ordinary inverse Fourier transform of f’(u). 
Our definition of the fractional Fourier transform is consistent with defining 
integer powers of the Fourier transform through repeated application (that 
is, P 2  = 9797, F 3  = 97F2, and so on). Since I$  = an12 appears in Equation 
6 only in the argument of trigonometric functions, the definition is periodic 
in u (or 4)  with period 4 (or 2.n). Thus it is sufficient to limit attention to 
the interval a E [ - 2,2). These facts can be restated in operator notation: 

9-0 = 6, 

9-1 = <F, 

F 2  = 9, 

9 3  = 99 = Y<F, 

974 = F O  = 3 
> 

9 4 j t a  - - 9 4 j ’ + a  

where j ,  j ‘  are arbitrary integers. 
Let us now examine the behavior of the kernel for small la1 > 0: 

- insgn(d4)/4 

exp[i.n(u - u’)~/I$]. Ja K,(u,u‘) = 

Now, using the well-known limit 

the kernel is seen to approach 6(u - u ’ )  as u approaches 0. Thus defining 
the kernel Ka(u, u ’ )  to be precisely S(u - u’) at a = 0 maintains continuity 
of the transform with respect to a. A similar discussion is possible when a 
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approaches other integer multiples of 2. A more rigorous discussion of 
continuity with respect to a may be found in McBride and Kerr [1987]. 

We now discuss the index additivity property: 

p ' p y ( U )  = p a 1  +" ' f (U) = g-:"'p-"'f(u), 

or in operator notation 

g a l o j r a z  = y a l + a 2  = o-azo-a! 4 4 .  

This can be proved by repeated application of Equation 6, 
showing 

Ku2(u, u")K,,(u", u') du" = K, ,  + a 2 ( ~ ,  u') s 
(19) 

and amounts to 

by direct integration, which can be accomplished by using standard Gaus- 
sian integrals. We do not present the details of this proof, since this property 
will follow much more simply from certain properties of the transform to be 
discussed. 

The index additivity property is of central importance. Indeed, without it, 
we could hardly think of Fa as being the ath power of 9 (more will be said 
on this later). For instance, the 0.2nd fractional Fourier transform of the 
0.5th transform is the 0.7th Fourier transform. Repeated application leads 
to statements such as, for instance, the 1.3th transform of the 2.lst transform 
of the 1.4th transform is the 43th transform (which is the same as the 03th 
transform). Transforms of different orders commute with each other so that 
their order can be freely interchanged. From the index additivity property, 
we deduce that the inverse of the ath order fractional Fourier trans- 
form operator (Fa)-' is simply equal to the operator F-, (because 
9-"Fa = 3). This can also be shown by directly demonstrating that 

K,(u, u")K -,(u", u') du = 6 ( ~  - u'), (21) 

so that K ;  ' (u ,  u') = K-,(u, u'). Thus we see that we can freely manipulate 
the order parameter a as if it denoted a power of the Fourier transform 
operator F. 

Fractional Fourier transforms constitute a one-parameter family of trans- 
forms. This family is a subfamily of the more general family of linear 
canonical transforms which have three parameters [Wolf, 1979; Mohinsky 
and Quesne, 1971; and Mohinsky, Seligman, and Wolf, 19721. As all linear 
canonical transforms do, fractional Fourier transforms satisfy the associa- 
tivity property and they are unitary, as we can directly see by examining the 

s 



FRACTIONAL F O U R I E R  T R A N S F O R M  AND ITS A P P L I C A T I O N S  247 

kernel of the inverse transform obtained by replacing a with --a: 

KO- ‘(u, u‘) = K - , ( u ,  u‘) = K,*(u, u’) = K,*(u’, u). (22) 

The kernel K,(u, u’) is symmetric and unitary, but not Hermitian. Unitarity 
implies that the fractional Fourier transform can be interpreted as a 
transformation from one representation to another, and that inner products 
and norms are not changed under the transformation. 

IV. COMMON TRANSFORM PAIRS 

Table 1 gives the fractional Fourier transforms of a number of functions for 
which the integral appearing in Equation 6 can be evaluated analytically 
(often using standard Gaussian integrals). More will be said on the frac- 
tional Fourier transforms of chirp functions exp[in(Xu2 + 25u)] after we 
discuss the Wigner rotation property of the transform. 

Greater insight can be obtained by considering some numerically ob- 
tained illustrations. Indeed, the fractional Fourier transforms of many 
common functions do not have simple closed-form expressions. These may 
be obtained numerically using the algorithm discussed in Section 11 later. 
We know that when a = 0 we have the original function, and when a = 1 
we have its ordinary Fourier transform. As a varies from 0 to 1, the 
transform evolves smoothly from the original function to the ordinary 
Fourier transform. Figures 1 and 2 show the evolution of the rect(u) 

TABLE 1 
THE FUNCTIONS ON THE RIGHT ARE THE FRACTIONAL FOURIER TRANSFORMS OF THE FUNCTIONS 
ON THE LEFT; j IS AN ARBITRARY INTEGER, AND ( AND x ARE REAL CONSTANTS. FOR CERTAIN 

(EQUATION 17). IN THE LAST PAIR, x z 0 IS REQUIRED FOR CONVERGENCE. 
ISOLATED VALUES OF (1, THE EXPRESSIONS BELOW SHOULD RE INTERPRETED IN THE LIMITING SENSE 
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a = O  a=113 

(c) (4 
FIGURE 1. Magnitudes of the fractional Fourier transforms of the rectangle function, I .  

function into the sinc(u) E (sinw)/(nu) function. Figure 3 shows the real 
parts of the fractional Fourier transforms of the Dirac delta function 
6(u - 1). We note that for orders close to zero, the transform of the delta 
function is highly oscillatory, and thus will approximately behave like the 
delta function under the integral sign, averaging out to zero whatever 
function it happens to multiply. 

Finally, we give the fractional Fourier transform of the quadratic phase 
function f(u) = exp( - 4 4 )  f i  exp(inu2/r,) with complex radius rc: 

provided Y(r,) d 0, which is also the condition for the original function f(u) 
to have finite energy. From this result we conclude that the complex radius 
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FIGURE 2. Magnitudes of the fractional Fourier transforms of the rectangle function, 11. 

r: of the transformed function is 

rc + t an4  
' 1 - r,tan$ 

r', = 

This result is useful in beam propagation problems since the original 
function f (u)  represents a Gaussian beam with complex radius rc .  

V. EIGENVALUES AND EIGENFUNCTIONS 

The eigenvalues and eigenfunctions of the ordinary Fourier transform are 
well known (although seldom discussed in introductory texts). They are the 
Hermite-Gaussian functions t+hn(u), commonly known as the eigensolutions 
of the harmonic oscillator in quantum mechanics, or the modes of propaga- 
tion of quadratic graded-index media in optics. The eigenvalues may be 
expressed as exp( - in742) and are given by 1, - i ,  - 1, i, 1, - i, . . . for n = 0, 
1, 2, 3, 4, 5,. . . . Thus the eigenvalue equation for the ordinary Fourier 
transform may be written as 

S$,(u) = e-'""'2$,(u), (25) 
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where the Hermite-Gaussian functions are more explicitly given by 

$"@) = A,H,(JGu)e-""', (26)  

for n = 0, 1, 2, 3, 4, 5 , .  . . . Here H,(u) are the Hermite polynomials. The 
particular scale factors which appear in this equation are a direct conse- 
quence of the way we have defined the Fourier transform with 2n in the 
exponent. 

The ath order fractional Fourier transform shares the same eigenfunctions 
as the Fourier transform, but its eigenvalues are the ath power of the 
eigenvalues of the ordinary Fourier transform: 

Pa$, , (u)  = e-iann'z$n(u). (28) 
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This result can be established directly from Equation 6 by induction. First, 
we can show that ICl0(u) and $,(u) are eigenfunctions with eigenvalues 1 and 
exp( - ian/2) by evaluating the resulting standard complex exponential 
integrals. Then, by using standard recurrence relations for the Hermite- 
Gaussian functions it is possible to assume that the result-to-be-shown holds 
for n - 1 and n, and show that as a consequence it holds for n + 1. This 
completes the induction. 

The preceding demonstrated outline of the fact that Hermite-Gaussian 
functions are eigenfunctions of the fractional Fourier transform as defined 
by Equation 6 then reduces to the well-known fact that Hermite-Gaussian 
functions are eigenfunctions of the ordinary Fourier transform when a = 1, 
since Equation 6 reduces to the definition of the ordinary Fourier transform 
and since e-ianx'Z reduces to 

Readers familiar with functions F N ( d )  of an operator (or matrix) d with 
eigenvalues A,, will know that in general &"(d) will have the same 
eigenfunctions as d and that its eigenvalues will be F N ( I n ) .  The above 
eigenvalue equation is particularly satisfying in this light since 9*, as we 
have defined it, is indeed seen to correspond to the ath power of the Fourier 
transform operator ( F N ( * )  = (.)"). However, it should be noted that the 
definition of the ath power function is ambiguous, and our definition of the 
fractional Fourier transform through Equation 6 is associated with a 
particular way of resolving the ambiguity associated with the ath power 
function (Equation 28). Other definitions of the transform also deserving to 
be called the fractional power of the Fourier transform are possible. The 
particular definition we are considering is the one that has been most 
studied and that has led to the greatest number of interesting applications. 
We are convinced it has a special place among other possible definitions. 

Knowledge of the complete set of eigenvalues and eigenfunctions of a 
linear operator is sufficient to completely characterize the operator. In fact, 
in some works the fractional Fourier transform has been defined through its 
eigenvalue equation [Namias, 1980 Ozaktas and Mendlovic, 1993a, b; 
Mendlovic and Ozaktas, 19931. To find the fractional transform of a given 
function f (u)  from knowledge of the eigenfunctions and eigenvalues only, 
we first expand the function as a linear superposition of the eigenfunctions 
of the fractional Fourier transform (which are known to constitute a 
complete set): 

when a = 1. 
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Applying 9" on both sides of Equation 29 and using Equation 28, 
obtains 

one 

(31) 
n = O  J n = O  

Upon comparison with Equation 6 ,  the kernel K,(u, u' )  is identified as 

m 

K,(u, u')  = 1 e-'an"/2 $n(U)$ n(u'). (32) 

This is the spectral decomposition of the kernel of the fractional Fourier 
transform. The kernel given in Equation 32 can be shown to be identical to 
that given in Equation 6 directly by using an identity known as Mehler's 
formula: 

n = O  

Several properties of the fractional Fourier transform immediately follow 
from Equation 28. In particular the special cases a = 0, a = 1, and the index 
additivity property are deduced easily. (The latter can be shown by applying 
F'' to both sides of Equation 28.) 

VI. OPERATIONAL PROPERTIES 

Various operational properties of the transform are listed in Table 2 
[Namias, 1980; McBride and Kerr, 1987; Mendlovic and Ozaktas, 1993; 
Almeida, 19941. Most of these are most readily derived or verified by using 
Equation 6 or the symmetry properties of the kernel. 

Operations satisfying the first property are referred to as even operations, 
so that the fractional Fourier transform is an even operation. This property 
also implies 

which in turn imply that the transform of an even function is always even 
and the transform of an odd function is always odd. Similar facts can be 
stated in operator form: All even operators, and in particular the frac- 
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TABLE 2 
OPERATIONAL PROPERTIES OF THE FRACTIONAL FOURIER TRANSFORM. 4 IS AN ARBITRARY REAL 
NUMBER, k Is A REAL NUMBER ( k  # 0, cu), AND n Is AN INTEGER; 4' = arctan(kz tand), 

WHERE 4' Is TAKEN T o  BE IN THE SAME QUADRANT AS 4. 

f ( u )  m) 

tional Fourier transform operator, commute with the parity operator 9' 
(Fay  = 9'Fa) and satisfy Fn = 9'.FaP. The eigenfunctions of even oper- 
ations can always be chosen to be of definite (even or odd) parity (the 
Hermite-Gaussian functions satisfy this property). 

The second property is the generalization of the ordinary Fourier trans- 
form property stating that the Fourier transform of f ( k u )  is lkl-iF(p/k). 
Notice that the fractional Fourier transform of f ( k u )  cannot be expressed 
as a scaled version of f a (u )  for the same order a. Rather, the fractional 
Fourier transform of f ( k u )  turns out to be a scaled and chirp-modulated 
version of f,.(u) where a' # a is a different order. 

Now we turn our attention to the fifth and sixth properties. The fractional 
Fourier transform of uf(u) is equal to a linear combination of ufa(u) and 
df,(u)/du. The coefficients of this linear combination are cos 4 and -sin 4. 
When u = 1, this reduces to the corresponding ordinary Fourier transform 
property. Similar comments apply to the fractional Fourier transform of 
df(u)/du. The essence of these properties are most easily grasped if we 
express them in pure operator form. Let us define the coordinate multipli- 
cation operator 4?l and differentiation operator 99 through their effects in the 
space domain 

These are simply dimensionless versions of the position and momentum 
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operators of quantum mechanics and might have been written as 

1 d  
i2n du ( u l W >  = - - (ulf).  (39) 

We may define in the same spirit operators %, and g,, which have the same 
effect on f,(u), the ath order fractional Fourier transform of f ( u )  : 

where we have explicitly written u, to avoid confusion. The effect of these 
operators is to coordinate multiply and differentiate the fractional Fourier 
transform of f ( u ) ,  rather than f ( u )  itself. Now, with these definitions, the 
fifth and sixth properties of Table 2 can be written as 

9'c"~f(41 = cos4(% f ) , (u , )  - sin $(9,f)&,), 
S0[19f(41 = sin $(%.f),(%) + cos d J @ , . f ) o ( ~ , ) .  

(42) 

(43) 

(%,f),(u,) is simply the u, representation of %,f, which we also refer to as 
the representation of @, f in the uth fractional Fourier domain. In the 
notation of quantum mechanics, (42, f) ,(u,)  would have been written as 
(u,l%,',f). Similar comments apply to (B,f),(u,). The two preceding 
equations can be written in abstract operator form as 

We see that the coordinate multiplication and differentiation operators 
corresponding to order u are related to those in the ordinary space (or time) 
domain by a simple rotation matrix. 

The commutator [%, 9 1  3 a9 - 9% is well known to be equal to i/2n. 
By using Equation 44 we can easily derive the commutator [Aytur and 
Ozaktas, 1995; Ozaktas and Aytur, 19951: 

Knowing the commutator of two operators allows one to deduce an 
uncertainty relation between the two representations associated with those 
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operators. In particular, the above commutation relation leads to [Aytur 
and Ozaktas, 1995; Ozaktas and Aytur, 19951 

Here a*o is the standard deviation of J f , ( ~ , ) 1 ~  and a.yl,. is the standard 
deviation of Ifa,(~,.)1~. 

The translation and phase shift operators can also be expressed in 
operator notation. Let F ( 5 )  denote the operator which takes f ( u )  to 
f ( u  - 5) and let 9(5) denote the operator which takes f ( u )  to 
exp(i2n(u)f(u), all in the ordinary space domain. We may also define Fa(() 
and Po([) as the operators which have the same effect on the ath order 
fractional Fourier transforms: FJt) takes f,(u,) to f,(u, - 5) and Pa(<) 
takes f,(u,) to exp(i27t5ua)f,(u,). Then the third and fourth properties of 
Table 2 can be expressed as [Aytur and Ozaktas, 1995; Ozaktas and Aytur, 
1995) 

q~[y(5)f(~)] = eiz<2sin6cos4 u [2,( - 5 sin 4)%(5 cos +)md 

CYa(5 cos 4)9 (5  sin 4)fI , (%) 

- e-i@sinq5cos6 9 
- [I A 5  cos +)9,(-t sin 4 > f l a ( ~ , ) ,  (47) 

- [I A 5  sin 4)9,(5 cos 4>fl,(u,) .  (48) 

,p [~gy,~) f (~) l  = e- i~tr2s indcos6  

- e+in<*sin#cos4 9 

Here again the notation [df],(u,), where a? is some operator, denotes the 
u, representation of which would be written as ( u , l d f )  in quantum 
mechanics. In operator form 

~ ( 5 )  = e ia~2s in&cos~P, ( - (  sin 4 ) ~ , ( (  cos 4) 
(50) - e - i @ s i n & c o s $ y  - n ( 5  cos 4)YJ - 5 sin 41, 

y(5) = ,-in< sin . d c o s 4 ~ , ( [  cos +)%,(5 sin 4) 

(51) - eix<2sindcosq5 o- - J,(5 sin 4PJ5 cos 4). 
We again see that the effect of translation is a combination of translation 
(by C O S ~ )  and phase multiplication (by sinq5) of the fractional Fourier 
transform. A similar comment applies to the effect of phase multiplication. 
When a = 1, these results reduce to the corresponding well-known proper- 
ties of the ordinary Fourier transform. 

The fractional Fourier transform does not have a convolution or multi- 
plication property of comparable simplicity to that of the ordinary Fourier 
transform. 
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VII. RELATION TO THE WIGNER DISTRIBUTION 

The direct and simple relationship of the fractional Fourier transform to the 
Wigner distribution as well as to certain other phase-space distributions is 
perhaps its most important and elegant property [Mustard, 1989, 1996; 
Lohmann, 1993; Almeida, 1994; Mendlovic, Ozaktas, and Lohmann, 1994a; 
Ozaktas and others, 1994a1. 

Here we will define and briefly discuss some of the most important 
properties of the Wigner distribution. The Wigner distribution W,(u, p) of a 
function f(u) is defined as 

W,(u, p )  = ,f(u + u'/2)f*(u - u'/2)e-2"p"'du'. (52) s 
Wf (u, p) can also be expressed in terms of F(p) ,  or indeed as a function of 
any fractional transform of f(u). Some of its most important properties are 

(55) 

Roughly speaking, W(u, p )  can be interpreted as a function that indicates 
the distribution of the signal energy over space and frequency. The Wigner 
distribution of F(u) (the Fourier transform of f(u)) is a ninety-degree 
rotated version of the Wigner distribution of f(u). More on the Wigner 
distribution and other such distributions and representations may be found 
in Claasen and Mecklenbrauker [1980a,b,c, 19931, Hlawatsch and Bou- 
dreaux-Bartels [1992], and Cohen [1989, 19951. 

Now, if W,(u, p)  denotes the Wigner distribution of f(u), then the Wigner 
distribution of the ath fractional Fourier transform of f(u), denoted by 
WJa(u, p ) ,  is given by 

Wfn(u, p )  = W,(u cos (6 - p sin (6, u sin (6 + p cos (6). (56) 

so that the Wigner distribution of Wm(u, p) is obtained from W,(u, p )  by 
rotating it clockwise by an angle 4. Let us define 9?+ to be the operator 
which rotates a function of ( u , p )  by angle 4 in the conventional counter- 
clockwise direction. Then we can write 

(57) Wf,(U, p) = a-&w,(U, p). 
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This elegant and fundamental property underlies an important number of 
the applications of the fractional Fourier transform. In fact, some authors 
have defined the transform as that operation which corresponds to rotation 
of the Wigner distribution of a function [Lohmann, 19931. 

Equation 56 can be derived directly from Equation 6 and the definition 
of the Wigner distribution given by Equation 52 [Ozaktas and others, 
1994a1. The derivation is somewhat lengthy but straightforward. A similar 
derivation is given by Mustard [1989, 19961 and by Almeida [1994]. 
Lohmann [ 19931 shows the reverse, starting from the rotation property and 
arriving at Equation 6. 

An at least equally important form of this result follows easily [Mustard, 
1989, 1996; Lohmann and Soffer, 1994; Ozaktas and others, 1994a1. Let us 
recall Equations 53 and 54, which state that the integral projection of 
W,(u, p )  onto the u axis is the magnitude square of the u-domain represen- 
tation of the signal and that the integral projection of W,(u, p )  onto the p 
axis is the magnitude square of the p-domain representation of the signal. 
Now, let us rewrite the first of these equations for .f;(u), the uth order 
fractional Fourier transform of f ( u )  : 

Since Wfa(u, p )  is simply W,(u, p )  clockwise rotated by angle 4, the integral 
projection of Wfa(u, p )  onto the u axis is identical to the integral projection 
of W,-(u, p )  onto an axis making angle 4 with the u axis. This new axis 
making angle 4 = 4 2  with the u axis is referred to as the u, axis. Let 
.@.d9,1j denote the Rudon trunSform operator, which maps a two-dimen- 
sional function of (u, p )  to its integral projection onto an axis making angle 
4 with the u axis [Bracewell, 19951. Thus the above can be written as 

(59) 

In conclusion, the integral projection of the Wigner distribution of a 
function onto the u, axis is equal to the magnitude square of the uth order 
fractional Fourier transform of the function (Fig. 4). Equations 53 and 54 
are special cases with u = 0 and a = 1. Wood and Barry discussed what they 
referred to as the “Radon-Wigner transform” without realizing its relation 
to the fractional Fourier transform [Wood and Barry, 1994a,b]. The above 
discussion demonstrates that the Radon-Wigner transform is simply the 
magnitude squared of the fractional Fourier transform. 

The results of this section, and in particular Equation 59, continue to hold 
when W’(u, p )  is the Wigner distribution of a random process since the 
expectation value operation can move inside the Radon transform and 

gJq5 W,(K PI = I.f,(412. 
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u, 

FIGURE 4. Oblique integral projections of the Wigner distribution. 

rotation operators: 

W,,(U> PI = B-4, W,(% P I ,  

a.dg+w,(K P )  = l.Lt4IZ. (61) 

( 60) 
_ _ _ _ _ _  

Here the overbars denote ensemble averages. 
The Wigner distribution is not the only time-frequency representation 

satisfying the rotation property (Equation 57). The ambiguity function also 
satisfies this property because the ambiguity function is the two-dimensional 
Fourier transform of the Wigner distribution, and the two-dimensional 
Fourier transform of the rotated version of a function is the rotated version 
of the two-dimensional Fourier transform of the original function [Ozaktas 
and others, 1994a; Almeida, 19941. Almeida [1994] showed that the rotation 
property also holds for the spectrogram. It has been further shown that the 
rotation property generalizes to certain other time-frequency distributions 
belonging to the so-called Cohen class, whose members can be obtained 
from the Wigner distribution by convolving it with a kernel characterizing 
that distribution. The distributions for which the rotation property holds are 
those which have a rotationally symmetric kernel [Ozaktas, Erkaya, and 
Kutay, 1996a1. 

Thus, fractional Fourier transformation corresponds to rotation of many 
phase-space representations. This not only confirms the important role this 
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transform plays in the study of such representations but also supports the 
notion of referring to the axis making angle 4 = a 4 2  with the u axis as the 
ath ,fractional Fourier domain. Despite this generalization, the only distribu- 
tion which satisfies a relation of the form of Equation 59 is the Wigner 
distribution [Mustard, 19891. Cohen [I9891 argues that there is nothing 
special about the Wigner distribution among other members of the Cohen 
class, since all members of this class, including the Wigner distribution, are 
derivable from each other through convolution relations. However, the fact 
that only the Wigner distribution satisfies Equation 59 has led Mustard to 
suggest that the Wigner distribution is a specially distinguished member of 
the Cohen class [Mustard, 1989, 19961. 

As an instructive application of the Wigner rotation property, we discuss 
the fractional Fourier transforms of chirp functions. The transform of the 
chirp function exp[in(Xu2 + 2&)] was given in Table 1 as a rather compli- 
cated expression. Phase-space offers a much more transparent picture. The 
Wigner distribution of the chirp function exp[in(Xu2 + 25u)] is W’(u, p) = 

S(,u - xu - 0, which is simply a line delta in phase space along the line ,u = 

xu + 5 making angle orctan (x) with the u axis (Fig. 5). The Wigner 
distribution of exp(i2ntu) is W,(u, p)  = 6 ( p  - 5 )  and is seen to be a special 
case in which the line delta is horizontal. Similarly, the Wigner distribution 
of 6(u - 5 )  is W’(u, p) = 6(u - 5 )  and is also seen to be a special case in 

FIGURE 5. Wigner distribution of a chirp function. 
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which the line delta is vertical. (That the chirp indeed behaves like a delta 
function as x, 5 cn can be shown by using Equation 17.) Thus, since 
harmonic functions and delta functions can be considered degenerate or 
limiting cases of chirp functions, it is possible to make the general statement 
that the fractional Fourier transform of a chirp function is always another 
chirp function. In phase space, we observe this as the rotation of line deltas 
into other line deltas. 

VIII. FRACTIONAL FOURIER DOMAINS 

Equations 51 and 59 immediately lead to the interpretation of oblique axes 
in phase space as fractional Fourier domains. Just as the projection of the 
Wigner distribution onto the space domain gives the magnitude square of 
the space-domain representation of the signal, and the projection of the 
Wigner distribution onto the frequency domain gives the magnitude square 
of the frequency-domain representation of the signal (Equations 53 and 54), 
the projection onto the axis making angle 4 = an12 with the u axis gives the 
magnitude square of the ath fractional Fourier-domain representation of the 
signal (Equation 59). When we need to be explicit we will use the variable 
u, as the coordinate variable in the uth domain, so that the representation 
of the signal .f in the ath order fractional Fourier domain will be written as 
,f,(u,). We immediately recognize that the 0th and 1st domains are the 
ordinary space and frequency domains and that the 2nd and 3rd domains 
correspond to the negated space and frequency domains (uo = u, u1 = p ,  
u2 = -u ,  uj = -p) .  The representation of the signal in the u’th domain is 
related to its representation in the ath domain through an (u’ - u)th order 
fractional Fourier transformation: 

When (a’ - a) is an integer, this corresponds to a forward or inverse Fourier 
integral. 

The notion of fractional Fourier domains as oblique axes in space- 
frequency is also confirmed by the operational formula presented earlier. We 
had seen that a translation of uo corresponded to C O S ~  much of the shift 
and a sin &much phase shift in the ath domain. Likewise, we had seen that 
multiplication by u corresponded to cos 4 much of the multiplication and a 
sin &much differentiation. 
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IX. DIFFERENTIAL EQUATIONS 

Here we will see that the fractional Fourier transform f,(u) of a function 
f,(.) is the solution of a differential equation, where ,f,(u) may be inter- 
preted as the initial condition of the equation. This is the quantum- 
mechanical harmonic oscillator differential equation and also the equation 
governing optical propagation in quadratic graded-index media (in the 
former case the order parameter a corresponds to time and in the latter case 
it corresponds to the coordinate along the direction of propagation) 
[Agarwal and Simon, 1994; Ozaktas and Mendlovic, 19951. In fact, in some 
sources the solution is written in the form of an integral transform whose 
kernel is sometimes referred to as the harmonic oscillator Green's function, 
without the authors knowing that this is the fractional Fourier transform. 
(To be precise, we must note that the differential equations governing these 
physical phenomena differ slightly from the equation we discuss, but this 
small difference is inconsequential.) 

The differential equation is 

with the initial condition fo(u) = f (u) .  The solution f,(u) of the equation is 
the ath order fractional Fourier transform of f ( u )  as can be shown by direct 
substitution of Equation 6. 

Alternatively, and more instructively, we may take an eigenvalue equation 
approach. Substituting the form f,(u) = exp( -ipa)f,(u) in Equation 63, we 
obtain 

Comparing this equation with the standard equation 

whose solutions are well known as the Hermite-Gaussian functions $,,(u), 
we conclude that the nth Hermite-Gaussian function is a solution of 
Equation 64 when f l  = fl, = nn/2. It is now possible to write down arbitrary 
solutions of the equation as a linear superposition of these eigenfunctions 
(modes). If the initial condition fo(u) is $,,(u), the solution ,fa(u) is 
exp( - iann/2) $,(u); this is what it means to be an eigenfunction. Given an 
arbitrary initial condition fo(u), we can expand it in terms of the Hermite- 
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Gaussian functions $,,(u) as 

Since Equation 63 is linear, the solution corresponding to this initial 
condition is readily obtained as 

from which one can obtain 

exactly as in Equation 32. 

operators 42 and 9 as follows: 
The differential equation in question can also be written in terms of the 

or 

Readers with a background in quantum mechanics will readily recognize the 
Hamiltonian P = x(4Y2 + g 2 )  - 1/2 which characterizes the harmonic 
oscillator. This Hamiltonian is domain-invariant, which means that 
7~(422d,2 + 9:) is the same operator regardless of the value of a, as can be 
readily shown by using Equation 44. This rotational invariance of the 
Hamiltonian ties in with the Wigner rotation property. (The extra -1/2 
represents the inconsequential discrepancy mentioned earlier.) 

More on the relationship of the fractional Fourier transform to differen- 
tial equations and their solutions is found in Namias [1980] and McBride 
and Kerr [1987]. 
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X. HYPERDIFFERENTIAL FORM 

The hyperdifferential form of the fractional Fourier transform operator is 
given by [Namias, 1980; Mustard, 1987aI. 

, (72) 90 = - i (an i2 )  zr 

1 
2 = 7L(@ + 6k2) - 5' 

Applied to a function f(u) we may write 

This hyperdifferential representation may be considered the formal solution 
of the differential equation written in the form of Equation 71. The operator 
9' given in Equation 72 generates f , ( u )  for all values of a from f , ( u )  = f ( u ) .  
The index additivity property and the special case a = 0 immediately follow 
from the exponential form exp( - i&P). 

XI. DIGITAL SIMULATION OF THE TRANSFORM 

Here we briefly discuss how the fractional Fourier transform may be 
computed on a digital computer, referring the reader to Ozaktas and others 
[1996b] for further details. 

The defining equation (Equation 6) can be put in the form 

Ce f(u')] du'. (74) 
f o (u )  = ~ ~ ~ i n c o t q 5 u 2  , - i 2 n c s c d u u '  incotdu'2 s 

We assume that the representations f , ( u a )  of the signal f in all fractional 
Fourier domains are approximately confined to the interval [ - Au/2, Au/2] 
(that is, a sufficiently large percentage of the signal energy is confined to 
these intervals). This assumption is equivalent to assuming that the Wigner 
distribution of f ( u )  is approximately confined within a circle of diameter Au 
(by virtue of Equation 59). Again, this means that a sufficiently large 
percentage of the energy of the signal is contained in that circle. We can 
ensure that this assumption is valid for any signal by choosing Au sufficient- 
ly large. Under this assumption and initially limiting the order a to the 
interval 0.5 < la1 d 1.5, the modulated function e i n a u ' * f ( u ' )  may be assumed 
to be approximately band-limited to k Au in the frequency domain. Thus 
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einau’2 f ( u ’  ) can be represented by Shannon’s interpolation formula 

where N = (AM)’. The summation goes from - N  to N - 1 since , f (u ‘ )  
is assumed to be zero outside [I-Au/2, Au/2]. By using Equation 75 and 
Equation 74 and changing the order of integration and summation, we 
obtain 

x sinc 2Au u’ - - du‘. iI ( 2:JI 

By recognizing the integral to be equal to ( 1/2An)e-i2“csc~u~n”1Au’ 
rect(csc (4)u/2Au), we can write 

A N - 1  

f Q (u) = 2 e incot~~u2e- i2ncsc4~u(n /2Au)  e incot4(n/ZAu)* 

2 6 ~  , , - N  

since rect(csc (4)/2Au) = 1 in the interval ( u (  < Au/2. Then, the samples of 
f,(u) are given by 

which is a finite summation allowing us to obtain the samples of the 
fractional transform fQ(u )  in terms of the samples of the original function 
f ( u ) .  Direct computation of Equation 78 would require O ( N 2 )  operations. 
A fast (O(N log N ) )  algorithm can be obtained by putting Equation 78 into 
the following form: 

N-1 
ein(cotQ, -cscq5)(m/2Au)2 1 eincsc#((m-n)/ZAu)2 ’ (&) - 2Au n =  - N  

ein(cotrp -csc$)(n/2A11)~ (79) 

We now recognize that the summation is the convolution of eincscg(ni2Au)2 
and the chirp-modulated function f ( . ) .  The convolution can be computed in 
O(N log N )  time by using the fast Fourier transform (FFT). The output 
samples are then obtained by a final chirp modulation. Hence the overall 
complexity is O(N log N ) .  

We had limited ourselves to 0.5 < la] d 1.5 in deriving the above algo- 
rithm. Using the index additivity property of the fractional Fourier trans- 
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form we can extend this range to all values of a easily. For instance, for the 
range 0 < a < 0.5, we can write 

(80) 

Since 0.5 < la - 11 < 1, we can use the above algorithm in conjunction with 
the ordinary Fourier transform to compute f , ( u ) .  The overall complexity 
remains at O(N log N ) .  

9” = F a - l + l  = U-u-l 0-1 s A .  

XII. APPLICATIONS TO WAVE A N D  BEAM PROPAGATION 

A considerable number of papers have been written on the application of 
the fractional Fourier transform to wave and beam propagation problems, 
mostly in an optical context. Our presentation will also be phrased in the 
notation and terminology of optics. Nevertheless, the reader should have no 
difficulty translating the results to other propagation, diffraction, and 
scattering phenomena which are mathematically equivalent or similar. 

Whenever we can express the result of an optical problem (such as 
Fraunhofer diffraction) in terms of a Fourier transform, we tend to think of 
this as a simple and elegant result. This is justified by the fact that the 
Fourier transform has many simple and useful properties which make it 
attractive to work with. The Fourier transform and image occur at certain 
privileged planes in an optical system. Often all our intuition about what 
happens in between these planes is that the amplitude distribution is given 
by a complicated integral. We will see below that the distribution of light at 
intermediate planes can be expressed in terms of the fractional Fourier 
transform (which also has several useful properties and operational for- 
mulas). Thus the fractional Fourier transform completes in a very natural 
way the study of optical systems often called “Fourier optics.” 

Fourier optical systems can be analyzed using geometrical optics, Fresnel 
integrals (spherical wave expansions), plane wave expansions. Hermite- 
Gaussian beam expansions, and, as we will discuss, fractional Fourier 
transforms. The several approaches prove useful in different situations and 
provide different viewpoints which complement each other. The fractional 
Fourier transform approach is appealing in that it describes the continuous 
evolution of the wave as it propagates through the system. 

A .  Introduction 

Optical systems involving an arbitrary sequence of thin lenses separated by 
arbitrary sections of free-space (under the Fresnel approximation) belong to 
the class of quadratic-phase systems. Mathematically, quadratic-phase sys- 



266 HALDUN M. OZAKTAS, M. A. KUTAY, A N D  DAVID MENDLOVIC 

tems are equivalent to linear canonical transforms [Wolf, 19791. Systems 
contain arbitrary sections of quadratic graded-index media also belong to 
this class. The class of Fourier optical systems (or first order optical systems) 
consist of arbitrary thin filters sandwiched betwen arbitrary quadratic-phase 
systems. Members of the class of quadratic-phase systems are characterized 
by linear transformations of the form [Bastiaans, 1978, 1979a, 1979b, 1989, 
1991; Nazarathy and Shamir, 1982; Ozaktas and Mendlovic, 19951 

where K’ is a complex constant and a, j9, and y are real constants. 
Comparing this equation with Equation 6, we see that fractional Fourier 
transforms are a special case of quadratic-phase systems. 

Until this point, all variables have been considered to be dimensionless 
and were denoted by u, p, etc., and all functions and kernels took dimen- 
sionless arguments and were denoted by f (u) ,  g(u), h(u, u’), etc. In optical 
applications we will often employ variables with the dimensions of length or 
inverse length, which we will denote by x, p ,  etc. 
taking such arguments will be distinguished as T(u) ,  
these conventions, Equation 81 can be rewritten as 

Functions and kernels 
$(u), h(u, u’), etc. With 

where K = K‘/s ,  s is a constant with the dimension of length, and ,LUtCx) = 
fout(x/s), etc. The choice of s essentially corresponds to the choice of units. 
We will assume s is specified once and for all throughout our analysis. 

The kernels associated with a thin lens with focal length .f and free-space 
propagation over a distance d are given respectively by [Saleh and Teich, 
19911 

A is the wavelength of light in free space and Klens and Kspace are constants. 
We continue to work with one-dimensional notation for simplicity, although 
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most optical systems are two-dimensional. These kernels are special cases of 
the kernel given in Equation 81. It is possible to prove that any arbitrary 
concatenation of kernels of this form will result in a kernel of the form given 
in Equation 82. 

Apart from the constant factor K ,  which has no effect on the resulting 
spatial distribution, a member of the class of quadratic-phase systems is 
completely specified by the three parameters a, f i ,  and y (Equation 81). 
Alternatively, such a system can also be completely specified by the 
transformation matrix [Bastiaans, 1989; Nazarathy and Shamir, 1982; 
Ozaktas and Mendlovic, 19953 

with AD - BC = 1 .  Here again s is the scale factor relating our dimensional 
and dimensionless variables. If several systems, each characterized by such 
a matrix, are cascaded, the matrix characterizing the overall system can be 
found by multiplying the matrices of the several systems. The matrix defined 
above also corresponds to the well-known ray matrix employed in ray 
optical analysis. At a certain plane perpendicular to the optical axis, a ray 
can be characterized by its distance from the optical axis z and its paraxial 
angle of inclination 8. We will define the ray vector as [x p I T  where p = 8/A. 
Then, the ray vector at the output is related to the ray vector at the input by 

The matrices corresponding to a thin lens and a section of free-space are 
given respectively by 

and 

Quadratic graded-index media exhibit a parabolic refractive index profile 
n(x) about the optical axis, characterized by the two parameters no and q as 
follows: 
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The matrix corresponding to quadratic graded-index media is given by 

where d is the length of the medium and do = ~742.  This matrix can be 
derived by a simple application of the ray equation [Saleh and Teich, 19911. 

The space spanned by the coordinates x and p also constitutes a 
phase-space which directly corresponds to the space-frequency plane on 
which the Wigner distribution was defined. A particular ray characterized 
by its phase-space vector [x pIT will be mapped to another according to its 
ABCD matrix given above. If we consider a bundle of rays constituting a 
region in this phase-space, this region will likewise be transformed according 
to the same matrix. For instance, let us consider the rectangular bundle 
consisting of rays whose intercepts lie between -xo and xo and whose 
inclinations lie between -po  = -BOA and po = 8,A (Fig. 6a). If this bundle 
passes through a lens, it will be transformed according to Equation 87 into 
the bundle shown in Fig. 6b. If this bundle passes through a section of 
free-space, it will be transformed according to Equation 88 into the bundle 
shown in Fig. 6c. More generally, for arbitrary ABCD it will be transformed 
into a bundle of the general form shown in Fig. 6d. 

This mapping of phase-space regions can also be posed in terms of the 
Wigner distribution. It is known that if To,, is the linear canonical transform 
of &, with parameters ABCD, then the Wigner distributon of To,, is related 
to that of An by the relation [Bastiaans, 1979b1 

where x,,,, pout and xi", pin are related according to Equation 86. This is 
simply a generalization of the Wigner rotation property discussed in Section 
VII. In particular, since we know from this property that fractional Fourier 
transformation corresponds to rotation in phase-space, it follows that the 
ABCD matrix for fractional Fourier transforms should be the rotation 
matrix. 

B. Quadratic-Phcisse Systems as Fractional Fourier Transforms 

As is evident by comparing Equations 6 and 81, the one-parameter class of 
fractional Fourier transforms is a subclass of the class of three-parameter 
quadratic-phase systems. If we allow an additional magnification parameter 
M and a phase curvature parameter 1/R, the family of fractional Fourier 
transforms will now also have three parameters and can be put in one-to- 
one correspondence with the family of quadratic-phase systems. The kernel 
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FIGURE 6 .  Effect of quadratic-phase systems in phase-space. 

of this three-parameter transform may be written as 

 lo,,(.^) = h(x, xr)Jn(xf) dx‘ s 
xx’ 
M 

h(x, x‘) = K, ,  exp(inx2/1R) exp cot 4 - 2 - csc 4 + x” cot 4 

which is in the form of a quadratic-phase system. (The pure mathematical 
form given by Equation 6 is recovered by setting x/s  = u, M = 1, R = m.) 
This kernel maps a function f(x/s) into K’exp(ixx*/AR)f,(x/sM ), where 
f,(u) is the uth order fractional Fourier transform of f ( u ) .  Here 4 = an/2 as 
before, M > 0 is referred to as the magnification associated with the 
transform, and R is the radius of the spherical surface on which the perfect 
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fractional Fourier transform is observed. When R = co, the quadratic-phase 
term disappears and the perfect fractional Fourier transform is observed on 
a planar surface. 

The above family of kernels is in one-to-one correspondence with the 
family of kernels given in Equation 81. The parameters a, B, and y are 
recognized to be related to the parameters 4, M ,  and R through the 
relations 

CI = cot 4 / M 2  + s’/IR, (93) 

p = C S C ~ / M ,  (94) 

y = cot 4. (95) 

Alternatively, the ABCD parameters are related to 4, M ,  and R through the 
relations 

M cos 4 s2 M sin 4 [i = [-sin (P/s’M + M cos 4lAR cos qh/M + s’M sin +/AR 

which can be inverted to yield 

1 B  
t a n 4  = - - 

s’ A’ 

M = Jm, 
1 1 BIA C - - _ -  

ILR s4 A’ + (Bls’)’ + A’ 

(97) 

The above result essentially means that any quadratic-phase system can be 
interpreted as a magnified fractional Fourier transform, perhaps with a 
residual phase curvature. Since a relatively large class of optical systems can 
be modeled as quadratic-phase systems, these systems can also be inter- 
preted as fractional Fourier transforms [Ozaktas and Mendlovic, 19961. We 
will first consider two elementary examples - propagation in quadratic 
graded-index media and diffraction in free-space-and then treat the more 
general case of arbitrary composition of thin lenses and sections of free- 
space. 

C. Propagation in Quadratic Graded-Index Media 

Quadratic graded-index media have a natural and direct relationship with 
the fractional Fourier transform. Light is simply fractional Fourier trans- 
formed as it propagates through such media. The refractive index distribu- 



FRACTIONAL FOURIER TRANSFORM AND ITS APPLICATIONS 271 

tion for such media was already given in equation 89. 
The ABCD matrix for graded-index media was given as Equation 90. 

Comparing this with Equation 96, we immediately conclude that propaga- 
tion through a section of graded-index media results in a fractional Fourier 
transform of order a = 2d/ny E d/d,, provided the scale parameter s is 
chosen such that s2 = l y / n , .  Agreeing on this choice of s, there is no 
magnification ( M  = 1) and no residual phase curvature ( R  = 00). Recalling 
the comment at the end of Subsection A, we conclude that as light 
propagates through quadratic graded-index media, its Wigner distribution 
rotates. Quadratic graded-index media realize fractional Fourier transforms 
in their purest and simplest form. If the distribution of light at the input 
plane is given by f(x/s), then the distribution of light at the output plane is 
proportional to fa(x/s), where the transform order a increases linearly with 
distance of propagation. 

The same result can be arrived at by starting from the Helmholtz 
equation for quadratic graded-index media, finding its modes (which are the 
Hermite-Gaussian functions), and constructing arbitrary solutions as linear 
superpositions of these modes. This approach may be found in Mendlovic 
and Ozaktas [1993] and Ozaktas and Mendlovic [1993a,b]. 

D. Frrsnel Difraction 

Although quadratic graded-index media are perfectly matched to the frac- 
tional Fourier transform, it is of interest to discuss the more basic problem 
of diffraction from a planar screen with complex amplitude transmittance 
f ( x ) .  The complex amplitude distribution G(x) of light in a diffraction plane 
at  distance d is given by the Fresnel integral (Equation 84): 

X " t ( 4  = 1 &.x, X ' ) X " ( X ' )  dx' 

kpace(x, x') = Kspace exp[in(x - ~ ' ) ~ / l - d l ,  ( 100) 

assuming illumination of the screen by a uniform plane wave. Now, with 
f(x/s) = y(x), it is possible to cast this integral in the form of the integral of 
Equation 92 by identifying 6 = an/2 = arctan(Ad/s2), M = Jm, 
AR = (s4 + A2d2) / ld .  (The same results can be arrived at by comparing 
Equation 96 with Equation 88, or by specializing Equations 97, 98, and 99 

At a distance d from the diffracting object or aperture, we observe the uth 
order fractional Fourier transform of the object on a spherical reference 
surface with radius R. The transform is magnified by M .  As d is increased 

to A = D = 1, B = i d ,  C = 0.) 
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from 0 to co, the order a of the fractional transform increases according to 
a = (2/7c) arctan(id/s2) from 0 to 1 (Fig. 7). Letting d --* 00, we obtain a = 1, 
M = Ad/s2 cc d, and R = d, which we readily associate with the Fourier 
diffraction pattern, which is nothing but the Fourier transform of the 
diffracting screen. Note that in this limit, the magnification and radius of 
curvature are both proportional to the distance d .  

Thus we see that the propagation of light along the + z  direction can be 
viewed as a process of continual fractional Fourier transformation. As light 
propagates, its distribution evolves through fractional transforms of increas- 
ing orders. The fact that the far-field diffraction pattern is the Fourier 
transform of the diffracting object is one of the central results of diffraction 
theory. We have shown that the field at closer distances is given by 
fractional Fourier transforms of the diffracting object. 

More generally, there exists a fractional Fourier transform relation 
between the amplitude distribution of light on two spherical reference 
surfaces of given radii and separation [Ozaktas and Mendlovic, 1994, 19951. 
It is possible to determine the order and scale parameters associated with 
this fractional transform given the radii and separation of the surfaces. 
Alternatively, given the desired order and scale parameters, it is possible to 
determine the necessary radii and separation. 

1 

0.9 - 

0 
0 2 4 6 8 10 12 14 16 18 

h d l s 2  

FIGURE 7. a = (2/n) arctan(Ld/s2) as a function of dd/s2. 
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E. Fourier Optical Systems 

We will now see that any quadratic-phase system can always be interpreted 
as a fractional Fourier transforming system. Thus the fractional Fourier 
transform can describe all systems composed of an arbitrary number of 
lenses separated by arbitrary distances, whereas imaging and Fourier 
transforming systems are only special cases. 

All of the essential ingredients have already been provided and it merely 
remains to state the result. Any quadratic-phase system (Equation 82) can 
be characterized by its ABCD parameters. As discussed earlier, the kernel in 
Equation 82 can be cast in the form of the kernel in Equation 92 by 
identifying 4 = a42 ,  M ,  and R according to Equations 97,98, and 99. Since 
any quadratic-phase system can be interpreted as a fractional Fourier 
transform, and since any optical system consisting of an arbitrary concat- 
enation of lenses and sections of free-space can be modeled as a quadratic- 
phase system, it follows that such an optical system can also be interpreted 
in terms of the fractional Fourier transform. 

A concrete example will be useful. Figure 8a shows a system consisting of 
several lenses whose focal lengths have been indicated in meters. The input 
plane is taken as z = 0. The output plane is variable, ranging from z = 0 to 
z = 2 m. Two rays have been drawn through the system. Let A(z),  B(z), C(z),  
D(z)  denote the ABCD parameters of the section of the system occupying 
the interval [0, z ] ,  which can be readily calculated using the matrices for 
lenses and sections of free-space and the concatenation property. Also let 
[x(z) p(z)lT denote the ray vector at z. Then, 

We further let 4 ( z )  = a(z)x/2, M(z).  R(z) represent the order, magnification, 
and phase curvature of the fractional Fourier transform observed at z. These 
can be determined again by using Equations 97, 98, and 99. 

The fractional transform order a(z), the scale parameter M(z) ,  and the 
radius R(z) of the spherical surface on which the perfect transform is 
observed are plotted as functions of z in Fig. 8 [Ozaktas and Erden, 19971. 
Letting j denote an arbitrary integer, when a = 4j we observe an erect 
image, when a = 4j + 2 we observe an inverted image, when a = 4j + 1 we 
observe the common Fourier transform, and when a = 4j - 1 we observe 
an inverted Fourier transform (which is the same as an inverse Fourier 
transform). The reader should study the behavior of the two rays in 
conjunction with the graphs in Fig. 8. At z = 0.4 we obtain a conven- 
tional Fourier transform (a = 1) as a result of the conventional 2f system 
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FIGURE 8. Evolution of a(z), M(z) ,  I /R(z)  as functions of z [Reprinted from Optics Communi- 
cutions, 143. 75-83, 1997 with kind permission from Elsevier Science-NL, Sara Burgerhar- 
dtstraat 25, 1055 KV Amsterdam, The Netherlands.]. 

occupying the interval [O, 0.41. An inverted image (a = 2) is observed at 
z z 0.65. We see that M < 1 and R > 0, as confirmed by an examination of 
the rays. (The ray represented by the solid line crosses the z = 0.65 plane at 
a negative value (implying an inverted image) smaller than unity in 
magnitude (implying M < I), with a slope indicating divergence (implying 
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R > O).) An inverted Fourier transform (a  = 3) is observed at z z 1.2, 
almost coincident with the lens at that location. An erect image (a  = 1) is 
observed at z M 1.4, immediately after the lens at that location. The field 
curvature 1/R of this image has a very small negative value and the 
magnification M is slightly smaller than 1. The imaging systems discussed 
in Bernard0 and Soares [1994b] provide additional useful examples which 
the reader may wish to study in a similar manner [Ozaktas and Erden, 
19973. 

Fourier optical systems consist of an arbitrary number of thin filters 
sandwiched between arbitrary quadratic-phase systems. It readily follows 
that any Fourier optical system can be modeled as filters sandwiched 
between fractional Fourier transforms stages, or as repeated filtering in 
consecutive fractional Fourier domains (see Section XIII) [Ozaktas and 
Mendlovic, 19963. 

F. Optical ~mplementat io~ of' the Fractional Fourier Trunsform 

Here we mention a number of systems which map Jn(x) = f ( x / s )  into 
f,",(x) cc ,f,(x/s). Conceptually simplest is to use a section of quadratic 
graded-index media of length d = y(an/2) = ad,  with s2 = l q / y ,  (Subsection 

In practice, systems consisting of bulk lenses may be preferred. Two such 
systems were first presented by Lohmann [1993]. We present these systems 
without derivation, referring the reader to Lohmann [1993] and Ozaktas 
and Mendlovic [1995] for details. The first system consists of a section of 
free-space of length d followed by a lens of focal length f followed by a 
second section of free-space of length d .  To obtain an ath order fractional 
Fourier transform with scale parameter s, we must choose d and f according 
to 

C ) .  

S 2  

A 
d = - tan(g/2), 

The second system consists of a lens of focal length f followed by a section 
of free-space of length d followed by a second lens of focal length f: This 
time d and ,f must be chosen according to 
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More general systems can easily be obtained by using the general 
formulation presented in Ozaktas and Mendlovic [ 19951, Mendlovic and 
others [1995b,c], Jiang [1995], Liu and others [1995], Sahin, Ozaktas, and 
Mendlovic [1995], and Ozaktas and Erden [1997]. 

G. Gaussian Beam Propagation 

We have already seen that the propagation of light can be viewed as a 
process of continuous fractional Fourier transformation. In this subsection 
we will discuss the same facts, but this time in terms of Hermite-Gaussian 
beam expansions rather than Fresnel integrals or plane wave expansions. 
We will further see that the order of the fractional Fourier transform is 
proportional to the Gouy phase shift accumulated by the beam as it 
propagates. 

Let f ( x ,  0) denote the complex amplitude distribution at the plane z = 0. 
We can expand this function in terms of the Hermite-Gaussian functions: 

We can interpret the function s-”~$,,(x/s) as the amplitude distribution 
of a one-dimensional nth order Hermite-Gaussian beam at its waist. Then, 
it becomes an easy matter to write the amplitude distribution f(x, z )  at an 
arbitrary plane, since we know how each of the Hermite-Gaussian compo- 
nents propagates [Saleh and Teich, 19911: 

In this equation m(z) = &w(z)/s, where w(z) = w(O)[1 + ( Z / Z ~ ) ] ~ / ~  is the 
beam radius. Thus m(0) = &w(O)/s, where w(0) is the waist radius. The 
Rayleigh range zo is related to s by the relation s2 = lz,. We also have 
k = 2n/5  where 1 is the wavelength. Thus r(z) = z[1 + ( Z ~ / Z ) ~ ]  is the radius 
of curvature of the wavefronts, and [(z) = arctant(z/z,) is the Gouy phase 
shift [Saleh and Teich, 19911. 
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Equation 108 can be written in a considerably simple manner in terms of 
the fractional Fourier transform. Let us define functions with normalized 
arguments such that f(x, z )  = f(x/s, z/s), etc. Then the amplitude distribu- 
tion at any plane is given by 

where 

2 
a(z) = - [(z) .  

n 

In Equation 109, the fractional Fourier transform is taken with respect to 
u, and f(u, 0) = f((su, 0). Rewriting 

we see that the “angular order” 4 of the fractional Fourier transform in 
question is simply equal to the Gouy phase shift accumulated in propagat- 
ing from z = 0 to z .  As z --f co, we see that [(z) -+ 7c/2 and a(z) --f 1, 
corresponding to the ordinary Fourier transform. This is the same result 
discussed in Subsection D. 

This result can be generalized for propagation between two spherical 
references surfaces with arbitrary radii [Ozaktas and Mendlovic, 19943. Let 
the radius of the surface at z = z ,  be denoted by R ,  and that of the surface 
at  z = z2 be denoted by R,. The radii are positive if the surface is convex to 
the right. Then, there exists a fractional Fourier transform between these 
two surfaces whose order is given by 

It is well known that if a certain relation between R, ,  R ,  and z ,  - z1 holds, 
one obtains an ordinary Fourier transform relation between two spherical 
surfaces. What we have shown is that, for other values of the parameters, 
we obtain a fractional Fourier transform relation. Given any two spherical 
surfaces, what we need to do to find the order a of the fractional Fourier 
transform relation existing between them is to find the Rayleigh range and 
waist location of a Gaussian beam that would “fit” into these surfaces, and 
then calculate a from Equation 112. 

We may also think of a complex amplitude distribution “riding” on a 
Gaussian beam wavefront. The spatial dependence of the wavefront as the 
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wave propagates is like a carrier defining spherical surfaces, on top of which 
the complex amplitude distribution rides, being fractional Fourier trans- 
formed in the process. 

Since laser resonators commonly consist of two spherical mirrors, it 
becomes possible to characterize such resonators in terms of a fractional 
order parameter, again obtained from Equation 112. The well-known 
stability (or confinement) condition for spherical mirror resonators can be 
stated in a particularly simple form in terms of the parameter a: As long as 
a is real, we have a stable resonator. (In our discussion we have implicitly 
assumed that a and the Rayleigh range zo are real, which means that we 
have implicitly assumed stable resonators.) Unstable resonators are de- 
scribed by values of a which are not real. Further details may be found in 
Ozaktas and Mendlovic [1994]. 

In addition to the relation between the fractional order parameter $(z) 
and the Gouy phase shift [(z), the reader might also have noticed the 
similarity between the behavior of M(z), R(z), and the common parameters 
of Gaussian beams, namely the beam diameter w(z) and the wavefront 
radius of curvature r(z). Indeed, readers well familiar with the propagation 
of Gaussian beams will have no difficulty interpreting the evolution of R(z) 
and M(z) in Fig. 8 as the wavefront radius and diameter of a Gaussian 
beam. 

In considering systems such as that in Fig. 8, we will use [(z) to denote 
the accumulated Gouy phase shift with respect to the input plane at z = 0, 
rather than the conventional Gouy phase shift with respect to the last waist 
of the beam [Erden and Ozaktas, 19971. Essentially, the accumulated Gouy 
phase shift of a Gaussian beam passing through an optical system is defined 
as the phase accumulated by the beam in excess of the phase accumulated 
by a plane wave passing through the same system. 

In Ozaktas and Erden [1997] we have determined how the expressions 
for [(z), w(z), and r (z )  are related to the expressions for 4(z), M(z) ,  and R(z) 
(given in Equations 97,98, and 99). The main result can be stated as follows: 
“Let the output of an arbitrary system consisting of lenses and sections of 
free space be interpreted as a fractional Fourier transform of the input of 
order 4(z) with scale factor M(z) observed on a spherical surface of radius 
R(z). Let a Gaussian beam whose waist is located at z = 0 with waist 
diameter wo exhibit an accumulated Gouy phase shift [(z), beam diameter 
w(z), and wavefront radius of curvature r(z) at the output of the same 
system. If the unit s appearing in Equations 92 and 96 is related to wo as 
s = f i  wo,  then 4 ( z )  = [(z) ,  M(z) = w(z)/w,, and R(z) = r(z).” 

The reader is referred to Ozaktas and Erden [I19971 for further 
details. 
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XIII. APPLICATIONS TO SIGNAL AND IMAGE PROCESSING 

The fractional Fourier transform has found many applications in optical 
and digital signal and image processing, where the ordinary Fourier trans- 
form has traditionally played an important role. Here we satisfy ourselves 
by considering a number of basic concepts and simple application examples. 

In many signal processing applications, signals which we wish to recover 
are degraded by a known distortion and/or by noise. Then the problem is 
to reduce or eliminate these degradations. Appropriate solutions to such 
problems depend on the observation model and the objectives as well as the 
prior knowledge available about the desired signal, degradation process, and 
noise. A commonly used observation model is 

P 

where h(u, u ’ )  is the kernel of the linear system that degrades the desired 
signal f(u), and n(u) is an additive noise term. The problem is to find an 
estimation operator represented by the kernel g(u, u’), such that the es- 
timated signal 

minimizes the mean square error defined as 

where the overline denotes an ensemble average. The classical Wiener filter 
provides a solution to the preceding problem when the degradation is 
time-invariant and the input and noise processes are stationary. The Wiener 
filter is time-invariant and can thus be expressed as a convolution and 
implemented effectively with a multiplicative filter in the conventional 
Fourier domain with the fast Fourier transform algorithm (Fig. 9a). For an 
arbitrary degradation model or nonstationary processes, the classical 
Wiener filter often cannot provide a satisfactory result. In this case the 
optimum recovery operator is in general time-varying and has no fast 
implementation. 

The dual of filtering in the ordinary Fourier domain is filtering in the 
space- or time-domain (Fig. 9b). This operation simply corresponds to 
multiplying the original function with a mask function. Filtering in the 
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fobs 
(c) 

FIGURE 9. (a) Filtering in the Fourier domain. (b) Filtering in the space (or time) domain. 
(c) Filtering in the uth order fractional Fourier domain. 

ordinary space or Fourier domains can be generalized to filtering in the ath 
order fractional Fourier domain (Fig. 9c) [Mendlovic and others, 1996b; 
Ozaktas, 1996; Zalevsky and Mendlovic, 1996; Kutay and others, 19973. For 
a = 1 this reduces to the ordinary multiplicative Fourier domain filter, and 
for a = 0 it reduces to space-domain multiplicative filtering. 

To understand the basic motivation for filtering in fractional Fourier 
domains, consider Fig. 10, where the Wigner distributions of a desired signal 
and an undesired distortion are superimposed. We observe that they overlap 
in both the 0th and 1st domains, but they do not overlap in the 0.5th 
domain (consider the projections onto the uo = u, u1 = u, and uo.5 axes). 
Although we cannot eliminate the distortions in the space or frequency 
domains, we can eliminate them easily by using a simple amplitude mask in 
the 0.5th domain. 
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P 
a 

FIGURE 10. Filtering in fractional Fourier domains as observed in the space- (or time-) 
frequency plane. 

We now discuss the optimal filtering problem mathematically. The 
estimated (filtered) signal A,, is expressed as (Fig. 9c) 

where 9” is the ath order fractional Fourier transform operator, Ag denotes 
the operator corresponding to multiplication by the filter function g(u), and 
y3ingle is the operator representing the overall filtering configuration. Ac- 
cording to Equation 117, we first take the uth order fractional Fourier 
transform of the observed signal ,fobs(u), then multiply the transformed 
signal with the filter y(u) and take the inverse ath order fractional Fourier 
transform of the resulting signal to obtain our estimate. Since the frac- 
tional Fourier transform has efficient digital and optical implementa- 
tions, the cost of fractional Fourier domain filtering is approximately the 
same as the cost of ordinary Fourier domain filtering. With the above form 
of the estimation operator, the problem is to find the optimum multiplica- 
tive filter function gopt(u) that minimizes the mean-square error defined in 
Equation 115. 

For a given transform order a, gop,(u,) can be found analytically using the 
orthogonality principle or the calculus of variations (Kutay and others, 
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1997): 

where the stochastic auto- and cross-correlation functions RjfObb(u,  u ' )  and 
Rfohrfob,(u, u ' )  can be computed from the correlation functions Rj,(u, u' )  
and Rnn(u, u') (which are assumed to be known). 

Fractional Fourier domain filtering is particularly advantageous when the 
distortion or noise is of a chirped nature. Such situations are encountered 
in many real-life applications. For instance, a major problem in the 
reconstruction from holograms is the elimination of twin-image noise. Since 
this noise is essentially a modulated chirp signal, it can be dealt with by 
fractional Fourier domain filtering. Another example is the correction of the 
effects of point or line defects found on lenses or filters in optical systems, 
which appear at the output plane in the form of chirp artifacts. Another 
application arises in synthetic aperture radar which employs chirps as 
transmitted pulses, so that the measurements are related to the terrain 
reflectivity function through a chirp convolution. This process results in 
chirp-type disturbances caused by moving objects in the terrain, which 
should be removed if high-resolution imaging is to be achieved. Fractional 
Fourier domain filtering has also been applied to restoration of images 
blurred by camera motion or atmosphere turbulence [Kutay and Ozaktas, 
19981. 

Further generalizations of the concept of filtering in fractional Fourier 
domains have been referred to as multistage (repeated) and multichannel 
(parallel) filtering in fractional Fourier domains [Erden, 1997; Erden and 
others, 1997a,b; Ozaktas, Erden, and Kutay, 1997; Kutay and others, 
1998a,b]. These systems consist of M signal-stage fractional Fourier domain 
stages in series or in parallel (Fig. 1 la, b). M = 1 corresponds to single-stage 
filtering in both cases. In the multistage system shown in Figure l la ,  the 
input is first transformed into the a,th domain, where it is multiplied by a 
filter g,(u). The result is then transformed back into the original domain and 
the same process is repeated M times consecutively. (Note that this amounts 
to sequentially visiting the domains a,, a2 - a,, a3 - u2, etc. and applying 
a filter in each.) On the other hand, the multichannel filter structure consists 
of M single-stage blocks in parallel (Fig. 11 b). For each channel k ,  the input 
is transformed to the a,th domain, multiplied with a filter gk(u) ,  and then 
transformed back. Let A,, denote the operator corresponding to multiplica- 
tion by the filter function gj(u). Then, the outputs Jest s e r ( ~ )  and .fe,, pBr(u) of 
the serial and parallel configurations are related to the input fobs(u) 
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\ 

FIGURE 11. (a) Multistage filtering in fractional Fourier domains. (b) Multichannel 
filtering in fractional Fourier domains. 

according to the relations 

where 9""~ represents the ajth order fractional Fourier transform operator 
and ,TSer, .Tpor the operators representing the overall filtering configurations. 

As M is increased, both the cost and flexibility of the systems increase. 
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The digital implementation of these systems takes O ( M N  logN) time and 
their optical implementation requires an M-stage or M-channel optical 
system, each of whose stages or channels should have space-bandwidth 
product N .  The increase in flexibility as M increases will often translate into 
a reduction of the estimation error. Thus we can trade of f  between cost and 
accuracy by choosing an appropriate number of stages or channels. 

As a simple example, we consider restoration of images blurred by a 

(el (f ) 

FIWRE 12. Image restoration with the fractional Fourier transform 
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fin 

nonconstant velocity (space-variant) moving camera. Figure 12a shows the 
original image, and Fig. 12b shows the blurred image. Figure 12c shows the 
restoration possible by using ordinary Fourier domain filtering, and Fig. 
12d shows restoration possible by single-stage filtering. In this case the 
optimal domain was a = 0.7, resulting in a mean-square error of 5%. Figure 
12e and Fig. 12f show the restored images obtained by using multichannel 
and multistage filtering configurations with M = 5. We see that the two 
latter options offer the best performance. 

A further extension of these concepts is to combine the serial and parallel 
filtering configurations in an arbitrary manner to obtain generalizedjiltering 
corzfigurations or circuits (Fig. 13) [Kutay and others, 1998a, b]. 

In the preceding discussion we have posed the multistage and multichan- 
nel configurations as filter structures for optimal image estimation. They can 
also be used for cost-efficient synthesis of desired linear systems, transform- 

- - f 

I 
I 

f fout 

FIGURE 13. Filter circuits. Each block corresponds to single-stage filtering. 
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ations, or mappings, including geometric distortion compensators, and 
beam shapers and synthesizers as well as linear recovery operators. In this 
approach, given a general linear system X characterized by the kernel h(u, 
u’) which we wish to implement, we try to find the optimal orders uk and 
filter coefficients g k  such that the overall linear operators FSingle, Fs,,, or 
Ypar (as given by Equation 117, Equation 119, or Equation 120) is as close 
as possible to 2, according to some specified criteria (such as minimum 
Froebenius norm of the difference of the kernels). 

The optical and digital implementations of general linear systems are 
costly. Using the abovementioned approach, it is possible to approximate 
the systems by multistage or multichannel filtering operations in fractional 
Fourier domains, which are much cheaper to implement. This would allow 
signficant savings in cost with little or no decrease in performance. Further 
discussion of this approach in a signal processing context may be found in 
Erden [1997], Erden and Ozaktas [1998], Ozaktas, Erden, and Kutay 
[1997], and Kutay and others [1998a]. We believe that this approach will 
find further applications in many other contexts. 

Finally, we note that optimal filtering and image restoration is only one 
of the many signal processing applications explored. Correlation and 
pattern recognition applications have also received a considerable amount 
of interest. We refer the reader to the chapter by Mendlovic, Zalevsky, and 
Ozaktas [1998] and also to the following papers: Mendlovic, Ozaktas, and 
Lohmann [ 1995d1; Alieva and Agullo-Lopez [1995]; Garcia and others 
[ 19961; Lohmann, Zalevsky, and Mendlovic [1996b]; Bitran and others 
[1996]; and Mendlovic and others [1995a]. 
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